Example #1
0
extern "C" magma_int_t
magma_diterref(
    magma_d_matrix A, magma_d_matrix b, magma_d_matrix *x,
    magma_d_solver_par *solver_par, magma_d_preconditioner *precond_par,
    magma_queue_t queue )
{
    magma_int_t info = MAGMA_NOTCONVERGED;
    
    // some useful variables
    double c_zero = MAGMA_D_ZERO;
    double c_one  = MAGMA_D_ONE;
    double c_neg_one = MAGMA_D_NEG_ONE;

    // prepare solver feedback
    solver_par->solver = Magma_ITERREF;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    
    magma_int_t dofs = A.num_rows*b.num_cols;

    // solver variables
    double nom, nom0;
    
    // workspace
    magma_d_matrix r={Magma_CSR}, z={Magma_CSR};
    CHECK( magma_dvinit( &r, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &z, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));

    double residual;
    CHECK( magma_dresidual( A, b, *x, &residual, queue ));
    solver_par->init_res = residual;
   

    // solver setup
    magma_dscal( dofs, c_zero, x->dval, 1, queue );                    // x = 0
    //CHECK(  magma_dresidualvec( A, b, *x, &r, nom, queue));
    magma_dcopy( dofs, b.dval, 1, r.dval, 1, queue );                    // r = b
    nom0 = magma_dnrm2( dofs, r.dval, 1, queue );                       // nom0 = || r ||
    nom = nom0 * nom0;
    solver_par->init_res = nom0;

    if( nom0 < solver_par->atol ||
        nom0/solver_par->init_res < solver_par->rtol ){
        solver_par->final_res = solver_par->init_res;
        solver_par->iter_res = solver_par->init_res;
        info = MAGMA_SUCCESS;
        goto cleanup;
    }
    
    //Chronometry
    real_Double_t tempo1, tempo2;
    tempo1 = magma_sync_wtime( queue );
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = nom0;
        solver_par->timing[0] = 0.0;
    }
    
    // start iteration
    for( solver_par->numiter= 1; solver_par->numiter<solver_par->maxiter;
                                                    solver_par->numiter++ ) {
        magma_dscal( dofs, MAGMA_D_MAKE(1./nom, 0.), r.dval, 1, queue );  // scale it
        CHECK( magma_d_precond( A, r, &z, precond_par, queue )); // inner solver:  A * z = r
        magma_dscal( dofs, MAGMA_D_MAKE(nom, 0.), z.dval, 1, queue );  // scale it
        magma_daxpy( dofs,  c_one, z.dval, 1, x->dval, 1, queue );        // x = x + z
        CHECK( magma_d_spmv( c_neg_one, A, *x, c_zero, r, queue ));      // r = - A x
        solver_par->spmv_count++;
        magma_daxpy( dofs,  c_one, b.dval, 1, r.dval, 1, queue );         // r = r + b
        nom = magma_dnrm2( dofs, r.dval, 1, queue );                    // nom = || r ||

        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) nom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }

        if( nom < solver_par->atol ||
            nom/solver_par->init_res < solver_par->rtol ){
            break;
        }
    }
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    CHECK(  magma_dresidualvec( A, b, *x, &r, &residual, queue));
    solver_par->final_res = residual;
    solver_par->iter_res = nom;

    if ( solver_par->numiter < solver_par->maxiter ) {
        info = MAGMA_SUCCESS;
    } else if ( solver_par->init_res > solver_par->final_res ) {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) nom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_SLOW_CONVERGENCE;
        if( solver_par->iter_res < solver_par->atol ||
            solver_par->iter_res/solver_par->init_res < solver_par->rtol ){
            info = MAGMA_SUCCESS;
        }
    }
    else {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) nom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_DIVERGENCE;
    }
    
cleanup:
    magma_dmfree(&r, queue );
    magma_dmfree(&z, queue );

    solver_par->info = info;
    return info;
}   /* magma_diterref */
Example #2
0
extern "C" magma_int_t
magma_dcg(
    magma_d_matrix A, magma_d_matrix b, magma_d_matrix *x,
    magma_d_solver_par *solver_par,
    magma_queue_t queue )
{
    magma_int_t info = 0;
    
    // set queue for old dense routines
    magma_queue_t orig_queue=NULL;
    magmablasGetKernelStream( &orig_queue );

    // prepare solver feedback
    solver_par->solver = Magma_CG;
    solver_par->numiter = 0;
    solver_par->info = MAGMA_SUCCESS;

    // local variables
    double c_zero = MAGMA_D_ZERO, c_one = MAGMA_D_ONE;
    
    magma_int_t dofs = A.num_rows * b.num_cols;

    // GPU workspace
    magma_d_matrix r={Magma_CSR}, p={Magma_CSR}, q={Magma_CSR};
    CHECK( magma_dvinit( &r, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &p, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &q, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    
    // solver variables
    double alpha, beta;
    double nom, nom0, r0, betanom, betanomsq, den;

    // solver setup
    CHECK(  magma_dresidualvec( A, b, *x, &r, &nom0, queue));
    magma_dcopy( dofs, r.dval, 1, p.dval, 1 );                    // p = r
    betanom = nom0;
    nom  = nom0 * nom0;                                // nom = r' * r
    CHECK( magma_d_spmv( c_one, A, p, c_zero, q, queue ));             // q = A p
    den = MAGMA_D_REAL( magma_ddot(dofs, p.dval, 1, q.dval, 1) );// den = p dot q
    solver_par->init_res = nom0;
    
    if ( (r0 = nom * solver_par->epsilon) < ATOLERANCE )
        r0 = ATOLERANCE;
    if ( nom < r0 ) {
        solver_par->final_res = solver_par->init_res;
        solver_par->iter_res = solver_par->init_res;
        goto cleanup;
    }
    // check positive definite
    if (den <= 0.0) {
        printf("Operator A is not postive definite. (Ar,r) = %f\n", den);
        magmablasSetKernelStream( orig_queue );
        info = MAGMA_NONSPD; 
        goto cleanup;
    }

    //Chronometry
    real_Double_t tempo1, tempo2;
    tempo1 = magma_sync_wtime( queue );
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = (real_Double_t)nom0;
        solver_par->timing[0] = 0.0;
    }
    
    solver_par->numiter = 0;
    // start iteration
    do
    {
        solver_par->numiter++;
        alpha = MAGMA_D_MAKE(nom/den, 0.);
        magma_daxpy(dofs,  alpha, p.dval, 1, x->dval, 1);     // x = x + alpha p
        magma_daxpy(dofs, -alpha, q.dval, 1, r.dval, 1);      // r = r - alpha q
        betanom = magma_dnrm2(dofs, r.dval, 1);             // betanom = || r ||
        betanomsq = betanom * betanom;                      // betanoms = r' * r

        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }

        if (  betanom  < r0 ) {
            break;
        }

        beta = MAGMA_D_MAKE(betanomsq/nom, 0.);           // beta = betanoms/nom
        magma_dscal(dofs, beta, p.dval, 1);                // p = beta*p
        magma_daxpy(dofs, c_one, r.dval, 1, p.dval, 1);     // p = p + r
        CHECK( magma_d_spmv( c_one, A, p, c_zero, q, queue ));   // q = A p
        den = MAGMA_D_REAL(magma_ddot(dofs, p.dval, 1, q.dval, 1));
                // den = p dot q
        nom = betanomsq;
    }
    while ( solver_par->numiter+1 <= solver_par->maxiter );
    
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    double residual;
    CHECK(  magma_dresidualvec( A, b, *x, &r, &residual, queue));
    solver_par->final_res = residual;

    if ( solver_par->numiter < solver_par->maxiter ) {
        solver_par->info = MAGMA_SUCCESS;
    } else if ( solver_par->init_res > solver_par->final_res ) {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_SLOW_CONVERGENCE;
        if( solver_par->iter_res < solver_par->epsilon*solver_par->init_res ){
            info = MAGMA_SUCCESS;
        }
    }
    else {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_DIVERGENCE;
    }
    
cleanup:
    magma_dmfree(&r, queue );
    magma_dmfree(&p, queue );
    magma_dmfree(&q, queue );

    magmablasSetKernelStream( orig_queue );
    solver_par->info = info;
    return info;
}   /* magma_dcg */
Example #3
0
extern "C" magma_int_t
magma_dpbicgstab(
    magma_d_sparse_matrix A, magma_d_vector b, magma_d_vector *x,  
    magma_d_solver_par *solver_par, 
    magma_d_preconditioner *precond_par,
    magma_queue_t queue )
{
    // set queue for old dense routines
    magma_queue_t orig_queue;
    magmablasGetKernelStream( &orig_queue );

    // prepare solver feedback
    solver_par->solver = Magma_PBICGSTAB;
    solver_par->numiter = 0;
    solver_par->info = MAGMA_SUCCESS;

    // some useful variables
    double c_zero = MAGMA_D_ZERO, c_one = MAGMA_D_ONE, 
                                            c_mone = MAGMA_D_NEG_ONE;
    
    magma_int_t dofs = A.num_rows;

    // workspace
    magma_d_vector r,rr,p,v,s,t,ms,mt,y,z;
    magma_d_vinit( &r, Magma_DEV, dofs, c_zero, queue );
    magma_d_vinit( &rr, Magma_DEV, dofs, c_zero, queue );
    magma_d_vinit( &p, Magma_DEV, dofs, c_zero, queue );
    magma_d_vinit( &v, Magma_DEV, dofs, c_zero, queue );
    magma_d_vinit( &s, Magma_DEV, dofs, c_zero, queue );
    magma_d_vinit( &t, Magma_DEV, dofs, c_zero, queue );
    magma_d_vinit( &ms, Magma_DEV, dofs, c_zero, queue );
    magma_d_vinit( &mt, Magma_DEV, dofs, c_zero, queue );
    magma_d_vinit( &y, Magma_DEV, dofs, c_zero, queue );
    magma_d_vinit( &z, Magma_DEV, dofs, c_zero, queue );

    
    // solver variables
    double alpha, beta, omega, rho_old, rho_new;
    double nom, betanom, nom0, r0, den, res;

    // solver setup
    magma_dscal( dofs, c_zero, x->dval, 1) ;                    // x = 0
    magma_dcopy( dofs, b.dval, 1, r.dval, 1 );                   // r = b
    magma_dcopy( dofs, b.dval, 1, rr.dval, 1 );                  // rr = b
    nom0 = betanom = magma_dnrm2( dofs, r.dval, 1 );           // nom = || r ||
    nom = nom0*nom0;
    rho_new = omega = alpha = MAGMA_D_MAKE( 1.0, 0. );
    solver_par->init_res = nom0;

    magma_d_spmv( c_one, A, r, c_zero, v, queue );                      // z = A r
    den = MAGMA_D_REAL( magma_ddot(dofs, v.dval, 1, r.dval, 1) ); // den = z' * r

    if ( (r0 = nom * solver_par->epsilon) < ATOLERANCE ) 
        r0 = ATOLERANCE;
    if ( nom < r0 ) {
        magmablasSetKernelStream( orig_queue );
        return MAGMA_SUCCESS;
    }
    // check positive definite  
    if (den <= 0.0) {
        printf("Operator A is not postive definite. (Ar,r) = %f\n", den);
        magmablasSetKernelStream( orig_queue );
        return MAGMA_NONSPD;
    }

    //Chronometry
    real_Double_t tempo1, tempo2;
    tempo1 = magma_sync_wtime( queue );
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = nom0;
        solver_par->timing[0] = 0.0;
    }

    // start iteration
    for( solver_par->numiter= 1; solver_par->numiter<solver_par->maxiter; 
                                                    solver_par->numiter++ ) {
        rho_old = rho_new;                                   // rho_old=rho
        rho_new = magma_ddot( dofs, rr.dval, 1, r.dval, 1 );  // rho=<rr,r>
        beta = rho_new/rho_old * alpha/omega;   // beta=rho/rho_old *alpha/omega
        magma_dscal( dofs, beta, p.dval, 1 );                 // p = beta*p
        magma_daxpy( dofs, c_mone * omega * beta, v.dval, 1 , p.dval, 1 );        
                                                        // p = p-omega*beta*v
        magma_daxpy( dofs, c_one, r.dval, 1, p.dval, 1 );      // p = p+r

        // preconditioner
        magma_d_applyprecond_left( A, p, &mt, precond_par, queue );      
        magma_d_applyprecond_right( A, mt, &y, precond_par, queue );        

        magma_d_spmv( c_one, A, y, c_zero, v, queue );              // v = Ap

        alpha = rho_new / magma_ddot( dofs, rr.dval, 1, v.dval, 1 );
        magma_dcopy( dofs, r.dval, 1 , s.dval, 1 );            // s=r
        magma_daxpy( dofs, c_mone * alpha, v.dval, 1 , s.dval, 1 ); // s=s-alpha*v

        // preconditioner
        magma_d_applyprecond_left( A, s, &ms, precond_par, queue ); 
        magma_d_applyprecond_right( A, ms, &z, precond_par, queue );      

        magma_d_spmv( c_one, A, z, c_zero, t, queue );               // t=As

        // preconditioner
        magma_d_applyprecond_left( A, s, &ms, precond_par, queue );      
        magma_d_applyprecond_left( A, t, &mt, precond_par, queue );        

        // omega = <ms,mt>/<mt,mt>  
        omega = magma_ddot( dofs, mt.dval, 1, ms.dval, 1 )
                   / magma_ddot( dofs, mt.dval, 1, mt.dval, 1 );

        magma_daxpy( dofs, alpha, y.dval, 1 , x->dval, 1 );     // x=x+alpha*p
        magma_daxpy( dofs, omega, z.dval, 1 , x->dval, 1 );     // x=x+omega*s

        magma_dcopy( dofs, s.dval, 1 , r.dval, 1 );             // r=s
        magma_daxpy( dofs, c_mone * omega, t.dval, 1 , r.dval, 1 ); // r=r-omega*t
        res = betanom = magma_dnrm2( dofs, r.dval, 1 );

        nom = betanom*betanom;


        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) tempo2-tempo1;
            }
        }

        if ( res/nom0  < solver_par->epsilon ) {
            break;
        }
    }
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    double residual;
    magma_dresidual( A, b, *x, &residual, queue );
    solver_par->final_res = residual;
    solver_par->iter_res = res;

    if ( solver_par->numiter < solver_par->maxiter) {
        solver_par->info = MAGMA_SUCCESS;
    } else if ( solver_par->init_res > solver_par->final_res ) {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        solver_par->info = MAGMA_SLOW_CONVERGENCE;
    }
    else {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        solver_par->info = MAGMA_DIVERGENCE;
    }
    magma_d_vfree(&r, queue );
    magma_d_vfree(&rr, queue );
    magma_d_vfree(&p, queue );
    magma_d_vfree(&v, queue );
    magma_d_vfree(&s, queue );
    magma_d_vfree(&t, queue );
    magma_d_vfree(&ms, queue );
    magma_d_vfree(&mt, queue );
    magma_d_vfree(&y, queue );
    magma_d_vfree(&z, queue );


    magmablasSetKernelStream( orig_queue );
    return MAGMA_SUCCESS;
}   /* magma_dbicgstab */
Example #4
0
magma_int_t
magma_dpgmres( magma_d_sparse_matrix A, magma_d_vector b, magma_d_vector *x,  
               magma_d_solver_par *solver_par, 
               magma_d_preconditioner *precond_par ){

    // prepare solver feedback
    solver_par->solver = Magma_PGMRES;
    solver_par->numiter = 0;
    solver_par->info = 0;

    // local variables
    double c_zero = MAGMA_D_ZERO, c_one = MAGMA_D_ONE, 
                                                c_mone = MAGMA_D_NEG_ONE;
    magma_int_t dofs = A.num_rows;
    magma_int_t i, j, k, m = 0;
    magma_int_t restart = min( dofs-1, solver_par->restart );
    magma_int_t ldh = restart+1;
    double nom, rNorm, RNorm, nom0, betanom, r0 = 0.;

    // CPU workspace
    magma_setdevice(0);
    double *H, *HH, *y, *h1;
    magma_dmalloc_pinned( &H, (ldh+1)*ldh );
    magma_dmalloc_pinned( &y, ldh );
    magma_dmalloc_pinned( &HH, ldh*ldh );
    magma_dmalloc_pinned( &h1, ldh );

    // GPU workspace
    magma_d_vector r, q, q_t, z, z_t, t;
    magma_d_vinit( &t, Magma_DEV, dofs, c_zero );
    magma_d_vinit( &r, Magma_DEV, dofs, c_zero );
    magma_d_vinit( &q, Magma_DEV, dofs*(ldh+1), c_zero );
    magma_d_vinit( &z, Magma_DEV, dofs*(ldh+1), c_zero );
    magma_d_vinit( &z_t, Magma_DEV, dofs, c_zero );
    q_t.memory_location = Magma_DEV; 
    q_t.val = NULL; 
    q_t.num_rows = q_t.nnz = dofs;

    double *dy, *dH = NULL;
    if (MAGMA_SUCCESS != magma_dmalloc( &dy, ldh )) 
        return MAGMA_ERR_DEVICE_ALLOC;
    if (MAGMA_SUCCESS != magma_dmalloc( &dH, (ldh+1)*ldh )) 
        return MAGMA_ERR_DEVICE_ALLOC;

    // GPU stream
    magma_queue_t stream[2];
    magma_event_t event[1];
    magma_queue_create( &stream[0] );
    magma_queue_create( &stream[1] );
    magma_event_create( &event[0] );
    magmablasSetKernelStream(stream[0]);

    magma_dscal( dofs, c_zero, x->val, 1 );              //  x = 0
    magma_dcopy( dofs, b.val, 1, r.val, 1 );             //  r = b
    nom0 = betanom = magma_dnrm2( dofs, r.val, 1 );     //  nom0= || r||
    nom = nom0  * nom0;
    solver_par->init_res = nom0;
    H(1,0) = MAGMA_D_MAKE( nom0, 0. ); 
    magma_dsetvector(1, &H(1,0), 1, &dH(1,0), 1);
    if ( (r0 = nom * solver_par->epsilon) < ATOLERANCE ) 
        r0 = ATOLERANCE;
    if ( nom < r0 )
        return MAGMA_SUCCESS;

