Example #1
0
dict_table_t*
dict_load_table(
/*============*/
			/* out: table, NULL if does not exist */
	char*	name)	/* in: table name */
{
	dict_table_t*	table;
	dict_table_t*	sys_tables;
	btr_pcur_t	pcur;
	dict_index_t*	sys_index;
	dtuple_t*	tuple;
	mem_heap_t*	heap;
	dfield_t*	dfield;
	rec_t*		rec;
	byte*		field;
	ulint		len;
	char*		buf;
	ulint		space;
	ulint		n_cols;
	mtr_t		mtr;
	
	ut_ad(mutex_own(&(dict_sys->mutex)));

	heap = mem_heap_create(1000);
	
	mtr_start(&mtr);

	sys_tables = dict_table_get_low("SYS_TABLES");
	sys_index = UT_LIST_GET_FIRST(sys_tables->indexes);

	tuple = dtuple_create(heap, 1);
	dfield = dtuple_get_nth_field(tuple, 0);

	dfield_set_data(dfield, name, ut_strlen(name));
	dict_index_copy_types(tuple, sys_index, 1);

	btr_pcur_open_on_user_rec(sys_index, tuple, PAGE_CUR_GE,
					BTR_SEARCH_LEAF, &pcur, &mtr);
	rec = btr_pcur_get_rec(&pcur);

	if (!btr_pcur_is_on_user_rec(&pcur, &mtr)
					|| rec_get_deleted_flag(rec)) {
		/* Not found */

		btr_pcur_close(&pcur);
		mtr_commit(&mtr);
		mem_heap_free(heap);
		
		return(NULL);
	}	

	field = rec_get_nth_field(rec, 0, &len);

	/* Check if the table name in record is the searched one */
	if (len != ut_strlen(name) || ut_memcmp(name, field, len) != 0) {

		btr_pcur_close(&pcur);
		mtr_commit(&mtr);
		mem_heap_free(heap);
		
		return(NULL);
	}

	ut_a(0 == ut_strcmp("SPACE",
		dict_field_get_col(
		dict_index_get_nth_field(
			dict_table_get_first_index(sys_tables), 9))->name));
	
	field = rec_get_nth_field(rec, 9, &len);
	space = mach_read_from_4(field);

	ut_a(0 == ut_strcmp("N_COLS",
		dict_field_get_col(
		dict_index_get_nth_field(
			dict_table_get_first_index(sys_tables), 4))->name));

	field = rec_get_nth_field(rec, 4, &len);
	n_cols = mach_read_from_4(field);

	table = dict_mem_table_create(name, space, n_cols);

	ut_a(0 == ut_strcmp("ID",
		dict_field_get_col(
		dict_index_get_nth_field(
			dict_table_get_first_index(sys_tables), 3))->name));

	field = rec_get_nth_field(rec, 3, &len);
	table->id = mach_read_from_8(field);

	field = rec_get_nth_field(rec, 5, &len);
	table->type = mach_read_from_4(field);

	if (table->type == DICT_TABLE_CLUSTER_MEMBER) {
		ut_a(0);
	
		field = rec_get_nth_field(rec, 6, &len);
		table->mix_id = mach_read_from_8(field);

		field = rec_get_nth_field(rec, 8, &len);
		buf = mem_heap_alloc(heap, len);
		ut_memcpy(buf, field, len);

		table->cluster_name = buf;
	}

	if ((table->type == DICT_TABLE_CLUSTER)
	    || (table->type == DICT_TABLE_CLUSTER_MEMBER)) {
		
		field = rec_get_nth_field(rec, 7, &len);
		table->mix_len = mach_read_from_4(field);
	}

	btr_pcur_close(&pcur);
	mtr_commit(&mtr);

	if (table->type == DICT_TABLE_CLUSTER_MEMBER) {
		/* Load the cluster table definition if not yet in
		memory cache */
		dict_table_get_low(table->cluster_name);
	}

	dict_load_columns(table, heap);

	dict_table_add_to_cache(table);

	dict_load_indexes(table, heap);
	
	ut_a(DB_SUCCESS == dict_load_foreigns(table->name));

	mem_heap_free(heap);

	return(table);
}
Example #2
0
dict_table_t*
dict_load_table_on_id(
/*==================*/
				/* out: table; NULL if table does not exist */
	dulint	table_id)	/* in: table id */	
{
	byte		id_buf[8];
	btr_pcur_t	pcur;
	mem_heap_t* 	heap;
	dtuple_t*	tuple;
	dfield_t*	dfield;
	dict_index_t*	sys_table_ids;
	dict_table_t*	sys_tables;
	rec_t*		rec;
	byte*		field;
	ulint		len;	
	dict_table_t*	table;
	char*		name;
	mtr_t		mtr;
	
	ut_ad(mutex_own(&(dict_sys->mutex)));

	/* NOTE that the operation of this function is protected by
	the dictionary mutex, and therefore no deadlocks can occur
	with other dictionary operations. */

	mtr_start(&mtr);	
	/*---------------------------------------------------*/
	/* Get the secondary index based on ID for table SYS_TABLES */	
	sys_tables = dict_sys->sys_tables;
	sys_table_ids = dict_table_get_next_index(
				dict_table_get_first_index(sys_tables));
	heap = mem_heap_create(256);

	tuple  = dtuple_create(heap, 1);
	dfield = dtuple_get_nth_field(tuple, 0);

	/* Write the table id in byte format to id_buf */
	mach_write_to_8(id_buf, table_id);
	
	dfield_set_data(dfield, id_buf, 8);
	dict_index_copy_types(tuple, sys_table_ids, 1);

	btr_pcur_open_on_user_rec(sys_table_ids, tuple, PAGE_CUR_GE,
						BTR_SEARCH_LEAF, &pcur, &mtr);
	rec = btr_pcur_get_rec(&pcur);
	
	if (!btr_pcur_is_on_user_rec(&pcur, &mtr)
					|| rec_get_deleted_flag(rec)) {
		/* Not found */

		btr_pcur_close(&pcur);
		mtr_commit(&mtr);
		mem_heap_free(heap);
		
		return(NULL);
	}

	/*---------------------------------------------------*/
	/* Now we have the record in the secondary index containing the
	table ID and NAME */

	rec = btr_pcur_get_rec(&pcur);
	field = rec_get_nth_field(rec, 0, &len);
	ut_ad(len == 8);

	/* Check if the table id in record is the one searched for */
	if (ut_dulint_cmp(table_id, mach_read_from_8(field)) != 0) {

		btr_pcur_close(&pcur);
		mtr_commit(&mtr);
		mem_heap_free(heap);
		
		return(NULL);
	}
		
	/* Now we get the table name from the record */
	field = rec_get_nth_field(rec, 1, &len);

	name = mem_heap_alloc(heap, len + 1);
	ut_memcpy(name, field, len);
	name[len] = '\0';
	
	/* Load the table definition to memory */
	table = dict_load_table(name);

	ut_a(table);
	
	btr_pcur_close(&pcur);
	mtr_commit(&mtr);
	mem_heap_free(heap);

	return(table);
}
Example #3
0
/*****************************************************************//**
Constructs the last committed version of a clustered index record,
which should be seen by a semi-consistent read.
@return	DB_SUCCESS or DB_MISSING_HISTORY */
UNIV_INTERN
ulint
row_vers_build_for_semi_consistent_read(
/*====================================*/
	const rec_t*	rec,	/*!< in: record in a clustered index; the
				caller must have a latch on the page; this
				latch locks the top of the stack of versions
				of this records */
	mtr_t*		mtr,	/*!< in: mtr holding the latch on rec */
	dict_index_t*	index,	/*!< in: the clustered index */
	ulint**		offsets,/*!< in/out: offsets returned by
				rec_get_offsets(rec, index) */
	mem_heap_t**	offset_heap,/*!< in/out: memory heap from which
				the offsets are allocated */
	mem_heap_t*	in_heap,/*!< in: memory heap from which the memory for
				*old_vers is allocated; memory for possible
				intermediate versions is allocated and freed
				locally within the function */
	const rec_t**	old_vers)/*!< out: rec, old version, or NULL if the
				record does not exist in the view, that is,
				it was freshly inserted afterwards */
{
	const rec_t*	version;
	mem_heap_t*	heap		= NULL;
	byte*		buf;
	ulint		err;
	trx_id_t	rec_trx_id	= 0;

