Example #1
0
void * netloc_lookup_table_iterator_next_entry(struct netloc_dt_lookup_table_iterator* hti)
{
    size_t i;

    for(i = hti->loc; i < netloc_lookup_table_size(hti->htp); ++i) {
        if( NULL != hti->htp->ht_entries[i] ) {
            hti->loc = i+1;
            return hti->htp->ht_entries[i]->value;
        }
    }

    hti->loc = netloc_lookup_table_size(hti->htp);
    hti->at_end = true;

    return NULL;
}
Example #2
0
unsigned long netloc_lookup_table_iterator_next_key_int(struct netloc_dt_lookup_table_iterator* hti)
{
    size_t i;

    for(i = hti->loc; i < netloc_lookup_table_size(hti->htp); ++i) {
        if( NULL != hti->htp->ht_entries[i] ) {
            hti->loc = i+1;
            return hti->htp->ht_entries[i]->__key__;
        }
    }

    hti->loc = netloc_lookup_table_size(hti->htp);
    hti->at_end = true;

    return 0;
}
Example #3
0
int netloc_dt_lookup_table_t_copy(struct netloc_dt_lookup_table *from, struct netloc_dt_lookup_table *to)
{
    size_t i;
    int dup = !(from->flags & NETLOC_LOOKUP_TABLE_FLAG_NO_STRDUP_KEY);

    if( NULL == from || NULL == to ) {
        return NETLOC_ERROR;
    }

    netloc_lookup_table_init(to, netloc_lookup_table_size(from), from->flags);

    for(i = 0; i < from->ht_size; ++i ) {
        if( NULL != from->ht_entries[i] ) {
            to->ht_entries[i] = netloc_copy_lookup_table_entry_t(from->ht_entries[i], dup);
        }
    }

    return NETLOC_SUCCESS;
}
static int display_topo_screen(netloc_topology_t topology, netloc_network_t *network) {
    int ret, exit_status = NETLOC_SUCCESS;
    int i;
    netloc_dt_lookup_table_t hosts_nodes = NULL;
    netloc_dt_lookup_table_t switches_nodes = NULL;
    netloc_dt_lookup_table_iterator_t hti = NULL;
    const char * key = NULL;
    netloc_node_t *node = NULL;
    int num_edges;
    netloc_edge_t **edges = NULL;

    printf("Network: %s\n", netloc_pretty_print_network_t(network) );
    printf("  Type    : %s\n", netloc_decode_network_type_readable(network->network_type) );
    printf("  Subnet  : %s\n", network->subnet_id);

    /*
     * Get hosts and switches
     */
    ret = netloc_get_all_host_nodes(topology, &hosts_nodes);
    if( NETLOC_SUCCESS != ret ) {
        exit_status = ret;
        goto cleanup;
    }
    printf("  Hosts   :   %d\n", netloc_lookup_table_size(hosts_nodes));;

	ret = netloc_get_all_switch_nodes(topology, &switches_nodes);
    if( NETLOC_SUCCESS != ret ) {
        exit_status = ret;
        goto cleanup;
    }
    printf("  Switches:   %d\n", netloc_lookup_table_size(switches_nodes) );
    printf("---------------------------------------------------\n");

    if( full_output ) {
        /*
         * Print out a list of hosts and their connections
         */
        printf("\n");
        printf("Information by Host\n");
        printf("---------------------\n");

        hti = netloc_dt_lookup_table_iterator_t_construct( hosts_nodes );
        while( !netloc_lookup_table_iterator_at_end(hti) ) {
            key = netloc_lookup_table_iterator_next_key(hti);
            if( NULL == key ) {
                break;
            }

            node = (netloc_node_t*)netloc_lookup_table_access(hosts_nodes, key);

            ret = netloc_get_all_edges(topology, node, &num_edges, &edges);
            if( NETLOC_SUCCESS != ret ) {
                exit_status = ret;
                goto cleanup;
            }

            for(i = 0; i < num_edges; ++i ) {
                display_netloc_edge_screen(edges[i]);
            }
        }