    //Chronometry
    real_Double_t tempo1, tempo2;
    magma_device_sync(); tempo1=magma_wtime();
    if( solver_par->verbose > 0 ){
        solver_par->res_vec[0] = nom0;
        solver_par->timing[0] = 0.0;
    }
    // start iteration
    for( solver_par->numiter= 1; solver_par->numiter<solver_par->maxiter; 
                                                    solver_par->numiter++ ){
        magma_dcopy(dofs, r.val, 1, q(0), 1);       //  q[0] = 1.0/H(1,0) r
        magma_dscal(dofs, 1./H(1,0), q(0), 1);      //  (to be fused)

        for(k=1; k<=restart; k++) {
            q_t.val = q(k-1);
            magmablasSetKernelStream(stream[0]);
            // preconditioner
            //  z[k] = M^(-1) q(k)
            magma_d_applyprecond_left( A, q_t, &t, precond_par );      
            magma_d_applyprecond_right( A, t, &z_t, precond_par );     
  
            magma_dcopy(dofs, z_t.val, 1, z(k-1), 1);                  

            // r = A q[k] 
            magma_d_spmv( c_one, A, z_t, c_zero, r );


            if (solver_par->ortho == Magma_MGS ) {
                // modified Gram-Schmidt
                magmablasSetKernelStream(stream[0]);
                for (i=1; i<=k; i++) {
                    H(i,k) =magma_ddot(dofs, q(i-1), 1, r.val, 1);            
                        //  H(i,k) = q[i] . r
                    magma_daxpy(dofs,-H(i,k), q(i-1), 1, r.val, 1);            
                       //  r = r - H(i,k) q[i]
                }
                H(k+1,k) = MAGMA_D_MAKE( magma_dnrm2(dofs, r.val, 1), 0. );
                      //  H(k+1,k) = sqrt(r . r) 
                if (k < restart) {
                        magma_dcopy(dofs, r.val, 1, q(k), 1);                  
                      //  q[k] = 1.0/H[k][k-1] r
                        magma_dscal(dofs, 1./H(k+1,k), q(k), 1);               
                      //  (to be fused)   
                 }
            } else if (solver_par->ortho == Magma_FUSED_CGS ) {
                // fusing dgemv with dnrm2 in classical Gram-Schmidt
                magmablasSetKernelStream(stream[0]);
                magma_dcopy(dofs, r.val, 1, q(k), 1);  
                    // dH(1:k+1,k) = q[0:k] . r
                magmablas_dgemv(MagmaTrans, dofs, k+1, c_one, q(0), 
                                dofs, r.val, 1, c_zero, &dH(1,k), 1);
                    // r = r - q[0:k-1] dH(1:k,k)
                magmablas_dgemv(MagmaNoTrans, dofs, k, c_mone, q(0), 
                                dofs, &dH(1,k), 1, c_one, r.val, 1);
                   // 1) dH(k+1,k) = sqrt( dH(k+1,k) - dH(1:k,k) )
                magma_dcopyscale(  dofs, k, r.val, q(k), &dH(1,k) );  
                   // 2) q[k] = q[k] / dH(k+1,k) 

                magma_event_record( event[0], stream[0] );
                magma_queue_wait_event( stream[1], event[0] );
                magma_dgetvector_async(k+1, &dH(1,k), 1, &H(1,k), 1, stream[1]); 
                    // asynch copy dH(1:(k+1),k) to H(1:(k+1),k)
            } else {
                // classical Gram-Schmidt (default)
                // > explicitly calling magmabls
                magmablasSetKernelStream(stream[0]);                                                  
                magmablas_dgemv(MagmaTrans, dofs, k, c_one, q(0), 
                                dofs, r.val, 1, c_zero, &dH(1,k), 1); 
                                // dH(1:k,k) = q[0:k-1] . r
                #ifndef DNRM2SCALE 
                // start copying dH(1:k,k) to H(1:k,k)
                magma_event_record( event[0], stream[0] );
                magma_queue_wait_event( stream[1], event[0] );
                magma_dgetvector_async(k, &dH(1,k), 1, &H(1,k), 
                                                    1, stream[1]);
                #endif
                                  // r = r - q[0:k-1] dH(1:k,k)
                magmablas_dgemv(MagmaNoTrans, dofs, k, c_mone, q(0), 
                                    dofs, &dH(1,k), 1, c_one, r.val, 1);
                #ifdef DNRM2SCALE
                magma_dcopy(dofs, r.val, 1, q(k), 1);                 
                    //  q[k] = r / H(k,k-1) 
                magma_dnrm2scale(dofs, q(k), dofs, &dH(k+1,k) );     
                    //  dH(k+1,k) = sqrt(r . r) and r = r / dH(k+1,k)

                magma_event_record( event[0], stream[0] );            
                            // start sending dH(1:k,k) to H(1:k,k)
                magma_queue_wait_event( stream[1], event[0] );        
                            // can we keep H(k+1,k) on GPU and combine?
                magma_dgetvector_async(k+1, &dH(1,k), 1, &H(1,k), 1, stream[1]);
                #else
                H(k+1,k) = MAGMA_D_MAKE( magma_dnrm2(dofs, r.val, 1), 0. );   
                            //  H(k+1,k) = sqrt(r . r) 
                if( k<solver_par->restart ){
                        magmablasSetKernelStream(stream[0]);
                        magma_dcopy(dofs, r.val, 1, q(k), 1);                  
                            //  q[k]    = 1.0/H[k][k-1] r
                        magma_dscal(dofs, 1./H(k+1,k), q(k), 1);              
                            //  (to be fused)   
                 }
                #endif
            }
        }
        magma_queue_sync( stream[1] );
        for( k=1; k<=restart; k++ ){
            /*     Minimization of  || b-Ax ||  in H_k       */ 
            for (i=1; i<=k; i++) {
                #if defined(PRECISION_z) || defined(PRECISION_c)
                cblas_ddot_sub( i+1, &H(1,k), 1, &H(1,i), 1, &HH(k,i) );
                #else
                HH(k,i) = cblas_ddot(i+1, &H(1,k), 1, &H(1,i), 1);
                #endif
            }
            h1[k] = H(1,k)*H(1,0); 
            if (k != 1)
                for (i=1; i<k; i++) {
                    for (m=i+1; m<k; m++){
                        HH(k,m) -= HH(k,i) * HH(m,i);
                    }
                    HH(k,k) -= HH(k,i) * HH(k,i) / HH(i,i);
                    HH(k,i) = HH(k,i)/HH(i,i);
                    h1[k] -= h1[i] * HH(k,i);   
                }    
            y[k] = h1[k]/HH(k,k); 
            if (k != 1)  
                for (i=k-1; i>=1; i--) {
                    y[i] = h1[i]/HH(i,i);
                    for (j=i+1; j<=k; j++)
                        y[i] -= y[j] * HH(j,i);
                }                    
            m = k;
            rNorm = fabs(MAGMA_D_REAL(H(k+1,k)));
        }

        magma_dsetmatrix_async(m, 1, y+1, m, dy, m, stream[0]);
        magmablasSetKernelStream(stream[0]);
        magma_dgemv(MagmaNoTrans, dofs, m, c_one, z(0), dofs, dy, 1, 
                                                    c_one, x->val, 1); 
        magma_d_spmv( c_mone, A, *x, c_zero, r );      //  r = - A * x
        magma_daxpy(dofs, c_one, b.val, 1, r.val, 1);  //  r = r + b
        H(1,0) = MAGMA_D_MAKE( magma_dnrm2(dofs, r.val, 1), 0. ); 
                                            //  RNorm = H[1][0] = || r ||
        RNorm = MAGMA_D_REAL( H(1,0) );
        betanom = fabs(RNorm);  

        if( solver_par->verbose > 0 ){
            magma_device_sync(); tempo2=magma_wtime();
            if( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) tempo2-tempo1;
            }
        }

        if (  betanom  < r0 ) {
            break;
        } 
    }

    magma_device_sync(); tempo2=magma_wtime();
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    double residual;
    magma_dresidual( A, b, *x, &residual );
    solver_par->iter_res = betanom;
    solver_par->final_res = residual;

    if( solver_par->numiter < solver_par->maxiter){
        solver_par->info = 0;
    }else if( solver_par->init_res > solver_par->final_res ){
        if( solver_par->verbose > 0 ){
            if( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        solver_par->info = -2;
    }
    else{
        if( solver_par->verbose > 0 ){
            if( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        solver_par->info = -1;
    }
    // free pinned memory
    magma_free_pinned( H );
    magma_free_pinned( y );
    magma_free_pinned( HH );
    magma_free_pinned( h1 );
    // free GPU memory
    magma_free(dy); 
    if (dH != NULL ) magma_free(dH); 
    magma_d_vfree(&t);
    magma_d_vfree(&r);
    magma_d_vfree(&q);
    magma_d_vfree(&z);
    magma_d_vfree(&z_t);

    // free GPU streams and events
    magma_queue_destroy( stream[0] );
    magma_queue_destroy( stream[1] );
    magma_event_destroy( event[0] );
    magmablasSetKernelStream(NULL);

    return MAGMA_SUCCESS;
}   /* magma_dgmres */
Example #5
0
extern "C" magma_int_t
magma_dpbicg(
    magma_d_matrix A, magma_d_matrix b, magma_d_matrix *x,
    magma_d_solver_par *solver_par,
    magma_d_preconditioner *precond_par,
    magma_queue_t queue )
{
    magma_int_t info = MAGMA_NOTCONVERGED;
    
    // prepare solver feedback
    solver_par->solver = Magma_PBICG;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;

    // some useful variables
    double c_zero = MAGMA_D_ZERO;
    double c_one  = MAGMA_D_ONE;
    double c_neg_one = MAGMA_D_NEG_ONE;
    
    magma_int_t dofs = A.num_rows * b.num_cols;

    // workspace
    magma_d_matrix r={Magma_CSR}, rt={Magma_CSR}, p={Magma_CSR}, pt={Magma_CSR}, 
                z={Magma_CSR}, zt={Magma_CSR}, q={Magma_CSR}, y={Magma_CSR}, 
                yt={Magma_CSR},  qt={Magma_CSR};
                
    // need to transpose the matrix
    magma_d_matrix AT={Magma_CSR}, Ah1={Magma_CSR}, Ah2={Magma_CSR};
    
    CHECK( magma_dvinit( &r, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &rt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &p, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &pt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &q, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &qt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &y, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &yt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &z, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &zt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));

    
    // solver variables
    double alpha, rho, beta, rho_new, ptq;
    double res, nomb, nom0, r0;

        // transpose the matrix
    magma_dmtransfer( A, &Ah1, Magma_DEV, Magma_CPU, queue );
    magma_dmconvert( Ah1, &Ah2, A.storage_type, Magma_CSR, queue );
    magma_dmfree(&Ah1, queue );
    magma_dmtransposeconjugate( Ah2, &Ah1, queue );
    magma_dmfree(&Ah2, queue );
    Ah2.blocksize = A.blocksize;
    Ah2.alignment = A.alignment;
    magma_dmconvert( Ah1, &Ah2, Magma_CSR, A.storage_type, queue );
    magma_dmfree(&Ah1, queue );
    magma_dmtransfer( Ah2, &AT, Magma_CPU, Magma_DEV, queue );
    magma_dmfree(&Ah2, queue );
    
    // solver setup
    CHECK(  magma_dresidualvec( A, b, *x, &r, &nom0, queue));
    res = nom0;
    solver_par->init_res = nom0;
    magma_dcopy( dofs, r.dval, 1, rt.dval, 1, queue );                  // rr = r
    rho_new = magma_ddot( dofs, rt.dval, 1, r.dval, 1, queue );             // rho=<rr,r>
    rho = alpha = MAGMA_D_MAKE( 1.0, 0. );

    nomb = magma_dnrm2( dofs, b.dval, 1, queue );
    if ( nomb == 0.0 ){
        nomb=1.0;
    }       
    if ( (r0 = nomb * solver_par->rtol) < ATOLERANCE ){
        r0 = ATOLERANCE;
    }
    
    solver_par->final_res = solver_par->init_res;
    solver_par->iter_res = solver_par->init_res;
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = nom0;
        solver_par->timing[0] = 0.0;
    }
    if ( nom0 < r0 ) {
        info = MAGMA_SUCCESS;
        goto cleanup;
    }

    //Chronometry
    real_Double_t tempo1, tempo2;
    tempo1 = magma_sync_wtime( queue );


    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    // start iteration
    do
    {
        solver_par->numiter++;

        CHECK( magma_d_applyprecond_left( MagmaNoTrans, A, r, &y, precond_par, queue ));
        CHECK( magma_d_applyprecond_right( MagmaNoTrans, A, y, &z, precond_par, queue ));
        CHECK( magma_d_applyprecond_right( MagmaTrans, A, rt, &yt, precond_par, queue ));
        CHECK( magma_d_applyprecond_left( MagmaTrans, A, yt, &zt, precond_par, queue ));
        //magma_dcopy( dofs, r.dval, 1 , y.dval, 1, queue );             // y=r
        //magma_dcopy( dofs, y.dval, 1 , z.dval, 1, queue );             // z=y
        //magma_dcopy( dofs, rt.dval, 1 , yt.dval, 1, queue );           // yt=rt
        //magma_dcopy( dofs, yt.dval, 1 , zt.dval, 1, queue );           // yt=rt
        
        rho= rho_new;
        rho_new = magma_ddot( dofs, rt.dval, 1, z.dval, 1, queue );  // rho=<rt,z>
        if( magma_d_isnan_inf( rho_new ) ){
            info = MAGMA_DIVERGENCE;
            break;
        }
        
        if( solver_par->numiter==1 ){
            magma_dcopy( dofs, z.dval, 1 , p.dval, 1, queue );           // yt=rt
            magma_dcopy( dofs, zt.dval, 1 , pt.dval, 1, queue );           // zt=yt
        } else {
            beta = rho_new/rho;
            magma_dscal( dofs, beta, p.dval, 1, queue );                 // p = beta*p
            magma_daxpy( dofs, c_one , z.dval, 1 , p.dval, 1, queue );   // p = z+beta*p
            magma_dscal( dofs, MAGMA_D_CONJ(beta), pt.dval, 1, queue );   // pt = beta*pt
            magma_daxpy( dofs, c_one , zt.dval, 1 , pt.dval, 1, queue );  // pt = zt+beta*pt
        }
        CHECK( magma_d_spmv( c_one, A, p, c_zero, q, queue ));      // v = Ap
        CHECK( magma_d_spmv( c_one, AT, pt, c_zero, qt, queue ));   // v = Ap
        solver_par->spmv_count++;
        solver_par->spmv_count++;
        ptq = magma_ddot( dofs, pt.dval, 1, q.dval, 1, queue );
        alpha = rho_new /ptq;
        
        
        magma_daxpy( dofs, alpha, p.dval, 1 , x->dval, 1, queue );                // x=x+alpha*p
        magma_daxpy( dofs, c_neg_one * alpha, q.dval, 1 , r.dval, 1, queue );     // r=r+alpha*q
        magma_daxpy( dofs, c_neg_one * MAGMA_D_CONJ(alpha), qt.dval, 1 , rt.dval, 1, queue );     // r=r+alpha*q

        res = magma_dnrm2( dofs, r.dval, 1, queue );

        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }

        if ( res/nomb <= solver_par->rtol || res <= solver_par->atol ){
            break;
        }
    }
    while ( solver_par->numiter+1 <= solver_par->maxiter );
    
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    double residual;
    CHECK(  magma_dresidualvec( A, b, *x, &r, &residual, queue));
    solver_par->iter_res = res;
    solver_par->final_res = residual;

    if ( solver_par->numiter < solver_par->maxiter ) {
        info = MAGMA_SUCCESS;
    } else if ( solver_par->init_res > solver_par->final_res ) {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_SLOW_CONVERGENCE;
        if( solver_par->iter_res < solver_par->rtol*solver_par->init_res ||
            solver_par->iter_res < solver_par->atol ) {
            info = MAGMA_SUCCESS;
        }
    }
    else {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_DIVERGENCE;
    }
    
cleanup:
    magma_dmfree(&r, queue );
    magma_dmfree(&rt, queue );
    magma_dmfree(&p, queue );
    magma_dmfree(&pt, queue );
    magma_dmfree(&q, queue );
    magma_dmfree(&qt, queue );
    magma_dmfree(&y, queue );
    magma_dmfree(&yt, queue );
    magma_dmfree(&z, queue );
    magma_dmfree(&zt, queue );
    magma_dmfree(&AT, queue );
    magma_dmfree(&Ah1, queue );
    magma_dmfree(&Ah2, queue );

    solver_par->info = info;
    return info;
}   /* magma_dpbicg */
Example #6
0
extern "C" magma_int_t
magma_dcg_merge(
    magma_d_matrix A, magma_d_matrix b, magma_d_matrix *x,
    magma_d_solver_par *solver_par,
    magma_queue_t queue )
{
    magma_int_t info = MAGMA_NOTCONVERGED;
    
    // prepare solver feedback
    solver_par->solver = Magma_CGMERGE;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    
    // solver variables
    double alpha, beta, gamma, rho, tmp1, *skp_h={0};
    double nom, nom0, betanom, den, nomb;

    // some useful variables
    double c_zero = MAGMA_D_ZERO, c_one = MAGMA_D_ONE;
    magma_int_t dofs = A.num_rows*b.num_cols;

    magma_d_matrix r={Magma_CSR}, d={Magma_CSR}, z={Magma_CSR}, B={Magma_CSR}, C={Magma_CSR};
    double *d1=NULL, *d2=NULL, *skp=NULL;

    // GPU workspace
    CHECK( magma_dvinit( &r, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &d, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &z, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    
    CHECK( magma_dmalloc( &d1, dofs*(1) ));
    CHECK( magma_dmalloc( &d2, dofs*(1) ));
    // array for the parameters
    CHECK( magma_dmalloc( &skp, 6 ));
    // skp = [alpha|beta|gamma|rho|tmp1|tmp2]
    
