Example #1
0
static void direct_finish_page(struct squashfs_page_actor *actor)
{
	if (actor->pageaddr)
		kunmap_atomic(actor->pageaddr);
}
Example #2
0
static int nilfs_cpfile_set_snapshot(struct inode *cpfile, __u64 cno)
{
	struct buffer_head *header_bh, *curr_bh, *prev_bh, *cp_bh;
	struct nilfs_cpfile_header *header;
	struct nilfs_checkpoint *cp;
	struct nilfs_snapshot_list *list;
	__u64 curr, prev;
	unsigned long curr_blkoff, prev_blkoff;
	void *kaddr;
	int ret;

	if (cno == 0)
		return -ENOENT; /* checkpoint number 0 is invalid */
	down_write(&NILFS_MDT(cpfile)->mi_sem);

	ret = nilfs_cpfile_get_checkpoint_block(cpfile, cno, 0, &cp_bh);
	if (ret < 0)
		goto out_sem;
	kaddr = kmap_atomic(cp_bh->b_page);
	cp = nilfs_cpfile_block_get_checkpoint(cpfile, cno, cp_bh, kaddr);
	if (nilfs_checkpoint_invalid(cp)) {
		ret = -ENOENT;
		kunmap_atomic(kaddr);
		goto out_cp;
	}
	if (nilfs_checkpoint_snapshot(cp)) {
		ret = 0;
		kunmap_atomic(kaddr);
		goto out_cp;
	}
	kunmap_atomic(kaddr);

	ret = nilfs_cpfile_get_header_block(cpfile, &header_bh);
	if (ret < 0)
		goto out_cp;
	kaddr = kmap_atomic(header_bh->b_page);
	header = nilfs_cpfile_block_get_header(cpfile, header_bh, kaddr);
	list = &header->ch_snapshot_list;
	curr_bh = header_bh;
	get_bh(curr_bh);
	curr = 0;
	curr_blkoff = 0;
	prev = le64_to_cpu(list->ssl_prev);
	while (prev > cno) {
		prev_blkoff = nilfs_cpfile_get_blkoff(cpfile, prev);
		curr = prev;
		if (curr_blkoff != prev_blkoff) {
			kunmap_atomic(kaddr);
			brelse(curr_bh);
			ret = nilfs_cpfile_get_checkpoint_block(cpfile, curr,
								0, &curr_bh);
			if (ret < 0)
				goto out_header;
			kaddr = kmap_atomic(curr_bh->b_page);
		}
		curr_blkoff = prev_blkoff;
		cp = nilfs_cpfile_block_get_checkpoint(
			cpfile, curr, curr_bh, kaddr);
		list = &cp->cp_snapshot_list;
		prev = le64_to_cpu(list->ssl_prev);
	}
	kunmap_atomic(kaddr);

	if (prev != 0) {
		ret = nilfs_cpfile_get_checkpoint_block(cpfile, prev, 0,
							&prev_bh);
		if (ret < 0)
			goto out_curr;
	} else {
		prev_bh = header_bh;
		get_bh(prev_bh);
	}

	kaddr = kmap_atomic(curr_bh->b_page);
	list = nilfs_cpfile_block_get_snapshot_list(
		cpfile, curr, curr_bh, kaddr);
	list->ssl_prev = cpu_to_le64(cno);
	kunmap_atomic(kaddr);

	kaddr = kmap_atomic(cp_bh->b_page);
	cp = nilfs_cpfile_block_get_checkpoint(cpfile, cno, cp_bh, kaddr);
	cp->cp_snapshot_list.ssl_next = cpu_to_le64(curr);
	cp->cp_snapshot_list.ssl_prev = cpu_to_le64(prev);
	nilfs_checkpoint_set_snapshot(cp);
	kunmap_atomic(kaddr);

	kaddr = kmap_atomic(prev_bh->b_page);
	list = nilfs_cpfile_block_get_snapshot_list(
		cpfile, prev, prev_bh, kaddr);
	list->ssl_next = cpu_to_le64(cno);
	kunmap_atomic(kaddr);

	kaddr = kmap_atomic(header_bh->b_page);
	header = nilfs_cpfile_block_get_header(cpfile, header_bh, kaddr);
	le64_add_cpu(&header->ch_nsnapshots, 1);
	kunmap_atomic(kaddr);

	mark_buffer_dirty(prev_bh);
	mark_buffer_dirty(curr_bh);
	mark_buffer_dirty(cp_bh);
	mark_buffer_dirty(header_bh);
	nilfs_mdt_mark_dirty(cpfile);

	brelse(prev_bh);

 out_curr:
	brelse(curr_bh);

 out_header:
	brelse(header_bh);

 out_cp:
	brelse(cp_bh);

 out_sem:
	up_write(&NILFS_MDT(cpfile)->mi_sem);
	return ret;
}
int ttm_tt_swapout(struct ttm_tt *ttm, struct file *persistant_swap_storage)
{
	struct address_space *swap_space;
	struct file *swap_storage;
	struct page *from_page;
	struct page *to_page;
	void *from_virtual;
	void *to_virtual;
	int i;
	int ret = -ENOMEM;

	BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
	BUG_ON(ttm->caching_state != tt_cached);

	/*
	 * For user buffers, just unpin the pages, as there should be
	 * vma references.
	 */

	if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
		ttm_tt_free_user_pages(ttm);
		ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
		ttm->swap_storage = NULL;
		return 0;
	}

	if (!persistant_swap_storage) {
		swap_storage = shmem_file_setup("ttm swap",
						ttm->num_pages << PAGE_SHIFT,
						0);
		if (unlikely(IS_ERR(swap_storage))) {
			printk(KERN_ERR "Failed allocating swap storage.\n");
			return PTR_ERR(swap_storage);
		}
	} else
		swap_storage = persistant_swap_storage;

	swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;

	for (i = 0; i < ttm->num_pages; ++i) {
		from_page = ttm->pages[i];
		if (unlikely(from_page == NULL))
			continue;
		to_page = read_mapping_page(swap_space, i, NULL);
		if (unlikely(IS_ERR(to_page))) {
			ret = PTR_ERR(to_page);
			goto out_err;
		}
		preempt_disable();
		from_virtual = kmap_atomic(from_page, KM_USER0);
		to_virtual = kmap_atomic(to_page, KM_USER1);
		memcpy(to_virtual, from_virtual, PAGE_SIZE);
		kunmap_atomic(to_virtual, KM_USER1);
		kunmap_atomic(from_virtual, KM_USER0);
		preempt_enable();
		set_page_dirty(to_page);
		mark_page_accessed(to_page);
		page_cache_release(to_page);
	}

	ttm_tt_free_alloced_pages(ttm);
	ttm->swap_storage = swap_storage;
	ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
	if (persistant_swap_storage)
		ttm->page_flags |= TTM_PAGE_FLAG_PERSISTANT_SWAP;

	return 0;
out_err:
	if (!persistant_swap_storage)
		fput(swap_storage);

	return ret;
}
Example #4
0
/* read the superblock from the bitmap file and initialize some bitmap fields */
static int bitmap_read_sb(struct bitmap *bitmap)
{
    char *reason = NULL;
    bitmap_super_t *sb;
    unsigned long chunksize, daemon_sleep, write_behind;
    unsigned long long events;
    int err = -EINVAL;

    /* page 0 is the superblock, read it... */
    if (bitmap->file) {
        loff_t isize = i_size_read(bitmap->file->f_mapping->host);
        int bytes = isize > PAGE_SIZE ? PAGE_SIZE : isize;

        bitmap->sb_page = read_page(bitmap->file, 0, bitmap, bytes);
    } else {
        bitmap->sb_page = read_sb_page(bitmap->mddev, bitmap->offset, 0);
    }
    if (IS_ERR(bitmap->sb_page)) {
        err = PTR_ERR(bitmap->sb_page);
        bitmap->sb_page = NULL;
        return err;
    }

    sb = (bitmap_super_t *)kmap_atomic(bitmap->sb_page, KM_USER0);

    chunksize = le32_to_cpu(sb->chunksize);
    daemon_sleep = le32_to_cpu(sb->daemon_sleep);
    write_behind = le32_to_cpu(sb->write_behind);

    /* verify that the bitmap-specific fields are valid */
    if (sb->magic != cpu_to_le32(BITMAP_MAGIC))
        reason = "bad magic";
    else if (le32_to_cpu(sb->version) < BITMAP_MAJOR_LO ||
             le32_to_cpu(sb->version) > BITMAP_MAJOR_HI)
        reason = "unrecognized superblock version";
    else if (chunksize < PAGE_SIZE)
        reason = "bitmap chunksize too small";
    else if ((1 << ffz(~chunksize)) != chunksize)
        reason = "bitmap chunksize not a power of 2";
    else if (daemon_sleep < 1 || daemon_sleep > MAX_SCHEDULE_TIMEOUT / HZ)
        reason = "daemon sleep period out of range";
    else if (write_behind > COUNTER_MAX)
        reason = "write-behind limit out of range (0 - 16383)";
    if (reason) {
        printk(KERN_INFO "%s: invalid bitmap file superblock: %s\n",
               bmname(bitmap), reason);
        goto out;
    }

    /* keep the array size field of the bitmap superblock up to date */
    sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors);

    if (!bitmap->mddev->persistent)
        goto success;

    /*
     * if we have a persistent array superblock, compare the
     * bitmap's UUID and event counter to the mddev's
     */
    if (memcmp(sb->uuid, bitmap->mddev->uuid, 16)) {
        printk(KERN_INFO "%s: bitmap superblock UUID mismatch\n",
               bmname(bitmap));
        goto out;
    }
    events = le64_to_cpu(sb->events);
    if (events < bitmap->mddev->events) {
        printk(KERN_INFO "%s: bitmap file is out of date (%llu < %llu) "
               "-- forcing full recovery\n", bmname(bitmap), events,
               (unsigned long long) bitmap->mddev->events);
        sb->state |= cpu_to_le32(BITMAP_STALE);
    }
success:
    /* assign fields using values from superblock */
    bitmap->chunksize = chunksize;
    bitmap->daemon_sleep = daemon_sleep;
    bitmap->daemon_lastrun = jiffies;
    bitmap->max_write_behind = write_behind;
    bitmap->flags |= le32_to_cpu(sb->state);
    if (le32_to_cpu(sb->version) == BITMAP_MAJOR_HOSTENDIAN)
        bitmap->flags |= BITMAP_HOSTENDIAN;
    bitmap->events_cleared = le64_to_cpu(sb->events_cleared);
    if (sb->state & cpu_to_le32(BITMAP_STALE))
        bitmap->events_cleared = bitmap->mddev->events;
    err = 0;
out:
    kunmap_atomic(sb, KM_USER0);
    if (err)
        bitmap_print_sb(bitmap);
    return err;
}
Example #5
0
/**
 * nilfs_cpfile_delete_checkpoints - delete checkpoints
 * @cpfile: inode of checkpoint file
 * @start: start checkpoint number
 * @end: end checkpoint numer
 *
 * Description: nilfs_cpfile_delete_checkpoints() deletes the checkpoints in
 * the period from @start to @end, excluding @end itself. The checkpoints
 * which have been already deleted are ignored.
 *
 * Return Value: On success, 0 is returned. On error, one of the following
 * negative error codes is returned.
 *
 * %-EIO - I/O error.
 *
 * %-ENOMEM - Insufficient amount of memory available.
 *
 * %-EINVAL - invalid checkpoints.
 */
int nilfs_cpfile_delete_checkpoints(struct inode *cpfile,
				    __u64 start,
				    __u64 end)
{
	struct buffer_head *header_bh, *cp_bh;
	struct nilfs_cpfile_header *header;
	struct nilfs_checkpoint *cp;
	size_t cpsz = NILFS_MDT(cpfile)->mi_entry_size;
	__u64 cno;
	void *kaddr;
	unsigned long tnicps;
	int ret, ncps, nicps, nss, count, i;

	if (unlikely(start == 0 || start > end)) {
		printk(KERN_ERR "%s: invalid range of checkpoint numbers: "
		       "[%llu, %llu)\n", __func__,
		       (unsigned long long)start, (unsigned long long)end);
		return -EINVAL;
	}

	down_write(&NILFS_MDT(cpfile)->mi_sem);

	ret = nilfs_cpfile_get_header_block(cpfile, &header_bh);
	if (ret < 0)
		goto out_sem;
	tnicps = 0;
	nss = 0;

	for (cno = start; cno < end; cno += ncps) {
		ncps = nilfs_cpfile_checkpoints_in_block(cpfile, cno, end);
		ret = nilfs_cpfile_get_checkpoint_block(cpfile, cno, 0, &cp_bh);
		if (ret < 0) {
			if (ret != -ENOENT)
				break;
			/* skip hole */
			ret = 0;
			continue;
		}