        /*
         * Print out a list of switches and their connections
         */
        printf("\n");
        printf("Information by Switch\n");
        printf("---------------------\n");

        hti = netloc_dt_lookup_table_iterator_t_construct( switches_nodes );
        while( !netloc_lookup_table_iterator_at_end(hti) ) {
            key = netloc_lookup_table_iterator_next_key(hti);
            if( NULL == key ) {
                break;
            }

            node = (netloc_node_t*)netloc_lookup_table_access(switches_nodes, key);

            ret = netloc_get_all_edges(topology, node, &num_edges, &edges);
            if( NETLOC_SUCCESS != ret ) {
                exit_status = ret;
                goto cleanup;
            }

            for(i = 0; i < num_edges; ++i ) {
                display_netloc_edge_screen(edges[i]);
            }
        }

        printf("------------------------------------------------------------------------------\n");
    }

    printf("\n");

 cleanup:

    return exit_status;
}
/*************************************************************
 * Support Functionality
 *************************************************************/
static int compute_shortest_path_dijkstra(netloc_data_collection_handle_t *handle,
                                          netloc_node_t *src_node,
                                          netloc_node_t *dest_node,
                                          int *num_edges,
                                          netloc_edge_t ***edges)
{
    int exit_status = NETLOC_SUCCESS;
    int i;
    pq_queue_t *queue = NULL;
    int *distance = NULL;
    bool *not_seen = NULL;
    netloc_node_t *node_u = NULL;
    netloc_node_t *node_v = NULL;
    netloc_node_t **prev_node = NULL;
    netloc_edge_t **prev_edge = NULL;
    int alt;
    int idx_u, idx_v;

    int num_rev_edges;
    netloc_edge_t **rev_edges = NULL;

    struct netloc_dt_lookup_table_iterator *hti = NULL;
    netloc_node_t *cur_node = NULL;

    unsigned long key_int;

    // Just in case things go poorly below
    (*num_edges) = 0;
    (*edges) = NULL;


    /*
     * Allocate some data structures
     */
    queue = pq_queue_t_construct();
    if( NULL == queue ) {
        fprintf(stderr, "Error: Failed to allocate the queue\n");
        exit_status = NETLOC_ERROR;
        goto cleanup;
    }

    distance = (int*)malloc(sizeof(int) * netloc_lookup_table_size(handle->node_list));
    if( NULL == distance ) {
        fprintf(stderr, "Error: Failed to allocate the distance array\n");
        exit_status = NETLOC_ERROR;
        goto cleanup;
    }

    not_seen = (bool*)malloc(sizeof(bool) * netloc_lookup_table_size(handle->node_list));
    if( NULL == not_seen ) {
        fprintf(stderr, "Error: Failed to allocate the 'not_seen' array\n");
        exit_status = NETLOC_ERROR;
        goto cleanup;
    }

    prev_node = (netloc_node_t**)malloc(sizeof(netloc_node_t*) * netloc_lookup_table_size(handle->node_list));
    if( NULL == prev_node ) {
        fprintf(stderr, "Error: Failed to allocate the 'prev_node' array\n");
        exit_status = NETLOC_ERROR;
        goto cleanup;
    }

    prev_edge = (netloc_edge_t**)malloc(sizeof(netloc_edge_t*) * netloc_lookup_table_size(handle->node_list));
    if( NULL == prev_edge ) {
        fprintf(stderr, "Error: Failed to allocate the 'prev_edge' array\n");
        exit_status = NETLOC_ERROR;
        goto cleanup;
    }

    /*
     * Initialize the data structures
     */
    // Make sure to initialize the arrays
    for( i = 0; i < netloc_lookup_table_size(handle->node_list); ++i){
        distance[i] = INT_MAX;
        not_seen[i] = true;
        prev_node[i] = NULL;
        prev_edge[i] = NULL;
    }

    i = 0;
    hti = netloc_dt_lookup_table_iterator_t_construct(handle->node_list);
    while( !netloc_lookup_table_iterator_at_end(hti) ) {
        cur_node = (netloc_node_t*)netloc_lookup_table_iterator_next_entry(hti);
        if( NULL == cur_node ) {
            break;
        }

        if( cur_node == src_node ) {
            pq_push(queue, 0, cur_node);
            distance[i] = 0;
        } else {
            pq_push(queue, INT_MAX, cur_node);
            distance[i] = INT_MAX;
        }

        not_seen[i] = true;

        prev_node[i] = NULL;
        prev_edge[i] = NULL;

        cur_node->__uid__ = i;
        ++i;
    }

    /*
     * Search
     */
    while( !pq_is_empty(queue) ) {
        //pq_dump(queue);

        // Grab the next hop
        node_u = pq_pop(queue);
        // Mark as seen
        idx_u = -1;
        i = 0;
        idx_u = node_u->__uid__;
        not_seen[idx_u] = false;

        // For all the edges from this node
        for(i = 0; i < node_u->num_edges; ++i ) {
            node_v = NULL;
            idx_v  = -1;

            // Lookup the "dest" node
            node_v = node_u->edges[i]->dest_node;
            idx_v = node_v->__uid__;