    // solver setup
    magma_dscal( dofs, c_zero, x->dval, 1, queue );                      // x = 0
    //CHECK(  magma_dresidualvec( A, b, *x, &r, nom0, queue));
    magma_dcopy( dofs, b.dval, 1, r.dval, 1, queue );                    // r = b
    magma_dcopy( dofs, r.dval, 1, d.dval, 1, queue );                    // d = r
    nom0 = betanom = magma_dnrm2( dofs, r.dval, 1, queue );
    nom = nom0 * nom0;                                           // nom = r' * r
    CHECK( magma_d_spmv( c_one, A, d, c_zero, z, queue ));              // z = A d
    den = MAGMA_D_ABS( magma_ddot( dofs, d.dval, 1, z.dval, 1, queue ) ); // den = d'* z
    solver_par->init_res = nom0;
    
    nomb = magma_dnrm2( dofs, b.dval, 1, queue );
    if ( nomb == 0.0 ){
        nomb=1.0;
    }       
    
    // array on host for the parameters
    CHECK( magma_dmalloc_cpu( &skp_h, 6 ));
    
    alpha = rho = gamma = tmp1 = c_one;
    beta =  magma_ddot( dofs, r.dval, 1, r.dval, 1, queue );
    skp_h[0]=alpha;
    skp_h[1]=beta;
    skp_h[2]=gamma;
    skp_h[3]=rho;
    skp_h[4]=tmp1;
    skp_h[5]=MAGMA_D_MAKE(nom, 0.0);

    magma_dsetvector( 6, skp_h, 1, skp, 1, queue );

    if( nom0 < solver_par->atol ||
        nom0/nomb < solver_par->rtol ){
        info = MAGMA_SUCCESS;
        goto cleanup;
    }
    solver_par->final_res = solver_par->init_res;
    solver_par->iter_res = solver_par->init_res;
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = (real_Double_t) nom0;
        solver_par->timing[0] = 0.0;
    }
    // check positive definite
    if (den <= 0.0) {
        info = MAGMA_NONSPD; 
        goto cleanup;
    }
    
    //Chronometry
    real_Double_t tempo1, tempo2;
    tempo1 = magma_sync_wtime( queue );

    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    // start iteration
    do
    {
        solver_par->numiter++;

        // computes SpMV and dot product
        CHECK( magma_dcgmerge_spmv1(  A, d1, d2, d.dval, z.dval, skp, queue ));
        solver_par->spmv_count++;
        // updates x, r, computes scalars and updates d
        CHECK( magma_dcgmerge_xrbeta( dofs, d1, d2, x->dval, r.dval, d.dval, z.dval, skp, queue ));

        // check stopping criterion (asynchronous copy)
        magma_dgetvector( 1 , skp+1, 1, skp_h+1, 1, queue );
        betanom = sqrt(MAGMA_D_ABS(skp_h[1]));

        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }

        if (  betanom  < solver_par->atol || 
              betanom/nomb < solver_par->rtol ) {
            break;
        }
    }
    while ( solver_par->numiter+1 <= solver_par->maxiter );
    
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    double residual;
    CHECK(  magma_dresidualvec( A, b, *x, &r, &residual, queue));
    solver_par->iter_res = betanom;
    solver_par->final_res = residual;

    if ( solver_par->numiter < solver_par->maxiter ) {
        info = MAGMA_SUCCESS;
    } else if ( solver_par->init_res > solver_par->final_res ) {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_SLOW_CONVERGENCE;
        if( solver_par->iter_res < solver_par->atol ||
            solver_par->iter_res/solver_par->init_res < solver_par->rtol ){
            info = MAGMA_SUCCESS;
        }
    }
    else {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        solver_par->info = MAGMA_DIVERGENCE;
    }
    
cleanup:
    magma_dmfree(&r, queue );
    magma_dmfree(&z, queue );
    magma_dmfree(&d, queue );
    magma_dmfree(&B, queue );
    magma_dmfree(&C, queue );

    magma_free( d1 );
    magma_free( d2 );
    magma_free( skp );
    magma_free_cpu( skp_h );

    solver_par->info = info;
    return info;
}   /* magma_dcg_merge */
Example #7
0
extern "C" magma_int_t
magma_dbpcg(
    magma_d_sparse_matrix A, magma_d_vector b, magma_d_vector *x,  
    magma_d_solver_par *solver_par, 
    magma_d_preconditioner *precond_par,
    magma_queue_t queue )
{
    // set queue for old dense routines
    magma_queue_t orig_queue;
    magmablasGetKernelStream( &orig_queue );
    magma_int_t stat_dev = 0, stat_cpu = 0;
    
    magma_int_t i, num_vecs = b.num_rows/A.num_rows;

    // prepare solver feedback
    solver_par->solver = Magma_PCG;
    solver_par->numiter = 0;
    solver_par->info = MAGMA_SUCCESS;

    // local variables
    double c_zero = MAGMA_D_ZERO, c_one = MAGMA_D_ONE;
    
    magma_int_t dofs = A.num_rows;

    // GPU workspace
    magma_d_vector r, rt, p, q, h;
    magma_d_vinit( &r, Magma_DEV, dofs*num_vecs, c_zero, queue );
    magma_d_vinit( &rt, Magma_DEV, dofs*num_vecs, c_zero, queue );
    magma_d_vinit( &p, Magma_DEV, dofs*num_vecs, c_zero, queue );
    magma_d_vinit( &q, Magma_DEV, dofs*num_vecs, c_zero, queue );
    magma_d_vinit( &h, Magma_DEV, dofs*num_vecs, c_zero, queue );
    
    // solver variables
    double *alpha, *beta;
    alpha = NULL;
    beta = NULL;
    stat_cpu += magma_dmalloc_cpu(&alpha, num_vecs);
    stat_cpu += magma_dmalloc_cpu(&beta, num_vecs);

    double *nom, *nom0, *r0, *gammaold, *gammanew, *den, *res, *residual;
    nom        = NULL;
    nom0       = NULL;
    r0         = NULL;
    gammaold   = NULL;
    gammanew   = NULL;
    den        = NULL;
    res        = NULL;
    residual   = NULL;
    stat_cpu += magma_dmalloc_cpu(&residual, num_vecs);
    stat_cpu += magma_dmalloc_cpu(&nom, num_vecs);
    stat_cpu += magma_dmalloc_cpu(&nom0, num_vecs);
    stat_cpu += magma_dmalloc_cpu(&r0, num_vecs);
    stat_cpu += magma_dmalloc_cpu(&gammaold, num_vecs);
    stat_cpu += magma_dmalloc_cpu(&gammanew, num_vecs);
    stat_cpu += magma_dmalloc_cpu(&den, num_vecs);
    stat_cpu += magma_dmalloc_cpu(&res, num_vecs);
    stat_cpu += magma_dmalloc_cpu(&residual, num_vecs);
    if( stat_cpu != 0 ){
        magma_free_cpu( nom      );
        magma_free_cpu( nom0     );
        magma_free_cpu( r0       );
        magma_free_cpu( gammaold );
        magma_free_cpu( gammanew );
        magma_free_cpu( den      );
        magma_free_cpu( res      );
        magma_free_cpu( alpha    );
        magma_free_cpu( beta     );
        magma_free_cpu( residual );
        magmablasSetKernelStream( orig_queue );
        printf("error: memory allocation.\n");
        return MAGMA_ERR_HOST_ALLOC;
    }
    // solver setup
    magma_dscal( dofs*num_vecs, c_zero, x->dval, 1) ;                     // x = 0
    magma_dcopy( dofs*num_vecs, b.dval, 1, r.dval, 1 );                    // r = b

    // preconditioner
    magma_d_applyprecond_left( A, r, &rt, precond_par, queue );
    magma_d_applyprecond_right( A, rt, &h, precond_par, queue );

    magma_dcopy( dofs*num_vecs, h.dval, 1, p.dval, 1 );                 // p = h

    for( i=0; i<num_vecs; i++) {
        nom[i] = MAGMA_D_REAL( magma_ddot(dofs, r(i), 1, h(i), 1) );     
        nom0[i] = magma_dnrm2( dofs, r(i), 1 );       
    }
                                          
    magma_d_spmv( c_one, A, p, c_zero, q, queue );                     // q = A p

    for( i=0; i<num_vecs; i++)
        den[i] = MAGMA_D_REAL( magma_ddot(dofs, p(i), 1, q(i), 1) );  // den = p dot q

    solver_par->init_res = nom0[0];
    
    if ( (r0[0] = nom[0] * solver_par->epsilon) < ATOLERANCE ) 
        r0[0] = ATOLERANCE;
    // check positive definite
    if (den[0] <= 0.0) {
        printf("Operator A is not postive definite. (Ar,r) = %f\n", den[0]);
        magmablasSetKernelStream( orig_queue );
        return MAGMA_NONSPD;
        solver_par->info = MAGMA_NONSPD;;
    }
    if ( nom[0] < r0[0] ) {
        magmablasSetKernelStream( orig_queue );
        return MAGMA_SUCCESS;
    }

    //Chronometry
    real_Double_t tempo1, tempo2;
    tempo1 = magma_sync_wtime( queue );
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = (real_Double_t)nom0[0];
        solver_par->timing[0] = 0.0;
    }
    
    // start iteration
    for( solver_par->numiter= 1; solver_par->numiter<solver_par->maxiter; 
                                                    solver_par->numiter++ ) {
        // preconditioner
        magma_d_applyprecond_left( A, r, &rt, precond_par, queue );
        magma_d_applyprecond_right( A, rt, &h, precond_par, queue );


        for( i=0; i<num_vecs; i++)
            gammanew[i] = MAGMA_D_REAL( magma_ddot(dofs, r(i), 1, h(i), 1) );  // gn = < r,h>


        if ( solver_par->numiter==1 ) {
            magma_dcopy( dofs*num_vecs, h.dval, 1, p.dval, 1 );                    // p = h            
        } else {
            for( i=0; i<num_vecs; i++) {
                beta[i] = MAGMA_D_MAKE(gammanew[i]/gammaold[i], 0.);       // beta = gn/go
                magma_dscal(dofs, beta[i], p(i), 1);            // p = beta*p
                magma_daxpy(dofs, c_one, h(i), 1, p(i), 1); // p = p + h 
            }
        }

        magma_d_spmv( c_one, A, p, c_zero, q, queue );           // q = A p

     //   magma_d_bspmv_tuned( dofs, num_vecs, c_one, A, p.dval, c_zero, q.dval, queue );


        for( i=0; i<num_vecs; i++) {
            den[i] = MAGMA_D_REAL(magma_ddot(dofs, p(i), 1, q(i), 1));    
                // den = p dot q 

            alpha[i] = MAGMA_D_MAKE(gammanew[i]/den[i], 0.);
            magma_daxpy(dofs,  alpha[i], p(i), 1, x->dval+dofs*i, 1); // x = x + alpha p
            magma_daxpy(dofs, -alpha[i], q(i), 1, r(i), 1);      // r = r - alpha q
            gammaold[i] = gammanew[i];

            res[i] = magma_dnrm2( dofs, r(i), 1 );
        }

        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) res[0];
                solver_par->timing[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) tempo2-tempo1;
            }
        }


        if (  res[0]/nom0[0]  < solver_par->epsilon ) {
            break;
        }
    } 
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    magma_dresidual( A, b, *x, residual, queue );
    solver_par->iter_res = res[0];
    solver_par->final_res = residual[0];

    if ( solver_par->numiter < solver_par->maxiter) {
        solver_par->info = MAGMA_SUCCESS;
    } else if ( solver_par->init_res > solver_par->final_res ) {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) res[0];
                solver_par->timing[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        solver_par->info = MAGMA_SLOW_CONVERGENCE;
    }
    else {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) res[0];
                solver_par->timing[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        solver_par->info = MAGMA_DIVERGENCE;
    }
    for( i=0; i<num_vecs; i++) {
        printf("%.4e  ",res[i]);
    }
    printf("\n");
    for( i=0; i<num_vecs; i++) {
        printf("%.4e  ",residual[i]);
    }
    printf("\n");

    magma_d_vfree(&r, queue );
    magma_d_vfree(&rt, queue );
    magma_d_vfree(&p, queue );
    magma_d_vfree(&q, queue );
    magma_d_vfree(&h, queue );

    magma_free_cpu(alpha);
    magma_free_cpu(beta);
    magma_free_cpu(nom);
    magma_free_cpu(nom0);
    magma_free_cpu(r0);
    magma_free_cpu(gammaold);
    magma_free_cpu(gammanew);
    magma_free_cpu(den);
    magma_free_cpu(res);

    magmablasSetKernelStream( orig_queue );
    return MAGMA_SUCCESS;
}   /* magma_dbpcg */
Example #8
0
magma_int_t
magma_dcg_merge( magma_d_sparse_matrix A, magma_d_vector b, magma_d_vector *x,  
           magma_d_solver_par *solver_par ){

    // prepare solver feedback
    solver_par->solver = Magma_CGMERGE;
    solver_par->numiter = 0;
    solver_par->info = 0; 

    // some useful variables
    double c_zero = MAGMA_D_ZERO, c_one = MAGMA_D_ONE;
    magma_int_t dofs = A.num_rows;

    // GPU stream
    magma_queue_t stream[2];
    magma_event_t event[1];
    magma_queue_create( &stream[0] );
    magma_queue_create( &stream[1] );
    magma_event_create( &event[0] );

    // GPU workspace
    magma_d_vector r, d, z;
    magma_d_vinit( &r, Magma_DEV, dofs, c_zero );
    magma_d_vinit( &d, Magma_DEV, dofs, c_zero );
    magma_d_vinit( &z, Magma_DEV, dofs, c_zero );
    
    double *d1, *d2, *skp;
    magma_dmalloc( &d1, dofs*(1) );
    magma_dmalloc( &d2, dofs*(1) );
    // array for the parameters
    magma_dmalloc( &skp, 6 );       // skp = [alpha|beta|gamma|rho|tmp1|tmp2]


    // solver variables
    double alpha, beta, gamma, rho, tmp1, *skp_h;
    double nom, nom0, r0, betanom, den;

    // solver setup
    magma_dscal( dofs, c_zero, x->val, 1) ;                     // x = 0
    magma_dcopy( dofs, b.val, 1, r.val, 1 );                    // r = b
    magma_dcopy( dofs, b.val, 1, d.val, 1 );                    // d = b
    nom0 = betanom = magma_dnrm2( dofs, r.val, 1 );               
    nom = nom0 * nom0;                                           // nom = r' * r
    magma_d_spmv( c_one, A, d, c_zero, z );                      // z = A d
    den = MAGMA_D_REAL( magma_ddot(dofs, d.val, 1, z.val, 1) ); // den = d'* z
    solver_par->init_res = nom0;
    
    // array on host for the parameters
    magma_dmalloc_cpu( &skp_h, 6 );

    alpha = rho = gamma = tmp1 = c_one; 
    beta =  magma_ddot(dofs, r.val, 1, r.val, 1);
    skp_h[0]=alpha; 
    skp_h[1]=beta; 
    skp_h[2]=gamma; 
    skp_h[3]=rho; 
    skp_h[4]=tmp1; 
    skp_h[5]=MAGMA_D_MAKE(nom, 0.0);

    magma_dsetvector( 6, skp_h, 1, skp, 1 );
    
    if ( (r0 = nom * solver_par->epsilon) < ATOLERANCE ) 
        r0 = ATOLERANCE;
    if ( nom < r0 )
        return MAGMA_SUCCESS;
    // check positive definite
    if (den <= 0.0) {
        printf("Operator A is not postive definite. (Ar,r) = %f\n", den);
        return -100;
    }
    
    //Chronometry
    real_Double_t tempo1, tempo2;
    magma_device_sync(); tempo1=magma_wtime();
    if( solver_par->verbose > 0 ){
        solver_par->res_vec[0] = (real_Double_t) nom0;
        solver_par->timing[0] = 0.0;
    }
    
    // start iteration
    for( solver_par->numiter= 1; solver_par->numiter<solver_par->maxiter; 
                                                    solver_par->numiter++ ){

        magmablasSetKernelStream(stream[0]);
        
        // computes SpMV and dot product
        magma_dcgmerge_spmv1(  A, d1, d2, d.val, z.val, skp ); 
            
        // updates x, r, computes scalars and updates d
        magma_dcgmerge_xrbeta( dofs, d1, d2, x->val, r.val, d.val, z.val, skp ); 

        // check stopping criterion (asynchronous copy)
        magma_dgetvector_async( 1 , skp+1, 1, 
                                                    skp_h+1, 1, stream[1] );
        betanom = sqrt(MAGMA_D_REAL(skp_h[1]));

        if( solver_par->verbose > 0 ){
            magma_device_sync(); tempo2=magma_wtime();
            if( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) tempo2-tempo1;
            }
        }

        if (  betanom  < r0 ) {
            break;
        }

    } 
    magma_device_sync(); tempo2=magma_wtime();
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    double residual;
    magma_dresidual( A, b, *x, &residual );
    solver_par->iter_res = betanom;
    solver_par->final_res = residual;

    if( solver_par->numiter < solver_par->maxiter){
        solver_par->info = 0;
    }else if( solver_par->init_res > solver_par->final_res ){
        if( solver_par->verbose > 0 ){
            if( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        solver_par->info = -2;
    }
    else{
        if( solver_par->verbose > 0 ){
            if( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        solver_par->info = -1;
    }
    magma_d_vfree(&r);
    magma_d_vfree(&z);
    magma_d_vfree(&d);

    magma_free( d1 );
    magma_free( d2 );
    magma_free( skp );
    magma_free_cpu( skp_h );

    return MAGMA_SUCCESS;
}   /* magma_dcg_merge */
Example #9
0
extern "C" magma_int_t
magma_diterref(
    magma_d_sparse_matrix A, magma_d_vector b, magma_d_vector *x,  
    magma_d_solver_par *solver_par, magma_d_preconditioner *precond_par,
    magma_queue_t queue )
{
    // set queue for old dense routines
    magma_queue_t orig_queue;
    magmablasGetKernelStream( &orig_queue );

    // prepare solver feedback
    solver_par->solver = Magma_ITERREF;
    solver_par->numiter = 0;
    solver_par->info = MAGMA_SUCCESS;

    double residual;
    magma_dresidual( A, b, *x, &residual, queue );
    solver_par->init_res = residual;

    // some useful variables
    double c_zero = MAGMA_D_ZERO, c_one = MAGMA_D_ONE, 
                                                c_mone = MAGMA_D_NEG_ONE;
    
    magma_int_t dofs = A.num_rows;

    // workspace
    magma_d_vector r,z;
    magma_d_vinit( &r, Magma_DEV, dofs, c_zero, queue );
    magma_d_vinit( &z, Magma_DEV, dofs, c_zero, queue );

    // solver variables
    double nom, nom0, r0;