	ut_ad(dict_index_is_clust(index));
	ut_ad(mtr_memo_contains_page(mtr, rec, MTR_MEMO_PAGE_X_FIX)
	      || mtr_memo_contains_page(mtr, rec, MTR_MEMO_PAGE_S_FIX));
#ifdef UNIV_SYNC_DEBUG
	ut_ad(!rw_lock_own(&(purge_sys->latch), RW_LOCK_SHARED));
#endif /* UNIV_SYNC_DEBUG */

	ut_ad(rec_offs_validate(rec, index, *offsets));

	rw_lock_s_lock(&(purge_sys->latch));
	/* The S-latch on purge_sys prevents the purge view from
	changing.  Thus, if we have an uncommitted transaction at
	this point, then purge cannot remove its undo log even if
	the transaction could commit now. */

	version = rec;

	for (;;) {
		trx_t*		version_trx;
		mem_heap_t*	heap2;
		rec_t*		prev_version;
		trx_id_t	version_trx_id;

		version_trx_id = row_get_rec_trx_id(version, index, *offsets);
		if (rec == version) {
			rec_trx_id = version_trx_id;
		}

		mutex_enter(&kernel_mutex);
		version_trx = trx_get_on_id(version_trx_id);
		mutex_exit(&kernel_mutex);

		if (!version_trx
		    || version_trx->conc_state == TRX_NOT_STARTED
		    || version_trx->conc_state == TRX_COMMITTED_IN_MEMORY) {

			/* We found a version that belongs to a
			committed transaction: return it. */

			if (rec == version) {
				*old_vers = rec;
				err = DB_SUCCESS;
				break;
			}

			/* We assume that a rolled-back transaction stays in
			TRX_ACTIVE state until all the changes have been
			rolled back and the transaction is removed from
			the global list of transactions. */

			if (rec_trx_id == version_trx_id) {
				/* The transaction was committed while
				we searched for earlier versions.
				Return the current version as a
				semi-consistent read. */

				version = rec;
				*offsets = rec_get_offsets(version,
							   index, *offsets,
							   ULINT_UNDEFINED,
							   offset_heap);
			}

			buf = mem_heap_alloc(in_heap, rec_offs_size(*offsets));
			*old_vers = rec_copy(buf, version, *offsets);
			rec_offs_make_valid(*old_vers, index, *offsets);
			err = DB_SUCCESS;

			break;
		}

		heap2 = heap;
		heap = mem_heap_create(1024);

		err = trx_undo_prev_version_build(rec, mtr, version, index,
						  *offsets, heap,
						  &prev_version);
		if (heap2) {
			mem_heap_free(heap2); /* free version */
		}

		if (UNIV_UNLIKELY(err != DB_SUCCESS)) {
			break;
		}

		if (prev_version == NULL) {
			/* It was a freshly inserted version */
			*old_vers = NULL;
			err = DB_SUCCESS;

			break;
		}

		version = prev_version;
		*offsets = rec_get_offsets(version, index, *offsets,
					   ULINT_UNDEFINED, offset_heap);
	}/* for (;;) */

	if (heap) {
		mem_heap_free(heap);
	}
	rw_lock_s_unlock(&(purge_sys->latch));

	return(err);
}
Example #4
0
/******************************************************************//**
Add a bound literal to a symbol table.
@return	symbol table node */
UNIV_INTERN
sym_node_t*
sym_tab_add_bound_lit(
/*==================*/
	sym_tab_t*	sym_tab,	/*!< in: symbol table */
	const char*	name,		/*!< in: name of bound literal */
	ulint*		lit_type)	/*!< out: type of literal (PARS_*_LIT) */
{
	sym_node_t*		node;
	pars_bound_lit_t*	blit;
	ulint			len = 0;

	blit = pars_info_get_bound_lit(sym_tab->info, name);
	ut_a(blit);

	node = mem_heap_alloc(sym_tab->heap, sizeof(sym_node_t));

	node->common.type = QUE_NODE_SYMBOL;

	node->resolved = TRUE;
	node->token_type = SYM_LIT;

	node->indirection = NULL;

	switch (blit->type) {
	case DATA_FIXBINARY:
		len = blit->length;
		*lit_type = PARS_FIXBINARY_LIT;
		break;

	case DATA_BLOB:
		*lit_type = PARS_BLOB_LIT;
		break;

	case DATA_VARCHAR:
		*lit_type = PARS_STR_LIT;
		break;

	case DATA_CHAR:
		ut_a(blit->length > 0);

		len = blit->length;
		*lit_type = PARS_STR_LIT;
		break;

	case DATA_INT:
		ut_a(blit->length > 0);
		ut_a(blit->length <= 8);

		len = blit->length;
		*lit_type = PARS_INT_LIT;
		break;

	default:
		ut_error;
	}

	dtype_set(dfield_get_type(&node->common.val),
		  blit->type, blit->prtype, len);

	dfield_set_data(&(node->common.val), blit->address, blit->length);

	node->common.val_buf_size = 0;
	node->prefetch_buf = NULL;
	node->cursor_def = NULL;

	UT_LIST_ADD_LAST(sym_list, sym_tab->sym_list, node);

	node->sym_table = sym_tab;

	return(node);
}
/*****************************************************************//**
Based on a table object, this function builds the entry to be inserted
in the SYS_COLUMNS system table.
@return	the tuple which should be inserted */
static
dtuple_t*
dict_create_sys_columns_tuple(
/*==========================*/
	const dict_table_t*	table,	/*!< in: table */
	ulint			i,	/*!< in: column number */
	mem_heap_t*		heap)	/*!< in: memory heap from
					which the memory for the built
					tuple is allocated */
{
	dict_table_t*		sys_columns;
	dtuple_t*		entry;
	const dict_col_t*	column;
	dfield_t*		dfield;
	byte*			ptr;
	const char*		col_name;

	ut_ad(table);
	ut_ad(heap);

	column = dict_table_get_nth_col(table, i);

	sys_columns = dict_sys->sys_columns;

	entry = dtuple_create(heap, 7 + DATA_N_SYS_COLS);

	dict_table_copy_types(entry, sys_columns);

	/* 0: TABLE_ID -----------------------*/
	dfield = dtuple_get_nth_field(entry, 0/*TABLE_ID*/);

	ptr = mem_heap_alloc(heap, 8);
	mach_write_to_8(ptr, table->id);

	dfield_set_data(dfield, ptr, 8);
	/* 1: POS ----------------------------*/
	dfield = dtuple_get_nth_field(entry, 1/*POS*/);

	ptr = mem_heap_alloc(heap, 4);
	mach_write_to_4(ptr, i);

	dfield_set_data(dfield, ptr, 4);
	/* 4: NAME ---------------------------*/
	dfield = dtuple_get_nth_field(entry, 2/*NAME*/);

	col_name = dict_table_get_col_name(table, i);
	dfield_set_data(dfield, col_name, ut_strlen(col_name));
	/* 5: MTYPE --------------------------*/
	dfield = dtuple_get_nth_field(entry, 3/*MTYPE*/);

	ptr = mem_heap_alloc(heap, 4);
	mach_write_to_4(ptr, column->mtype);

	dfield_set_data(dfield, ptr, 4);
	/* 6: PRTYPE -------------------------*/
	dfield = dtuple_get_nth_field(entry, 4/*PRTYPE*/);

	ptr = mem_heap_alloc(heap, 4);
	mach_write_to_4(ptr, column->prtype);

	dfield_set_data(dfield, ptr, 4);
	/* 7: LEN ----------------------------*/
	dfield = dtuple_get_nth_field(entry, 5/*LEN*/);

	ptr = mem_heap_alloc(heap, 4);
	mach_write_to_4(ptr, column->len);

	dfield_set_data(dfield, ptr, 4);
	/* 8: PREC ---------------------------*/
	dfield = dtuple_get_nth_field(entry, 6/*PREC*/);

	ptr = mem_heap_alloc(heap, 4);
	mach_write_to_4(ptr, 0/* unused */);