		kaddr = kmap_atomic(cp_bh->b_page);
		cp = nilfs_cpfile_block_get_checkpoint(
			cpfile, cno, cp_bh, kaddr);
		nicps = 0;
		for (i = 0; i < ncps; i++, cp = (void *)cp + cpsz) {
			if (nilfs_checkpoint_snapshot(cp)) {
				nss++;
			} else if (!nilfs_checkpoint_invalid(cp)) {
				nilfs_checkpoint_set_invalid(cp);
				nicps++;
			}
		}
		if (nicps > 0) {
			tnicps += nicps;
			mark_buffer_dirty(cp_bh);
			nilfs_mdt_mark_dirty(cpfile);
			if (!nilfs_cpfile_is_in_first(cpfile, cno)) {
				count =
				  nilfs_cpfile_block_sub_valid_checkpoints(
						cpfile, cp_bh, kaddr, nicps);
				if (count == 0) {
					/* make hole */
					kunmap_atomic(kaddr);
					brelse(cp_bh);
					ret =
					  nilfs_cpfile_delete_checkpoint_block(
								   cpfile, cno);
					if (ret == 0)
						continue;
					printk(KERN_ERR
					       "%s: cannot delete block\n",
					       __func__);
					break;
				}
			}
		}

		kunmap_atomic(kaddr);
		brelse(cp_bh);
	}

	if (tnicps > 0) {
		kaddr = kmap_atomic(header_bh->b_page);
		header = nilfs_cpfile_block_get_header(cpfile, header_bh,
						       kaddr);
		le64_add_cpu(&header->ch_ncheckpoints, -(u64)tnicps);
		mark_buffer_dirty(header_bh);
		nilfs_mdt_mark_dirty(cpfile);
		kunmap_atomic(kaddr);
	}

	brelse(header_bh);
	if (nss > 0)
		ret = -EBUSY;

 out_sem:
	up_write(&NILFS_MDT(cpfile)->mi_sem);
	return ret;
}
/*
 * Clear the user page.  No aliasing to deal with so we can just
 * attack the kernel's existing mapping of this page.
 */
static void v6_clear_user_highpage_nonaliasing(struct page *page, unsigned long vaddr)
{
	void *kaddr = kmap_atomic(page, KM_USER0);
	clear_page(kaddr);
	kunmap_atomic(kaddr, KM_USER0);
}
Example #7
0
/*
 * Deliver read data back to initiator.
 * XXX TBD handle resource problems later.
 */
int ft_queue_data_in(struct se_cmd *se_cmd)
{
	struct ft_cmd *cmd = container_of(se_cmd, struct ft_cmd, se_cmd);
	struct fc_frame *fp = NULL;
	struct fc_exch *ep;
	struct fc_lport *lport;
	struct scatterlist *sg = NULL;
	size_t remaining;
	u32 f_ctl = FC_FC_EX_CTX | FC_FC_REL_OFF;
	u32 mem_off = 0;
	u32 fh_off = 0;
	u32 frame_off = 0;
	size_t frame_len = 0;
	size_t mem_len = 0;
	size_t tlen;
	size_t off_in_page;
	struct page *page = NULL;
	int use_sg;
	int error;
	void *page_addr;
	void *from;
	void *to = NULL;

	ep = fc_seq_exch(cmd->seq);
	lport = ep->lp;
	cmd->seq = lport->tt.seq_start_next(cmd->seq);

	remaining = se_cmd->data_length;

	/*
	 * Setup to use first mem list entry, unless no data.
	 */
	BUG_ON(remaining && !se_cmd->t_data_sg);
	if (remaining) {
		sg = se_cmd->t_data_sg;
		mem_len = sg->length;
		mem_off = sg->offset;
		page = sg_page(sg);
	}

	/* no scatter/gather in skb for odd word length due to fc_seq_send() */
	use_sg = !(remaining % 4);

	while (remaining) {
		if (!mem_len) {
			sg = sg_next(sg);
			mem_len = min((size_t)sg->length, remaining);
			mem_off = sg->offset;
			page = sg_page(sg);
		}
		if (!frame_len) {
			/*
			 * If lport's has capability of Large Send Offload LSO)
			 * , then allow 'frame_len' to be as big as 'lso_max'
			 * if indicated transfer length is >= lport->lso_max
			 */
			frame_len = (lport->seq_offload) ? lport->lso_max :
							  cmd->sess->max_frame;
			frame_len = min(frame_len, remaining);
			fp = fc_frame_alloc(lport, use_sg ? 0 : frame_len);
			if (!fp)
				return -ENOMEM;
			to = fc_frame_payload_get(fp, 0);
			fh_off = frame_off;
			frame_off += frame_len;
			/*
			 * Setup the frame's max payload which is used by base
			 * driver to indicate HW about max frame size, so that
			 * HW can do fragmentation appropriately based on
			 * "gso_max_size" of underline netdev.
			 */
			fr_max_payload(fp) = cmd->sess->max_frame;
		}
		tlen = min(mem_len, frame_len);

		if (use_sg) {
			off_in_page = mem_off;
			BUG_ON(!page);
			get_page(page);
			skb_fill_page_desc(fp_skb(fp),
					   skb_shinfo(fp_skb(fp))->nr_frags,
					   page, off_in_page, tlen);
			fr_len(fp) += tlen;
			fp_skb(fp)->data_len += tlen;
			fp_skb(fp)->truesize +=
					PAGE_SIZE << compound_order(page);
		} else {
			BUG_ON(!page);
			from = kmap_atomic(page + (mem_off >> PAGE_SHIFT));
			page_addr = from;
			from += mem_off & ~PAGE_MASK;
			tlen = min(tlen, (size_t)(PAGE_SIZE -
						(mem_off & ~PAGE_MASK)));
			memcpy(to, from, tlen);
			kunmap_atomic(page_addr);
			to += tlen;
		}

		mem_off += tlen;
		mem_len -= tlen;
		frame_len -= tlen;
		remaining -= tlen;

		if (frame_len &&
		    (skb_shinfo(fp_skb(fp))->nr_frags < FC_FRAME_SG_LEN))
			continue;
		if (!remaining)
			f_ctl |= FC_FC_END_SEQ;
		fc_fill_fc_hdr(fp, FC_RCTL_DD_SOL_DATA, ep->did, ep->sid,
			       FC_TYPE_FCP, f_ctl, fh_off);
		error = lport->tt.seq_send(lport, cmd->seq, fp);
		if (error) {
			/* XXX For now, initiator will retry */
			pr_err_ratelimited("%s: Failed to send frame %p, "
						"xid <0x%x>, remaining %zu, "
						"lso_max <0x%x>\n",
						__func__, fp, ep->xid,
						remaining, lport->lso_max);
		}
	}
	return ft_queue_status(se_cmd);
}
/**
 * toi_copy_pageset1 - do the atomic copy of pageset1
 *
 * Make the atomic copy of pageset1. We can't use copy_page (as we once did)
 * because we can't be sure what side effects it has. On my old Duron, with
 * 3DNOW, kernel_fpu_begin increments preempt count, making our preempt
 * count at resume time 4 instead of 3.
 *
 * We don't want to call kmap_atomic unconditionally because it has the side
 * effect of incrementing the preempt count, which will leave it one too high
 * post resume (the page containing the preempt count will be copied after
 * its incremented. This is essentially the same problem.
 **/
void toi_copy_pageset1(void)
{
	int i;
	unsigned long source_index, dest_index;

	memory_bm_position_reset(pageset1_map);
	memory_bm_position_reset(pageset1_copy_map);

	source_index = memory_bm_next_pfn(pageset1_map);
	dest_index = memory_bm_next_pfn(pageset1_copy_map);

	for (i = 0; i < pagedir1.size; i++) {
		unsigned long *origvirt, *copyvirt;
		struct page *origpage, *copypage;
		int loop = (PAGE_SIZE / sizeof(unsigned long)) - 1,
		    was_present1, was_present2;

#ifdef CONFIG_MTK_HIBERNATION
        if (!pfn_valid(source_index) || !pfn_valid(dest_index)) {
            pr_emerg("[%s] (%d) dest_index:%lu, source_index:%lu\n", __func__, i, dest_index, source_index);
            set_abort_result(TOI_ARCH_PREPARE_FAILED);
            return;
        }
#endif

		origpage = pfn_to_page(source_index);
		copypage = pfn_to_page(dest_index);

		origvirt = PageHighMem(origpage) ?
			kmap_atomic(origpage) :
			page_address(origpage);

		copyvirt = PageHighMem(copypage) ?
			kmap_atomic(copypage) :
			page_address(copypage);

		was_present1 = kernel_page_present(origpage);
		if (!was_present1)
			kernel_map_pages(origpage, 1, 1);

		was_present2 = kernel_page_present(copypage);
		if (!was_present2)
			kernel_map_pages(copypage, 1, 1);

		while (loop >= 0) {
			*(copyvirt + loop) = *(origvirt + loop);
			loop--;
		}

		if (!was_present1)
			kernel_map_pages(origpage, 1, 0);

		if (!was_present2)
			kernel_map_pages(copypage, 1, 0);

		if (PageHighMem(origpage))
			kunmap_atomic(origvirt);

		if (PageHighMem(copypage))
			kunmap_atomic(copyvirt);

		source_index = memory_bm_next_pfn(pageset1_map);
		dest_index = memory_bm_next_pfn(pageset1_copy_map);
	}
}
Example #9
0
static int zram_read(struct zram *zram, struct bio *bio)
{

	int i;
	u32 index;
	struct bio_vec *bvec;

	if (unlikely(!zram->init_done)) {
		set_bit(BIO_UPTODATE, &bio->bi_flags);
		bio_endio(bio, 0);
		return 0;
	}

	zram_stat64_inc(zram, &zram->stats.num_reads);
	index = bio->bi_sector >> SECTORS_PER_PAGE_SHIFT;

	bio_for_each_segment(bvec, bio, i) {
		int ret;
		size_t clen;
		struct page *page;
		struct zobj_header *zheader;
		unsigned char *user_mem, *cmem;

		page = bvec->bv_page;

		if (zram_test_flag(zram, index, ZRAM_ZERO)) {
			handle_zero_page(page);
			index++;
			continue;
		}

		/* Requested page is not present in compressed area */
		if (unlikely(!zram->table[index].page)) {
			pr_debug("Read before write: sector=%lu, size=%u",
				(ulong)(bio->bi_sector), bio->bi_size);
			/* Do nothing */
			index++;
			continue;
		}

		/* Page is stored uncompressed since it's incompressible */
		if (unlikely(zram_test_flag(zram, index, ZRAM_UNCOMPRESSED))) {
			handle_uncompressed_page(zram, page, index);
			index++;
			continue;
		}

		user_mem = kmap_atomic(page, KM_USER0);
		clen = PAGE_SIZE;

		cmem = kmap_atomic(zram->table[index].page, KM_USER1) +
				zram->table[index].offset;

		ret = lzo1x_decompress_safe(
			cmem + sizeof(*zheader),
			xv_get_object_size(cmem) - sizeof(*zheader),
			user_mem, &clen);

		kunmap_atomic(user_mem, KM_USER0);
		kunmap_atomic(cmem, KM_USER1);

		/* Should NEVER happen. Return bio error if it does. */
		if (unlikely(ret != LZO_E_OK)) {
			pr_err("Decompression failed! err=%d, page=%u\n",
				ret, index);
			zram_stat64_inc(zram, &zram->stats.failed_reads);
			goto out;
		}

		flush_dcache_page(page);
		index++;
	}
Example #10
0
int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
{
	struct f2fs_io_info fio = {
		.sbi = F2FS_I_SB(dn->inode),
		.type = DATA,
		.op = REQ_OP_WRITE,
		.op_flags = WRITE_SYNC | REQ_PRIO,
		.page = page,
		.encrypted_page = NULL,
	};
	int dirty, err;

	if (!f2fs_exist_data(dn->inode))
		goto clear_out;

	err = f2fs_reserve_block(dn, 0);
	if (err)
		return err;

	f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page));

	read_inline_data(page, dn->inode_page);
	set_page_dirty(page);

	/* clear dirty state */
	dirty = clear_page_dirty_for_io(page);

	/* write data page to try to make data consistent */
	set_page_writeback(page);
	fio.old_blkaddr = dn->data_blkaddr;
	write_data_page(dn, &fio);
	f2fs_wait_on_page_writeback(page, DATA, true);
	if (dirty)
		inode_dec_dirty_pages(dn->inode);

	/* this converted inline_data should be recovered. */
	set_inode_flag(dn->inode, FI_APPEND_WRITE);