    // solver setup
    magma_dscal( dofs, c_zero, x->dval, 1) ;                    // x = 0

    magma_dcopy( dofs, b.dval, 1, r.dval, 1 );                    // r = b
    nom0 = magma_dnrm2(dofs, r.dval, 1);                       // nom0 = || r ||
    nom = nom0 * nom0;
    solver_par->init_res = nom0;

    if ( (r0 = nom * solver_par->epsilon) < ATOLERANCE ) 
        r0 = ATOLERANCE;
    if ( nom < r0 ) {
        magmablasSetKernelStream( orig_queue );
        return MAGMA_SUCCESS;
    }
    
    //Chronometry
    real_Double_t tempo1, tempo2;
    tempo1 = magma_sync_wtime( queue );
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = nom0;
        solver_par->timing[0] = 0.0;
    }
    
    // start iteration
    for( solver_par->numiter= 1; solver_par->numiter<solver_par->maxiter; 
                                                    solver_par->numiter++ ) {

        magma_dscal( dofs, MAGMA_D_MAKE(1./nom, 0.), r.dval, 1) ;  // scale it
        magma_d_precond( A, r, &z, precond_par, queue );  // inner solver:  A * z = r
        magma_dscal( dofs, MAGMA_D_MAKE(nom, 0.), z.dval, 1) ;  // scale it
        magma_daxpy(dofs,  c_one, z.dval, 1, x->dval, 1);        // x = x + z
        magma_d_spmv( c_mone, A, *x, c_zero, r, queue );              // r = - A x
        magma_daxpy(dofs,  c_one, b.dval, 1, r.dval, 1);         // r = r + b
        nom = magma_dnrm2(dofs, r.dval, 1);                    // nom = || r || 

        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) nom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) tempo2-tempo1;
            }
        }

        if (  nom  < r0 ) {
            break;
        }
    } 
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    magma_dresidual( A, b, *x, &residual, queue );
    solver_par->final_res = residual;
    solver_par->iter_res = nom;

    if ( solver_par->numiter < solver_par->maxiter) {
        solver_par->info = MAGMA_SUCCESS;
    } else if ( solver_par->init_res > solver_par->final_res ) {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) nom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        solver_par->info = MAGMA_SLOW_CONVERGENCE;
    }
    else {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) nom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        solver_par->info = MAGMA_DIVERGENCE;
    }   
    magma_d_vfree(&r, queue );
    magma_d_vfree(&z, queue );


    magmablasSetKernelStream( orig_queue );
    return MAGMA_SUCCESS;
}   /* magma_diterref */
Example #10
0
extern "C" magma_int_t
magma_dlsqr(
    magma_d_matrix A, magma_d_matrix b, magma_d_matrix *x,
    magma_d_solver_par *solver_par,
    magma_d_preconditioner *precond_par,
    magma_queue_t queue )
{
    magma_int_t info = MAGMA_NOTCONVERGED;
    
    // prepare solver feedback
    solver_par->solver = Magma_LSQR;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    
    magma_int_t m = A.num_rows * b.num_cols;
    magma_int_t n = A.num_cols * b.num_cols;
    
    // local variables
    double c_zero = MAGMA_D_ZERO, c_one = MAGMA_D_ONE;
    // solver variables
    double s, nom0, r0, res=0, nomb, phibar, beta, alpha, c, rho, rhot, phi, thet, normr, normar, norma, sumnormd2, normd;

    // need to transpose the matrix
    magma_d_matrix AT={Magma_CSR}, Ah1={Magma_CSR}, Ah2={Magma_CSR};
    
    // GPU workspace
    magma_d_matrix r={Magma_CSR},
                    v={Magma_CSR}, z={Magma_CSR}, zt={Magma_CSR},
                    d={Magma_CSR}, vt={Magma_CSR}, q={Magma_CSR}, 
                    w={Magma_CSR}, u={Magma_CSR};
    CHECK( magma_dvinit( &r, Magma_DEV, A.num_cols, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &v, Magma_DEV, A.num_cols, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &z, Magma_DEV, A.num_cols, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &d, Magma_DEV, A.num_cols, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &vt,Magma_DEV, A.num_cols, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &q, Magma_DEV, A.num_cols, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &w, Magma_DEV, A.num_cols, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &u, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &zt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));

    
    // transpose the matrix
    magma_dmtransfer( A, &Ah1, Magma_DEV, Magma_CPU, queue );
    magma_dmconvert( Ah1, &Ah2, A.storage_type, Magma_CSR, queue );
    magma_dmfree(&Ah1, queue );
    magma_dmtransposeconjugate( Ah2, &Ah1, queue );
    magma_dmfree(&Ah2, queue );
    Ah2.blocksize = A.blocksize;
    Ah2.alignment = A.alignment;
    magma_dmconvert( Ah1, &Ah2, Magma_CSR, A.storage_type, queue );
    magma_dmfree(&Ah1, queue );
    magma_dmtransfer( Ah2, &AT, Magma_CPU, Magma_DEV, queue );
    magma_dmfree(&Ah2, queue );
    

    
    // solver setup
    CHECK(  magma_dresidualvec( A, b, *x, &r, &nom0, queue));
    solver_par->init_res = nom0;
    nomb = magma_dnrm2( m, b.dval, 1, queue );
    if ( nomb == 0.0 ){
        nomb=1.0;
    }       
    if ( (r0 = nomb * solver_par->rtol) < ATOLERANCE ){
        r0 = ATOLERANCE;
    }
    solver_par->final_res = solver_par->init_res;
    solver_par->iter_res = solver_par->init_res;
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = (real_Double_t)nom0;
        solver_par->timing[0] = 0.0;
    }
    if ( nom0 < r0 ) {
        info = MAGMA_SUCCESS;
        goto cleanup;
    }
    magma_dcopy( m, b.dval, 1, u.dval, 1, queue );  
    beta = magma_dnrm2( m, u.dval, 1, queue );
    magma_dscal( m, MAGMA_D_MAKE(1./beta, 0.0 ), u.dval, 1, queue );
    normr = beta;
    c = 1.0;
    s = 0.0;
    phibar = beta;
    CHECK( magma_d_spmv( c_one, AT, u, c_zero, v, queue ));
    
    if( precond_par->solver == Magma_NONE ){
        ;
    } else {
      CHECK( magma_d_applyprecond_right( MagmaTrans, A, v, &zt, precond_par, queue ));
      CHECK( magma_d_applyprecond_left( MagmaTrans, A, zt, &v, precond_par, queue ));
    }
    alpha = magma_dnrm2( n, v.dval, 1, queue );
    magma_dscal( n, MAGMA_D_MAKE(1./alpha, 0.0 ), v.dval, 1, queue );
    normar = alpha * beta;
    norma = 0;
    sumnormd2 = 0;
        
    //Chronometry
    real_Double_t tempo1, tempo2;
    tempo1 = magma_sync_wtime( queue );
    solver_par->numiter = 0;
    // start iteration
    do
    {
        solver_par->numiter++;
        if( precond_par->solver == Magma_NONE || A.num_rows != A.num_cols ) {
            magma_dcopy( n, v.dval, 1 , z.dval, 1, queue );    
        } else {
            CHECK( magma_d_applyprecond_left( MagmaNoTrans, A, v, &zt, precond_par, queue ));
            CHECK( magma_d_applyprecond_right( MagmaNoTrans, A, zt, &z, precond_par, queue ));
        }
        //CHECK( magma_d_spmv( c_one, A, z, MAGMA_D_MAKE(-alpha,0.0), u, queue ));
        CHECK( magma_d_spmv( c_one, A, z, c_zero, zt, queue ));
        magma_dscal( m, MAGMA_D_MAKE(-alpha, 0.0 ), u.dval, 1, queue ); 
        magma_daxpy( m, c_one, zt.dval, 1, u.dval, 1, queue );
        
        solver_par->spmv_count++;
        beta = magma_dnrm2( m, u.dval, 1, queue );
        magma_dscal( m, MAGMA_D_MAKE(1./beta, 0.0 ), u.dval, 1, queue ); 
        // norma = norm([norma alpha beta]);
        norma = sqrt(norma*norma + alpha*alpha + beta*beta );
        
        //lsvec( solver_par->numiter-1 ) = normar / norma;
        
        thet = -s * alpha;
        rhot = c * alpha;
        rho = sqrt( rhot * rhot + beta * beta );
        c = rhot / rho;
        s = - beta / rho;
        phi = c * phibar;
        phibar = s * phibar;
        
        // d = (z - thet * d) / rho;
        magma_dscal( n, MAGMA_D_MAKE(-thet, 0.0 ), d.dval, 1, queue ); 
        magma_daxpy( n, c_one, z.dval, 1, d.dval, 1, queue );
        magma_dscal( n, MAGMA_D_MAKE(1./rho, 0.0 ), d.dval, 1, queue );
        normd = magma_dnrm2( n, d.dval, 1, queue );
        sumnormd2 = sumnormd2 + normd*normd;
        
        // convergence check
        res = normr;        
        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter)%solver_par->verbose == c_zero ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        // check for convergence in A*x=b
        if ( res/nomb <= solver_par->rtol || res <= solver_par->atol ){
            info = MAGMA_SUCCESS;
            break;
        }
        // check for convergence in min{|b-A*x|}
        if ( A.num_rows != A.num_cols &&
               ( normar/(norma*normr) <= solver_par->rtol || normar <= solver_par->atol ) ){
            printf("%% warning: quit from minimization convergence check.\n");
            info = MAGMA_SUCCESS;
            break;
        }
        
        magma_daxpy( n, MAGMA_D_MAKE( phi, 0.0 ), d.dval, 1, x->dval, 1, queue );
        normr = fabs(s) * normr;
        CHECK( magma_d_spmv( c_one, AT, u, c_zero, vt, queue ));
        solver_par->spmv_count++;
        if( precond_par->solver == Magma_NONE ){
            ;    
        } else {
            CHECK( magma_d_applyprecond_right( MagmaTrans, A, vt, &zt, precond_par, queue ));
            CHECK( magma_d_applyprecond_left( MagmaTrans, A, zt, &vt, precond_par, queue ));
        }

        magma_dscal( n, MAGMA_D_MAKE(-beta, 0.0 ), v.dval, 1, queue ); 
        magma_daxpy( n, c_one, vt.dval, 1, v.dval, 1, queue );
        alpha = magma_dnrm2( n, v.dval, 1, queue );
        magma_dscal( n, MAGMA_D_MAKE(1./alpha, 0.0 ), v.dval, 1, queue ); 
        normar = alpha * fabs(s*phi);
         
    }
    while ( solver_par->numiter+1 <= solver_par->maxiter );
    
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    double residual;
    CHECK(  magma_dresidualvec( A, b, *x, &r, &residual, queue));
    solver_par->iter_res = res;
    solver_par->final_res = residual;

    if ( solver_par->numiter < solver_par->maxiter && info == MAGMA_SUCCESS ) {
        info = MAGMA_SUCCESS;
    } else if ( solver_par->init_res > solver_par->final_res ) {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose == c_zero ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_SLOW_CONVERGENCE;
        if( solver_par->iter_res < solver_par->rtol*solver_par->init_res ||
            solver_par->iter_res < solver_par->atol ) {
            info = MAGMA_SUCCESS;
        }
    }
    else {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose == c_zero ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_DIVERGENCE;
    }
    
cleanup:
    magma_dmfree(&r, queue );
    magma_dmfree(&v,  queue );
    magma_dmfree(&z,  queue );
    magma_dmfree(&zt, queue );
    magma_dmfree(&d,  queue );
    magma_dmfree(&vt,  queue );
    magma_dmfree(&q,  queue );
    magma_dmfree(&u,  queue );
    magma_dmfree(&w,  queue );
    magma_dmfree(&AT, queue );
    magma_dmfree(&Ah1, queue );
    magma_dmfree(&Ah2, queue );

    
    solver_par->info = info;
    return info;
}   /* magma_dqmr */
Example #11
0
extern "C" magma_int_t
magma_didr(
    magma_d_matrix A, magma_d_matrix b, magma_d_matrix *x,
    magma_d_solver_par *solver_par,
    magma_queue_t queue )
{
    magma_int_t info = MAGMA_NOTCONVERGED;

    // prepare solver feedback
    solver_par->solver = Magma_IDR;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    solver_par->init_res = 0.0;
    solver_par->final_res = 0.0;
    solver_par->iter_res = 0.0;
    solver_par->runtime = 0.0;

    // constants
    const double c_zero = MAGMA_D_ZERO;
    const double c_one = MAGMA_D_ONE;
    const double c_n_one = MAGMA_D_NEG_ONE;

    // internal user parameters
    const magma_int_t smoothing = 1;   // 0 = disable, 1 = enable
    const double angle = 0.7;          // [0-1]

    // local variables
    magma_int_t iseed[4] = {0, 0, 0, 1};
    magma_int_t dof;
    magma_int_t s;
    magma_int_t distr;
    magma_int_t k, i, sk;
    magma_int_t innerflag;
    double residual;
    double nrm;
    double nrmb;
    double nrmr;
    double nrmt;
    double rho;
    double om;
    double tt;
    double tr;
    double gamma;
    double alpha;
    double mkk;
    double fk;

    // matrices and vectors
    magma_d_matrix dxs = {Magma_CSR};
    magma_d_matrix dr = {Magma_CSR}, drs = {Magma_CSR};
    magma_d_matrix dP = {Magma_CSR}, dP1 = {Magma_CSR};
    magma_d_matrix dG = {Magma_CSR};
    magma_d_matrix dU = {Magma_CSR};
    magma_d_matrix dM = {Magma_CSR};
    magma_d_matrix df = {Magma_CSR};
    magma_d_matrix dt = {Magma_CSR};
    magma_d_matrix dc = {Magma_CSR};
    magma_d_matrix dv = {Magma_CSR};
    magma_d_matrix dbeta = {Magma_CSR}, hbeta = {Magma_CSR};

    // chronometry
    real_Double_t tempo1, tempo2;

    // initial s space
    // TODO: add option for 's' (shadow space number)
    // Hack: uses '--restart' option as the shadow space number.
    //       This is not a good idea because the default value of restart option is used to detect
    //       if the user provided a custom restart. This means that if the default restart value
    //       is changed then the code will think it was the user (unless the default value is
    //       also updated in the 'if' statement below.
    s = 1;
    if ( solver_par->restart != 50 ) {
        if ( solver_par->restart > A.num_cols ) {
            s = A.num_cols;
        } else {
            s = solver_par->restart;
        }
    }
    solver_par->restart = s;

    // set max iterations
    solver_par->maxiter = min( 2 * A.num_cols, solver_par->maxiter );

    // check if matrix A is square
    if ( A.num_rows != A.num_cols ) {
        //printf("Matrix A is not square.\n");
        info = MAGMA_ERR_NOT_SUPPORTED;
        goto cleanup;
    }

    // |b|
    nrmb = magma_dnrm2( b.num_rows, b.dval, 1, queue );
    if ( nrmb == 0.0 ) {
        magma_dscal( x->num_rows, MAGMA_D_ZERO, x->dval, 1, queue );
        info = MAGMA_SUCCESS;
        goto cleanup;
    }

    // r = b - A x
    CHECK( magma_dvinit( &dr, Magma_DEV, b.num_rows, 1, c_zero, queue ));
    CHECK( magma_dresidualvec( A, b, *x, &dr, &nrmr, queue ));
    
    // |r|
    solver_par->init_res = nrmr;
    solver_par->final_res = solver_par->init_res;
    solver_par->iter_res = solver_par->init_res;
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = (real_Double_t)nrmr;
    }

    // check if initial is guess good enough
    if ( nrmr <= solver_par->atol ||
        nrmr/nrmb <= solver_par->rtol ) {
        info = MAGMA_SUCCESS;
        goto cleanup;
    }

    // P = randn(n, s)
    // P = ortho(P)
//---------------------------------------
    // P = 0.0
    CHECK( magma_dvinit( &dP, Magma_CPU, A.num_cols, s, c_zero, queue ));

    // P = randn(n, s)
    distr = 3;        // 1 = unif (0,1), 2 = unif (-1,1), 3 = normal (0,1) 
    dof = dP.num_rows * dP.num_cols;
    lapackf77_dlarnv( &distr, iseed, &dof, dP.val );

    // transfer P to device
    CHECK( magma_dmtransfer( dP, &dP1, Magma_CPU, Magma_DEV, queue ));
    magma_dmfree( &dP, queue );

    // P = ortho(P1)
    if ( dP1.num_cols > 1 ) {
        // P = magma_dqr(P1), QR factorization
        CHECK( magma_dqr( dP1.num_rows, dP1.num_cols, dP1, dP1.ld, &dP, NULL, queue ));
    } else {
        // P = P1 / |P1|
        nrm = magma_dnrm2( dof, dP1.dval, 1, queue );
        nrm = 1.0 / nrm;
        magma_dscal( dof, nrm, dP1.dval, 1, queue );
        CHECK( magma_dmtransfer( dP1, &dP, Magma_DEV, Magma_DEV, queue ));
    }
    magma_dmfree( &dP1, queue );
//---------------------------------------

    // allocate memory for the scalar products
    CHECK( magma_dvinit( &hbeta, Magma_CPU, s, 1, c_zero, queue ));
    CHECK( magma_dvinit( &dbeta, Magma_DEV, s, 1, c_zero, queue ));

    // smoothing enabled
    if ( smoothing > 0 ) {
        // set smoothing solution vector
        CHECK( magma_dmtransfer( *x, &dxs, Magma_DEV, Magma_DEV, queue ));

        // set smoothing residual vector
        CHECK( magma_dmtransfer( dr, &drs, Magma_DEV, Magma_DEV, queue ));
    }

    // G(n,s) = 0
    CHECK( magma_dvinit( &dG, Magma_DEV, A.num_cols, s, c_zero, queue ));

    // U(n,s) = 0
    CHECK( magma_dvinit( &dU, Magma_DEV, A.num_cols, s, c_zero, queue ));

    // M(s,s) = I
    CHECK( magma_dvinit( &dM, Magma_DEV, s, s, c_zero, queue ));
    magmablas_dlaset( MagmaFull, s, s, c_zero, c_one, dM.dval, s, queue );

    // f = 0
    CHECK( magma_dvinit( &df, Magma_DEV, dP.num_cols, 1, c_zero, queue ));