	dfield_set_data(dfield, ptr, 4);
	/*---------------------------------*/

	return(entry);
}
Example #6
0
/*****************************************************************//**
Constructs the version of a clustered index record which a consistent
read should see. We assume that the trx id stored in rec is such that
the consistent read should not see rec in its present version.
@return	DB_SUCCESS or DB_MISSING_HISTORY */
UNIV_INTERN
ulint
row_vers_build_for_consistent_read(
/*===============================*/
	const rec_t*	rec,	/*!< in: record in a clustered index; the
				caller must have a latch on the page; this
				latch locks the top of the stack of versions
				of this records */
	mtr_t*		mtr,	/*!< in: mtr holding the latch on rec */
	dict_index_t*	index,	/*!< in: the clustered index */
	ulint**		offsets,/*!< in/out: offsets returned by
				rec_get_offsets(rec, index) */
	read_view_t*	view,	/*!< in: the consistent read view */
	mem_heap_t**	offset_heap,/*!< in/out: memory heap from which
				the offsets are allocated */
	mem_heap_t*	in_heap,/*!< in: memory heap from which the memory for
				*old_vers is allocated; memory for possible
				intermediate versions is allocated and freed
				locally within the function */
	rec_t**		old_vers)/*!< out, own: old version, or NULL if the
				record does not exist in the view, that is,
				it was freshly inserted afterwards */
{
	const rec_t*	version;
	rec_t*		prev_version;
	trx_id_t	trx_id;
	mem_heap_t*	heap		= NULL;
	byte*		buf;
	ulint		err;

	ut_ad(dict_index_is_clust(index));
	ut_ad(mtr_memo_contains_page(mtr, rec, MTR_MEMO_PAGE_X_FIX)
	      || mtr_memo_contains_page(mtr, rec, MTR_MEMO_PAGE_S_FIX));
#ifdef UNIV_SYNC_DEBUG
	ut_ad(!rw_lock_own(&(purge_sys->latch), RW_LOCK_SHARED));
#endif /* UNIV_SYNC_DEBUG */

	ut_ad(rec_offs_validate(rec, index, *offsets));

	trx_id = row_get_rec_trx_id(rec, index, *offsets);

	ut_ad(!read_view_sees_trx_id(view, trx_id));

	rw_lock_s_lock(&(purge_sys->latch));
	version = rec;

	for (;;) {
		mem_heap_t*	heap2	= heap;
		trx_undo_rec_t* undo_rec;
		roll_ptr_t	roll_ptr;
		undo_no_t	undo_no;
		heap = mem_heap_create(1024);

		/* If we have high-granularity consistent read view and
		creating transaction of the view is the same as trx_id in
		the record we see this record only in the case when
		undo_no of the record is < undo_no in the view. */

		if (view->type == VIEW_HIGH_GRANULARITY
		    && view->creator_trx_id == trx_id) {

			roll_ptr = row_get_rec_roll_ptr(version, index,
							*offsets);
			undo_rec = trx_undo_get_undo_rec_low(roll_ptr, heap);
			undo_no = trx_undo_rec_get_undo_no(undo_rec);
			mem_heap_empty(heap);

			if (view->undo_no > undo_no) {
				/* The view already sees this version: we can
				copy it to in_heap and return */

				buf = mem_heap_alloc(in_heap,
						     rec_offs_size(*offsets));
				*old_vers = rec_copy(buf, version, *offsets);
				rec_offs_make_valid(*old_vers, index,
						    *offsets);
				err = DB_SUCCESS;

				break;
			}
		}

		err = trx_undo_prev_version_build(rec, mtr, version, index,
						  *offsets, heap,
						  &prev_version);
		if (heap2) {
			mem_heap_free(heap2); /* free version */
		}

		if (err != DB_SUCCESS) {
			break;
		}

		if (prev_version == NULL) {
			/* It was a freshly inserted version */
			*old_vers = NULL;
			err = DB_SUCCESS;

			break;
		}

		*offsets = rec_get_offsets(prev_version, index, *offsets,
					   ULINT_UNDEFINED, offset_heap);

		trx_id = row_get_rec_trx_id(prev_version, index, *offsets);

		if (read_view_sees_trx_id(view, trx_id)) {

			/* The view already sees this version: we can copy
			it to in_heap and return */

			buf = mem_heap_alloc(in_heap, rec_offs_size(*offsets));
			*old_vers = rec_copy(buf, prev_version, *offsets);
			rec_offs_make_valid(*old_vers, index, *offsets);
			err = DB_SUCCESS;

			break;
		}

		version = prev_version;
	}/* for (;;) */

	mem_heap_free(heap);
	rw_lock_s_unlock(&(purge_sys->latch));

	return(err);
}
Example #7
0
/*************************************************************//**
Inserts an entry into a hash table. If an entry with the same fold number
is found, its node is updated to point to the new data, and no new node
is inserted. If btr_search_enabled is set to FALSE, we will only allow
updating existing nodes, but no new node is allowed to be added.
@return	TRUE if succeed, FALSE if no more memory could be allocated */
UNIV_INTERN
ibool
ha_insert_for_fold_func(
/*====================*/
	hash_table_t*	table,	/*!< in: hash table */
	ulint		fold,	/*!< in: folded value of data; if a node with
				the same fold value already exists, it is
				updated to point to the same data, and no new
				node is created! */
#if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG
	buf_block_t*	block,	/*!< in: buffer block containing the data */
#endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */
	rec_t*		data)	/*!< in: data, must not be NULL */
{
	hash_cell_t*	cell;
	ha_node_t*	node;
	ha_node_t*	prev_node;
	ulint		hash;

	ut_ad(data);
	ut_ad(table);
	ut_ad(table->magic_n == HASH_TABLE_MAGIC_N);
#if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG
	ut_a(block->frame == page_align(data));
#endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */
#ifdef UNIV_SYNC_DEBUG
	ut_ad(rw_lock_own(&btr_search_latch, RW_LOCK_EX));
#endif /* UNIV_SYNC_DEBUG */
	ASSERT_HASH_MUTEX_OWN(table, fold);
	ut_ad(btr_search_enabled);

	hash = hash_calc_hash(fold, table);

	cell = hash_get_nth_cell(table, hash);

	prev_node = cell->node;

	while (prev_node != NULL) {
		if (prev_node->fold == fold) {
#if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG
# ifndef UNIV_HOTBACKUP
			if (table->adaptive) {
				buf_block_t* prev_block = prev_node->block;
				ut_a(prev_block->frame
				     == page_align(prev_node->data));
				ut_a(prev_block->n_pointers > 0);
				prev_block->n_pointers--;
				block->n_pointers++;
			}
# endif /* !UNIV_HOTBACKUP */

			prev_node->block = block;
#endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */
			prev_node->data = data;

			return(TRUE);
		}

		prev_node = prev_node->next;
	}

	/* We have to allocate a new chain node */

	node = mem_heap_alloc(hash_get_heap(table, fold), sizeof(ha_node_t));

	if (node == NULL) {
		/* It was a btr search type memory heap and at the moment
		no more memory could be allocated: return */

		ut_ad(hash_get_heap(table, fold)->type & MEM_HEAP_BTR_SEARCH);

		return(FALSE);
	}

	ha_node_set_data(node, block, data);

#if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG
# ifndef UNIV_HOTBACKUP
	if (table->adaptive) {
		block->n_pointers++;
	}
# endif /* !UNIV_HOTBACKUP */
#endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */

	node->fold = fold;

	node->next = NULL;

	prev_node = cell->node;

	if (prev_node == NULL) {

		cell->node = node;

		return(TRUE);
	}

	while (prev_node->next != NULL) {

		prev_node = prev_node->next;
	}

	prev_node->next = node;

	return(TRUE);
}
Example #8
0
/************************************************************************
Loads definitions for index fields. */
static
void
dict_load_fields(
/*=============*/
	dict_table_t*	table,	/* in: table */
	dict_index_t*	index,	/* in: index whose fields to load */
	mem_heap_t*	heap)	/* in: memory heap for temporary storage */
{
	dict_table_t*	sys_fields;
	dict_index_t*	sys_index;
	btr_pcur_t	pcur;
	dtuple_t*	tuple;
	dfield_t*	dfield;
	char*		col_name;
	rec_t*		rec;
	byte*		field;
	ulint		len;
	byte*		buf;
	ulint		i;
	mtr_t		mtr;
	
	ut_ad(mutex_own(&(dict_sys->mutex)));