	/* clear inline data and flag after data writeback */
	truncate_inline_inode(dn->inode_page, 0);
	clear_inline_node(dn->inode_page);
clear_out:
	stat_dec_inline_inode(dn->inode);
	f2fs_clear_inline_inode(dn->inode);
	f2fs_put_dnode(dn);
	return 0;
}

int f2fs_convert_inline_inode(struct inode *inode)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	struct dnode_of_data dn;
	struct page *ipage, *page;
	int err = 0;

	if (!f2fs_has_inline_data(inode))
		return 0;

	page = f2fs_grab_cache_page(inode->i_mapping, 0, false);
	if (!page)
		return -ENOMEM;

	f2fs_lock_op(sbi);

	ipage = get_node_page(sbi, inode->i_ino);
	if (IS_ERR(ipage)) {
		err = PTR_ERR(ipage);
		goto out;
	}

	set_new_dnode(&dn, inode, ipage, ipage, 0);

	if (f2fs_has_inline_data(inode))
		err = f2fs_convert_inline_page(&dn, page);

	f2fs_put_dnode(&dn);
out:
	f2fs_unlock_op(sbi);

	f2fs_put_page(page, 1);

	f2fs_balance_fs(sbi, dn.node_changed);

	return err;
}

int f2fs_write_inline_data(struct inode *inode, struct page *page)
{
	void *src_addr, *dst_addr;
	struct dnode_of_data dn;
	int err;

	set_new_dnode(&dn, inode, NULL, NULL, 0);
	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
	if (err)
		return err;

	if (!f2fs_has_inline_data(inode)) {
		f2fs_put_dnode(&dn);
		return -EAGAIN;
	}

	f2fs_bug_on(F2FS_I_SB(inode), page->index);

	f2fs_wait_on_page_writeback(dn.inode_page, NODE, true);
	src_addr = kmap_atomic(page);
	dst_addr = inline_data_addr(dn.inode_page);
	memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
	kunmap_atomic(src_addr);
	set_page_dirty(dn.inode_page);

	set_inode_flag(inode, FI_APPEND_WRITE);
	set_inode_flag(inode, FI_DATA_EXIST);

	clear_inline_node(dn.inode_page);
	f2fs_put_dnode(&dn);
	return 0;
}
static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
                                        struct iov_iter *i)
{
    size_t skip, copy, left, wanted;
    const struct iovec *iov;
    char __user *buf;
    void *kaddr, *to;

    if (unlikely(bytes > i->count))
        bytes = i->count;

    if (unlikely(!bytes))
        return 0;

    wanted = bytes;
    iov = i->iov;
    skip = i->iov_offset;
    buf = iov->iov_base + skip;
    copy = min(bytes, iov->iov_len - skip);

    if (!fault_in_pages_readable(buf, copy)) {
        kaddr = kmap_atomic(page);
        to = kaddr + offset;

        /* first chunk, usually the only one */
        left = __copy_from_user_inatomic(to, buf, copy);
        copy -= left;
        skip += copy;
        to += copy;
        bytes -= copy;

        while (unlikely(!left && bytes)) {
            iov++;
            buf = iov->iov_base;
            copy = min(bytes, iov->iov_len);
            left = __copy_from_user_inatomic(to, buf, copy);
            copy -= left;
            skip = copy;
            to += copy;
            bytes -= copy;
        }
        if (likely(!bytes)) {
            kunmap_atomic(kaddr);
            goto done;
        }
        offset = to - kaddr;
        buf += copy;
        kunmap_atomic(kaddr);
        copy = min(bytes, iov->iov_len - skip);
    }
    /* Too bad - revert to non-atomic kmap */
    kaddr = kmap(page);
    to = kaddr + offset;
    left = __copy_from_user(to, buf, copy);
    copy -= left;
    skip += copy;
    to += copy;
    bytes -= copy;
    while (unlikely(!left && bytes)) {
        iov++;
        buf = iov->iov_base;
        copy = min(bytes, iov->iov_len);
        left = __copy_from_user(to, buf, copy);
        copy -= left;
        skip = copy;
        to += copy;
        bytes -= copy;
    }
    kunmap(page);
done:
    if (skip == iov->iov_len) {
        iov++;
        skip = 0;
    }
    i->count -= wanted - bytes;
    i->nr_segs -= iov - i->iov;
    i->iov = iov;
    i->iov_offset = skip;
    return wanted - bytes;
}
Example #12
0
/**
 * ecryptfs_copy_up_encrypted_with_header
 * @page: Sort of a ``virtual'' representation of the encrypted lower
 *        file. The actual lower file does not have the metadata in
 *        the header. This is locked.
 * @crypt_stat: The eCryptfs inode's cryptographic context
 *
 * The ``view'' is the version of the file that userspace winds up
 * seeing, with the header information inserted.
 */
static int
ecryptfs_copy_up_encrypted_with_header(struct page *page,
                                       struct ecryptfs_crypt_stat *crypt_stat)
{
    loff_t extent_num_in_page = 0;
    loff_t num_extents_per_page = (PAGE_CACHE_SIZE
                                   / crypt_stat->extent_size);
    int rc = 0;

    while (extent_num_in_page < num_extents_per_page) {
        loff_t view_extent_num = ((((loff_t)page->index)
                                   * num_extents_per_page)
                                  + extent_num_in_page);
        size_t num_header_extents_at_front =
            (crypt_stat->metadata_size / crypt_stat->extent_size);

        if (view_extent_num < num_header_extents_at_front) {
            /* This is a header extent */
            char *page_virt;

            page_virt = kmap_atomic(page);
            memset(page_virt, 0, PAGE_CACHE_SIZE);
            /* TODO: Support more than one header extent */
            if (view_extent_num == 0) {
                size_t written;

                rc = ecryptfs_read_xattr_region(
                         page_virt, page->mapping->host);
                strip_xattr_flag(page_virt + 16, crypt_stat);
                ecryptfs_write_header_metadata(page_virt + 20,
                                               crypt_stat,
                                               &written);
            }
            kunmap_atomic(page_virt);
            flush_dcache_page(page);
            if (rc) {
                printk(KERN_ERR "%s: Error reading xattr "
                       "region; rc = [%d]\n", __func__, rc);
                goto out;
            }
        } else {
            /* This is an encrypted data extent */
            loff_t lower_offset =
                ((view_extent_num * crypt_stat->extent_size)
                 - crypt_stat->metadata_size);

            rc = ecryptfs_read_lower_page_segment(
                     page, (lower_offset >> PAGE_CACHE_SHIFT),
                     (lower_offset & ~PAGE_CACHE_MASK),
                     crypt_stat->extent_size, page->mapping->host);
            if (rc) {
                printk(KERN_ERR "%s: Error attempting to read "
                       "extent at offset [%lld] in the lower "
                       "file; rc = [%d]\n", __func__,
                       lower_offset, rc);
                goto out;
            }
        }
        extent_num_in_page++;
    }
out:
    return rc;
}
/**
 * ecryptfs_writepage
 * @page: Page that is locked before this call is made
 *
 * Returns zero on success; non-zero otherwise
 *
 * This is where we encrypt the data and pass the encrypted data to
 * the lower filesystem.  In OpenPGP-compatible mode, we operate on
 * entire underlying packets.
 */
static int ecryptfs_writepage(struct page *page, struct writeback_control *wbc)
{
#ifndef CONFIG_CRYPTO_DEV_KFIPS
	int rc;
#else
	struct ecryptfs_page_crypt_req *page_crypt_req;
	int rc = 0;
#endif
#if 1 // FEATURE_SDCARD_ENCRYPTION
	struct inode *ecryptfs_inode;
	struct ecryptfs_crypt_stat *crypt_stat =
		&ecryptfs_inode_to_private(page->mapping->host)->crypt_stat;
	ecryptfs_inode = page->mapping->host;
#endif

#if 1 // FEATURE_SDCARD_ENCRYPTION
	if (!crypt_stat || !(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
		ecryptfs_printk(KERN_DEBUG,
				"Passing through unencrypted page\n");
		rc = ecryptfs_write_lower_page_segment(ecryptfs_inode, page,
			0, PAGE_CACHE_SIZE);
		if (rc) {
			ClearPageUptodate(page);
			goto out;
		}
		SetPageUptodate(page);
	} else {
#ifndef CONFIG_CRYPTO_DEV_KFIPS
	rc = ecryptfs_encrypt_page(page);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error encrypting "
				"page (upper index [0x%.16lx])\n", page->index);
		ClearPageUptodate(page);
#else
//	rc = ecryptfs_encrypt_page(page);
//	if (rc) {
//		ecryptfs_printk(KERN_WARNING, "Error encrypting "
//				"page (upper index [0x%.16lx])\n", page->index);
//		ClearPageUptodate(page);
	page_crypt_req = ecryptfs_alloc_page_crypt_req(
				page, ecryptfs_writepage_complete);
	if (unlikely(!page_crypt_req)) {
		rc = -ENOMEM;
		ecryptfs_printk(KERN_ERR,
				"Failed to allocate page crypt request "
				"for encryption\n");
#endif
		goto out;
	}
#ifndef CONFIG_CRYPTO_DEV_KFIPS
	SetPageUptodate(page);
#else
//	SetPageUptodate(page);
	set_page_writeback(page);
	ecryptfs_encrypt_page_async(page_crypt_req);
#endif
	}
#else
	rc = ecryptfs_encrypt_page(page);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error encrypting "
				"page (upper index [0x%.16lx])\n", page->index);
		ClearPageUptodate(page);
		goto out;
	}
	SetPageUptodate(page);
#endif
out:
	unlock_page(page);
	return rc;
}

static void strip_xattr_flag(char *page_virt,
			     struct ecryptfs_crypt_stat *crypt_stat)
{
	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) {
		size_t written;

		crypt_stat->flags &= ~ECRYPTFS_METADATA_IN_XATTR;
		ecryptfs_write_crypt_stat_flags(page_virt, crypt_stat,
						&written);
		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
	}
}

/**
 *   Header Extent:
 *     Octets 0-7:        Unencrypted file size (big-endian)
 *     Octets 8-15:       eCryptfs special marker
 *     Octets 16-19:      Flags
 *      Octet 16:         File format version number (between 0 and 255)
 *      Octets 17-18:     Reserved
 *      Octet 19:         Bit 1 (lsb): Reserved
 *                        Bit 2: Encrypted?
 *                        Bits 3-8: Reserved
 *     Octets 20-23:      Header extent size (big-endian)
 *     Octets 24-25:      Number of header extents at front of file
 *                        (big-endian)
 *     Octet  26:         Begin RFC 2440 authentication token packet set
 */

/**
 * ecryptfs_copy_up_encrypted_with_header
 * @page: Sort of a ``virtual'' representation of the encrypted lower
 *        file. The actual lower file does not have the metadata in
 *        the header. This is locked.
 * @crypt_stat: The eCryptfs inode's cryptographic context
 *
 * The ``view'' is the version of the file that userspace winds up
 * seeing, with the header information inserted.
 */
static int
ecryptfs_copy_up_encrypted_with_header(struct page *page,
				       struct ecryptfs_crypt_stat *crypt_stat)
{
	loff_t extent_num_in_page = 0;
	loff_t num_extents_per_page = (PAGE_CACHE_SIZE
				       / crypt_stat->extent_size);
	int rc = 0;

	while (extent_num_in_page < num_extents_per_page) {
		loff_t view_extent_num = ((((loff_t)page->index)
					   * num_extents_per_page)
					  + extent_num_in_page);
		size_t num_header_extents_at_front =
			(crypt_stat->metadata_size / crypt_stat->extent_size);

		if (view_extent_num < num_header_extents_at_front) {
			/* This is a header extent */
			char *page_virt;

			page_virt = kmap_atomic(page);
			memset(page_virt, 0, PAGE_CACHE_SIZE);
			/* TODO: Support more than one header extent */
			if (view_extent_num == 0) {
				size_t written;

				rc = ecryptfs_read_xattr_region(
					page_virt, page->mapping->host);
				strip_xattr_flag(page_virt + 16, crypt_stat);
				ecryptfs_write_header_metadata(page_virt + 20,
							       crypt_stat,
							       &written);
			}
			kunmap_atomic(page_virt);
			flush_dcache_page(page);
			if (rc) {
				printk(KERN_ERR "%s: Error reading xattr "
				       "region; rc = [%d]\n", __func__, rc);
				goto out;
			}
		} else {
			/* This is an encrypted data extent */
			loff_t lower_offset =
				((view_extent_num * crypt_stat->extent_size)
				 - crypt_stat->metadata_size);

			rc = ecryptfs_read_lower_page_segment(
				page, (lower_offset >> PAGE_CACHE_SHIFT),
				(lower_offset & ~PAGE_CACHE_MASK),
				crypt_stat->extent_size, page->mapping->host);
			if (rc) {
				printk(KERN_ERR "%s: Error attempting to read "
				       "extent at offset [%lld] in the lower "
				       "file; rc = [%d]\n", __func__,
				       lower_offset, rc);
				goto out;
			}
		}
		extent_num_in_page++;
	}
out:
	return rc;
}
static int ext4_destroy_inline_data_nolock(handle_t *handle,
					   struct inode *inode)
{
	struct ext4_inode_info *ei = EXT4_I(inode);
	struct ext4_xattr_ibody_find is = {
		.s = { .not_found = 0, },
	};
	struct ext4_xattr_info i = {
		.name_index = EXT4_XATTR_INDEX_SYSTEM,
		.name = EXT4_XATTR_SYSTEM_DATA,
		.value = NULL,
		.value_len = 0,
	};
	int error;

	if (!ei->i_inline_off)
		return 0;

	error = ext4_get_inode_loc(inode, &is.iloc);
	if (error)
		return error;

	error = ext4_xattr_ibody_find(inode, &i, &is);
	if (error)
		goto out;