    // t = 0
    CHECK( magma_dvinit( &dt, Magma_DEV, dr.num_rows, 1, c_zero, queue ));

    // c = 0
    CHECK( magma_dvinit( &dc, Magma_DEV, dM.num_cols, 1, c_zero, queue ));

    // v = 0
    CHECK( magma_dvinit( &dv, Magma_DEV, dr.num_rows, 1, c_zero, queue ));

    //--------------START TIME---------------
    // chronometry
    tempo1 = magma_sync_wtime( queue );
    if ( solver_par->verbose > 0 ) {
        solver_par->timing[0] = 0.0;
    }

    om = MAGMA_D_ONE;
    innerflag = 0;

    // start iteration
    do
    {
        solver_par->numiter++;
    
        // new RHS for small systems
        // f = P' r
        magmablas_dgemv( MagmaConjTrans, dP.num_rows, dP.num_cols, c_one, dP.dval, dP.ld, dr.dval, 1, c_zero, df.dval, 1, queue );

        // shadow space loop
        for ( k = 0; k < s; ++k ) {
            sk = s - k;
    
            // f(k:s) = M(k:s,k:s) c(k:s)
            magma_dcopyvector( sk, &df.dval[k], 1, &dc.dval[k], 1, queue );
            magma_dtrsv( MagmaLower, MagmaNoTrans, MagmaNonUnit, sk, &dM.dval[k*dM.ld+k], dM.ld, &dc.dval[k], 1, queue );

            // v = r - G(:,k:s) c(k:s)
            magma_dcopyvector( dr.num_rows, dr.dval, 1, dv.dval, 1, queue );
            magmablas_dgemv( MagmaNoTrans, dG.num_rows, sk, c_n_one, &dG.dval[k*dG.ld], dG.ld, &dc.dval[k], 1, c_one, dv.dval, 1, queue );

            // U(:,k) = om * v + U(:,k:s) c(k:s)
            magmablas_dgemv( MagmaNoTrans, dU.num_rows, sk, c_one, &dU.dval[k*dU.ld], dU.ld, &dc.dval[k], 1, om, dv.dval, 1, queue );
            magma_dcopyvector( dU.num_rows, dv.dval, 1, &dU.dval[k*dU.ld], 1, queue );

            // G(:,k) = A U(:,k)
            CHECK( magma_d_spmv( c_one, A, dv, c_zero, dv, queue ));
            solver_par->spmv_count++;
            magma_dcopyvector( dG.num_rows, dv.dval, 1, &dG.dval[k*dG.ld], 1, queue );

            // bi-orthogonalize the new basis vectors
            for ( i = 0; i < k; ++i ) {
                // alpha = P(:,i)' G(:,k)
                alpha = magma_ddot( dP.num_rows, &dP.dval[i*dP.ld], 1, &dG.dval[k*dG.ld], 1, queue );

                // alpha = alpha / M(i,i)
                magma_dgetvector( 1, &dM.dval[i*dM.ld+i], 1, &mkk, 1, queue );
                alpha = alpha / mkk;

                // G(:,k) = G(:,k) - alpha * G(:,i)
                magma_daxpy( dG.num_rows, -alpha, &dG.dval[i*dG.ld], 1, &dG.dval[k*dG.ld], 1, queue );

                // U(:,k) = U(:,k) - alpha * U(:,i)
                magma_daxpy( dU.num_rows, -alpha, &dU.dval[i*dU.ld], 1, &dU.dval[k*dU.ld], 1, queue );
            }

            // new column of M = P'G, first k-1 entries are zero
            // M(k:s,k) = P(:,k:s)' G(:,k)
            magmablas_dgemv( MagmaConjTrans, dP.num_rows, sk, c_one, &dP.dval[k*dP.ld], dP.ld, &dG.dval[k*dG.ld], 1, c_zero, &dM.dval[k*dM.ld+k], 1, queue );

            // check M(k,k) == 0
            magma_dgetvector( 1, &dM.dval[k*dM.ld+k], 1, &mkk, 1, queue );
            if ( MAGMA_D_EQUAL(mkk, MAGMA_D_ZERO) ) {
                innerflag = 1;
                info = MAGMA_DIVERGENCE;
                break;
            }

            // beta = f(k) / M(k,k)
            magma_dgetvector( 1, &df.dval[k], 1, &fk, 1, queue );
            hbeta.val[k] = fk / mkk;

            // check for nan
            if ( magma_d_isnan( hbeta.val[k] ) || magma_d_isinf( hbeta.val[k] )) {
                innerflag = 1;
                info = MAGMA_DIVERGENCE;
                break;
            }

            // r = r - beta * G(:,k)
            magma_daxpy( dr.num_rows, -hbeta.val[k], &dG.dval[k*dG.ld], 1, dr.dval, 1, queue );

            // smoothing disabled
            if ( smoothing <= 0 ) {
                // |r|
                nrmr = magma_dnrm2( dr.num_rows, dr.dval, 1, queue );

            // smoothing enabled
            } else {
                // x = x + beta * U(:,k)
                magma_daxpy( x->num_rows, hbeta.val[k], &dU.dval[k*dU.ld], 1, x->dval, 1, queue );

                // smoothing operation
//---------------------------------------
                // t = rs - r
                magma_dcopyvector( drs.num_rows, drs.dval, 1, dt.dval, 1, queue );
                magma_daxpy( dt.num_rows, c_n_one, dr.dval, 1, dt.dval, 1, queue );

                // t't
                // t'rs 
                tt = magma_ddot( dt.num_rows, dt.dval, 1, dt.dval, 1, queue );
                tr = magma_ddot( dt.num_rows, dt.dval, 1, drs.dval, 1, queue );

                // gamma = (t' * rs) / (t' * t)
                gamma = tr / tt;

                // rs = rs - gamma * (rs - r) 
                magma_daxpy( drs.num_rows, -gamma, dt.dval, 1, drs.dval, 1, queue );

                // xs = xs - gamma * (xs - x) 
                magma_dcopyvector( dxs.num_rows, dxs.dval, 1, dt.dval, 1, queue );
                magma_daxpy( dt.num_rows, c_n_one, x->dval, 1, dt.dval, 1, queue );
                magma_daxpy( dxs.num_rows, -gamma, dt.dval, 1, dxs.dval, 1, queue );

                // |rs|
                nrmr = magma_dnrm2( drs.num_rows, drs.dval, 1, queue );           
//---------------------------------------
            }

            // store current timing and residual
            if ( solver_par->verbose > 0 ) {
                tempo2 = magma_sync_wtime( queue );
                if ( (solver_par->numiter) % solver_par->verbose == 0 ) {
                    solver_par->res_vec[(solver_par->numiter) / solver_par->verbose]
                            = (real_Double_t)nrmr;
                    solver_par->timing[(solver_par->numiter) / solver_par->verbose]
                            = (real_Double_t)tempo2 - tempo1;
                }
            }

            // check convergence
            if ( nrmr <= solver_par->atol ||
                nrmr/nrmb <= solver_par->rtol ) {
                s = k + 1; // for the x-update outside the loop
                innerflag = 2;
                info = MAGMA_SUCCESS;
                break;
            }

            // non-last s iteration
            if ( (k + 1) < s ) {
                // f(k+1:s) = f(k+1:s) - beta * M(k+1:s,k)
                magma_daxpy( sk-1, -hbeta.val[k], &dM.dval[k*dM.ld+(k+1)], 1, &df.dval[k+1], 1, queue );
            }

        }

        // smoothing disabled
        if ( smoothing <= 0 && innerflag != 1 ) {
            // update solution approximation x
            // x = x + U(:,1:s) * beta(1:s)
            magma_dsetvector( s, hbeta.val, 1, dbeta.dval, 1, queue );
            magmablas_dgemv( MagmaNoTrans, dU.num_rows, s, c_one, dU.dval, dU.ld, dbeta.dval, 1, c_one, x->dval, 1, queue );
        }

        // check convergence or iteration limit or invalid result of inner loop
        if ( innerflag > 0 ) {
            break;
        }

        // t = A v
        // t = A r
        CHECK( magma_d_spmv( c_one, A, dr, c_zero, dt, queue ));
        solver_par->spmv_count++;

        // computation of a new omega
//---------------------------------------
        // |t|
        nrmt = magma_dnrm2( dt.num_rows, dt.dval, 1, queue );

        // t'r 
        tr = magma_ddot( dt.num_rows, dt.dval, 1, dr.dval, 1, queue );

        // rho = abs(t' * r) / (|t| * |r|))
        rho = MAGMA_D_ABS( MAGMA_D_REAL(tr) / (nrmt * nrmr) );

        // om = (t' * r) / (|t| * |t|)
        om = tr / (nrmt * nrmt);
        if ( rho < angle ) {
            om = (om * angle) / rho;
        }
//---------------------------------------
        if ( MAGMA_D_EQUAL(om, MAGMA_D_ZERO) ) {
            info = MAGMA_DIVERGENCE;
            break;
        }

        // update approximation vector
        // x = x + om * v
        // x = x + om * r
        magma_daxpy( x->num_rows, om, dr.dval, 1, x->dval, 1, queue );

        // update residual vector
        // r = r - om * t
        magma_daxpy( dr.num_rows, -om, dt.dval, 1, dr.dval, 1, queue );

        // smoothing disabled
        if ( smoothing <= 0 ) {
            // residual norm
            nrmr = magma_dnrm2( b.num_rows, dr.dval, 1, queue );

        // smoothing enabled
        } else {
            // smoothing operation
//---------------------------------------
            // t = rs - r
            magma_dcopyvector( drs.num_rows, drs.dval, 1, dt.dval, 1, queue );
            magma_daxpy( dt.num_rows, c_n_one, dr.dval, 1, dt.dval, 1, queue );

            // t't
            // t'rs
            tt = magma_ddot( dt.num_rows, dt.dval, 1, dt.dval, 1, queue );
            tr = magma_ddot( dt.num_rows, dt.dval, 1, drs.dval, 1, queue );

            // gamma = (t' * rs) / (|t| * |t|)
            gamma = tr / tt;

            // rs = rs - gamma * (rs - r) 
            magma_daxpy( drs.num_rows, -gamma, dt.dval, 1, drs.dval, 1, queue );

            // xs = xs - gamma * (xs - x) 
            magma_dcopyvector( dxs.num_rows, dxs.dval, 1, dt.dval, 1, queue );
            magma_daxpy( dt.num_rows, c_n_one, x->dval, 1, dt.dval, 1, queue );
            magma_daxpy( dxs.num_rows, -gamma, dt.dval, 1, dxs.dval, 1, queue );

            // |rs|
            nrmr = magma_dnrm2( b.num_rows, drs.dval, 1, queue );           
//---------------------------------------
        }

        // store current timing and residual
        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter) % solver_par->verbose == 0 ) {
                solver_par->res_vec[(solver_par->numiter) / solver_par->verbose]
                        = (real_Double_t)nrmr;
                solver_par->timing[(solver_par->numiter) / solver_par->verbose]
                        = (real_Double_t)tempo2 - tempo1;
            }
        }

        // check convergence
        if ( nrmr <= solver_par->atol ||
            nrmr/nrmb <= solver_par->rtol ) { 
            info = MAGMA_SUCCESS;
            break;
        }
    }
    while ( solver_par->numiter + 1 <= solver_par->maxiter );

    // smoothing enabled
    if ( smoothing > 0 ) {
        // x = xs
        magma_dcopyvector( x->num_rows, dxs.dval, 1, x->dval, 1, queue );

        // r = rs
        magma_dcopyvector( dr.num_rows, drs.dval, 1, dr.dval, 1, queue );
    }

    // get last iteration timing
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t)tempo2 - tempo1;
//--------------STOP TIME----------------

    // get final stats
    solver_par->iter_res = nrmr;
    CHECK( magma_dresidualvec( A, b, *x, &dr, &residual, queue ));
    solver_par->final_res = residual;

    // set solver conclusion
    if ( info != MAGMA_SUCCESS && info != MAGMA_DIVERGENCE ) {
        if ( solver_par->init_res > solver_par->final_res ) {
            info = MAGMA_SLOW_CONVERGENCE;
        }
    }


cleanup:
    // free resources
    // smoothing enabled
    if ( smoothing > 0 ) {
        magma_dmfree( &dxs, queue );
        magma_dmfree( &drs, queue );
    }
    magma_dmfree( &dr, queue );
    magma_dmfree( &dP, queue );
    magma_dmfree( &dP1, queue );
    magma_dmfree( &dG, queue );
    magma_dmfree( &dU, queue );
    magma_dmfree( &dM, queue );
    magma_dmfree( &df, queue );
    magma_dmfree( &dt, queue );
    magma_dmfree( &dc, queue );
    magma_dmfree( &dv, queue );
    magma_dmfree( &dbeta, queue );
    magma_dmfree( &hbeta, queue );

    solver_par->info = info;
    return info;
    /* magma_didr */
}
Example #12
0
extern "C" magma_int_t
magma_dfgmres(
    magma_d_matrix A, magma_d_matrix b, magma_d_matrix *x,
    magma_d_solver_par *solver_par,
    magma_d_preconditioner *precond_par,
    magma_queue_t queue )
{
    magma_int_t info = MAGMA_NOTCONVERGED;
    
    magma_int_t dofs = A.num_rows;

    // prepare solver feedback
    solver_par->solver = Magma_PGMRES;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    
    //Chronometry
    real_Double_t tempo1, tempo2;

    magma_int_t dim = solver_par->restart;
    magma_int_t m1 = dim+1; // used inside H macro
    magma_int_t i, j, k;
    double beta;
    
    double rel_resid, resid0=1, r0=0.0, betanom = 0.0, nom;
    
    magma_d_matrix v_t={Magma_CSR}, w_t={Magma_CSR}, t={Magma_CSR}, t2={Magma_CSR}, V={Magma_CSR}, W={Magma_CSR};
    v_t.memory_location = Magma_DEV;
    v_t.num_rows = dofs;
    v_t.num_cols = 1;
    v_t.dval = NULL;
    v_t.storage_type = Magma_DENSE;

    w_t.memory_location = Magma_DEV;
    w_t.num_rows = dofs;
    w_t.num_cols = 1;
    w_t.dval = NULL;
    w_t.storage_type = Magma_DENSE;
    
    double temp;
    
    double *H={0}, *s={0}, *cs={0}, *sn={0};

    CHECK( magma_dvinit( &t, Magma_DEV, dofs, 1, MAGMA_D_ZERO, queue ));
    CHECK( magma_dvinit( &t2, Magma_DEV, dofs, 1, MAGMA_D_ZERO, queue ));
    
    CHECK( magma_dmalloc_pinned( &H, (dim+1)*dim ));
    CHECK( magma_dmalloc_pinned( &s,  dim+1 ));
    CHECK( magma_dmalloc_pinned( &cs, dim ));
    CHECK( magma_dmalloc_pinned( &sn, dim ));
    
    
    CHECK( magma_dvinit( &V, Magma_DEV, dofs*(dim+1), 1, MAGMA_D_ZERO, queue ));
    CHECK( magma_dvinit( &W, Magma_DEV, dofs*dim, 1, MAGMA_D_ZERO, queue ));
    
    CHECK(  magma_dresidual( A, b, *x, &nom, queue));

    solver_par->init_res = nom;
    
    if ( ( nom * solver_par->rtol) < ATOLERANCE )
        r0 = ATOLERANCE;
    
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    

    tempo1 = magma_sync_wtime( queue );
    do
    {
        solver_par->numiter++;
        // compute initial residual and its norm
        // A.mult(n, 1, x, n, V(0), n);                        // V(0) = A*x
        CHECK( magma_d_spmv( MAGMA_D_ONE, A, *x, MAGMA_D_ZERO, t, queue ));
        solver_par->spmv_count++;
        magma_dcopy( dofs, t.dval, 1, V(0), 1, queue );
        
        temp = MAGMA_D_MAKE(-1.0, 0.0);
        magma_daxpy( dofs,temp, b.dval, 1, V(0), 1, queue );           // V(0) = V(0) - b
        beta = MAGMA_D_MAKE( magma_dnrm2( dofs, V(0), 1, queue ), 0.0 ); // beta = norm(V(0))
        if( magma_d_isnan_inf( beta ) ){
            info = MAGMA_DIVERGENCE;
            break;
        }
        
        if (solver_par->numiter == 0){
            solver_par->init_res = MAGMA_D_REAL( beta );
            resid0 = MAGMA_D_REAL( beta );
        
            r0 = resid0 * solver_par->rtol;
            if ( r0 < ATOLERANCE )
                r0 = ATOLERANCE;
            if ( resid0 < r0 ) {
                solver_par->final_res = solver_par->init_res;
                solver_par->iter_res = solver_par->init_res;
                info = MAGMA_SUCCESS;
                goto cleanup;
            }
        }
        if ( solver_par->verbose > 0 ) {
            solver_par->res_vec[0] = resid0;
            solver_par->timing[0] = 0.0;
        }
        temp = -1.0/beta;
        magma_dscal( dofs, temp, V(0), 1, queue );                 // V(0) = -V(0)/beta

        // save very first residual norm
        if (solver_par->numiter == 0)
            solver_par->init_res = MAGMA_D_REAL( beta );

        for (i = 1; i < dim+1; i++)
            s[i] = MAGMA_D_ZERO;
        s[0] = beta;

        i = -1;
        do {
            i++;
            
            // M.apply(n, 1, V(i), n, W(i), n);
            v_t.dval = V(i);
            CHECK( magma_d_applyprecond_left( MagmaNoTrans, A, v_t, &t, precond_par, queue ));
            CHECK( magma_d_applyprecond_right( MagmaNoTrans, A, t, &t2, precond_par, queue ));
            magma_dcopy( dofs, t2.dval, 1, W(i), 1, queue );

            // A.mult(n, 1, W(i), n, V(i+1), n);
            w_t.dval = W(i);
            CHECK( magma_d_spmv( MAGMA_D_ONE, A, w_t, MAGMA_D_ZERO, t, queue ));
            solver_par->spmv_count++;
            magma_dcopy( dofs, t.dval, 1, V(i+1), 1, queue );
            
            for (k = 0; k <= i; k++)
            {
                H(k, i) = magma_ddot( dofs, V(k), 1, V(i+1), 1, queue );
                temp = -H(k,i);
                // V(i+1) -= H(k, i) * V(k);
                magma_daxpy( dofs,-H(k,i), V(k), 1, V(i+1), 1, queue );
            }