	UT_NOT_USED(table);

	mtr_start(&mtr);

	sys_fields = dict_table_get_low("SYS_FIELDS");
	sys_index = UT_LIST_GET_FIRST(sys_fields->indexes);

	tuple = dtuple_create(heap, 1);
	dfield = dtuple_get_nth_field(tuple, 0);

	buf = mem_heap_alloc(heap, 8);
	mach_write_to_8(buf, index->id);

	dfield_set_data(dfield, buf, 8);
	dict_index_copy_types(tuple, sys_index, 1);

	btr_pcur_open_on_user_rec(sys_index, tuple, PAGE_CUR_GE,
						BTR_SEARCH_LEAF, &pcur, &mtr);
   	for (i = 0; i < index->n_fields; i++) {

		rec = btr_pcur_get_rec(&pcur);

		ut_a(btr_pcur_is_on_user_rec(&pcur, &mtr));
		ut_a(!rec_get_deleted_flag(rec));
		
		field = rec_get_nth_field(rec, 0, &len);
		ut_ad(len == 8);
		ut_a(ut_memcmp(buf, field, len) == 0);

		field = rec_get_nth_field(rec, 1, &len);
		ut_ad(len == 4);
		ut_a(i == mach_read_from_4(field));

		ut_a(0 == ut_strcmp("COL_NAME",
			dict_field_get_col(
			dict_index_get_nth_field(
			dict_table_get_first_index(sys_fields), 4))->name));

		field = rec_get_nth_field(rec, 4, &len);

		col_name = mem_heap_alloc(heap, len + 1);
		ut_memcpy(col_name, field, len);
		col_name[len] = '\0';
		
		dict_mem_index_add_field(index, col_name, 0);

		btr_pcur_move_to_next_user_rec(&pcur, &mtr);
	} 

	btr_pcur_close(&pcur);
	mtr_commit(&mtr);
}
Example #9
0
byte*
trx_undo_update_rec_get_update(
/*===========================*/
				/* out: remaining part of the record,
				NULL if an error detected, which means that
				the record is corrupted */
	byte*		ptr,	/* in: remaining part in update undo log
				record, after reading the row reference
				NOTE that this copy of the undo log record must
				be preserved as long as the update vector is
				used, as we do NOT copy the data in the
				record! */
	dict_index_t*	index,	/* in: clustered index */
	ulint		type,	/* in: TRX_UNDO_UPD_EXIST_REC,
				TRX_UNDO_UPD_DEL_REC, or
				TRX_UNDO_DEL_MARK_REC; in the last case,
				only trx id and roll ptr fields are added to
				the update vector */
	dulint		trx_id,	/* in: transaction id from this undo record */
	dulint		roll_ptr,/* in: roll pointer from this undo record */
	ulint		info_bits,/* in: info bits from this undo record */
	trx_t*		trx,	/* in: transaction */
	mem_heap_t*	heap,	/* in: memory heap from which the memory
				needed is allocated */
	upd_t**		upd)	/* out, own: update vector */
{
	upd_field_t*	upd_field;
	upd_t*		update;
	ulint		n_fields;
	byte*		buf;
	byte*		field;
	ulint		len;
	ulint		field_no;
	ulint		i;
	
	ut_a(index->type & DICT_CLUSTERED);

	if (type != TRX_UNDO_DEL_MARK_REC) {
		ptr = trx_undo_update_rec_get_n_upd_fields(ptr, &n_fields);
	} else {
		n_fields = 0;
	}

	update = upd_create(n_fields + 2, heap);

	update->info_bits = info_bits;

	/* Store first trx id and roll ptr to update vector */

	upd_field = upd_get_nth_field(update, n_fields);
	buf = mem_heap_alloc(heap, DATA_TRX_ID_LEN);
	trx_write_trx_id(buf, trx_id);

	upd_field_set_field_no(upd_field,
			dict_index_get_sys_col_pos(index, DATA_TRX_ID),
								index, trx);
	dfield_set_data(&(upd_field->new_val), buf, DATA_TRX_ID_LEN);

	upd_field = upd_get_nth_field(update, n_fields + 1);
	buf = mem_heap_alloc(heap, DATA_ROLL_PTR_LEN);
	trx_write_roll_ptr(buf, roll_ptr);

	upd_field_set_field_no(upd_field,
			dict_index_get_sys_col_pos(index, DATA_ROLL_PTR),
								index, trx);
	dfield_set_data(&(upd_field->new_val), buf, DATA_ROLL_PTR_LEN);
	
	/* Store then the updated ordinary columns to the update vector */

	for (i = 0; i < n_fields; i++) {

		ptr = trx_undo_update_rec_get_field_no(ptr, &field_no);

		if (field_no >= dict_index_get_n_fields(index)) {
			fprintf(stderr,
"InnoDB: Error: trying to access update undo rec field %lu in ", (ulong) field_no);
			dict_index_name_print(stderr, trx, index);
			fprintf(stderr, "\n"
"InnoDB: but index has only %lu fields\n"
"InnoDB: Submit a detailed bug report to http://bugs.mysql.com\n"
"InnoDB: Run also CHECK TABLE ",
				(ulong) dict_index_get_n_fields(index));
			ut_print_name(stderr, trx, index->table_name);
			fprintf(stderr, "\n"
"InnoDB: n_fields = %lu, i = %lu, ptr %p\n",
				(ulong) n_fields, (ulong) i, ptr);
			return(NULL);
		}

		ptr = trx_undo_rec_get_col_val(ptr, &field, &len);

		upd_field = upd_get_nth_field(update, i);

		upd_field_set_field_no(upd_field, field_no, index, trx);

		if (len != UNIV_SQL_NULL && len >= UNIV_EXTERN_STORAGE_FIELD) {

			upd_field->extern_storage = TRUE;
			
			len -= UNIV_EXTERN_STORAGE_FIELD;
		}
		
		dfield_set_data(&(upd_field->new_val), field, len);
	}

	*upd = update;

	return(ptr);
}
Example #10
0
big_rec_t*
dtuple_convert_big_rec(
/*===================*/
				/* out, own: created big record vector,
				NULL if we are not able to shorten
				the entry enough, i.e., if there are
				too many short fields in entry */
	dict_index_t*	index,	/* in: index */
	dtuple_t*	entry,	/* in: index entry */
	ulint*		ext_vec,/* in: array of externally stored fields,
				or NULL: if a field already is externally
				stored, then we cannot move it to the vector
				this function returns */
	ulint		n_ext_vec)/* in: number of elements is ext_vec */
{
	mem_heap_t*	heap;
	big_rec_t*	vector;
	dfield_t*	dfield;
	ulint		size;
	ulint		n_fields;
	ulint		longest;
	ulint		longest_i		= ULINT_MAX;
	ibool		is_externally_stored;
	ulint		i;
	ulint		j;
	char		err_buf[1000];
	
	ut_a(dtuple_check_typed_no_assert(entry));

	size = rec_get_converted_size(entry);

	if (size > 1000000000) {
		fprintf(stderr,
"InnoDB: Warning: tuple size very big: %lu\n", size);
		
		dtuple_sprintf(err_buf, 900, entry);
		fprintf(stderr,
"InnoDB: Tuple contents: %s\n", err_buf);
	}

	heap = mem_heap_create(size + dtuple_get_n_fields(entry)
					* sizeof(big_rec_field_t) + 1000);

	vector = mem_heap_alloc(heap, sizeof(big_rec_t));

	vector->heap = heap;
	vector->fields = mem_heap_alloc(heap, dtuple_get_n_fields(entry)
					* sizeof(big_rec_field_t));

	/* Decide which fields to shorten: the algorithm is to look for
	the longest field whose type is DATA_BLOB */

	n_fields = 0;

	while ((rec_get_converted_size(entry)
					>= page_get_free_space_of_empty() / 2)
	       || rec_get_converted_size(entry) >= REC_MAX_DATA_SIZE) {

		longest = 0;
		for (i = dict_index_get_n_unique_in_tree(index);
				i < dtuple_get_n_fields(entry); i++) {

			/* Skip over fields which already are externally
			stored */

			is_externally_stored = FALSE;

			if (ext_vec) {
				for (j = 0; j < n_ext_vec; j++) {
					if (ext_vec[j] == i) {
						is_externally_stored = TRUE;
					}
				}
			}
				
			if (!is_externally_stored
			    && dict_index_get_nth_type(index, i)->mtype
			       == DATA_BLOB) {

				dfield = dtuple_get_nth_field(entry, i);

				if (dfield->len != UNIV_SQL_NULL &&
			        		dfield->len > longest) {

			        	longest = dfield->len;

			        	longest_i = i;
				}
			}
		}
	
		/* We do not store externally fields which are smaller than
		DICT_MAX_COL_PREFIX_LEN */

		ut_a(DICT_MAX_COL_PREFIX_LEN > REC_1BYTE_OFFS_LIMIT);

		if (longest < BTR_EXTERN_FIELD_REF_SIZE + 10
						+ DICT_MAX_COL_PREFIX_LEN) {
			/* Cannot shorten more */

			mem_heap_free(heap);

			return(NULL);
		}

		/* Move data from field longest_i to big rec vector;
		we do not let data size of the remaining entry
		drop below 128 which is the limit for the 2-byte
		offset storage format in a physical record. This
		we accomplish by storing 128 bytes of data in entry
		itself, and only the remaining part to big rec vec.