	BUFFER_TRACE(is.iloc.bh, "get_write_access");
	error = ext4_journal_get_write_access(handle, is.iloc.bh);
	if (error)
		goto out;

	error = ext4_xattr_ibody_inline_set(handle, inode, &i, &is);
	if (error)
		goto out;

	memset((void *)ext4_raw_inode(&is.iloc)->i_block,
		0, EXT4_MIN_INLINE_DATA_SIZE);

	if (EXT4_HAS_INCOMPAT_FEATURE(inode->i_sb,
				      EXT4_FEATURE_INCOMPAT_EXTENTS)) {
		if (S_ISDIR(inode->i_mode) ||
		    S_ISREG(inode->i_mode) || S_ISLNK(inode->i_mode)) {
			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
			ext4_ext_tree_init(handle, inode);
		}
	}
	ext4_clear_inode_flag(inode, EXT4_INODE_INLINE_DATA);

	get_bh(is.iloc.bh);
	error = ext4_mark_iloc_dirty(handle, inode, &is.iloc);

	EXT4_I(inode)->i_inline_off = 0;
	EXT4_I(inode)->i_inline_size = 0;
	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
out:
	brelse(is.iloc.bh);
	if (error == -ENODATA)
		error = 0;
	return error;
}

static int ext4_read_inline_page(struct inode *inode, struct page *page)
{
	void *kaddr;
	int ret = 0;
	size_t len;
	struct ext4_iloc iloc;

	BUG_ON(!PageLocked(page));
	BUG_ON(!ext4_has_inline_data(inode));
	BUG_ON(page->index);

	if (!EXT4_I(inode)->i_inline_off) {
		ext4_warning(inode->i_sb, "inode %lu doesn't have inline data.",
			     inode->i_ino);
		goto out;
	}

	ret = ext4_get_inode_loc(inode, &iloc);
	if (ret)
		goto out;

	len = min_t(size_t, ext4_get_inline_size(inode), i_size_read(inode));
	kaddr = kmap_atomic(page);
	ret = ext4_read_inline_data(inode, kaddr, len, &iloc);
	flush_dcache_page(page);
	kunmap_atomic(kaddr);
	zero_user_segment(page, len, PAGE_CACHE_SIZE);
	SetPageUptodate(page);
	brelse(iloc.bh);

out:
	return ret;
}
Example #15
0
static int vmw_gmr_build_descriptors(struct list_head *desc_pages,
				     struct page *pages[],
				     unsigned long num_pages)
{
	struct page *page, *next;
	struct svga_guest_mem_descriptor *page_virtual = NULL;
	struct svga_guest_mem_descriptor *desc_virtual = NULL;
	unsigned int desc_per_page;
	unsigned long prev_pfn;
	unsigned long pfn;
	int ret;

	desc_per_page = PAGE_SIZE /
	    sizeof(struct svga_guest_mem_descriptor) - 1;

	while (likely(num_pages != 0)) {
		page = alloc_page(__GFP_HIGHMEM);
		if (unlikely(page == NULL)) {
			ret = -ENOMEM;
			goto out_err;
		}

		list_add_tail(&page->lru, desc_pages);

		/*
		 * Point previous page terminating descriptor to this
		 * page before unmapping it.
		 */

		if (likely(page_virtual != NULL)) {
			desc_virtual->ppn = page_to_pfn(page);
			kunmap_atomic(page_virtual, KM_USER0);
		}

		page_virtual = kmap_atomic(page, KM_USER0);
		desc_virtual = page_virtual - 1;
		prev_pfn = ~(0UL);

		while (likely(num_pages != 0)) {
			pfn = page_to_pfn(*pages);

			if (pfn != prev_pfn + 1) {

				if (desc_virtual - page_virtual ==
				    desc_per_page - 1)
					break;

				(++desc_virtual)->ppn = cpu_to_le32(pfn);
				desc_virtual->num_pages = cpu_to_le32(1);
			} else {
				uint32_t tmp =
				    le32_to_cpu(desc_virtual->num_pages);
				desc_virtual->num_pages = cpu_to_le32(tmp + 1);
			}
			prev_pfn = pfn;
			--num_pages;
			++pages;
		}

		(++desc_virtual)->ppn = cpu_to_le32(0);
		desc_virtual->num_pages = cpu_to_le32(0);
	}

	if (likely(page_virtual != NULL))
		kunmap_atomic(page_virtual, KM_USER0);

	return 0;
out_err:
	list_for_each_entry_safe(page, next, desc_pages, lru) {
		list_del_init(&page->lru);
		__free_page(page);
	}
Example #16
0
/*
 * This is a little more tricky than the file -> pipe splicing. There are
 * basically three cases:
 *
 *	- Destination page already exists in the address space and there
 *	  are users of it. For that case we have no other option that
 *	  copying the data. Tough luck.
 *	- Destination page already exists in the address space, but there
 *	  are no users of it. Make sure it's uptodate, then drop it. Fall
 *	  through to last case.
 *	- Destination page does not exist, we can add the pipe page to
 *	  the page cache and avoid the copy.
 *
 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
 * sd->flags), we attempt to migrate pages from the pipe to the output
 * file address space page cache. This is possible if no one else has
 * the pipe page referenced outside of the pipe and page cache. If
 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
 * a new page in the output file page cache and fill/dirty that.
 */
static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
			struct splice_desc *sd)
{
	struct file *file = sd->file;
	struct address_space *mapping = file->f_mapping;
	unsigned int offset, this_len;
	struct page *page;
	pgoff_t index;
	int ret;

	/*
	 * make sure the data in this buffer is uptodate
	 */
	ret = buf->ops->pin(pipe, buf);
	if (unlikely(ret))
		return ret;

	index = sd->pos >> PAGE_CACHE_SHIFT;
	offset = sd->pos & ~PAGE_CACHE_MASK;

	this_len = sd->len;
	if (this_len + offset > PAGE_CACHE_SIZE)
		this_len = PAGE_CACHE_SIZE - offset;

find_page:
	page = find_lock_page(mapping, index);
	if (!page) {
		ret = -ENOMEM;
		page = page_cache_alloc_cold(mapping);
		if (unlikely(!page))
			goto out_ret;

		/*
		 * This will also lock the page
		 */
		ret = add_to_page_cache_lru(page, mapping, index,
					    GFP_KERNEL);
		if (unlikely(ret))
			goto out;
	}

	ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
	if (unlikely(ret)) {
		loff_t isize = i_size_read(mapping->host);

		if (ret != AOP_TRUNCATED_PAGE)
			unlock_page(page);
		page_cache_release(page);
		if (ret == AOP_TRUNCATED_PAGE)
			goto find_page;

		/*
		 * prepare_write() may have instantiated a few blocks
		 * outside i_size.  Trim these off again.
		 */
		if (sd->pos + this_len > isize)
			vmtruncate(mapping->host, isize);

		goto out_ret;
	}

	if (buf->page != page) {
		/*
		 * Careful, ->map() uses KM_USER0!
		 */
		char *src = buf->ops->map(pipe, buf, 1);
		char *dst = kmap_atomic(page, KM_USER1);

		memcpy(dst + offset, src + buf->offset, this_len);
		flush_dcache_page(page);
		kunmap_atomic(dst, KM_USER1);
		buf->ops->unmap(pipe, buf, src);
	}

	ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
	if (ret) {
		if (ret == AOP_TRUNCATED_PAGE) {
			page_cache_release(page);
			goto find_page;
		}
		if (ret < 0)
			goto out;
		/*
		 * Partial write has happened, so 'ret' already initialized by
		 * number of bytes written, Where is nothing we have to do here.
		 */
	} else
		ret = this_len;
	/*
	 * Return the number of bytes written and mark page as
	 * accessed, we are now done!
	 */
	mark_page_accessed(page);
	balance_dirty_pages_ratelimited(mapping);
out:
	page_cache_release(page);
	unlock_page(page);
out_ret:
	return ret;
}
Example #17
0
static int copy_user_bh(struct page *to, struct inode *inode,
		struct buffer_head *bh, unsigned long vaddr)
{
	struct blk_dax_ctl dax = {
		.sector = to_sector(bh, inode),
		.size = bh->b_size,
	};
	struct block_device *bdev = bh->b_bdev;
	void *vto;

	if (dax_map_atomic(bdev, &dax) < 0)
		return PTR_ERR(dax.addr);
	vto = kmap_atomic(to);
	copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
	kunmap_atomic(vto);
	dax_unmap_atomic(bdev, &dax);
	return 0;
}

#define NO_SECTOR -1
#define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_CACHE_SHIFT))

static int dax_radix_entry(struct address_space *mapping, pgoff_t index,
		sector_t sector, bool pmd_entry, bool dirty)
{
	struct radix_tree_root *page_tree = &mapping->page_tree;
	pgoff_t pmd_index = DAX_PMD_INDEX(index);
	int type, error = 0;
	void *entry;

	WARN_ON_ONCE(pmd_entry && !dirty);
	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);

	spin_lock_irq(&mapping->tree_lock);

	entry = radix_tree_lookup(page_tree, pmd_index);
	if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) {
		index = pmd_index;
		goto dirty;
	}

	entry = radix_tree_lookup(page_tree, index);
	if (entry) {
		type = RADIX_DAX_TYPE(entry);
		if (WARN_ON_ONCE(type != RADIX_DAX_PTE &&
					type != RADIX_DAX_PMD)) {
			error = -EIO;
			goto unlock;
		}

		if (!pmd_entry || type == RADIX_DAX_PMD)
			goto dirty;

		/*
		 * We only insert dirty PMD entries into the radix tree.  This
		 * means we don't need to worry about removing a dirty PTE
		 * entry and inserting a clean PMD entry, thus reducing the
		 * range we would flush with a follow-up fsync/msync call.
		 */
		radix_tree_delete(&mapping->page_tree, index);
		mapping->nrexceptional--;
	}

	if (sector == NO_SECTOR) {
		/*
		 * This can happen during correct operation if our pfn_mkwrite
		 * fault raced against a hole punch operation.  If this
		 * happens the pte that was hole punched will have been
		 * unmapped and the radix tree entry will have been removed by
		 * the time we are called, but the call will still happen.  We
		 * will return all the way up to wp_pfn_shared(), where the
		 * pte_same() check will fail, eventually causing page fault
		 * to be retried by the CPU.
		 */
		goto unlock;
	}

	error = radix_tree_insert(page_tree, index,
			RADIX_DAX_ENTRY(sector, pmd_entry));
	if (error)
		goto unlock;

	mapping->nrexceptional++;
 dirty:
	if (dirty)
		radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
 unlock:
	spin_unlock_irq(&mapping->tree_lock);
	return error;
}

static int dax_writeback_one(struct block_device *bdev,
		struct address_space *mapping, pgoff_t index, void *entry)
{
	struct radix_tree_root *page_tree = &mapping->page_tree;
	int type = RADIX_DAX_TYPE(entry);
	struct radix_tree_node *node;
	struct blk_dax_ctl dax;
	void **slot;
	int ret = 0;

	spin_lock_irq(&mapping->tree_lock);
	/*
	 * Regular page slots are stabilized by the page lock even
	 * without the tree itself locked.  These unlocked entries
	 * need verification under the tree lock.
	 */
	if (!__radix_tree_lookup(page_tree, index, &node, &slot))
		goto unlock;
	if (*slot != entry)
		goto unlock;

	/* another fsync thread may have already written back this entry */
	if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
		goto unlock;

	if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
		ret = -EIO;
		goto unlock;
	}

	dax.sector = RADIX_DAX_SECTOR(entry);
	dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
	spin_unlock_irq(&mapping->tree_lock);