            H(i+1, i) = MAGMA_D_MAKE( magma_dnrm2( dofs, V(i+1), 1, queue), 0. ); // H(i+1,i) = ||r||
            temp = 1.0 / H(i+1, i);
            // V(i+1) = V(i+1) / H(i+1, i)
            magma_dscal( dofs, temp, V(i+1), 1, queue );    //  (to be fused)
    
            for (k = 0; k < i; k++)
                ApplyPlaneRotation(&H(k,i), &H(k+1,i), cs[k], sn[k]);
          
            GeneratePlaneRotation(H(i,i), H(i+1,i), &cs[i], &sn[i]);
            ApplyPlaneRotation(&H(i,i), &H(i+1,i), cs[i], sn[i]);
            ApplyPlaneRotation(&s[i], &s[i+1], cs[i], sn[i]);
            
            betanom = MAGMA_D_ABS( s[i+1] );
            rel_resid = betanom / resid0;
            if ( solver_par->verbose > 0 ) {
                tempo2 = magma_sync_wtime( queue );
                if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                    solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                            = (real_Double_t) betanom;
                    solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                            = (real_Double_t) tempo2-tempo1;
                }
            }
            if (rel_resid <= solver_par->rtol || betanom <= solver_par->atol ){
                info = MAGMA_SUCCESS;
                break;
            }
        }
        while (i+1 < dim && solver_par->numiter+1 <= solver_par->maxiter);

        // solve upper triangular system in place
        for (j = i; j >= 0; j--)
        {
            s[j] /= H(j,j);
            for (k = j-1; k >= 0; k--)
                s[k] -= H(k,j) * s[j];
        }

        // update the solution
        for (j = 0; j <= i; j++)
        {
            // x = x + s[j] * W(j)
            magma_daxpy( dofs, s[j], W(j), 1, x->dval, 1, queue );
        }
    }
    while (rel_resid > solver_par->rtol
                && solver_par->numiter+1 <= solver_par->maxiter);

    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    double residual;
    CHECK( magma_dresidual( A, b, *x, &residual, queue ));
    solver_par->iter_res = betanom;
    solver_par->final_res = residual;

    if ( solver_par->numiter < solver_par->maxiter && info == MAGMA_SUCCESS ) {
        info = MAGMA_SUCCESS;
    } else if ( solver_par->init_res > solver_par->final_res ) {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_SLOW_CONVERGENCE;
        if( solver_par->iter_res < solver_par->rtol*solver_par->init_res ||
            solver_par->iter_res < solver_par->atol ) {
            info = MAGMA_SUCCESS;
        }
    }
    else {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_DIVERGENCE;
    }
    
cleanup:
    // free pinned memory
    magma_free_pinned(s);
    magma_free_pinned(cs);
    magma_free_pinned(sn);
    magma_free_pinned(H);

    //free DEV memory
    magma_dmfree( &V, queue);
    magma_dmfree( &W, queue);
    magma_dmfree( &t, queue);
    magma_dmfree( &t2, queue);

    solver_par->info = info;
    return info;
} /* magma_dfgmres */
Example #13
0
extern "C" magma_int_t
magma_dpcgs(
    magma_d_matrix A, magma_d_matrix b, magma_d_matrix *x,
    magma_d_solver_par *solver_par,
    magma_d_preconditioner *precond_par,
    magma_queue_t queue )
{
    magma_int_t info = MAGMA_NOTCONVERGED;
    
    // prepare solver feedback
    solver_par->solver = Magma_PCGS;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    
    // constants
    const double c_zero    = MAGMA_D_ZERO;
    const double c_one     = MAGMA_D_ONE;
    const double c_neg_one = MAGMA_D_NEG_ONE;
    
    // solver variables
    double nom0, r0, res=0, nomb;
    double rho, rho_l = c_one, alpha, beta;
    
    magma_int_t dofs = A.num_rows* b.num_cols;

    // GPU workspace
    magma_d_matrix r={Magma_CSR}, rt={Magma_CSR}, r_tld={Magma_CSR},
                    p={Magma_CSR}, q={Magma_CSR}, u={Magma_CSR}, v={Magma_CSR},  t={Magma_CSR},
                    p_hat={Magma_CSR}, q_hat={Magma_CSR}, u_hat={Magma_CSR}, v_hat={Magma_CSR};
    CHECK( magma_dvinit( &r, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &rt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &r_tld,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &p, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &p_hat, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &q, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &q_hat, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &u, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &u_hat, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &v, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &v_hat, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &t, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));

    // solver setup
    CHECK(  magma_dresidualvec( A, b, *x, &r, &nom0, queue));
    magma_dcopy( dofs, r.dval, 1, r_tld.dval, 1, queue );   

    solver_par->init_res = nom0;
            
    nomb = magma_dnrm2( dofs, b.dval, 1, queue );
    if ( nomb == 0.0 ){
        nomb=1.0;
    }       
    if ( (r0 = nomb * solver_par->rtol) < ATOLERANCE ){
        r0 = ATOLERANCE;
    }
    solver_par->final_res = solver_par->init_res;
    solver_par->iter_res = solver_par->init_res;
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = (real_Double_t)nom0;
        solver_par->timing[0] = 0.0;
    }
    if ( nom0 < r0 ) {
        info = MAGMA_SUCCESS;
        goto cleanup;
    }

    //Chronometry
    real_Double_t tempo1, tempo2, tempop1, tempop2;
    tempo1 = magma_sync_wtime( queue );
    
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    // start iteration
    do
    {
        solver_par->numiter++;
        
        rho = magma_ddot( dofs, r.dval, 1, r_tld.dval, 1, queue );
                                                            // rho = < r,r_tld>    
        if( magma_d_isnan_inf( rho ) ){
            info = MAGMA_DIVERGENCE;
            break;
        }
        
        if ( solver_par->numiter > 1 ) {                        // direction vectors
            beta = rho / rho_l;            
            magma_dcopy( dofs, r.dval, 1, u.dval, 1, queue );          // u = r
            magma_daxpy( dofs,  beta, q.dval, 1, u.dval, 1, queue );     // u = r + beta q
            magma_dscal( dofs, beta, p.dval, 1, queue );                 // p = beta*p
            magma_daxpy( dofs, c_one, q.dval, 1, p.dval, 1, queue );      // p = q + beta*p
            magma_dscal( dofs, beta, p.dval, 1, queue );                 // p = beta*(q + beta*p)
            magma_daxpy( dofs, c_one, u.dval, 1, p.dval, 1, queue );     // p = u + beta*(q + beta*p)
        //u = r + beta*q;
        //p = u + beta*( q + beta*p );
        }
        else{
            magma_dcopy( dofs, r.dval, 1, u.dval, 1, queue );          // u = r
            magma_dcopy( dofs, r.dval, 1, p.dval, 1, queue );          // p = r
        }
        // preconditioner
        tempop1 = magma_sync_wtime( queue );
        CHECK( magma_d_applyprecond_left( MagmaNoTrans, A, p, &rt, precond_par, queue ));
        CHECK( magma_d_applyprecond_right( MagmaNoTrans, A, rt, &p_hat, precond_par, queue ));
        tempop2 = magma_sync_wtime( queue );
        precond_par->runtime += tempop2-tempop1;
        // SpMV
        CHECK( magma_d_spmv( c_one, A, p_hat, c_zero, v_hat, queue ));   // v = A p
        solver_par->spmv_count++;
        alpha = rho / magma_ddot( dofs, r_tld.dval, 1, v_hat.dval, 1, queue );
        magma_dcopy( dofs, u.dval, 1, q.dval, 1, queue );              // q = u
        magma_daxpy( dofs,  -alpha, v_hat.dval, 1, q.dval, 1, queue );   // q = u - alpha v_hat
        
        magma_dcopy( dofs, u.dval, 1, t.dval, 1, queue );             // t = q
        magma_daxpy( dofs,  c_one, q.dval, 1, t.dval, 1, queue );       // t = u + q
        // preconditioner
        tempop1 = magma_sync_wtime( queue );
        CHECK( magma_d_applyprecond_left( MagmaNoTrans, A, t, &rt, precond_par, queue ));
        CHECK( magma_d_applyprecond_right( MagmaNoTrans, A, rt, &u_hat, precond_par, queue ));
        tempop2 = magma_sync_wtime( queue );
        precond_par->runtime += tempop2-tempop1;
        // SpMV
        CHECK( magma_d_spmv( c_one, A, u_hat, c_zero, t, queue ));   // t = A u_hat
        solver_par->spmv_count++;
        magma_daxpy( dofs,  alpha, u_hat.dval, 1, x->dval, 1, queue );     // x = x + alpha u_hat
        magma_daxpy( dofs,  c_neg_one*alpha, t.dval, 1, r.dval, 1, queue );       // r = r -alpha*A u_hat
        
        res = magma_dnrm2( dofs, r.dval, 1, queue );
        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter)%solver_par->verbose == 0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }

        if ( res/nomb <= solver_par->rtol || res <= solver_par->atol ){
            break;
        }
        rho_l = rho;
    }
    while ( solver_par->numiter+1 <= solver_par->maxiter );
    
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    double residual;
    CHECK(  magma_dresidualvec( A, b, *x, &r, &residual, queue));
    solver_par->iter_res = res;
    solver_par->final_res = residual;

    if ( solver_par->numiter < solver_par->maxiter && info == MAGMA_SUCCESS ) {
        info = MAGMA_SUCCESS;
    } else if ( solver_par->init_res > solver_par->final_res ) {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose == 0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_SLOW_CONVERGENCE;
        if( solver_par->iter_res < solver_par->rtol*solver_par->init_res ||
            solver_par->iter_res < solver_par->atol ) {
            info = MAGMA_SUCCESS;
        }
    }
    else {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose == 0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_DIVERGENCE;
    }
    
cleanup:
    magma_dmfree(&r, queue );
    magma_dmfree(&rt, queue );
    magma_dmfree(&r_tld, queue );
    magma_dmfree(&p, queue );
    magma_dmfree(&q, queue );
    magma_dmfree(&u, queue );
    magma_dmfree(&v, queue );
    magma_dmfree(&t, queue );
    magma_dmfree(&p_hat, queue );
    magma_dmfree(&q_hat, queue );
    magma_dmfree(&u_hat, queue );
    magma_dmfree(&v_hat, queue );

    solver_par->info = info;
    return info;
}   /* magma_dpcgs */
Example #14
0
extern "C" magma_int_t
magma_dqmr_merge(
    magma_d_matrix A, magma_d_matrix b, magma_d_matrix *x,
    magma_d_solver_par *solver_par,
    magma_queue_t queue )
{
    magma_int_t info = MAGMA_NOTCONVERGED;
    
    // prepare solver feedback
    solver_par->solver = Magma_QMRMERGE;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    
    // local variables
    double c_zero = MAGMA_D_ZERO, c_one = MAGMA_D_ONE;
    // solver variables
    double nom0, r0, res=0, nomb;
    double rho = c_one, rho1 = c_one, eta = -c_one , pds = c_one, 
                        thet = c_one, thet1 = c_one, epsilon = c_one, 
                        beta = c_one, delta = c_one, pde = c_one, rde = c_one,
                        gamm = c_one, gamm1 = c_one, psi = c_one;
    
    magma_int_t dofs = A.num_rows* b.num_cols;

    // need to transpose the matrix
    magma_d_matrix AT={Magma_CSR}, Ah1={Magma_CSR}, Ah2={Magma_CSR};
    
    // GPU workspace
    magma_d_matrix r={Magma_CSR}, r_tld={Magma_CSR},
                    v={Magma_CSR}, w={Magma_CSR}, wt={Magma_CSR},
                    d={Magma_CSR}, s={Magma_CSR}, z={Magma_CSR}, q={Magma_CSR}, 
                    p={Magma_CSR}, pt={Magma_CSR}, y={Magma_CSR};
    CHECK( magma_dvinit( &r, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &r_tld, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &v, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &w, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &wt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &d, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &s, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &z, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &q, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &p, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &pt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &y, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));

    
    // solver setup
    CHECK(  magma_dresidualvec( A, b, *x, &r, &nom0, queue));
    solver_par->init_res = nom0;
    magma_dcopy( dofs, r.dval, 1, r_tld.dval, 1, queue );   
    magma_dcopy( dofs, r.dval, 1, y.dval, 1, queue );   
    magma_dcopy( dofs, r.dval, 1, v.dval, 1, queue );  
    magma_dcopy( dofs, r.dval, 1, wt.dval, 1, queue );   
    magma_dcopy( dofs, r.dval, 1, z.dval, 1, queue );  
    
    // transpose the matrix
    magma_dmtransfer( A, &Ah1, Magma_DEV, Magma_CPU, queue );
    magma_dmconvert( Ah1, &Ah2, A.storage_type, Magma_CSR, queue );
    magma_dmfree(&Ah1, queue );
    magma_dmtransposeconjugate( Ah2, &Ah1, queue );
    magma_dmfree(&Ah2, queue );
    Ah2.blocksize = A.blocksize;
    Ah2.alignment = A.alignment;
    magma_dmconvert( Ah1, &Ah2, Magma_CSR, A.storage_type, queue );
    magma_dmfree(&Ah1, queue );
    magma_dmtransfer( Ah2, &AT, Magma_CPU, Magma_DEV, queue );
    magma_dmfree(&Ah2, queue );
    
    nomb = magma_dnrm2( dofs, b.dval, 1, queue );
    if ( nomb == 0.0 ){
        nomb=1.0;
    }       
    if ( (r0 = nomb * solver_par->rtol) < ATOLERANCE ){
        r0 = ATOLERANCE;
    }
    solver_par->final_res = solver_par->init_res;
    solver_par->iter_res = solver_par->init_res;
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = (real_Double_t)nom0;
        solver_par->timing[0] = 0.0;
    }
    if ( nom0 < r0 ) {
        info = MAGMA_SUCCESS;
        goto cleanup;
    }

    psi = magma_dsqrt( magma_ddot( dofs, z.dval, 1, z.dval, 1, queue ));
    rho = magma_dsqrt( magma_ddot( dofs, y.dval, 1, y.dval, 1, queue ));
    
        // v = y / rho
        // y = y / rho
        // w = wt / psi
        // z = z / psi
    magma_dqmr_1(  
    r.num_rows, 
    r.num_cols, 
    rho,
    psi,
    y.dval, 
    z.dval,
    v.dval,
    w.dval,
    queue );
    
    //Chronometry
    real_Double_t tempo1, tempo2;
    tempo1 = magma_sync_wtime( queue );
    
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    // start iteration
    do
    {
        solver_par->numiter++;
        if( magma_d_isnan_inf( rho ) || magma_d_isnan_inf( psi ) ){
            info = MAGMA_DIVERGENCE;
            break;
        }
 
            // delta = z' * y;
        delta = magma_ddot( dofs, z.dval, 1, y.dval, 1, queue );
        
        if( magma_d_isnan_inf( delta ) ){
            info = MAGMA_DIVERGENCE;
            break;
        }
        
        // no precond: yt = y, zt = z
        //magma_dcopy( dofs, y.dval, 1, yt.dval, 1 );
        //magma_dcopy( dofs, z.dval, 1, zt.dval, 1 );
        
        if( solver_par->numiter == 1 ){
                // p = y;
                // q = z;
            magma_dcopy( dofs, y.dval, 1, p.dval, 1, queue );
            magma_dcopy( dofs, z.dval, 1, q.dval, 1, queue );
        }
        else{
            pde = psi * delta / epsilon;
            rde = rho * MAGMA_D_CONJ(delta/epsilon);
            
                // p = y - pde * p
                // q = z - rde * q
            magma_dqmr_2(  
            r.num_rows, 
            r.num_cols, 
            pde,
            rde,
            y.dval,
            z.dval,
            p.dval, 
            q.dval, 
            queue );
        }
        if( magma_d_isnan_inf( rho ) || magma_d_isnan_inf( psi ) ){
            info = MAGMA_DIVERGENCE;
            break;
        }
        
        CHECK( magma_d_spmv( c_one, A, p, c_zero, pt, queue ));
        solver_par->spmv_count++;
            // epsilon = q' * pt;
        epsilon = magma_ddot( dofs, q.dval, 1, pt.dval, 1, queue );
        beta = epsilon / delta;

        if( magma_d_isnan_inf( epsilon ) || magma_d_isnan_inf( beta ) ){
            info = MAGMA_DIVERGENCE;
            break;
        }
            // v = pt - beta * v
            // y = v
        magma_dqmr_3(  
        r.num_rows, 
        r.num_cols, 
        beta,
        pt.dval,
        v.dval,
        y.dval,
        queue );
        
        
        rho1 = rho;      
            // rho = norm(y);
        rho = magma_dsqrt( magma_ddot( dofs, y.dval, 1, y.dval, 1, queue ));
        
            // wt = A' * q - beta' * w;
        CHECK( magma_d_spmv( c_one, AT, q, c_zero, wt, queue ));
        solver_par->spmv_count++;
        magma_daxpy( dofs, - MAGMA_D_CONJ( beta ), w.dval, 1, wt.dval, 1, queue );  
        
                    // no precond: z = wt
        magma_dcopy( dofs, wt.dval, 1, z.dval, 1, queue );
        


        thet1 = thet;        
        thet = rho / (gamm * MAGMA_D_MAKE( MAGMA_D_ABS(beta), 0.0 ));
        gamm1 = gamm;        
        
        gamm = c_one / magma_dsqrt(c_one + thet*thet);        
        eta = - eta * rho1 * gamm * gamm / (beta * gamm1 * gamm1);        

        if( magma_d_isnan_inf( thet ) || magma_d_isnan_inf( gamm ) || magma_d_isnan_inf( eta ) ){
            info = MAGMA_DIVERGENCE;
            break;
        }
        
        if( solver_par->numiter == 1 ){
            
                // d = eta * p + pds * d;
                // s = eta * pt + pds * d;
                // x = x + d;
                // r = r - s;
            magma_dqmr_4(  
            r.num_rows, 
            r.num_cols, 
            eta,
            p.dval,
            pt.dval,
            d.dval, 
            s.dval, 
            x->dval, 
            r.dval, 
            queue );
        }
        else{

            pds = (thet1 * gamm) * (thet1 * gamm);
            