		We store the first bytes locally to the record. Then
		we can calculate all ordering fields in all indexes
		from locally stored data. */

		dfield = dtuple_get_nth_field(entry, longest_i);
		vector->fields[n_fields].field_no = longest_i;

		ut_a(dfield->len > DICT_MAX_COL_PREFIX_LEN);
		
		vector->fields[n_fields].len = dfield->len
						- DICT_MAX_COL_PREFIX_LEN;

		vector->fields[n_fields].data = mem_heap_alloc(heap,
						vector->fields[n_fields].len);

		/* Copy data (from the end of field) to big rec vector */

		ut_memcpy(vector->fields[n_fields].data,
				((byte*)dfield->data) + dfield->len
						- vector->fields[n_fields].len,
				vector->fields[n_fields].len);
		dfield->len = dfield->len - vector->fields[n_fields].len
						+ BTR_EXTERN_FIELD_REF_SIZE;

		/* Set the extern field reference in dfield to zero */
		memset(((byte*)dfield->data)
			+ dfield->len - BTR_EXTERN_FIELD_REF_SIZE,
					0, BTR_EXTERN_FIELD_REF_SIZE);
		n_fields++;
	}	

	vector->n_fields = n_fields;
	return(vector);
}
/*****************************************************************//**
Based on a table object, this function builds the entry to be inserted
in the SYS_TABLES system table.
@return	the tuple which should be inserted */
static
dtuple_t*
dict_create_sys_tables_tuple(
/*=========================*/
	const dict_table_t*	table,	/*!< in: table */
	mem_heap_t*		heap)	/*!< in: memory heap from
					which the memory for the built
					tuple is allocated */
{
	dict_table_t*	sys_tables;
	dtuple_t*	entry;
	dfield_t*	dfield;
	byte*		ptr;

	ut_ad(table);
	ut_ad(heap);

	sys_tables = dict_sys->sys_tables;

	entry = dtuple_create(heap, 8 + DATA_N_SYS_COLS);

	dict_table_copy_types(entry, sys_tables);

	/* 0: NAME -----------------------------*/
	dfield = dtuple_get_nth_field(entry, 0/*NAME*/);

	dfield_set_data(dfield, table->name, ut_strlen(table->name));
	/* 3: ID -------------------------------*/
	dfield = dtuple_get_nth_field(entry, 1/*ID*/);

	ptr = mem_heap_alloc(heap, 8);
	mach_write_to_8(ptr, table->id);

	dfield_set_data(dfield, ptr, 8);
	/* 4: N_COLS ---------------------------*/
	dfield = dtuple_get_nth_field(entry, 2/*N_COLS*/);

#if DICT_TF_COMPACT != 1
#error
#endif

	ptr = mem_heap_alloc(heap, 4);
	mach_write_to_4(ptr, table->n_def
			| ((table->flags & DICT_TF_COMPACT) << 31));
	dfield_set_data(dfield, ptr, 4);
	/* 5: TYPE -----------------------------*/
	dfield = dtuple_get_nth_field(entry, 3/*TYPE*/);

	ptr = mem_heap_alloc(heap, 4);
	if (table->flags & (~DICT_TF_COMPACT & ~(~0 << DICT_TF_BITS))) {
		ut_a(table->flags & DICT_TF_COMPACT);
		ut_a(dict_table_get_format(table) >= DICT_TF_FORMAT_ZIP);
		ut_a((table->flags & DICT_TF_ZSSIZE_MASK)
		     <= (DICT_TF_ZSSIZE_MAX << DICT_TF_ZSSIZE_SHIFT));
		ut_a(!(table->flags & (~0 << DICT_TF2_BITS)));
		mach_write_to_4(ptr, table->flags & ~(~0 << DICT_TF_BITS));
	} else {
		mach_write_to_4(ptr, DICT_TABLE_ORDINARY);
	}

	dfield_set_data(dfield, ptr, 4);
	/* 6: MIX_ID (obsolete) ---------------------------*/
	dfield = dtuple_get_nth_field(entry, 4/*MIX_ID*/);

	ptr = mem_heap_zalloc(heap, 8);

	dfield_set_data(dfield, ptr, 8);
	/* 7: MIX_LEN (additional flags) --------------------------*/

	dfield = dtuple_get_nth_field(entry, 5/*MIX_LEN*/);

	ptr = mem_heap_alloc(heap, 4);
	mach_write_to_4(ptr, table->flags >> DICT_TF2_SHIFT);

	dfield_set_data(dfield, ptr, 4);
	/* 8: CLUSTER_NAME ---------------------*/
	dfield = dtuple_get_nth_field(entry, 6/*CLUSTER_NAME*/);
	dfield_set_null(dfield); /* not supported */

	/* 9: SPACE ----------------------------*/
	dfield = dtuple_get_nth_field(entry, 7/*SPACE*/);

	ptr = mem_heap_alloc(heap, 4);
	mach_write_to_4(ptr, table->space);

	dfield_set_data(dfield, ptr, 4);
	/*----------------------------------*/

	return(entry);
}
/*****************************************************************//**
Based on an index object, this function builds the entry to be inserted
in the SYS_FIELDS system table.
@return	the tuple which should be inserted */
static
dtuple_t*
dict_create_sys_fields_tuple(
/*=========================*/
	const dict_index_t*	index,	/*!< in: index */
	ulint			i,	/*!< in: field number */
	mem_heap_t*		heap)	/*!< in: memory heap from
					which the memory for the built
					tuple is allocated */
{
	dict_table_t*	sys_fields;
	dtuple_t*	entry;
	dict_field_t*	field;
	dfield_t*	dfield;
	byte*		ptr;
	ibool		index_contains_column_prefix_field	= FALSE;
	ulint		j;

	ut_ad(index);
	ut_ad(heap);

	for (j = 0; j < index->n_fields; j++) {
		if (dict_index_get_nth_field(index, j)->prefix_len > 0) {
			index_contains_column_prefix_field = TRUE;
			break;
		}
	}

	field = dict_index_get_nth_field(index, i);

	sys_fields = dict_sys->sys_fields;

	entry = dtuple_create(heap, 3 + DATA_N_SYS_COLS);

	dict_table_copy_types(entry, sys_fields);