	/*
	 * We cannot hold tree_lock while calling dax_map_atomic() because it
	 * eventually calls cond_resched().
	 */
	ret = dax_map_atomic(bdev, &dax);
	if (ret < 0)
		return ret;

	if (WARN_ON_ONCE(ret < dax.size)) {
		ret = -EIO;
		goto unmap;
	}

	wb_cache_pmem(dax.addr, dax.size);

	spin_lock_irq(&mapping->tree_lock);
	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
	spin_unlock_irq(&mapping->tree_lock);
 unmap:
	dax_unmap_atomic(bdev, &dax);
	return ret;

 unlock:
	spin_unlock_irq(&mapping->tree_lock);
	return ret;
}

/*
 * Flush the mapping to the persistent domain within the byte range of [start,
 * end]. This is required by data integrity operations to ensure file data is
 * on persistent storage prior to completion of the operation.
 */
int dax_writeback_mapping_range(struct address_space *mapping, loff_t start,
		loff_t end)
{
	struct inode *inode = mapping->host;
	struct block_device *bdev = inode->i_sb->s_bdev;
	pgoff_t start_index, end_index, pmd_index;
	pgoff_t indices[PAGEVEC_SIZE];
	struct pagevec pvec;
	bool done = false;
	int i, ret = 0;
	void *entry;

	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
		return -EIO;

	start_index = start >> PAGE_CACHE_SHIFT;
	end_index = end >> PAGE_CACHE_SHIFT;
	pmd_index = DAX_PMD_INDEX(start_index);

	rcu_read_lock();
	entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
	rcu_read_unlock();

	/* see if the start of our range is covered by a PMD entry */
	if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
		start_index = pmd_index;

	tag_pages_for_writeback(mapping, start_index, end_index);

	pagevec_init(&pvec, 0);
	while (!done) {
		pvec.nr = find_get_entries_tag(mapping, start_index,
				PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
				pvec.pages, indices);

		if (pvec.nr == 0)
			break;

		for (i = 0; i < pvec.nr; i++) {
			if (indices[i] > end_index) {
				done = true;
				break;
			}

			ret = dax_writeback_one(bdev, mapping, indices[i],
					pvec.pages[i]);
			if (ret < 0)
				return ret;
		}
	}
	wmb_pmem();
	return 0;
}
EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);

static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
			struct vm_area_struct *vma, struct vm_fault *vmf)
{
	unsigned long vaddr = (unsigned long)vmf->virtual_address;
	struct address_space *mapping = inode->i_mapping;
	struct block_device *bdev = bh->b_bdev;
	struct blk_dax_ctl dax = {
		.sector = to_sector(bh, inode),
		.size = bh->b_size,
	};
	pgoff_t size;
	int error;

	i_mmap_lock_read(mapping);

	/*
	 * Check truncate didn't happen while we were allocating a block.
	 * If it did, this block may or may not be still allocated to the
	 * file.  We can't tell the filesystem to free it because we can't
	 * take i_mutex here.  In the worst case, the file still has blocks
	 * allocated past the end of the file.
	 */
	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (unlikely(vmf->pgoff >= size)) {
		error = -EIO;
		goto out;
	}

	if (dax_map_atomic(bdev, &dax) < 0) {
		error = PTR_ERR(dax.addr);
		goto out;
	}

	if (buffer_unwritten(bh) || buffer_new(bh)) {
		clear_pmem(dax.addr, PAGE_SIZE);
		wmb_pmem();
	}
	dax_unmap_atomic(bdev, &dax);

	error = dax_radix_entry(mapping, vmf->pgoff, dax.sector, false,
			vmf->flags & FAULT_FLAG_WRITE);
	if (error)
		goto out;

	error = vm_insert_mixed(vma, vaddr, dax.pfn);

 out:
	i_mmap_unlock_read(mapping);

	return error;
}

/**
 * __dax_fault - handle a page fault on a DAX file
 * @vma: The virtual memory area where the fault occurred
 * @vmf: The description of the fault
 * @get_block: The filesystem method used to translate file offsets to blocks
 * @complete_unwritten: The filesystem method used to convert unwritten blocks
 *	to written so the data written to them is exposed. This is required for
 *	required by write faults for filesystems that will return unwritten
 *	extent mappings from @get_block, but it is optional for reads as
 *	dax_insert_mapping() will always zero unwritten blocks. If the fs does
 *	not support unwritten extents, the it should pass NULL.
 *
 * When a page fault occurs, filesystems may call this helper in their
 * fault handler for DAX files. __dax_fault() assumes the caller has done all
 * the necessary locking for the page fault to proceed successfully.
 */
int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
			get_block_t get_block, dax_iodone_t complete_unwritten)
{
	struct file *file = vma->vm_file;
	struct address_space *mapping = file->f_mapping;
	struct inode *inode = mapping->host;
	struct page *page;
	struct buffer_head bh;
	unsigned long vaddr = (unsigned long)vmf->virtual_address;
	unsigned blkbits = inode->i_blkbits;
	sector_t block;
	pgoff_t size;
	int error;
	int major = 0;

	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (vmf->pgoff >= size)
		return VM_FAULT_SIGBUS;

	memset(&bh, 0, sizeof(bh));
	block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
	bh.b_bdev = inode->i_sb->s_bdev;
	bh.b_size = PAGE_SIZE;

 repeat:
	page = find_get_page(mapping, vmf->pgoff);
	if (page) {
		if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
			page_cache_release(page);
			return VM_FAULT_RETRY;
		}
		if (unlikely(page->mapping != mapping)) {
			unlock_page(page);
			page_cache_release(page);
			goto repeat;
		}
		size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
		if (unlikely(vmf->pgoff >= size)) {
			/*
			 * We have a struct page covering a hole in the file
			 * from a read fault and we've raced with a truncate
			 */
			error = -EIO;
			goto unlock_page;
		}
	}

	error = get_block(inode, block, &bh, 0);
	if (!error && (bh.b_size < PAGE_SIZE))
		error = -EIO;		/* fs corruption? */
	if (error)
		goto unlock_page;

	if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
		if (vmf->flags & FAULT_FLAG_WRITE) {
			error = get_block(inode, block, &bh, 1);
			count_vm_event(PGMAJFAULT);
			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
			major = VM_FAULT_MAJOR;
			if (!error && (bh.b_size < PAGE_SIZE))
				error = -EIO;
			if (error)
				goto unlock_page;
		} else {
			return dax_load_hole(mapping, page, vmf);
		}
	}

	if (vmf->cow_page) {
		struct page *new_page = vmf->cow_page;
		if (buffer_written(&bh))
			error = copy_user_bh(new_page, inode, &bh, vaddr);
		else
			clear_user_highpage(new_page, vaddr);
		if (error)
			goto unlock_page;
		vmf->page = page;
		if (!page) {
			i_mmap_lock_read(mapping);
			/* Check we didn't race with truncate */
			size = (i_size_read(inode) + PAGE_SIZE - 1) >>
								PAGE_SHIFT;
			if (vmf->pgoff >= size) {
				i_mmap_unlock_read(mapping);
				error = -EIO;
				goto out;
			}
		}
		return VM_FAULT_LOCKED;
	}

	/* Check we didn't race with a read fault installing a new page */
	if (!page && major)
		page = find_lock_page(mapping, vmf->pgoff);

	if (page) {
		unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
							PAGE_CACHE_SIZE, 0);
		delete_from_page_cache(page);
		unlock_page(page);
		page_cache_release(page);
		page = NULL;
	}

	/*
	 * If we successfully insert the new mapping over an unwritten extent,
	 * we need to ensure we convert the unwritten extent. If there is an
	 * error inserting the mapping, the filesystem needs to leave it as
	 * unwritten to prevent exposure of the stale underlying data to
	 * userspace, but we still need to call the completion function so
	 * the private resources on the mapping buffer can be released. We
	 * indicate what the callback should do via the uptodate variable, same
	 * as for normal BH based IO completions.
	 */
	error = dax_insert_mapping(inode, &bh, vma, vmf);
	if (buffer_unwritten(&bh)) {
		if (complete_unwritten)
			complete_unwritten(&bh, !error);
		else
			WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
	}

 out:
	if (error == -ENOMEM)
		return VM_FAULT_OOM | major;
	/* -EBUSY is fine, somebody else faulted on the same PTE */
	if ((error < 0) && (error != -EBUSY))
		return VM_FAULT_SIGBUS | major;
	return VM_FAULT_NOPAGE | major;

 unlock_page:
	if (page) {
		unlock_page(page);
		page_cache_release(page);
	}
	goto out;
}
static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
			   int offset)
{
	int ret = 0;
	size_t clen;
	unsigned long handle;
	struct page *page;
	unsigned char *user_mem, *cmem, *src, *uncmem = NULL;

	page = bvec->bv_page;
	src = zram->compress_buffer;

	if (is_partial_io(bvec)) {
		/*
		 * This is a partial IO. We need to read the full page
		 * before to write the changes.
		 */
		uncmem = kmalloc(PAGE_SIZE, GFP_KERNEL);
		if (!uncmem) {
			pr_info("Error allocating temp memory!\n");
			ret = -ENOMEM;
			goto out;
		}
		ret = zram_decompress_page(zram, uncmem, index);
		if (ret)
			goto out;
	}

	/*
	 * System overwrites unused sectors. Free memory associated
	 * with this sector now.
	 */
	if (zram->table[index].handle ||
	    zram_test_flag(zram, index, ZRAM_ZERO))
		zram_free_page(zram, index);

	user_mem = kmap_atomic(page);

	if (is_partial_io(bvec)) {
		memcpy(uncmem + offset, user_mem + bvec->bv_offset,
		       bvec->bv_len);
		kunmap_atomic(user_mem);
		user_mem = NULL;
	} else {
		uncmem = user_mem;
	}

	if (page_zero_filled(uncmem)) {
		if (!is_partial_io(bvec))
			kunmap_atomic(user_mem);
		zram_stat_inc(&zram->stats.pages_zero);
		zram_set_flag(zram, index, ZRAM_ZERO);
		ret = 0;
		goto out;
	}

	ret = zram_comp_op(ZRAM_COMPOP_COMPRESS, uncmem,
			   PAGE_SIZE, src, &clen);

	if (!is_partial_io(bvec)) {
		kunmap_atomic(user_mem);
		user_mem = NULL;
		uncmem = NULL;
	}

	if (unlikely(ret != 0)) {
		pr_err("Compression failed! err=%d\n", ret);
		goto out;
	}

	if (unlikely(clen > max_zpage_size)) {
		zram_stat_inc(&zram->stats.bad_compress);
		clen = PAGE_SIZE;
		src = NULL;
		if (is_partial_io(bvec))
			src = uncmem;
	}

	handle = zs_malloc(zram->mem_pool, clen);
	if (!handle) {
		pr_info("Error allocating memory for compressed "
			"page: %u, size=%zu\n", index, clen);
		ret = -ENOMEM;
		goto out;
	}
	cmem = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);

	if ((clen == PAGE_SIZE) && !is_partial_io(bvec))
		src = kmap_atomic(page);
	memcpy(cmem, src, clen);
	if ((clen == PAGE_SIZE) && !is_partial_io(bvec))
		kunmap_atomic(src);

	zs_unmap_object(zram->mem_pool, handle);

	zram->table[index].handle = handle;
	zram->table[index].size = clen;

	/* Update stats */
	zram_stat64_add(zram, &zram->stats.compr_size, clen);
	zram_stat_inc(&zram->stats.pages_stored);
	if (clen <= PAGE_SIZE / 2)
		zram_stat_inc(&zram->stats.good_compress);

out:
	if (is_partial_io(bvec))
		kfree(uncmem);

	if (ret)
		zram_stat64_inc(zram, &zram->stats.failed_writes);
	return ret;
}
Example #19
0
/*
 * Receive write data frame.
 */
void ft_recv_write_data(struct ft_cmd *cmd, struct fc_frame *fp)
{
	struct se_cmd *se_cmd = &cmd->se_cmd;
	struct fc_seq *seq = cmd->seq;
	struct fc_exch *ep;
	struct fc_lport *lport;
	struct fc_frame_header *fh;
	struct scatterlist *sg = NULL;
	u32 mem_off = 0;
	u32 rel_off;
	size_t frame_len;
	size_t mem_len = 0;
	size_t tlen;
	struct page *page = NULL;
	void *page_addr;
	void *from;
	void *to;
	u32 f_ctl;
	void *buf;

	fh = fc_frame_header_get(fp);
	if (!(ntoh24(fh->fh_f_ctl) & FC_FC_REL_OFF))
		goto drop;

	f_ctl = ntoh24(fh->fh_f_ctl);
	ep = fc_seq_exch(seq);
	lport = ep->lp;
	if (cmd->was_ddp_setup) {
		BUG_ON(!ep);
		BUG_ON(!lport);
		/*
		 * Since DDP (Large Rx offload) was setup for this request,
		 * payload is expected to be copied directly to user buffers.
		 */
		buf = fc_frame_payload_get(fp, 1);
		if (buf)
			pr_err("%s: xid 0x%x, f_ctl 0x%x, cmd->sg %p, "
				"cmd->sg_cnt 0x%x. DDP was setup"
				" hence not expected to receive frame with "
				"payload, Frame will be dropped if"
				"'Sequence Initiative' bit in f_ctl is"
				"not set\n", __func__, ep->xid, f_ctl,
				cmd->sg, cmd->sg_cnt);
		/*
		 * Invalidate HW DDP context if it was setup for respective
		 * command. Invalidation of HW DDP context is requited in both
		 * situation (success and error).
		 */
		ft_invl_hw_context(cmd);