                // d = eta * p + pds * d;
                // s = eta * pt + pds * d;
                // x = x + d;
                // r = r - s;
            magma_dqmr_5(  
            r.num_rows, 
            r.num_cols, 
            eta,
            pds,
            p.dval,
            pt.dval,
            d.dval, 
            s.dval, 
            x->dval, 
            r.dval, 
            queue );
        }
            // psi = norm(z);
        psi = magma_dsqrt( magma_ddot( dofs, z.dval, 1, z.dval, 1, queue ) );
        
        res = magma_dnrm2( dofs, r.dval, 1, queue );
        
        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter)%solver_par->verbose == c_zero ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        
        // v = y / rho
        // y = y / rho
        // w = wt / psi
        // z = z / psi
        magma_dqmr_1(  
        r.num_rows, 
        r.num_cols, 
        rho,
        psi,
        y.dval, 
        z.dval,
        v.dval,
        w.dval,
        queue );

        if ( res/nomb <= solver_par->rtol || res <= solver_par->atol ){
            break;
        }
 
    }
    while ( solver_par->numiter+1 <= solver_par->maxiter );
    
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    double residual;
    CHECK(  magma_dresidualvec( A, b, *x, &r, &residual, queue));
    solver_par->iter_res = res;
    solver_par->final_res = residual;

    if ( solver_par->numiter < solver_par->maxiter && info == MAGMA_SUCCESS ) {
        info = MAGMA_SUCCESS;
    } else if ( solver_par->init_res > solver_par->final_res ) {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose == c_zero ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_SLOW_CONVERGENCE;
        if( solver_par->iter_res < solver_par->rtol*solver_par->init_res ||
            solver_par->iter_res < solver_par->atol ) {
            info = MAGMA_SUCCESS;
        }
    }
    else {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose == c_zero ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_DIVERGENCE;
    }
    
cleanup:
    magma_dmfree(&r, queue );
    magma_dmfree(&r_tld, queue );
    magma_dmfree(&v,  queue );
    magma_dmfree(&w,  queue );
    magma_dmfree(&wt, queue );
    magma_dmfree(&d,  queue );
    magma_dmfree(&s,  queue );
    magma_dmfree(&z,  queue );
    magma_dmfree(&q,  queue );
    magma_dmfree(&p,  queue );
    magma_dmfree(&pt, queue );
    magma_dmfree(&y,  queue );
    magma_dmfree(&AT, queue );
    magma_dmfree(&Ah1, queue );
    magma_dmfree(&Ah2, queue );


    
    solver_par->info = info;
    return info;
}   /* magma_dqmr_merge */
Example #15
0
extern "C" magma_int_t
magma_dbicgstab_merge(
    magma_d_matrix A, magma_d_matrix b, magma_d_matrix *x,
    magma_d_solver_par *solver_par,
    magma_queue_t queue )
{
    magma_int_t info = MAGMA_NOTCONVERGED;
    
    // prepare solver feedback
    solver_par->solver = Magma_BICGSTAB;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;

    // some useful variables
    double c_zero = MAGMA_D_ZERO;
    double c_one  = MAGMA_D_ONE;
    
    magma_int_t dofs = A.num_rows * b.num_cols;

    // workspace
    magma_d_matrix r={Magma_CSR}, rr={Magma_CSR}, p={Magma_CSR}, v={Magma_CSR}, 
    s={Magma_CSR}, t={Magma_CSR}, d1={Magma_CSR}, d2={Magma_CSR};
    CHECK( magma_dvinit( &r, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &rr,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &p, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &v, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &s, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &t, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &d1, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &d2, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));

    
    // solver variables
    double alpha, beta, omega, rho_old, rho_new;
    double nom, betanom, nom0, r0, res, nomb;
    res=0;
    //double den;

    // solver setup
    CHECK(  magma_dresidualvec( A, b, *x, &r, &nom0, queue));
    magma_dcopy( dofs, r.dval, 1, rr.dval, 1, queue );                  // rr = r
    betanom = nom0;
    nom = nom0*nom0;
    rho_new = magma_ddot( dofs, r.dval, 1, r.dval, 1, queue );             // rho=<rr,r>
    rho_old = omega = alpha = MAGMA_D_MAKE( 1.0, 0. );
    solver_par->init_res = nom0;

    CHECK( magma_d_spmv( c_one, A, r, c_zero, v, queue ));              // z = A r
    //den = MAGMA_D_REAL( magma_ddot( dofs, v.dval, 1, r.dval, 1), queue ); // den = z' * r

    nomb = magma_dnrm2( dofs, b.dval, 1, queue );
    if ( nomb == 0.0 ){
        nomb=1.0;
    }       
    if ( (r0 = nomb * solver_par->rtol) < ATOLERANCE ){
        r0 = ATOLERANCE;
    }
    
    solver_par->final_res = solver_par->init_res;
    solver_par->iter_res = solver_par->init_res;
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = nom0;
        solver_par->timing[0] = 0.0;
    }
    if ( nom < r0 ) {
        info = MAGMA_SUCCESS;
        goto cleanup;
    }

    //Chronometry
    real_Double_t tempo1, tempo2;
    tempo1 = magma_sync_wtime( queue );


    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    // start iteration
    do
    {
        solver_par->numiter++;
        rho_old = rho_new;                                    // rho_old=rho

        rho_new = magma_ddot( dofs, rr.dval, 1, r.dval, 1, queue );  // rho=<rr,r>
        beta = rho_new/rho_old * alpha/omega;   // beta=rho/rho_old *alpha/omega
        if( magma_d_isnan_inf( beta ) ){
            info = MAGMA_DIVERGENCE;
            break;
        }
        
        // p = r + beta * ( p - omega * v )
        magma_dbicgstab_1(  
        r.num_rows, 
        r.num_cols, 
        beta,
        omega,
        r.dval, 
        v.dval,
        p.dval,
        queue );

        CHECK( magma_d_spmv( c_one, A, p, c_zero, v, queue ));      // v = Ap
        solver_par->spmv_count++;
        //alpha = rho_new / tmpval;
        alpha = rho_new /magma_ddot( dofs, rr.dval, 1, v.dval, 1, queue );
        if( magma_d_isnan_inf( alpha ) ){
            info = MAGMA_DIVERGENCE;
            break;
        }
        // s = r - alpha v
        magma_dbicgstab_2(  
        r.num_rows, 
        r.num_cols, 
        alpha,
        r.dval,
        v.dval,
        s.dval, 
        queue );

        CHECK( magma_d_spmv( c_one, A, s, c_zero, t, queue ));       // t=As
        solver_par->spmv_count++;
        omega = magma_ddot( dofs, t.dval, 1, s.dval, 1, queue )   // omega = <s,t>/<t,t>
                   / magma_ddot( dofs, t.dval, 1, t.dval, 1, queue );
                        
        // x = x + alpha * p + omega * s
        // r = s - omega * t
        magma_dbicgstab_3(  
        r.num_rows, 
        r.num_cols, 
        alpha,
        omega,
        p.dval,
        s.dval,
        t.dval,
        x->dval,
        r.dval,
        queue );

        res = betanom = magma_dnrm2( dofs, r.dval, 1, queue );

        nom = betanom*betanom;

        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }

        if ( res/nomb <= solver_par->rtol || res <= solver_par->atol ){
            break;
        }
    }
    while ( solver_par->numiter+1 <= solver_par->maxiter );
    
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    double residual;
    CHECK(  magma_dresidualvec( A, b, *x, &r, &residual, queue));
    solver_par->iter_res = res;
    solver_par->final_res = residual;

    if ( solver_par->numiter < solver_par->maxiter && info == MAGMA_SUCCESS ) {
        info = MAGMA_SUCCESS;
    } else if ( solver_par->init_res > solver_par->final_res ) {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_SLOW_CONVERGENCE;
        if( solver_par->iter_res < solver_par->rtol*solver_par->init_res ||
            solver_par->iter_res < solver_par->atol ) {
            info = MAGMA_SUCCESS;
        }
    }
    else {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_DIVERGENCE;
    }
    
cleanup:
    magma_dmfree(&r, queue );
    magma_dmfree(&rr, queue );
    magma_dmfree(&p, queue );
    magma_dmfree(&v, queue );
    magma_dmfree(&s, queue );
    magma_dmfree(&t, queue );
    magma_dmfree(&d1, queue );
    magma_dmfree(&d2, queue );

    solver_par->info = info;
    return info;
}   /* magma_dbicgstab_merge */
Example #16
0
extern "C" magma_int_t
magma_dpbicgstab(
    magma_d_matrix A, magma_d_matrix b, magma_d_matrix *x,
    magma_d_solver_par *solver_par,
    magma_d_preconditioner *precond_par,
    magma_queue_t queue )
{
    magma_int_t info = 0;
    
    // set queue for old dense routines
    magma_queue_t orig_queue=NULL;
    magmablasGetKernelStream( &orig_queue );

    // prepare solver feedback
    solver_par->solver = Magma_PBICGSTAB;
    solver_par->numiter = 0;
    solver_par->info = MAGMA_SUCCESS;

    // some useful variables
    double c_zero = MAGMA_D_ZERO, c_one = MAGMA_D_ONE,
                                            c_mone = MAGMA_D_NEG_ONE;
    
    magma_int_t dofs = A.num_rows*b.num_cols;

    // workspace
    magma_d_matrix r={Magma_CSR}, rr={Magma_CSR}, p={Magma_CSR}, v={Magma_CSR}, s={Magma_CSR}, t={Magma_CSR}, ms={Magma_CSR}, mt={Magma_CSR}, y={Magma_CSR}, z={Magma_CSR};
    CHECK( magma_dvinit( &r, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &rr,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &p, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &v, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &s, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &t, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &ms,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &mt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &y, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &z, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));

    
    // solver variables
    double alpha, beta, omega, rho_old, rho_new;
    double nom, betanom, nom0, r0, den, res;

    // solver setup
    CHECK(  magma_dresidualvec( A, b, *x, &r, &nom0, queue));
    magma_dcopy( dofs, r.dval, 1, rr.dval, 1 );                  // rr = r
    betanom = nom0;
    nom = nom0*nom0;
    rho_new = omega = alpha = MAGMA_D_MAKE( 1.0, 0. );
    solver_par->init_res = nom0;

    CHECK( magma_d_spmv( c_one, A, r, c_zero, v, queue ));              // z = A r
    den = MAGMA_D_REAL( magma_ddot(dofs, v.dval, 1, r.dval, 1) ); // den = z' * r

    if ( (r0 = nom * solver_par->epsilon) < ATOLERANCE )
        r0 = ATOLERANCE;
    if ( nom < r0 ) {
        solver_par->final_res = solver_par->init_res;
        solver_par->iter_res = solver_par->init_res;
        goto cleanup;
    }

    //Chronometry
    real_Double_t tempo1, tempo2;
    tempo1 = magma_sync_wtime( queue );
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = nom0;
        solver_par->timing[0] = 0.0;
    }

    solver_par->numiter = 0;
    // start iteration
    do
    {
        solver_par->numiter++;
        rho_old = rho_new;                                   // rho_old=rho
        rho_new = magma_ddot( dofs, rr.dval, 1, r.dval, 1 );  // rho=<rr,r>
        beta = rho_new/rho_old * alpha/omega;   // beta=rho/rho_old *alpha/omega
        magma_dscal( dofs, beta, p.dval, 1 );                 // p = beta*p
        magma_daxpy( dofs, c_mone * omega * beta, v.dval, 1 , p.dval, 1 );
                                                        // p = p-omega*beta*v
        magma_daxpy( dofs, c_one, r.dval, 1, p.dval, 1 );      // p = p+r

        // preconditioner
        CHECK( magma_d_applyprecond_left( A, p, &mt, precond_par, queue ));
        CHECK( magma_d_applyprecond_right( A, mt, &y, precond_par, queue ));

        CHECK( magma_d_spmv( c_one, A, y, c_zero, v, queue ));      // v = Ap

        alpha = rho_new / magma_ddot( dofs, rr.dval, 1, v.dval, 1 );
        magma_dcopy( dofs, r.dval, 1 , s.dval, 1 );            // s=r
        magma_daxpy( dofs, c_mone * alpha, v.dval, 1 , s.dval, 1 ); // s=s-alpha*v

        // preconditioner
        CHECK( magma_d_applyprecond_left( A, s, &ms, precond_par, queue ));
        CHECK( magma_d_applyprecond_right( A, ms, &z, precond_par, queue ));

        CHECK( magma_d_spmv( c_one, A, z, c_zero, t, queue ));       // t=As

        // preconditioner
        CHECK( magma_d_applyprecond_left( A, s, &ms, precond_par, queue ));
        CHECK( magma_d_applyprecond_left( A, t, &mt, precond_par, queue ));

        // omega = <ms,mt>/<mt,mt>
        omega = magma_ddot( dofs, mt.dval, 1, ms.dval, 1 )
                   / magma_ddot( dofs, mt.dval, 1, mt.dval, 1 );

        magma_daxpy( dofs, alpha, y.dval, 1 , x->dval, 1 );     // x=x+alpha*p
        magma_daxpy( dofs, omega, z.dval, 1 , x->dval, 1 );     // x=x+omega*s

        magma_dcopy( dofs, s.dval, 1 , r.dval, 1 );             // r=s
        magma_daxpy( dofs, c_mone * omega, t.dval, 1 , r.dval, 1 ); // r=r-omega*t
        res = betanom = magma_dnrm2( dofs, r.dval, 1 );

        nom = betanom*betanom;


        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }

        if ( res/nom0  < solver_par->epsilon ) {
            break;
        }
    }
    while ( solver_par->numiter+1 <= solver_par->maxiter );
    
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    double residual;
    CHECK(  magma_dresidualvec( A, b, *x, &r, &residual, queue));
    solver_par->final_res = residual;
    solver_par->iter_res = res;

    if ( solver_par->numiter < solver_par->maxiter ) {
        info = MAGMA_SUCCESS;
    } else if ( solver_par->init_res > solver_par->final_res ) {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_SLOW_CONVERGENCE;
        if( solver_par->iter_res < solver_par->epsilon*solver_par->init_res ){
            info = MAGMA_SUCCESS;
        }
    }
    else {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_DIVERGENCE;
    }
    
cleanup:
    magma_dmfree(&r, queue );
    magma_dmfree(&rr, queue );
    magma_dmfree(&p, queue );
    magma_dmfree(&v, queue );
    magma_dmfree(&s, queue );
    magma_dmfree(&t, queue );
    magma_dmfree(&ms, queue );
    magma_dmfree(&mt, queue );
    magma_dmfree(&y, queue );
    magma_dmfree(&z, queue );

    magmablasSetKernelStream( orig_queue );
    solver_par->info = info;
    return info;
}   /* magma_dbicgstab */
Example #17
0
magma_int_t
magma_dpcg( magma_d_sparse_matrix A, magma_d_vector b, magma_d_vector *x,  
            magma_d_solver_par *solver_par, 
            magma_d_preconditioner *precond_par ){

    // prepare solver feedback
    solver_par->solver = Magma_PCG;
    solver_par->numiter = 0;
    solver_par->info = 0;

    // local variables
    double c_zero = MAGMA_D_ZERO, c_one = MAGMA_D_ONE;
    
    magma_int_t dofs = A.num_rows;

    // GPU workspace
    magma_d_vector r, rt, p, q, h;
    magma_d_vinit( &r, Magma_DEV, dofs, c_zero );
    magma_d_vinit( &rt, Magma_DEV, dofs, c_zero );
    magma_d_vinit( &p, Magma_DEV, dofs, c_zero );
    magma_d_vinit( &q, Magma_DEV, dofs, c_zero );
    magma_d_vinit( &h, Magma_DEV, dofs, c_zero );
    
    // solver variables
    double alpha, beta;
    double nom, nom0, r0, gammaold, gammanew, den, res;

    // solver setup
    magma_dscal( dofs, c_zero, x->val, 1) ;                     // x = 0
    magma_dcopy( dofs, b.val, 1, r.val, 1 );                    // r = b

    // preconditioner
    magma_d_applyprecond_left( A, r, &rt, precond_par );
    magma_d_applyprecond_right( A, rt, &h, precond_par );

    magma_dcopy( dofs, h.val, 1, p.val, 1 );                    // p = h
    nom = MAGMA_D_REAL( magma_ddot(dofs, r.val, 1, h.val, 1) );          
    nom0 = magma_dnrm2( dofs, r.val, 1 );                                                 
    magma_d_spmv( c_one, A, p, c_zero, q );                     // q = A p
    den = MAGMA_D_REAL( magma_ddot(dofs, p.val, 1, q.val, 1) );// den = p dot q
    solver_par->init_res = nom0;
    
    if ( (r0 = nom * solver_par->epsilon) < ATOLERANCE ) 
        r0 = ATOLERANCE;
    if ( nom < r0 )
        return MAGMA_SUCCESS;
    // check positive definite
    if (den <= 0.0) {
        printf("Operator A is not postive definite. (Ar,r) = %f\n", den);
        return -100;
    }

    //Chronometry
    real_Double_t tempo1, tempo2;
    magma_device_sync(); tempo1=magma_wtime();
    if( solver_par->verbose > 0 ){
        solver_par->res_vec[0] = (real_Double_t)nom0;
        solver_par->timing[0] = 0.0;
    }
    