	/* 0: INDEX_ID -----------------------*/
	dfield = dtuple_get_nth_field(entry, 0/*INDEX_ID*/);

	ptr = mem_heap_alloc(heap, 8);
	mach_write_to_8(ptr, index->id);

	dfield_set_data(dfield, ptr, 8);
	/* 1: POS + PREFIX LENGTH ----------------------------*/

	dfield = dtuple_get_nth_field(entry, 1/*POS*/);

	ptr = mem_heap_alloc(heap, 4);

	if (index_contains_column_prefix_field) {
		/* If there are column prefix fields in the index, then
		we store the number of the field to the 2 HIGH bytes
		and the prefix length to the 2 low bytes, */

		mach_write_to_4(ptr, (i << 16) + field->prefix_len);
	} else {
		/* Else we store the number of the field to the 2 LOW bytes.
		This is to keep the storage format compatible with
		InnoDB versions < 4.0.14. */

		mach_write_to_4(ptr, i);
	}

	dfield_set_data(dfield, ptr, 4);
	/* 4: COL_NAME -------------------------*/
	dfield = dtuple_get_nth_field(entry, 2/*COL_NAME*/);

	dfield_set_data(dfield, field->name,
			ut_strlen(field->name));
	/*---------------------------------*/

	return(entry);
}
/*****************************************************************//**
Based on an index object, this function builds the entry to be inserted
in the SYS_INDEXES system table.
@return	the tuple which should be inserted */
static
dtuple_t*
dict_create_sys_indexes_tuple(
/*==========================*/
	const dict_index_t*	index,	/*!< in: index */
	mem_heap_t*		heap)	/*!< in: memory heap from
					which the memory for the built
					tuple is allocated */
{
	dict_table_t*	sys_indexes;
	dict_table_t*	table;
	dtuple_t*	entry;
	dfield_t*	dfield;
	byte*		ptr;

	ut_ad(mutex_own(&(dict_sys->mutex)));
	ut_ad(index);
	ut_ad(heap);

	sys_indexes = dict_sys->sys_indexes;

	table = dict_table_get_low(index->table_name);

	entry = dtuple_create(heap, 7 + DATA_N_SYS_COLS);

	dict_table_copy_types(entry, sys_indexes);

	/* 0: TABLE_ID -----------------------*/
	dfield = dtuple_get_nth_field(entry, 0/*TABLE_ID*/);

	ptr = mem_heap_alloc(heap, 8);
	mach_write_to_8(ptr, table->id);

	dfield_set_data(dfield, ptr, 8);
	/* 1: ID ----------------------------*/
	dfield = dtuple_get_nth_field(entry, 1/*ID*/);

	ptr = mem_heap_alloc(heap, 8);
	mach_write_to_8(ptr, index->id);

	dfield_set_data(dfield, ptr, 8);
	/* 4: NAME --------------------------*/
	dfield = dtuple_get_nth_field(entry, 2/*NAME*/);

	dfield_set_data(dfield, index->name, ut_strlen(index->name));
	/* 5: N_FIELDS ----------------------*/
	dfield = dtuple_get_nth_field(entry, 3/*N_FIELDS*/);

	ptr = mem_heap_alloc(heap, 4);
	mach_write_to_4(ptr, index->n_fields);

	dfield_set_data(dfield, ptr, 4);
	/* 6: TYPE --------------------------*/
	dfield = dtuple_get_nth_field(entry, 4/*TYPE*/);

	ptr = mem_heap_alloc(heap, 4);
	mach_write_to_4(ptr, index->type);

	dfield_set_data(dfield, ptr, 4);
	/* 7: SPACE --------------------------*/

#if DICT_SYS_INDEXES_SPACE_NO_FIELD != 7
#error "DICT_SYS_INDEXES_SPACE_NO_FIELD != 7"
#endif

	dfield = dtuple_get_nth_field(entry, 5/*SPACE*/);

	ptr = mem_heap_alloc(heap, 4);
	mach_write_to_4(ptr, index->space);

	dfield_set_data(dfield, ptr, 4);
	/* 8: PAGE_NO --------------------------*/

#if DICT_SYS_INDEXES_PAGE_NO_FIELD != 8
#error "DICT_SYS_INDEXES_PAGE_NO_FIELD != 8"
#endif

	dfield = dtuple_get_nth_field(entry, 6/*PAGE_NO*/);

	ptr = mem_heap_alloc(heap, 4);
	mach_write_to_4(ptr, FIL_NULL);

	dfield_set_data(dfield, ptr, 4);
	/*--------------------------------*/

	return(entry);
}
Example #14
0
/************************************************************************
Loads definitions for table columns. */
static
void
dict_load_columns(
/*==============*/
	dict_table_t*	table,	/* in: table */
	mem_heap_t*	heap)	/* in: memory heap for temporary storage */
{
	dict_table_t*	sys_columns;
	dict_index_t*	sys_index;
	btr_pcur_t	pcur;
	dtuple_t*	tuple;
	dfield_t*	dfield;
	rec_t*		rec;
	byte*		field;
	ulint		len;
	byte*		buf;
	char*		name_buf;
	char*		name;
	ulint		mtype;
	ulint		prtype;
	ulint		col_len;
	ulint		prec;
	ulint		i;
	mtr_t		mtr;
	
	ut_ad(mutex_own(&(dict_sys->mutex)));

	mtr_start(&mtr);

	sys_columns = dict_table_get_low("SYS_COLUMNS");
	sys_index = UT_LIST_GET_FIRST(sys_columns->indexes);

	tuple = dtuple_create(heap, 1);
	dfield = dtuple_get_nth_field(tuple, 0);

	buf = mem_heap_alloc(heap, 8);
	mach_write_to_8(buf, table->id);

	dfield_set_data(dfield, buf, 8);
	dict_index_copy_types(tuple, sys_index, 1);

	btr_pcur_open_on_user_rec(sys_index, tuple, PAGE_CUR_GE,
						BTR_SEARCH_LEAF, &pcur, &mtr);
   	for (i = 0; i < table->n_cols - DATA_N_SYS_COLS; i++) {

		rec = btr_pcur_get_rec(&pcur);

		ut_a(btr_pcur_is_on_user_rec(&pcur, &mtr));

		ut_a(!rec_get_deleted_flag(rec));
		
		field = rec_get_nth_field(rec, 0, &len);
		ut_ad(len == 8);
		ut_a(ut_dulint_cmp(table->id, mach_read_from_8(field)) == 0);

		field = rec_get_nth_field(rec, 1, &len);
		ut_ad(len == 4);
		ut_a(i == mach_read_from_4(field));

		ut_a(0 == ut_strcmp("NAME",
			dict_field_get_col(
			dict_index_get_nth_field(
			dict_table_get_first_index(sys_columns), 4))->name));

		field = rec_get_nth_field(rec, 4, &len);

		name_buf = mem_heap_alloc(heap, len + 1);
		ut_memcpy(name_buf, field, len);
		name_buf[len] = '\0';

		name = name_buf;

		field = rec_get_nth_field(rec, 5, &len);
		mtype = mach_read_from_4(field);

		field = rec_get_nth_field(rec, 6, &len);
		prtype = mach_read_from_4(field);

		field = rec_get_nth_field(rec, 7, &len);
		col_len = mach_read_from_4(field);

		ut_a(0 == ut_strcmp("PREC",
			dict_field_get_col(
			dict_index_get_nth_field(
			dict_table_get_first_index(sys_columns), 8))->name));

		field = rec_get_nth_field(rec, 8, &len);
		prec = mach_read_from_4(field);

		dict_mem_table_add_col(table, name, mtype, prtype, col_len,
									prec);
		btr_pcur_move_to_next_user_rec(&pcur, &mtr);
	} 

	btr_pcur_close(&pcur);
	mtr_commit(&mtr);
}
Example #15
0
/*******************************************************************//**
An inverse function to row_build_index_entry. Builds a row from a
record in a clustered index.
@return	own: row built; see the NOTE below! */
UNIV_INTERN
dtuple_t*
row_build(
/*======*/
	ulint			type,	/*!< in: ROW_COPY_POINTERS or
					ROW_COPY_DATA; the latter
					copies also the data fields to
					heap while the first only
					places pointers to data fields
					on the index page, and thus is
					more efficient */
	const dict_index_t*	index,	/*!< in: clustered index */
	const rec_t*		rec,	/*!< in: record in the clustered
					index; NOTE: in the case
					ROW_COPY_POINTERS the data
					fields in the row will point
					directly into this record,
					therefore, the buffer page of
					this record must be at least
					s-latched and the latch held
					as long as the row dtuple is used! */
	const ulint*		offsets,/*!< in: rec_get_offsets(rec,index)
					or NULL, in which case this function
					will invoke rec_get_offsets() */
	const dict_table_t*	col_table,
					/*!< in: table, to check which
					externally stored columns
					occur in the ordering columns
					of an index, or NULL if
					index->table should be
					consulted instead */
	row_ext_t**		ext,	/*!< out, own: cache of
					externally stored column
					prefixes, or NULL */
	mem_heap_t*		heap)	/*!< in: memory heap from which
					the memory needed is allocated */
{
	dtuple_t*		row;
	const dict_table_t*	table;
	ulint			n_fields;
	ulint			n_ext_cols;
	ulint*			ext_cols	= NULL; /* remove warning */
	ulint			len;
	ulint			row_len;
	byte*			buf;
	ulint			i;
	ulint			j;
	mem_heap_t*		tmp_heap	= NULL;
	ulint			offsets_[REC_OFFS_NORMAL_SIZE];
	rec_offs_init(offsets_);

	ut_ad(index && rec && heap);
	ut_ad(dict_index_is_clust(index));
	ut_ad(!mutex_own(&kernel_mutex));

	if (!offsets) {
		offsets = rec_get_offsets(rec, index, offsets_,
					  ULINT_UNDEFINED, &tmp_heap);
	} else {
		ut_ad(rec_offs_validate(rec, index, offsets));
	}