            // If the node has been seen, skip
            if( !not_seen[idx_v] ) {
                continue;
            }

            // Otherwise check to see if we found a shorter path
            // Future Work: Add a weight factor other than 1.
            //              Maybe calculated based on speed/width
            alt = distance[idx_u] + 1;
            if( alt < distance[idx_v] ) {
                distance[idx_v] = alt;
                prev_node[idx_v] = node_u;
                prev_edge[idx_v] = node_u->edges[i];

                // Adjust the priority queue as needed
                pq_reorder(queue, alt, node_v);
            }
        }
    }

    /*
     * Reconstruct the path by picking up the edges
     * The edges will be in reverse order (dest to source).
     */
    num_rev_edges = 0;
    rev_edges     = NULL;

    // Find last hop
    SUPPORT_CONVERT_ADDR_TO_INT(dest_node->physical_id,
                                handle->network->network_type,
                                key_int);
    node_u  = netloc_lookup_table_access_with_int( handle->node_list,
                                                   dest_node->physical_id,
                                                   key_int);
    idx_u = node_u->__uid__;

    node_v = NULL;
    idx_v  = -1;
    while( prev_node[idx_u] != NULL ) {
        // Find the linking edge
        if( node_u != dest_node) {
            for(i = 0; i < node_u->num_edges; ++i ) {
                if( node_v->physical_id_int == node_u->edges[i]->dest_node->physical_id_int ) {
                    ++num_rev_edges;
                    rev_edges = (netloc_edge_t**)realloc(rev_edges, sizeof(netloc_edge_t*) * num_rev_edges);
                    if( NULL == rev_edges ) {
                        fprintf(stderr, "Error: Failed to re-allocate the 'rev_edges' array with %d elements\n",
                                num_rev_edges);
                        exit_status = NETLOC_ERROR;
                        goto cleanup;
                    }
                    rev_edges[num_rev_edges-1] = node_u->edges[i];
                    break;
                }
            }
        }
        node_v = node_u;
        idx_v  = idx_u;

        // Find the next node
        SUPPORT_CONVERT_ADDR_TO_INT(prev_node[idx_u]->physical_id,
                                    handle->network->network_type,
                                    key_int);
        node_u = netloc_lookup_table_access_with_int( handle->node_list,
                                                      prev_node[idx_u]->physical_id,
                                                      key_int);
        idx_u = node_u->__uid__;
    }

    for(i = 0; i < src_node->num_edges; ++i ) {
        if( NULL == node_v ) {
            fprintf(stderr, "Error: This should never happen, but node_v is NULL at line %d in file %s\n",
                    __LINE__, __FILE__);
            exit_status = NETLOC_ERROR;
            goto cleanup;
        }
        if( node_v->physical_id_int == src_node->edges[i]->dest_node->physical_id_int ) {
            ++num_rev_edges;
            rev_edges = (netloc_edge_t**)realloc(rev_edges, sizeof(netloc_edge_t*) * num_rev_edges);
            if( NULL == rev_edges ) {
                fprintf(stderr, "Error: Failed to re-allocate the 'rev_edges' array with %d elements\n",
                        num_rev_edges);
                exit_status = NETLOC_ERROR;
                goto cleanup;
            }
            rev_edges[num_rev_edges-1] = node_u->edges[i];

            break;
        }
    }


    /*
     * Copy the edges back in correct order
     */
    (*num_edges) = num_rev_edges;
    (*edges) = (netloc_edge_t**)malloc(sizeof(netloc_edge_t*) * (*num_edges));
    if( NULL == (*edges) ) {
        fprintf(stderr, "Error: Failed to allocate the edges array\n");
        exit_status = NETLOC_ERROR;
        goto cleanup;
    }

    for( i = 0; i < num_rev_edges; ++i ) {
        (*edges)[i] = rev_edges[num_rev_edges-1-i];
        //printf("DEBUG: \t Edge: %s\n", netloc_pretty_print_edge_t( (*edges)[i] ) );
    }