		/*
		 * If "Sequence Initiative (TSI)" bit set in f_ctl, means last
		 * write data frame is received successfully where payload is
		 * posted directly to user buffer and only the last frame's
		 * header is posted in receive queue.
		 *
		 * If "Sequence Initiative (TSI)" bit is not set, means error
		 * condition w.r.t. DDP, hence drop the packet and let explict
		 * ABORTS from other end of exchange timer trigger the recovery.
		 */
		if (f_ctl & FC_FC_SEQ_INIT)
			goto last_frame;
		else
			goto drop;
	}

	rel_off = ntohl(fh->fh_parm_offset);
	frame_len = fr_len(fp);
	if (frame_len <= sizeof(*fh))
		goto drop;
	frame_len -= sizeof(*fh);
	from = fc_frame_payload_get(fp, 0);
	if (rel_off >= se_cmd->data_length)
		goto drop;
	if (frame_len + rel_off > se_cmd->data_length)
		frame_len = se_cmd->data_length - rel_off;

	/*
	 * Setup to use first mem list entry, unless no data.
	 */
	BUG_ON(frame_len && !se_cmd->t_data_sg);
	if (frame_len) {
		sg = se_cmd->t_data_sg;
		mem_len = sg->length;
		mem_off = sg->offset;
		page = sg_page(sg);
	}

	while (frame_len) {
		if (!mem_len) {
			sg = sg_next(sg);
			mem_len = sg->length;
			mem_off = sg->offset;
			page = sg_page(sg);
		}
		if (rel_off >= mem_len) {
			rel_off -= mem_len;
			mem_len = 0;
			continue;
		}
		mem_off += rel_off;
		mem_len -= rel_off;
		rel_off = 0;

		tlen = min(mem_len, frame_len);

		to = kmap_atomic(page + (mem_off >> PAGE_SHIFT));
		page_addr = to;
		to += mem_off & ~PAGE_MASK;
		tlen = min(tlen, (size_t)(PAGE_SIZE -
					  (mem_off & ~PAGE_MASK)));
		memcpy(to, from, tlen);
		kunmap_atomic(page_addr);

		from += tlen;
		frame_len -= tlen;
		mem_off += tlen;
		mem_len -= tlen;
		cmd->write_data_len += tlen;
	}
last_frame:
	if (cmd->write_data_len == se_cmd->data_length)
		transport_generic_handle_data(se_cmd);
drop:
	fc_frame_free(fp);
}
Example #20
0
static int squashfs_symlink_readpage(struct file *file, struct page *page)
{
    struct inode *inode = page->mapping->host;
    struct super_block *sb = inode->i_sb;
    struct squashfs_sb_info *msblk = sb->s_fs_info;
    int index = page->index << PAGE_CACHE_SHIFT;
    u64 block = squashfs_i(inode)->start;
    int offset = squashfs_i(inode)->offset;
    int length = min_t(int, i_size_read(inode) - index, PAGE_CACHE_SIZE);
    int bytes, copied;
    void *pageaddr;
    struct squashfs_cache_entry *entry;

    TRACE("Entered squashfs_symlink_readpage, page index %ld, start block "
          "%llx, offset %x\n", page->index, block, offset);

    /*
     * Skip index bytes into symlink metadata.
     */
    if (index) {
        bytes = squashfs_read_metadata(sb, NULL, &block, &offset,
                                       index);
        if (bytes < 0) {
            ERROR("Unable to read symlink [%llx:%x]\n",
                  squashfs_i(inode)->start,
                  squashfs_i(inode)->offset);
            goto error_out;
        }
    }

    /*
     * Read length bytes from symlink metadata.  Squashfs_read_metadata
     * is not used here because it can sleep and we want to use
     * kmap_atomic to map the page.  Instead call the underlying
     * squashfs_cache_get routine.  As length bytes may overlap metadata
     * blocks, we may need to call squashfs_cache_get multiple times.
     */
    for (bytes = 0; bytes < length; offset = 0, bytes += copied) {
        entry = squashfs_cache_get(sb, msblk->block_cache, block, 0);
        if (entry->error) {
            ERROR("Unable to read symlink [%llx:%x]\n",
                  squashfs_i(inode)->start,
                  squashfs_i(inode)->offset);
            squashfs_cache_put(entry);
            goto error_out;
        }

        pageaddr = kmap_atomic(page, KM_USER0);
        copied = squashfs_copy_data(pageaddr + bytes, entry, offset,
                                    length - bytes);
        if (copied == length - bytes)
            memset(pageaddr + length, 0, PAGE_CACHE_SIZE - length);
        else
            block = entry->next_index;
        kunmap_atomic(pageaddr, KM_USER0);
        squashfs_cache_put(entry);
    }

    flush_dcache_page(page);
    SetPageUptodate(page);
    unlock_page(page);
    return 0;

error_out:
    SetPageError(page);
    unlock_page(page);
    return 0;
}
Example #21
0
File: aops.c Project: nemumu/linux
static int gfs2_write_begin(struct file *file, struct address_space *mapping,
                            loff_t pos, unsigned len, unsigned flags,
                            struct page **pagep, void **fsdata)
{
    struct gfs2_inode *ip = GFS2_I(mapping->host);
    struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
    struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
    unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
    unsigned requested = 0;
    int alloc_required;
    int error = 0;
    pgoff_t index = pos >> PAGE_CACHE_SHIFT;
    unsigned from = pos & (PAGE_CACHE_SIZE - 1);
    struct page *page;

    gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
    error = gfs2_glock_nq(&ip->i_gh);
    if (unlikely(error))
        goto out_uninit;
    if (&ip->i_inode == sdp->sd_rindex) {
        error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
                                   GL_NOCACHE, &m_ip->i_gh);
        if (unlikely(error)) {
            gfs2_glock_dq(&ip->i_gh);
            goto out_uninit;
        }
    }

    alloc_required = gfs2_write_alloc_required(ip, pos, len);

    if (alloc_required || gfs2_is_jdata(ip))
        gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);

    if (alloc_required) {
        struct gfs2_alloc_parms ap = { .aflags = 0, };
        error = gfs2_quota_lock_check(ip);
        if (error)
            goto out_unlock;

        requested = data_blocks + ind_blocks;
        ap.target = requested;
        error = gfs2_inplace_reserve(ip, &ap);
        if (error)
            goto out_qunlock;
    }

    rblocks = RES_DINODE + ind_blocks;
    if (gfs2_is_jdata(ip))
        rblocks += data_blocks ? data_blocks : 1;
    if (ind_blocks || data_blocks)
        rblocks += RES_STATFS + RES_QUOTA;
    if (&ip->i_inode == sdp->sd_rindex)
        rblocks += 2 * RES_STATFS;
    if (alloc_required)
        rblocks += gfs2_rg_blocks(ip, requested);

    error = gfs2_trans_begin(sdp, rblocks,
                             PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
    if (error)
        goto out_trans_fail;

    error = -ENOMEM;
    flags |= AOP_FLAG_NOFS;
    page = grab_cache_page_write_begin(mapping, index, flags);
    *pagep = page;
    if (unlikely(!page))
        goto out_endtrans;

    if (gfs2_is_stuffed(ip)) {
        error = 0;
        if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
            error = gfs2_unstuff_dinode(ip, page);
            if (error == 0)
                goto prepare_write;
        } else if (!PageUptodate(page)) {
            error = stuffed_readpage(ip, page);
        }
        goto out;
    }

prepare_write:
    error = __block_write_begin(page, from, len, gfs2_block_map);
out:
    if (error == 0)
        return 0;

    unlock_page(page);
    page_cache_release(page);

    gfs2_trans_end(sdp);
    if (pos + len > ip->i_inode.i_size)
        gfs2_trim_blocks(&ip->i_inode);
    goto out_trans_fail;

out_endtrans:
    gfs2_trans_end(sdp);
out_trans_fail:
    if (alloc_required) {
        gfs2_inplace_release(ip);
out_qunlock:
        gfs2_quota_unlock(ip);
    }
out_unlock:
    if (&ip->i_inode == sdp->sd_rindex) {
        gfs2_glock_dq(&m_ip->i_gh);
        gfs2_holder_uninit(&m_ip->i_gh);
    }
    gfs2_glock_dq(&ip->i_gh);
out_uninit:
    gfs2_holder_uninit(&ip->i_gh);
    return error;
}

/**
 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
 * @inode: the rindex inode
 */
static void adjust_fs_space(struct inode *inode)
{
    struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
    struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
    struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
    struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
    struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
    struct buffer_head *m_bh, *l_bh;
    u64 fs_total, new_free;

    /* Total up the file system space, according to the latest rindex. */
    fs_total = gfs2_ri_total(sdp);
    if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
        return;

    spin_lock(&sdp->sd_statfs_spin);
    gfs2_statfs_change_in(m_sc, m_bh->b_data +
                          sizeof(struct gfs2_dinode));
    if (fs_total > (m_sc->sc_total + l_sc->sc_total))
        new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
    else
        new_free = 0;
    spin_unlock(&sdp->sd_statfs_spin);
    fs_warn(sdp, "File system extended by %llu blocks.\n",
            (unsigned long long)new_free);
    gfs2_statfs_change(sdp, new_free, new_free, 0);

    if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
        goto out;
    update_statfs(sdp, m_bh, l_bh);
    brelse(l_bh);
out:
    brelse(m_bh);
}

/**
 * gfs2_stuffed_write_end - Write end for stuffed files
 * @inode: The inode
 * @dibh: The buffer_head containing the on-disk inode
 * @pos: The file position
 * @len: The length of the write
 * @copied: How much was actually copied by the VFS
 * @page: The page
 *
 * This copies the data from the page into the inode block after
 * the inode data structure itself.
 *
 * Returns: errno
 */
static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
                                  loff_t pos, unsigned len, unsigned copied,
                                  struct page *page)
{
    struct gfs2_inode *ip = GFS2_I(inode);
    struct gfs2_sbd *sdp = GFS2_SB(inode);
    struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
    u64 to = pos + copied;
    void *kaddr;
    unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);

    BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
    kaddr = kmap_atomic(page);
    memcpy(buf + pos, kaddr + pos, copied);
    memset(kaddr + pos + copied, 0, len - copied);
    flush_dcache_page(page);
    kunmap_atomic(kaddr);

    if (!PageUptodate(page))
        SetPageUptodate(page);
    unlock_page(page);
    page_cache_release(page);

    if (copied) {
        if (inode->i_size < to)
            i_size_write(inode, to);
        mark_inode_dirty(inode);
    }

    if (inode == sdp->sd_rindex) {
        adjust_fs_space(inode);
        sdp->sd_rindex_uptodate = 0;
    }

    brelse(dibh);
    gfs2_trans_end(sdp);
    if (inode == sdp->sd_rindex) {
        gfs2_glock_dq(&m_ip->i_gh);
        gfs2_holder_uninit(&m_ip->i_gh);
    }
    gfs2_glock_dq(&ip->i_gh);
    gfs2_holder_uninit(&ip->i_gh);
    return copied;
}

/**
 * gfs2_write_end
 * @file: The file to write to
 * @mapping: The address space to write to
 * @pos: The file position
 * @len: The length of the data
 * @copied:
 * @page: The page that has been written
 * @fsdata: The fsdata (unused in GFS2)
 *
 * The main write_end function for GFS2. We have a separate one for
 * stuffed files as they are slightly different, otherwise we just
 * put our locking around the VFS provided functions.
 *
 * Returns: errno
 */

static int gfs2_write_end(struct file *file, struct address_space *mapping,
                          loff_t pos, unsigned len, unsigned copied,
                          struct page *page, void *fsdata)
{
    struct inode *inode = page->mapping->host;
    struct gfs2_inode *ip = GFS2_I(inode);
    struct gfs2_sbd *sdp = GFS2_SB(inode);
    struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
    struct buffer_head *dibh;
    unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
    unsigned int to = from + len;
    int ret;
    struct gfs2_trans *tr = current->journal_info;
    BUG_ON(!tr);

    BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);

    ret = gfs2_meta_inode_buffer(ip, &dibh);
    if (unlikely(ret)) {
        unlock_page(page);
        page_cache_release(page);
        goto failed;
    }

    if (gfs2_is_stuffed(ip))
        return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);

    if (!gfs2_is_writeback(ip))
        gfs2_page_add_databufs(ip, page, from, to);

    ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
    if (tr->tr_num_buf_new)
        __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
    else
        gfs2_trans_add_meta(ip->i_gl, dibh);


    if (inode == sdp->sd_rindex) {
        adjust_fs_space(inode);
        sdp->sd_rindex_uptodate = 0;
    }

    brelse(dibh);
failed:
    gfs2_trans_end(sdp);
    gfs2_inplace_release(ip);
    if (ip->i_res->rs_qa_qd_num)
        gfs2_quota_unlock(ip);
    if (inode == sdp->sd_rindex) {
        gfs2_glock_dq(&m_ip->i_gh);
        gfs2_holder_uninit(&m_ip->i_gh);
    }
    gfs2_glock_dq(&ip->i_gh);
    gfs2_holder_uninit(&ip->i_gh);
    return ret;
}

/**
 * gfs2_set_page_dirty - Page dirtying function
 * @page: The page to dirty
 *
 * Returns: 1 if it dirtyed the page, or 0 otherwise
 */

static int gfs2_set_page_dirty(struct page *page)
{
    SetPageChecked(page);
    return __set_page_dirty_buffers(page);
}
Example #22
0
/*
 * Decode the result of a readdir call.
 * We're not really decoding anymore, we just leave the buffer untouched
 * and only check that it is syntactically correct.
 * The real decoding happens in nfs_decode_entry below, called directly
 * from nfs_readdir for each entry.
 */
static int
nfs_xdr_readdirres(struct rpc_rqst *req, __be32 *p, void *dummy)
{
	struct xdr_buf *rcvbuf = &req->rq_rcv_buf;
	struct kvec *iov = rcvbuf->head;
	struct page **page;
	size_t hdrlen;
	unsigned int pglen, recvd;
	u32 len;
	int status, nr = 0;
	__be32 *end, *entry, *kaddr;

	if ((status = ntohl(*p++)))
		return nfs_stat_to_errno(status);

	hdrlen = (u8 *) p - (u8 *) iov->iov_base;
	if (iov->iov_len < hdrlen) {
		dprintk("NFS: READDIR reply header overflowed:"
				"length %Zu > %Zu\n", hdrlen, iov->iov_len);
		return -errno_NFSERR_IO;
	} else if (iov->iov_len != hdrlen) {
		dprintk("NFS: READDIR header is short. iovec will be shifted.\n");
		xdr_shift_buf(rcvbuf, iov->iov_len - hdrlen);
	}

	pglen = rcvbuf->page_len;
	recvd = rcvbuf->len - hdrlen;
	if (pglen > recvd)
		pglen = recvd;
	page = rcvbuf->pages;
	kaddr = p = kmap_atomic(*page, KM_USER0);
	end = (__be32 *)((char *)p + pglen);
	entry = p;

	/* Make sure the packet actually has a value_follows and EOF entry */
	if ((entry + 1) > end)
		goto short_pkt;

	for (; *p++; nr++) {
		if (p + 2 > end)
			goto short_pkt;
		p++; /* fileid */
		len = ntohl(*p++);
		p += XDR_QUADLEN(len) + 1;	/* name plus cookie */
		if (len > NFS2_MAXNAMLEN) {
			dprintk("NFS: giant filename in readdir (len 0x%x)!\n",
						len);
			goto err_unmap;
		}
		if (p + 2 > end)
			goto short_pkt;
		entry = p;
	}

	/*
	 * Apparently some server sends responses that are a valid size, but
	 * contain no entries, and have value_follows==0 and EOF==0. For
	 * those, just set the EOF marker.
	 */
	if (!nr && entry[1] == 0) {
		dprintk("NFS: readdir reply truncated!\n");
		entry[1] = 1;
	}
 out:
	kunmap_atomic(kaddr, KM_USER0);
	return nr;
 short_pkt:
	/*
	 * When we get a short packet there are 2 possibilities. We can
	 * return an error, or fix up the response to look like a valid
	 * response and return what we have so far. If there are no
	 * entries and the packet was short, then return -EIO. If there
	 * are valid entries in the response, return them and pretend that
	 * the call was successful, but incomplete. The caller can retry the
	 * readdir starting at the last cookie.
	 */
	entry[0] = entry[1] = 0;
	if (!nr)
		nr = -errno_NFSERR_IO;
	goto out;
err_unmap:
	nr = -errno_NFSERR_IO;
	goto out;
}
Example #23
0
/* * bitmap_init_from_disk -- called at bitmap_create time to initialize
 * the in-memory bitmap from the on-disk bitmap -- also, sets up the
 * memory mapping of the bitmap file
 * Special cases:
 *   if there's no bitmap file, or if the bitmap file had been
 *   previously kicked from the array, we mark all the bits as
 *   1's in order to cause a full resync.
 *
 * We ignore all bits for sectors that end earlier than 'start'.
 * This is used when reading an out-of-date bitmap...
 */
static int bitmap_init_from_disk(struct bitmap *bitmap, sector_t start)
{
    unsigned long i, chunks, index, oldindex, bit;
    struct page *page = NULL, *oldpage = NULL;
    unsigned long num_pages, bit_cnt = 0;
    struct file *file;
    unsigned long bytes, offset;
    int outofdate;
    int ret = -ENOSPC;
    void *paddr;

    chunks = bitmap->chunks;
    file = bitmap->file;

    BUG_ON(!file && !bitmap->offset);

#ifdef INJECT_FAULTS_3
    outofdate = 1;
#else
    outofdate = bitmap->flags & BITMAP_STALE;
#endif
    if (outofdate)
        printk(KERN_INFO "%s: bitmap file is out of date, doing full "
               "recovery\n", bmname(bitmap));

    bytes = (chunks + 7) / 8;

    num_pages = (bytes + sizeof(bitmap_super_t) + PAGE_SIZE - 1) / PAGE_SIZE;

    if (file && i_size_read(file->f_mapping->host) < bytes + sizeof(bitmap_super_t)) {
        printk(KERN_INFO "%s: bitmap file too short %lu < %lu\n",
               bmname(bitmap),
               (unsigned long) i_size_read(file->f_mapping->host),
               bytes + sizeof(bitmap_super_t));
        goto err;
    }

    ret = -ENOMEM;

    bitmap->filemap = kmalloc(sizeof(struct page *) * num_pages, GFP_KERNEL);
    if (!bitmap->filemap)
        goto err;

    /* We need 4 bits per page, rounded up to a multiple of sizeof(unsigned long) */
    bitmap->filemap_attr = kzalloc(
                               roundup( DIV_ROUND_UP(num_pages*4, 8), sizeof(unsigned long)),
                               GFP_KERNEL);
    if (!bitmap->filemap_attr)
        goto err;

    oldindex = ~0L;

    for (i = 0; i < chunks; i++) {
        int b;
        index = file_page_index(i);
        bit = file_page_offset(i);
        if (index != oldindex) { /* this is a new page, read it in */
            int count;
            /* unmap the old page, we're done with it */
            if (index == num_pages-1)
                count = bytes + sizeof(bitmap_super_t)
                        - index * PAGE_SIZE;
            else
                count = PAGE_SIZE;
            if (index == 0) {
                /*
                 * if we're here then the superblock page
                 * contains some bits (PAGE_SIZE != sizeof sb)
                 * we've already read it in, so just use it
                 */
                page = bitmap->sb_page;
                offset = sizeof(bitmap_super_t);
            } else if (file) {
                page = read_page(file, index, bitmap, count);
                offset = 0;
            } else {
                page = read_sb_page(bitmap->mddev, bitmap->offset, index);
                offset = 0;
            }
            if (IS_ERR(page)) { /* read error */
                ret = PTR_ERR(page);
                goto err;
            }

            oldindex = index;
            oldpage = page;

            if (outofdate) {
                /*
                 * if bitmap is out of date, dirty the
                 * whole page and write it out
                 */
                paddr = kmap_atomic(page, KM_USER0);
                memset(paddr + offset, 0xff,
                       PAGE_SIZE - offset);
                kunmap_atomic(paddr, KM_USER0);
                write_page(bitmap, page, 1);

                ret = -EIO;
                if (bitmap->flags & BITMAP_WRITE_ERROR) {
                    /* release, page not in filemap yet */
                    put_page(page);
                    goto err;
                }
            }

            bitmap->filemap[bitmap->file_pages++] = page;
            bitmap->last_page_size = count;
        }
        paddr = kmap_atomic(page, KM_USER0);
        if (bitmap->flags & BITMAP_HOSTENDIAN)
            b = test_bit(bit, paddr);
        else
            b = ext2_test_bit(bit, paddr);
        kunmap_atomic(paddr, KM_USER0);
        if (b) {
            /* if the disk bit is set, set the memory bit */
            bitmap_set_memory_bits(bitmap, i << CHUNK_BLOCK_SHIFT(bitmap),
                                   ((i+1) << (CHUNK_BLOCK_SHIFT(bitmap)) >= start)
                                  );
            bit_cnt++;
            set_page_attr(bitmap, page, BITMAP_PAGE_CLEAN);
        }
    }

    /* everything went OK */
    ret = 0;
    bitmap_mask_state(bitmap, BITMAP_STALE, MASK_UNSET);

    if (bit_cnt) { /* Kick recovery if any bits were set */
        set_bit(MD_RECOVERY_NEEDED, &bitmap->mddev->recovery);
        md_wakeup_thread(bitmap->mddev->thread);
    }

    printk(KERN_INFO "%s: bitmap initialized from disk: "
           "read %lu/%lu pages, set %lu bits\n",
           bmname(bitmap), bitmap->file_pages, num_pages, bit_cnt);

    return 0;

err:
    printk(KERN_INFO "%s: bitmap initialisation failed: %d\n",
           bmname(bitmap), ret);
    return ret;
}
/*
 * Attempts to free an entry by adding a page to the swap cache,
 * decompressing the entry data into the page, and issuing a
 * bio write to write the page back to the swap device.
 *
 * This can be thought of as a "resumed writeback" of the page
 * to the swap device.  We are basically resuming the same swap
 * writeback path that was intercepted with the frontswap_store()
 * in the first place.  After the page has been decompressed into
 * the swap cache, the compressed version stored by zswap can be
 * freed.
 */
static int zswap_writeback_entry(struct zbud_pool *pool, unsigned long handle)
{
	struct zswap_header *zhdr;
	swp_entry_t swpentry;
	struct zswap_tree *tree;
	pgoff_t offset;
	struct zswap_entry *entry;
	struct page *page;
	u8 *src, *dst;
	unsigned int dlen;
	int ret;
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_NONE,
	};

	/* extract swpentry from data */
	zhdr = zbud_map(pool, handle);
	swpentry = zhdr->swpentry; /* here */
	zbud_unmap(pool, handle);
	tree = zswap_trees[swp_type(swpentry)];
	offset = swp_offset(swpentry);
	BUG_ON(pool != tree->pool);

	/* find and ref zswap entry */
	spin_lock(&tree->lock);
	entry = zswap_entry_find_get(&tree->rbroot, offset);
	if (!entry) {
		/* entry was invalidated */
		spin_unlock(&tree->lock);
		return 0;
	}
	spin_unlock(&tree->lock);
	BUG_ON(offset != entry->offset);

	/* try to allocate swap cache page */
	switch (zswap_get_swap_cache_page(swpentry, &page)) {
	case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
		ret = -ENOMEM;
		goto fail;

	case ZSWAP_SWAPCACHE_EXIST:
		/* page is already in the swap cache, ignore for now */
		page_cache_release(page);
		ret = -EEXIST;
		goto fail;

	case ZSWAP_SWAPCACHE_NEW: /* page is locked */
		/* decompress */
		dlen = PAGE_SIZE;
		src = (u8 *)zbud_map(tree->pool, entry->handle) +
			sizeof(struct zswap_header);
		dst = kmap_atomic(page);
		ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src,
				entry->length, dst, &dlen);
		kunmap_atomic(dst);
		zbud_unmap(tree->pool, entry->handle);
		BUG_ON(ret);
		BUG_ON(dlen != PAGE_SIZE);

		/* page is up to date */
		SetPageUptodate(page);
	}

	/* move it to the tail of the inactive list after end_writeback */
	SetPageReclaim(page);

	/* start writeback */
	__swap_writepage(page, &wbc, end_swap_bio_write);
	page_cache_release(page);
	zswap_written_back_pages++;

	spin_lock(&tree->lock);
	/* drop local reference */
	zswap_entry_put(tree, entry);