#if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG
	if (rec_offs_any_null_extern(rec, offsets)) {
		/* This condition can occur during crash recovery
		before trx_rollback_active() has completed execution,
		or when a concurrently executing
		row_ins_index_entry_low() has committed the B-tree
		mini-transaction but has not yet managed to restore
		the cursor position for writing the big_rec. */
		ut_a(trx_undo_roll_ptr_is_insert(
			     row_get_rec_roll_ptr(rec, index, offsets)));
	}
#endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */

	if (type != ROW_COPY_POINTERS) {
		/* Take a copy of rec to heap */
		buf = mem_heap_alloc(heap, rec_offs_size(offsets));
		rec = rec_copy(buf, rec, offsets);
		/* Avoid a debug assertion in rec_offs_validate(). */
		rec_offs_make_valid(rec, index, (ulint*) offsets);
	}

	table = index->table;
	row_len = dict_table_get_n_cols(table);

	row = dtuple_create(heap, row_len);

	dict_table_copy_types(row, table);

	dtuple_set_info_bits(row, rec_get_info_bits(
				     rec, dict_table_is_comp(table)));

	n_fields = rec_offs_n_fields(offsets);
	n_ext_cols = rec_offs_n_extern(offsets);
	if (n_ext_cols) {
		ext_cols = mem_heap_alloc(heap, n_ext_cols * sizeof *ext_cols);
	}

	for (i = j = 0; i < n_fields; i++) {
		dict_field_t*		ind_field
			= dict_index_get_nth_field(index, i);
		const dict_col_t*	col
			= dict_field_get_col(ind_field);
		ulint			col_no
			= dict_col_get_no(col);
		dfield_t*		dfield
			= dtuple_get_nth_field(row, col_no);

		if (ind_field->prefix_len == 0) {

			const byte*	field = rec_get_nth_field(
				rec, offsets, i, &len);

			dfield_set_data(dfield, field, len);
		}

		if (rec_offs_nth_extern(offsets, i)) {
			dfield_set_ext(dfield);

			if (UNIV_LIKELY_NULL(col_table)) {
				ut_a(col_no
				     < dict_table_get_n_cols(col_table));
				col = dict_table_get_nth_col(
					col_table, col_no);
			}

			if (col->ord_part) {
				/* We will have to fetch prefixes of
				externally stored columns that are
				referenced by column prefixes. */
				ext_cols[j++] = col_no;
			}
		}
	}

	ut_ad(dtuple_check_typed(row));

	if (!ext) {
		/* REDUNDANT and COMPACT formats store a local
		768-byte prefix of each externally stored
		column. No cache is needed. */
		ut_ad(dict_table_get_format(index->table)
		      < DICT_TF_FORMAT_ZIP);
	} else if (j) {
		*ext = row_ext_create(j, ext_cols, row,
				      dict_table_zip_size(index->table),
				      heap);
	} else {
		*ext = NULL;
	}

	if (tmp_heap) {
		mem_heap_free(tmp_heap);
	}

	return(row);
}
Example #16
0
/************************************************************************
Loads definitions for table indexes. Adds them to the data dictionary cache.
*/
static
void
dict_load_indexes(
/*==============*/
	dict_table_t*	table,	/* in: table */
	mem_heap_t*	heap)	/* in: memory heap for temporary storage */
{
	dict_table_t*	sys_indexes;
	dict_index_t*	sys_index;
	dict_index_t*	index;
	btr_pcur_t	pcur;
	dtuple_t*	tuple;
	dfield_t*	dfield;
	rec_t*		rec;
	byte*		field;
	ulint		len;
	ulint		name_len;
	char*		name_buf;
	ulint		type;
	ulint		space;
	ulint		page_no;
	ulint		n_fields;
	byte*		buf;
	ibool		is_sys_table;
	dulint		id;
	mtr_t		mtr;
	
	ut_ad(mutex_own(&(dict_sys->mutex)));

	if ((ut_dulint_get_high(table->id) == 0)
	    && (ut_dulint_get_low(table->id) < DICT_HDR_FIRST_ID)) {
		is_sys_table = TRUE;
	} else {
		is_sys_table = FALSE;
	}
	
	mtr_start(&mtr);

	sys_indexes = dict_table_get_low("SYS_INDEXES");
	sys_index = UT_LIST_GET_FIRST(sys_indexes->indexes);

	tuple = dtuple_create(heap, 1);
	dfield = dtuple_get_nth_field(tuple, 0);

	buf = mem_heap_alloc(heap, 8);
	mach_write_to_8(buf, table->id);

	dfield_set_data(dfield, buf, 8);
	dict_index_copy_types(tuple, sys_index, 1);

	btr_pcur_open_on_user_rec(sys_index, tuple, PAGE_CUR_GE,
						BTR_SEARCH_LEAF, &pcur, &mtr);
   	for (;;) {
		if (!btr_pcur_is_on_user_rec(&pcur, &mtr)) {

			break;
		}

		rec = btr_pcur_get_rec(&pcur);
		
		field = rec_get_nth_field(rec, 0, &len);
		ut_ad(len == 8);

		if (ut_memcmp(buf, field, len) != 0) {
			break;
		}

		ut_a(!rec_get_deleted_flag(rec));

		field = rec_get_nth_field(rec, 1, &len);
		ut_ad(len == 8);
		id = mach_read_from_8(field);

		ut_a(0 == ut_strcmp("NAME",
			dict_field_get_col(
			dict_index_get_nth_field(
			dict_table_get_first_index(sys_indexes), 4))->name));
		
		field = rec_get_nth_field(rec, 4, &name_len);

		name_buf = mem_heap_alloc(heap, name_len + 1);
		ut_memcpy(name_buf, field, name_len);
		name_buf[name_len] = '\0';

		field = rec_get_nth_field(rec, 5, &len);
		n_fields = mach_read_from_4(field);

		field = rec_get_nth_field(rec, 6, &len);
		type = mach_read_from_4(field);

		field = rec_get_nth_field(rec, 7, &len);
		space = mach_read_from_4(field);

		ut_a(0 == ut_strcmp("PAGE_NO",
			dict_field_get_col(
			dict_index_get_nth_field(
			dict_table_get_first_index(sys_indexes), 8))->name));

		field = rec_get_nth_field(rec, 8, &len);
		page_no = mach_read_from_4(field);

		if (is_sys_table
		    && ((type & DICT_CLUSTERED)
		        || ((table == dict_sys->sys_tables)
		            && (name_len == ut_strlen("ID_IND"))
			    && (0 == ut_memcmp(name_buf, "ID_IND",
							name_len))))) {