    /*
     * Cleanup
     */
 cleanup:
    if( NULL != queue ) {
        pq_queue_t_destruct(queue);
        queue = NULL;
    }

    if( NULL != rev_edges ) {
        free(rev_edges);
        rev_edges = NULL;
    }

    if( NULL != distance ) {
        free(distance);
        distance = NULL;
    }

    if( NULL != not_seen ) {
        free(not_seen);
        not_seen = NULL;
    }

    if( NULL != prev_node ) {
        free(prev_node);
        prev_node = NULL;
    }

    if( NULL != prev_edge ) {
        free(prev_edge);
        prev_edge = NULL;
    }

    netloc_dt_lookup_table_iterator_t_destruct(hti);

    return exit_status;
}
Example #6
0
static int check_dat_files() {
    int ret, exit_status = NETLOC_SUCCESS;
    char * spec = NULL;
    char * hosts_filename = NULL;
    char * switches_filename = NULL;

    char *search_uri = NULL;
    netloc_topology_t topology;

    netloc_dt_lookup_table_t nodes = NULL;
    netloc_dt_lookup_table_iterator_t hti = NULL;
    const char * key = NULL;
    netloc_node_t *node = NULL;

    int num_bad = 0;
    netloc_network_t *network = NULL;

    int total_num_edges = 0;

    printf("Status: Validating the output...\n");

    network = netloc_dt_network_t_construct();
    network->network_type = NETLOC_NETWORK_TYPE_ETHERNET;
    network->subnet_id    = strdup(subnet);
    asprintf(&search_uri, "file://%s/", outdir);

    if( NETLOC_SUCCESS != (ret = netloc_find_network(search_uri, network)) ) {
        fprintf(stderr, "Error: Cannot find the network data. (%d)\n", ret);
        exit_status = ret;
        goto cleanup;
    }

    /*
     * Attach to Netloc
     */
    if( NETLOC_SUCCESS != (ret = netloc_attach(&topology, *network)) ) {
        fprintf(stderr, "Error: Cannot attach the topology\n");
        exit_status = ret;
        goto cleanup;
    }


    /*
     * Check the 'hosts'
     */
    ret = netloc_get_all_host_nodes(topology, &nodes);
    if( NETLOC_SUCCESS != ret ) {
        fprintf(stderr, "Error: Cannot access the list of hosts!\n");
        exit_status = ret;
        goto cleanup;
    }

    printf("\tNumber of hosts   : %4d\n", netloc_lookup_table_size(nodes) );

    hti = netloc_dt_lookup_table_iterator_t_construct( nodes );
    while( !netloc_lookup_table_iterator_at_end(hti) ) {
        key = netloc_lookup_table_iterator_next_key(hti);
        if( NULL == key ) {
            break;
        }

        node = (netloc_node_t*)netloc_lookup_table_access(nodes, key);

        if( NETLOC_NODE_TYPE_INVALID == node->node_type ) {
            printf("Host Node: %s is invalid\n", netloc_pretty_print_node_t(node) );
            num_bad++;
        }
        else {
            total_num_edges += node->num_edges;
        }
    }

    netloc_dt_lookup_table_iterator_t_destruct(hti);
    netloc_lookup_table_destroy(nodes);
    free(nodes);

    /*
     * Check 'switches'
     */
    ret = netloc_get_all_switch_nodes(topology, &nodes);
    if( NETLOC_SUCCESS != ret ) {
        fprintf(stderr, "Error: Cannot access the list of switches!\n");
        exit_status = ret;
        goto cleanup;
    }

    printf("\tNumber of switches: %4d\n", netloc_lookup_table_size(nodes) );

    hti = netloc_dt_lookup_table_iterator_t_construct( nodes );
    while( !netloc_lookup_table_iterator_at_end(hti) ) {
        key = netloc_lookup_table_iterator_next_key(hti);
        if( NULL == key ) {
            break;
        }

        node = (netloc_node_t*)netloc_lookup_table_access(nodes, key);

        if( NETLOC_NODE_TYPE_INVALID == node->node_type ) {
            printf("Switch Node: %s is invalid\n", netloc_pretty_print_node_t(node) );
            num_bad++;
        }
        else {
            total_num_edges += node->num_edges;
        }
    }

    netloc_dt_lookup_table_iterator_t_destruct(hti);
    netloc_lookup_table_destroy(nodes);
    free(nodes);

    if( num_bad > 0 ) {
        fprintf(stderr, "Error: Found %2d malformed nodes in the .dat files\n", num_bad);
        exit_status = NETLOC_ERROR;
    }

    printf("\tNumber of edges   : %4d\n", total_num_edges );

    /*
     * Cleanup
     */
    if( NETLOC_SUCCESS != (ret = netloc_detach(topology)) ) {
        fprintf(stderr, "Error: Failed to detach the topology\n");
        exit_status = ret;
        goto cleanup;
    }

 cleanup:
    netloc_dt_network_t_destruct(network);
    free(search_uri);
    free(spec);
    free(hosts_filename);
    free(switches_filename);
    return exit_status;
}