	/*
	* There are two possible situations for entry here:
	* (1) refcount is 1(normal case),  entry is valid and on the tree
	* (2) refcount is 0, entry is freed and not on the tree
	*     because invalidate happened during writeback
	*  search the tree and free the entry if find entry
	*/
	if (entry == zswap_rb_search(&tree->rbroot, offset))
		zswap_entry_put(tree, entry);
	spin_unlock(&tree->lock);

	goto end;

	/*
	* if we get here due to ZSWAP_SWAPCACHE_EXIST
	* a load may happening concurrently
	* it is safe and okay to not free the entry
	* if we free the entry in the following put
	* it it either okay to return !0
	*/
fail:
	spin_lock(&tree->lock);
	zswap_entry_put(tree, entry);
	spin_unlock(&tree->lock);

end:
	return ret;
}
Example #25
0
static ssize_t nilfs_cpfile_do_get_ssinfo(struct inode *cpfile, __u64 *cnop,
					  void *buf, unsigned cisz, size_t nci)
{
	struct buffer_head *bh;
	struct nilfs_cpfile_header *header;
	struct nilfs_checkpoint *cp;
	struct nilfs_cpinfo *ci = buf;
	__u64 curr = *cnop, next;
	unsigned long curr_blkoff, next_blkoff;
	void *kaddr;
	int n = 0, ret;

	down_read(&NILFS_MDT(cpfile)->mi_sem);

	if (curr == 0) {
		ret = nilfs_cpfile_get_header_block(cpfile, &bh);
		if (ret < 0)
			goto out;
		kaddr = kmap_atomic(bh->b_page);
		header = nilfs_cpfile_block_get_header(cpfile, bh, kaddr);
		curr = le64_to_cpu(header->ch_snapshot_list.ssl_next);
		kunmap_atomic(kaddr);
		brelse(bh);
		if (curr == 0) {
			ret = 0;
			goto out;
		}
	} else if (unlikely(curr == ~(__u64)0)) {
		ret = 0;
		goto out;
	}

	curr_blkoff = nilfs_cpfile_get_blkoff(cpfile, curr);
	ret = nilfs_cpfile_get_checkpoint_block(cpfile, curr, 0, &bh);
	if (unlikely(ret < 0)) {
		if (ret == -ENOENT)
			ret = 0; /* No snapshots (started from a hole block) */
		goto out;
	}
	kaddr = kmap_atomic(bh->b_page);
	while (n < nci) {
		cp = nilfs_cpfile_block_get_checkpoint(cpfile, curr, bh, kaddr);
		curr = ~(__u64)0; /* Terminator */
		if (unlikely(nilfs_checkpoint_invalid(cp) ||
			     !nilfs_checkpoint_snapshot(cp)))
			break;
		nilfs_cpfile_checkpoint_to_cpinfo(cpfile, cp, ci);
		ci = (void *)ci + cisz;
		n++;
		next = le64_to_cpu(cp->cp_snapshot_list.ssl_next);
		if (next == 0)
			break; /* reach end of the snapshot list */

		next_blkoff = nilfs_cpfile_get_blkoff(cpfile, next);
		if (curr_blkoff != next_blkoff) {
			kunmap_atomic(kaddr);
			brelse(bh);
			ret = nilfs_cpfile_get_checkpoint_block(cpfile, next,
								0, &bh);
			if (unlikely(ret < 0)) {
				WARN_ON(ret == -ENOENT);
				goto out;
			}
			kaddr = kmap_atomic(bh->b_page);
		}
		curr = next;
		curr_blkoff = next_blkoff;
	}
	kunmap_atomic(kaddr);
	brelse(bh);
	*cnop = curr;
	ret = n;

 out:
	up_read(&NILFS_MDT(cpfile)->mi_sem);
	return ret;
}
/* attempts to compress and store an single page */
static int zswap_frontswap_store(unsigned type, pgoff_t offset,
				struct page *page)
{
	struct zswap_tree *tree = zswap_trees[type];
	struct zswap_entry *entry, *dupentry;
	int ret;
	unsigned int dlen = PAGE_SIZE, len;
	unsigned long handle;
	char *buf;
	u8 *src, *dst;
	struct zswap_header *zhdr;

	if (!tree) {
		ret = -ENODEV;
		goto reject;
	}

	/* reclaim space if needed */
	if (zswap_is_full()) {
		zswap_pool_limit_hit++;
		if (zbud_reclaim_page(tree->pool, 8)) {
			zswap_reject_reclaim_fail++;
			ret = -ENOMEM;
			goto reject;
		}
	}

	/* allocate entry */
	entry = zswap_entry_cache_alloc(GFP_KERNEL);
	if (!entry) {
		zswap_reject_kmemcache_fail++;
		ret = -ENOMEM;
		goto reject;
	}

	/* compress */
	dst = get_cpu_var(zswap_dstmem);
	src = kmap_atomic(page);
	ret = zswap_comp_op(ZSWAP_COMPOP_COMPRESS, src, PAGE_SIZE, dst, &dlen);
	kunmap_atomic(src);
	if (ret) {
		ret = -EINVAL;
		goto freepage;
	}

	/* store */
	len = dlen + sizeof(struct zswap_header);
	ret = zbud_alloc(tree->pool, len, __GFP_NORETRY | __GFP_NOWARN,
		&handle);
	if (ret == -ENOSPC) {
		zswap_reject_compress_poor++;
		goto freepage;
	}
	if (ret) {
		zswap_reject_alloc_fail++;
		goto freepage;
	}
	zhdr = zbud_map(tree->pool, handle);
	zhdr->swpentry = swp_entry(type, offset);
	buf = (u8 *)(zhdr + 1);
	memcpy(buf, dst, dlen);
	zbud_unmap(tree->pool, handle);
	put_cpu_var(zswap_dstmem);

	/* populate entry */
	entry->offset = offset;
	entry->handle = handle;
	entry->length = dlen;

	/* map */
	spin_lock(&tree->lock);
	do {
		ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
		if (ret == -EEXIST) {
			zswap_duplicate_entry++;
			/* remove from rbtree */
			zswap_rb_erase(&tree->rbroot, dupentry);
			zswap_entry_put(tree, dupentry);
		}
	} while (ret == -EEXIST);
	spin_unlock(&tree->lock);

	/* update stats */
	atomic_inc(&zswap_stored_pages);
	zswap_pool_pages = zbud_get_pool_size(tree->pool);

	return 0;

freepage:
	put_cpu_var(zswap_dstmem);
	zswap_entry_cache_free(entry);
reject:
	return ret;
}
Example #27
0
static int nilfs_cpfile_clear_snapshot(struct inode *cpfile, __u64 cno)
{
	struct buffer_head *header_bh, *next_bh, *prev_bh, *cp_bh;
	struct nilfs_cpfile_header *header;
	struct nilfs_checkpoint *cp;
	struct nilfs_snapshot_list *list;
	__u64 next, prev;
	void *kaddr;
	int ret;

	if (cno == 0)
		return -ENOENT; /* checkpoint number 0 is invalid */
	down_write(&NILFS_MDT(cpfile)->mi_sem);

	ret = nilfs_cpfile_get_checkpoint_block(cpfile, cno, 0, &cp_bh);
	if (ret < 0)
		goto out_sem;
	kaddr = kmap_atomic(cp_bh->b_page);
	cp = nilfs_cpfile_block_get_checkpoint(cpfile, cno, cp_bh, kaddr);
	if (nilfs_checkpoint_invalid(cp)) {
		ret = -ENOENT;
		kunmap_atomic(kaddr);
		goto out_cp;
	}
	if (!nilfs_checkpoint_snapshot(cp)) {
		ret = 0;
		kunmap_atomic(kaddr);
		goto out_cp;
	}

	list = &cp->cp_snapshot_list;
	next = le64_to_cpu(list->ssl_next);
	prev = le64_to_cpu(list->ssl_prev);
	kunmap_atomic(kaddr);

	ret = nilfs_cpfile_get_header_block(cpfile, &header_bh);
	if (ret < 0)
		goto out_cp;
	if (next != 0) {
		ret = nilfs_cpfile_get_checkpoint_block(cpfile, next, 0,
							&next_bh);
		if (ret < 0)
			goto out_header;
	} else {
		next_bh = header_bh;
		get_bh(next_bh);
	}
	if (prev != 0) {
		ret = nilfs_cpfile_get_checkpoint_block(cpfile, prev, 0,
							&prev_bh);
		if (ret < 0)
			goto out_next;
	} else {
		prev_bh = header_bh;
		get_bh(prev_bh);
	}

	kaddr = kmap_atomic(next_bh->b_page);
	list = nilfs_cpfile_block_get_snapshot_list(
		cpfile, next, next_bh, kaddr);
	list->ssl_prev = cpu_to_le64(prev);
	kunmap_atomic(kaddr);

	kaddr = kmap_atomic(prev_bh->b_page);
	list = nilfs_cpfile_block_get_snapshot_list(
		cpfile, prev, prev_bh, kaddr);
	list->ssl_next = cpu_to_le64(next);
	kunmap_atomic(kaddr);

	kaddr = kmap_atomic(cp_bh->b_page);
	cp = nilfs_cpfile_block_get_checkpoint(cpfile, cno, cp_bh, kaddr);
	cp->cp_snapshot_list.ssl_next = cpu_to_le64(0);
	cp->cp_snapshot_list.ssl_prev = cpu_to_le64(0);
	nilfs_checkpoint_clear_snapshot(cp);
	kunmap_atomic(kaddr);

	kaddr = kmap_atomic(header_bh->b_page);
	header = nilfs_cpfile_block_get_header(cpfile, header_bh, kaddr);
	le64_add_cpu(&header->ch_nsnapshots, -1);
	kunmap_atomic(kaddr);

	mark_buffer_dirty(next_bh);
	mark_buffer_dirty(prev_bh);
	mark_buffer_dirty(cp_bh);
	mark_buffer_dirty(header_bh);
	nilfs_mdt_mark_dirty(cpfile);

	brelse(prev_bh);

 out_next:
	brelse(next_bh);

 out_header:
	brelse(header_bh);

 out_cp:
	brelse(cp_bh);

 out_sem:
	up_write(&NILFS_MDT(cpfile)->mi_sem);
	return ret;
}
static int
msmsdcc_pio_irq(int irq, void *dev_id)
{
	struct msmsdcc_host	*host = dev_id;
	void __iomem		*base = host->base;
	uint32_t		status;

	status = readl(base + MMCISTATUS);
#if IRQ_DEBUG
	msmsdcc_print_status(host, "irq1-r", status);
#endif

	do {
		unsigned long flags;
		unsigned int remain, len;
		char *buffer;

		if (!(status & (MCI_TXFIFOHALFEMPTY | MCI_RXDATAAVLBL)))
			break;

		/* Map the current scatter buffer */
		local_irq_save(flags);
		buffer = kmap_atomic(sg_page(host->pio.sg),
				     KM_BIO_SRC_IRQ) + host->pio.sg->offset;
		buffer += host->pio.sg_off;
		remain = host->pio.sg->length - host->pio.sg_off;

		len = 0;
		if (status & MCI_RXACTIVE)
			len = msmsdcc_pio_read(host, buffer, remain);
		if (status & MCI_TXACTIVE)
			len = msmsdcc_pio_write(host, buffer, remain, status);

		/* Unmap the buffer */
		kunmap_atomic(buffer, KM_BIO_SRC_IRQ);
		local_irq_restore(flags);

		host->pio.sg_off += len;
		host->curr.xfer_remain -= len;
		host->curr.data_xfered += len;
		remain -= len;

		if (remain) /* Done with this page? */
			break; /* Nope */

		if (status & MCI_RXACTIVE && host->curr.user_pages)
			flush_dcache_page(sg_page(host->pio.sg));

		if (!--host->pio.sg_len) {
			memset(&host->pio, 0, sizeof(host->pio));
			break;
		}

		/* Advance to next sg */
		host->pio.sg++;
		host->pio.sg_off = 0;

		status = readl(base + MMCISTATUS);
	} while (1);

	if (status & MCI_RXACTIVE && host->curr.xfer_remain < MCI_FIFOSIZE)
		writel(MCI_RXDATAAVLBLMASK, base + MMCIMASK1);

	if (!host->curr.xfer_remain)
		writel(0, base + MMCIMASK1);

	return IRQ_HANDLED;
}
Example #29
0
static void put_ptr_atomic(void *ptr, enum km_type type)
{
    kunmap_atomic(ptr, type);
}
Example #30
0
static void __bm_unmap(unsigned long *p_addr, const enum km_type km)
{
    kunmap_atomic(p_addr, km);
};