			/* The index was created in memory already in
			booting */
		} else {
 			index = dict_mem_index_create(table->name, name_buf,
						space, type, n_fields);
			index->page_no = page_no;
			index->id = id;
		
			dict_load_fields(table, index, heap);

			dict_index_add_to_cache(table, index);
		}

		btr_pcur_move_to_next_user_rec(&pcur, &mtr);
	} 

	btr_pcur_close(&pcur);
	mtr_commit(&mtr);
}
Example #17
0
/*******************************************************************//**
Builds from a secondary index record a row reference with which we can
search the clustered index record.
@return	own: row reference built; see the NOTE below! */
UNIV_INTERN
dtuple_t*
row_build_row_ref(
/*==============*/
	ulint		type,	/*!< in: ROW_COPY_DATA, or ROW_COPY_POINTERS:
				the former copies also the data fields to
				heap, whereas the latter only places pointers
				to data fields on the index page */
	dict_index_t*	index,	/*!< in: secondary index */
	const rec_t*	rec,	/*!< in: record in the index;
				NOTE: in the case ROW_COPY_POINTERS
				the data fields in the row will point
				directly into this record, therefore,
				the buffer page of this record must be
				at least s-latched and the latch held
				as long as the row reference is used! */
	mem_heap_t*	heap)	/*!< in: memory heap from which the memory
				needed is allocated */
{
	dict_table_t*	table;
	dict_index_t*	clust_index;
	dfield_t*	dfield;
	dtuple_t*	ref;
	const byte*	field;
	ulint		len;
	ulint		ref_len;
	ulint		pos;
	byte*		buf;
	ulint		clust_col_prefix_len;
	ulint		i;
	mem_heap_t*	tmp_heap	= NULL;
	ulint		offsets_[REC_OFFS_NORMAL_SIZE];
	ulint*		offsets		= offsets_;
	rec_offs_init(offsets_);

	ut_ad(index && rec && heap);
	ut_ad(!dict_index_is_clust(index));

	offsets = rec_get_offsets(rec, index, offsets,
				  ULINT_UNDEFINED, &tmp_heap);
	/* Secondary indexes must not contain externally stored columns. */
	ut_ad(!rec_offs_any_extern(offsets));

	if (type == ROW_COPY_DATA) {
		/* Take a copy of rec to heap */

		buf = mem_heap_alloc(heap, rec_offs_size(offsets));

		rec = rec_copy(buf, rec, offsets);
		/* Avoid a debug assertion in rec_offs_validate(). */
		rec_offs_make_valid(rec, index, offsets);
	}

	table = index->table;

	clust_index = dict_table_get_first_index(table);

	ref_len = dict_index_get_n_unique(clust_index);

	ref = dtuple_create(heap, ref_len);

	dict_index_copy_types(ref, clust_index, ref_len);

	for (i = 0; i < ref_len; i++) {
		dfield = dtuple_get_nth_field(ref, i);

		pos = dict_index_get_nth_field_pos(index, clust_index, i);

		ut_a(pos != ULINT_UNDEFINED);

		field = rec_get_nth_field(rec, offsets, pos, &len);

		dfield_set_data(dfield, field, len);

		/* If the primary key contains a column prefix, then the
		secondary index may contain a longer prefix of the same
		column, or the full column, and we must adjust the length
		accordingly. */

		clust_col_prefix_len = dict_index_get_nth_field(
			clust_index, i)->prefix_len;

		if (clust_col_prefix_len > 0) {
			if (len != UNIV_SQL_NULL) {

				const dtype_t*	dtype
					= dfield_get_type(dfield);

				dfield_set_len(dfield,
					       dtype_get_at_most_n_mbchars(
						       dtype->prtype,
						       dtype->mbminlen,
						       dtype->mbmaxlen,
						       clust_col_prefix_len,
						       len, (char*) field));
			}
		}
	}

	ut_ad(dtuple_check_typed(ref));
	if (tmp_heap) {
		mem_heap_free(tmp_heap);
	}

	return(ref);
}
Example #18
0
/************************************************************************
Loads foreign key constraint col names (also for the referenced table). */
static
void
dict_load_foreign_cols(
/*===================*/
	char*		id,	/* in: foreign constraint id as a null-
				terminated string */
	dict_foreign_t*	foreign)/* in: foreign constraint object */
{
	dict_table_t*	sys_foreign_cols;
	dict_index_t*	sys_index;
	btr_pcur_t	pcur;
	dtuple_t*	tuple;
	dfield_t*	dfield;
	char*		col_name;
	rec_t*		rec;
	byte*		field;
	ulint		len;
	ulint		i;
	mtr_t		mtr;
	
	ut_ad(mutex_own(&(dict_sys->mutex)));

	foreign->foreign_col_names = mem_heap_alloc(foreign->heap,
					foreign->n_fields * sizeof(void*));

	foreign->referenced_col_names = mem_heap_alloc(foreign->heap,
					foreign->n_fields * sizeof(void*));
	mtr_start(&mtr);

	sys_foreign_cols = dict_table_get_low("SYS_FOREIGN_COLS");
	sys_index = UT_LIST_GET_FIRST(sys_foreign_cols->indexes);

	tuple = dtuple_create(foreign->heap, 1);
	dfield = dtuple_get_nth_field(tuple, 0);

	dfield_set_data(dfield, id, ut_strlen(id));
	dict_index_copy_types(tuple, sys_index, 1);

	btr_pcur_open_on_user_rec(sys_index, tuple, PAGE_CUR_GE,
						BTR_SEARCH_LEAF, &pcur, &mtr);
   	for (i = 0; i < foreign->n_fields; i++) {

		rec = btr_pcur_get_rec(&pcur);

		ut_a(btr_pcur_is_on_user_rec(&pcur, &mtr));
		ut_a(!rec_get_deleted_flag(rec));
		
		field = rec_get_nth_field(rec, 0, &len);
		ut_a(len == ut_strlen(id));
		ut_a(ut_memcmp(id, field, len) == 0);

		field = rec_get_nth_field(rec, 1, &len);
		ut_a(len == 4);
		ut_a(i == mach_read_from_4(field));

		field = rec_get_nth_field(rec, 4, &len);

		col_name = mem_heap_alloc(foreign->heap, len + 1);
		ut_memcpy(col_name, field, len);
		col_name[len] = '\0';

		foreign->foreign_col_names[i] = col_name;

		field = rec_get_nth_field(rec, 5, &len);

		col_name = mem_heap_alloc(foreign->heap, len + 1);
		ut_memcpy(col_name, field, len);
		col_name[len] = '\0';

		foreign->referenced_col_names[i] = col_name;
		
		btr_pcur_move_to_next_user_rec(&pcur, &mtr);
	} 

	btr_pcur_close(&pcur);
	mtr_commit(&mtr);
}
/********************************************************************//**
Add a single foreign key definition to the data dictionary tables in the
database. We also generate names to constraints that were not named by the
user. A generated constraint has a name of the format
databasename/tablename_ibfk_NUMBER, where the numbers start from 1, and
are given locally for this table, that is, the number is not global, as in
the old format constraints < 4.0.18 it used to be.
@return	error code or DB_SUCCESS */
static
ulint
dict_create_add_foreign_to_dictionary(
/*==================================*/
	ulint*		id_nr,	/*!< in/out: number to use in id generation;
				incremented if used */
	dict_table_t*	table,	/*!< in: table */
	dict_foreign_t*	foreign,/*!< in: foreign */
	trx_t*		trx)	/*!< in: transaction */
{
	ulint		error;
	ulint		i;

	pars_info_t*	info = pars_info_create();

	if (foreign->id == NULL) {
		/* Generate a new constraint id */
		ulint	namelen	= strlen(table->name);
		char*	id	= mem_heap_alloc(foreign->heap, namelen + 20);
		/* no overflow if number < 1e13 */
		sprintf(id, "%s_ibfk_%lu", table->name, (ulong) (*id_nr)++);
		foreign->id = id;
	}

	pars_info_add_str_literal(info, "id", foreign->id);

	pars_info_add_str_literal(info, "for_name", table->name);

	pars_info_add_str_literal(info, "ref_name",
				  foreign->referenced_table_name);

	pars_info_add_int4_literal(info, "n_cols",
				   foreign->n_fields + (foreign->type << 24));

	error = dict_foreign_eval_sql(info,
				      "PROCEDURE P () IS\n"
				      "BEGIN\n"
				      "INSERT INTO SYS_FOREIGN VALUES"
				      "(:id, :for_name, :ref_name, :n_cols);\n"
				      "END;\n"
				      , table, foreign, trx);

	if (error != DB_SUCCESS) {

		return(error);
	}

	for (i = 0; i < foreign->n_fields; i++) {
		error = dict_create_add_foreign_field_to_dictionary(
			i, table, foreign, trx);

		if (error != DB_SUCCESS) {

			return(error);
		}
	}

	error = dict_foreign_eval_sql(NULL,
				      "PROCEDURE P () IS\n"
				      "BEGIN\n"
				      "COMMIT WORK;\n"
				      "END;\n"
				      , table, foreign, trx);

	return(error);
}