    // start iteration
    for( solver_par->numiter= 1; solver_par->numiter<solver_par->maxiter; 
                                                    solver_par->numiter++ ){
        // preconditioner
        magma_d_applyprecond_left( A, r, &rt, precond_par );
        magma_d_applyprecond_right( A, rt, &h, precond_par );

        gammanew = MAGMA_D_REAL( magma_ddot(dofs, r.val, 1, h.val, 1) );   
                                                            // gn = < r,h>

        if( solver_par->numiter==1 ){
            magma_dcopy( dofs, h.val, 1, p.val, 1 );                    // p = h            
        }else{
            beta = MAGMA_D_MAKE(gammanew/gammaold, 0.);       // beta = gn/go
            magma_dscal(dofs, beta, p.val, 1);            // p = beta*p
            magma_daxpy(dofs, c_one, h.val, 1, p.val, 1); // p = p + h 
        }

        magma_d_spmv( c_one, A, p, c_zero, q );           // q = A p
        den = MAGMA_D_REAL(magma_ddot(dofs, p.val, 1, q.val, 1));    
                // den = p dot q 

        alpha = MAGMA_D_MAKE(gammanew/den, 0.);
        magma_daxpy(dofs,  alpha, p.val, 1, x->val, 1);     // x = x + alpha p
        magma_daxpy(dofs, -alpha, q.val, 1, r.val, 1);      // r = r - alpha q
        gammaold = gammanew;

        res = magma_dnrm2( dofs, r.val, 1 );
        if( solver_par->verbose > 0 ){
            magma_device_sync(); tempo2=magma_wtime();
            if( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) tempo2-tempo1;
            }
        }


        if (  res/nom0  < solver_par->epsilon ) {
            break;
        }
    } 
    magma_device_sync(); tempo2=magma_wtime();
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    double residual;
    magma_dresidual( A, b, *x, &residual );
    solver_par->iter_res = res;
    solver_par->final_res = residual;

    if( solver_par->numiter < solver_par->maxiter){
        solver_par->info = 0;
    }else if( solver_par->init_res > solver_par->final_res ){
        if( solver_par->verbose > 0 ){
            if( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        solver_par->info = -2;
    }
    else{
        if( solver_par->verbose > 0 ){
            if( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose] 
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        solver_par->info = -1;
    }
    magma_d_vfree(&r);
    magma_d_vfree(&rt);
    magma_d_vfree(&p);
    magma_d_vfree(&q);
    magma_d_vfree(&h);

    return MAGMA_SUCCESS;
}   /* magma_dcg */
Example #18
0
extern "C" magma_int_t
magma_dtfqmr_unrolled(
    magma_d_matrix A, magma_d_matrix b, magma_d_matrix *x,
    magma_d_solver_par *solver_par,
    magma_queue_t queue )
{
    magma_int_t info = MAGMA_NOTCONVERGED;
    

    // prepare solver feedback
    solver_par->solver = Magma_TFQMR;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    solver_par->spmv_count = 0;
    
    // local variables
    double c_zero = MAGMA_D_ZERO, c_one = MAGMA_D_ONE;
    // solver variables
    double nom0, r0,  res, nomb;
    double rho = c_one, rho_l = c_one, eta = c_zero , c = c_zero , 
                        theta = c_zero , tau = c_zero, alpha = c_one, beta = c_zero,
                        sigma = c_zero;
    
    magma_int_t dofs = A.num_rows* b.num_cols;

    // GPU workspace
    magma_d_matrix r={Magma_CSR}, r_tld={Magma_CSR},
                    d={Magma_CSR}, w={Magma_CSR}, v={Magma_CSR},
                    u_mp1={Magma_CSR}, u_m={Magma_CSR}, Au={Magma_CSR}, 
                    Ad={Magma_CSR}, Au_new={Magma_CSR};
    CHECK( magma_dvinit( &r, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &u_mp1,Magma_DEV, A.num_rows, b.num_cols, c_one, queue ));
    CHECK( magma_dvinit( &r_tld,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &u_m, Magma_DEV, A.num_rows, b.num_cols, c_one, queue ));
    CHECK( magma_dvinit( &v, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &d, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &w, Magma_DEV, A.num_rows, b.num_cols, c_one, queue ));
    CHECK( magma_dvinit( &Ad, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &Au_new, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_dvinit( &Au, Magma_DEV, A.num_rows, b.num_cols, c_one, queue ));
    
    // solver setup
    CHECK(  magma_dresidualvec( A, b, *x, &r, &nom0, queue));
    solver_par->init_res = nom0;
    magma_dcopy( dofs, r.dval, 1, r_tld.dval, 1, queue );   
    magma_dcopy( dofs, r.dval, 1, w.dval, 1, queue );   
    magma_dcopy( dofs, r.dval, 1, u_mp1.dval, 1, queue );   
    CHECK( magma_d_spmv( c_one, A, u_mp1, c_zero, v, queue ));   // v = A u
    magma_dcopy( dofs, v.dval, 1, Au.dval, 1, queue );  
    nomb = magma_dnrm2( dofs, b.dval, 1, queue );
    if ( nomb == 0.0 ){
        nomb=1.0;
    }       
    if ( (r0 = nomb * solver_par->rtol) < ATOLERANCE ){
        r0 = ATOLERANCE;
    }
    solver_par->final_res = solver_par->init_res;
    solver_par->iter_res = solver_par->init_res;
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = (real_Double_t)nom0;
        solver_par->timing[0] = 0.0;
    }
    if ( nom0 < r0 ) {
        info = MAGMA_SUCCESS;
        goto cleanup;
    }

    tau = magma_dsqrt( magma_ddot( dofs, r.dval, 1, r_tld.dval, 1, queue ) );
    rho = magma_ddot( dofs, r.dval, 1, r_tld.dval, 1, queue );
    rho_l = rho;
    
    //Chronometry
    real_Double_t tempo1, tempo2;
    tempo1 = magma_sync_wtime( queue );
    
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    // start iteration
    do
    {
        solver_par->numiter++;
        
        // do this every iteration as unrolled
        alpha = rho / magma_ddot( dofs, v.dval, 1, r_tld.dval, 1, queue );
        sigma = theta * theta / alpha * eta; 
        
        magma_daxpy( dofs,  -alpha, v.dval, 1, u_mp1.dval, 1, queue );     // u_mp1 = u_mp_1 - alpha*v;
        magma_daxpy( dofs,  -alpha, Au.dval, 1, w.dval, 1, queue );     // w = w - alpha*Au;
        magma_dscal( dofs, sigma, d.dval, 1, queue );    
        magma_daxpy( dofs, c_one, u_mp1.dval, 1, d.dval, 1, queue );     // d = u_mp1 + sigma*d;
        //magma_dscal( dofs, sigma, Ad.dval, 1, queue );         
        //magma_daxpy( dofs, c_one, Au.dval, 1, Ad.dval, 1, queue );     // Ad = Au + sigma*Ad;
        
        theta = magma_dsqrt( magma_ddot(dofs, w.dval, 1, w.dval, 1, queue ) ) / tau;
        c = c_one / magma_dsqrt( c_one + theta*theta );
        tau = tau * theta *c;
        eta = c * c * alpha;
        sigma = theta * theta / alpha * eta;  
        printf("sigma: %f+%fi\n", MAGMA_D_REAL(sigma), MAGMA_D_IMAG(sigma) );
        CHECK( magma_d_spmv( c_one, A, d, c_zero, Ad, queue )); // Au_new = A u_mp1
        solver_par->spmv_count++;
      
        magma_daxpy( dofs, eta, d.dval, 1, x->dval, 1, queue );     // x = x + eta * d
        magma_daxpy( dofs, -eta, Ad.dval, 1, r.dval, 1, queue );     // r = r - eta * Ad

    
        // here starts the second part of the loop #################################
        

        magma_daxpy( dofs,  -alpha, Au.dval, 1, w.dval, 1, queue );     // w = w - alpha*Au;
        magma_dscal( dofs, sigma, d.dval, 1, queue );    
        magma_daxpy( dofs, c_one, u_mp1.dval, 1, d.dval, 1, queue );     // d = u_mp1 + sigma*d;
        magma_dscal( dofs, sigma, Ad.dval, 1, queue );         
        magma_daxpy( dofs, c_one, Au.dval, 1, Ad.dval, 1, queue );     // Ad = Au + sigma*Ad;

        
        theta = magma_dsqrt( magma_ddot(dofs, w.dval, 1, w.dval, 1, queue ) ) / tau;
        c = c_one / magma_dsqrt( c_one + theta*theta );
        tau = tau * theta *c;
        eta = c * c * alpha;

        magma_daxpy( dofs, eta, d.dval, 1, x->dval, 1, queue );     // x = x + eta * d
        magma_daxpy( dofs, -eta, Ad.dval, 1, r.dval, 1, queue );     // r = r - eta * Ad
        
        res = magma_dnrm2( dofs, r.dval, 1, queue );
        
        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter)%solver_par->verbose == 0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }

        if ( res/nomb <= solver_par->rtol || res <= solver_par->atol ){
            break;
        }
        // do this every loop as unrolled
        rho_l = rho;
        rho = magma_ddot( dofs, w.dval, 1, r_tld.dval, 1, queue );
        beta = rho / rho_l;
        magma_dscal( dofs, beta, u_mp1.dval, 1, queue ); 
        magma_daxpy( dofs, c_one, w.dval, 1, u_mp1.dval, 1, queue );         // u_mp1 = w + beta*u_mp1;
              
        CHECK( magma_d_spmv( c_one, A, u_mp1, c_zero, Au_new, queue )); // Au_new = A u_mp1
        solver_par->spmv_count++;
        // do this every loop as unrolled
        magma_dscal( dofs, beta*beta, v.dval, 1, queue );                    
        magma_daxpy( dofs, beta, Au.dval, 1, v.dval, 1, queue );              
        magma_daxpy( dofs, c_one, Au_new.dval, 1, v.dval, 1, queue );      // v = Au_new + beta*(Au+beta*v);
        
        magma_dcopy( dofs, Au_new.dval, 1, Au.dval, 1, queue );  
    }
    while ( solver_par->numiter+1 <= solver_par->maxiter );
    
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    double residual;
    CHECK(  magma_dresidualvec( A, b, *x, &r, &residual, queue));
    solver_par->iter_res = res;
    solver_par->final_res = residual;

    if ( solver_par->numiter < solver_par->maxiter ) {
        info = MAGMA_SUCCESS;
    } else if ( solver_par->init_res > solver_par->final_res ) {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose == 0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_SLOW_CONVERGENCE;
        if( solver_par->iter_res < solver_par->rtol*solver_par->init_res ||
            solver_par->iter_res < solver_par->atol ) {
            info = MAGMA_SUCCESS;
        }
    }
    else {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose == 0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_DIVERGENCE;
    }
    
cleanup:
    magma_dmfree(&r, queue );
    magma_dmfree(&r_tld, queue );
    magma_dmfree(&d, queue );
    magma_dmfree(&w, queue );
    magma_dmfree(&v, queue );
    magma_dmfree(&u_m, queue );
    magma_dmfree(&u_mp1, queue );
    magma_dmfree(&d, queue );
    magma_dmfree(&Au, queue );
    magma_dmfree(&Au_new, queue );
    magma_dmfree(&Ad, queue );
    
    solver_par->info = info;
    return info;
}   /* magma_dfqmr_unrolled */
Example #19
0
extern "C" magma_int_t
magma_dbpcg(
    magma_d_matrix A, magma_d_matrix b, magma_d_matrix *x,
    magma_d_solver_par *solver_par,
    magma_d_preconditioner *precond_par,
    magma_queue_t queue )
{
    magma_int_t info = 0;
    
    magma_int_t i, num_vecs = b.num_rows/A.num_rows;

    // prepare solver feedback
    solver_par->solver = Magma_PCG;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    solver_par->info = MAGMA_SUCCESS;

    // local variables
    double c_zero = MAGMA_D_ZERO, c_one = MAGMA_D_ONE;
    
    magma_int_t dofs = A.num_rows;

    // GPU workspace
    magma_d_matrix r={Magma_CSR}, rt={Magma_CSR}, p={Magma_CSR}, q={Magma_CSR}, h={Magma_CSR};

    
    // solver variables
    double *alpha={0}, *beta={0};
    alpha = NULL;
    beta = NULL;


    double *nom={0}, *nom0={0}, *r0={0}, *gammaold={0}, *gammanew={0}, *den={0}, *res={0}, *residual={0};
    nom        = NULL;
    nom0       = NULL;
    r0         = NULL;
    gammaold   = NULL;
    gammanew   = NULL;
    den        = NULL;
    res        = NULL;
    residual   = NULL;
    
    CHECK( magma_dmalloc_cpu(&alpha, num_vecs));
    CHECK( magma_dmalloc_cpu(&beta, num_vecs));
    CHECK( magma_dmalloc_cpu(&residual, num_vecs));
    CHECK( magma_dmalloc_cpu(&nom, num_vecs));
    CHECK( magma_dmalloc_cpu(&nom0, num_vecs));
    CHECK( magma_dmalloc_cpu(&r0, num_vecs));
    CHECK( magma_dmalloc_cpu(&gammaold, num_vecs));
    CHECK( magma_dmalloc_cpu(&gammanew, num_vecs));
    CHECK( magma_dmalloc_cpu(&den, num_vecs));
    CHECK( magma_dmalloc_cpu(&res, num_vecs));
    CHECK( magma_dmalloc_cpu(&residual, num_vecs));
    
    CHECK( magma_dvinit( &r, Magma_DEV, dofs*num_vecs, 1, c_zero, queue ));
    CHECK( magma_dvinit( &rt, Magma_DEV, dofs*num_vecs, 1, c_zero, queue ));
    CHECK( magma_dvinit( &p, Magma_DEV, dofs*num_vecs, 1, c_zero, queue ));
    CHECK( magma_dvinit( &q, Magma_DEV, dofs*num_vecs, 1, c_zero, queue ));
    CHECK( magma_dvinit( &h, Magma_DEV, dofs*num_vecs, 1, c_zero, queue ));

    // solver setup
    CHECK(  magma_dresidualvec( A, b, *x, &r, nom0, queue));

    // preconditioner
    CHECK( magma_d_applyprecond_left( MagmaNoTrans, A, r, &rt, precond_par, queue ));
    CHECK( magma_d_applyprecond_right( MagmaNoTrans, A, rt, &h, precond_par, queue ));

    magma_dcopy( dofs*num_vecs, h.dval, 1, p.dval, 1, queue );                 // p = h

    for( i=0; i<num_vecs; i++) {
        nom[i] = MAGMA_D_REAL( magma_ddot( dofs, r(i), 1, h(i), 1, queue ) );
        nom0[i] = magma_dnrm2( dofs, r(i), 1, queue );
    }
                                          
    CHECK( magma_d_spmv( c_one, A, p, c_zero, q, queue ));             // q = A p

    for( i=0; i<num_vecs; i++)
        den[i] = MAGMA_D_REAL( magma_ddot( dofs, p(i), 1, q(i), 1, queue ) );  // den = p dot q

    solver_par->init_res = nom0[0];
    
    if ( (r0[0] = nom[0] * solver_par->rtol) < ATOLERANCE )
        r0[0] = ATOLERANCE;
    // check positive definite
    if (den[0] <= 0.0) {
        printf("Operator A is not postive definite. (Ar,r) = %f\n", den[0]);
        info = MAGMA_NONSPD; 
        goto cleanup;
    }
    if ( nom[0] < r0[0] ) {
        solver_par->final_res = solver_par->init_res;
        solver_par->iter_res = solver_par->init_res;
        goto cleanup;
    }

    //Chronometry
    real_Double_t tempo1, tempo2;
    tempo1 = magma_sync_wtime( queue );
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = (real_Double_t)nom0[0];
        solver_par->timing[0] = 0.0;
    }
    
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    // start iteration
    do
    {
        solver_par->numiter++;
        // preconditioner
        CHECK( magma_d_applyprecond_left( MagmaNoTrans, A, r, &rt, precond_par, queue ));
        CHECK( magma_d_applyprecond_right( MagmaNoTrans, A, rt, &h, precond_par, queue ));


        for( i=0; i<num_vecs; i++)
            gammanew[i] = MAGMA_D_REAL( magma_ddot( dofs, r(i), 1, h(i), 1, queue ) );  // gn = < r,h>


        if ( solver_par->numiter==1 ) {
            magma_dcopy( dofs*num_vecs, h.dval, 1, p.dval, 1, queue );                    // p = h
        } else {
            for( i=0; i<num_vecs; i++) {
                beta[i] = MAGMA_D_MAKE(gammanew[i]/gammaold[i], 0.);       // beta = gn/go
                magma_dscal( dofs, beta[i], p(i), 1, queue );            // p = beta*p
                magma_daxpy( dofs, c_one, h(i), 1, p(i), 1, queue ); // p = p + h
            }
        }

        CHECK( magma_d_spmv( c_one, A, p, c_zero, q, queue ));   // q = A p
        solver_par->spmv_count++;
     //   magma_d_bspmv_tuned( dofs, num_vecs, c_one, A, p.dval, c_zero, q.dval, queue );


        for( i=0; i<num_vecs; i++) {
            den[i] = MAGMA_D_REAL(magma_ddot( dofs, p(i), 1, q(i), 1, queue) );
                // den = p dot q

            alpha[i] = MAGMA_D_MAKE(gammanew[i]/den[i], 0.);
            magma_daxpy( dofs,  alpha[i], p(i), 1, x->dval+dofs*i, 1, queue ); // x = x + alpha p
            magma_daxpy( dofs, -alpha[i], q(i), 1, r(i), 1, queue );      // r = r - alpha q
            gammaold[i] = gammanew[i];

            res[i] = magma_dnrm2( dofs, r(i), 1, queue );
        }

        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res[0];
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }


        if (  res[0]/nom0[0]  < solver_par->rtol ) {
            break;
        }
    }
    while ( solver_par->numiter+1 <= solver_par->maxiter );
    
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    CHECK( magma_dresidual( A, b, *x, residual, queue ));
    solver_par->iter_res = res[0];
    solver_par->final_res = residual[0];

    if ( solver_par->numiter < solver_par->maxiter ) {
        solver_par->info = MAGMA_SUCCESS;
    } else if ( solver_par->init_res > solver_par->final_res ) {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res[0];
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_SLOW_CONVERGENCE;
        if( solver_par->iter_res < solver_par->rtol*solver_par->init_res ){
            info = MAGMA_SUCCESS;
        }
    }
    else {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res[0];
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_DIVERGENCE;
    }
    for( i=0; i<num_vecs; i++) {
        printf("%.4e  ",res[i]);
    }
    printf("\n");
    for( i=0; i<num_vecs; i++) {
        printf("%.4e  ",residual[i]);
    }
    printf("\n");

cleanup:
    magma_dmfree(&r, queue );
    magma_dmfree(&rt, queue );
    magma_dmfree(&p, queue );
    magma_dmfree(&q, queue );
    magma_dmfree(&h, queue );

    magma_free_cpu(alpha);
    magma_free_cpu(beta);
    magma_free_cpu(nom);
    magma_free_cpu(nom0);
    magma_free_cpu(r0);
    magma_free_cpu(gammaold);
    magma_free_cpu(gammanew);
    magma_free_cpu(den);
    magma_free_cpu(res);

    solver_par->info = info;
    return info;
}   /* magma_dbpcg */