/** * This is called when we need to set up GL rendering to a new X window. */ boolean dri_create_buffer(__DRIscreen * sPriv, __DRIdrawable * dPriv, const struct gl_config * visual, boolean isPixmap) { struct dri_screen *screen = sPriv->driverPrivate; struct dri_drawable *drawable = NULL; if (isPixmap) goto fail; /* not implemented */ drawable = CALLOC_STRUCT(dri_drawable); if (drawable == NULL) goto fail; dri_fill_st_visual(&drawable->stvis, screen, visual); /* setup the st_framebuffer_iface */ drawable->base.visual = &drawable->stvis; drawable->base.flush_front = dri_st_framebuffer_flush_front; drawable->base.validate = dri_st_framebuffer_validate; drawable->base.st_manager_private = (void *) drawable; drawable->screen = screen; drawable->sPriv = sPriv; drawable->dPriv = dPriv; drawable->desired_fences = screen->default_throttle_frames; if (drawable->desired_fences > DRI_SWAP_FENCES_MAX) drawable->desired_fences = DRI_SWAP_FENCES_MAX; dPriv->driverPrivate = (void *)drawable; p_atomic_set(&drawable->base.stamp, 1); return GL_TRUE; fail: FREE(drawable); return GL_FALSE; }
static void st_context_notify_invalid_framebuffer(struct st_context_iface *stctxi, struct st_framebuffer_iface *stfbi) { struct st_context *st = (struct st_context *) stctxi; struct st_framebuffer *stfb; /* either draw or read winsys fb */ stfb = st_ws_framebuffer(st->ctx->WinSysDrawBuffer); if (!stfb || stfb->iface != stfbi) stfb = st_ws_framebuffer(st->ctx->WinSysReadBuffer); if (stfb && stfb->iface == stfbi) { p_atomic_set(&stfb->revalidate, TRUE); } else { /* This function is probably getting called when we've detected a * change in a window's size but the currently bound context is * not bound to that window. * If the st_framebuffer_iface structure had a pointer to the * corresponding st_framebuffer we'd be able to handle this. */ } }
static struct svga_winsys_surface * vmw_svga_winsys_surface_create(struct svga_winsys_screen *sws, SVGA3dSurfaceFlags flags, SVGA3dSurfaceFormat format, unsigned usage, SVGA3dSize size, uint32 numLayers, uint32 numMipLevels, unsigned sampleCount) { struct vmw_winsys_screen *vws = vmw_winsys_screen(sws); struct vmw_svga_winsys_surface *surface; struct vmw_buffer_desc desc; struct pb_manager *provider; uint32_t buffer_size; memset(&desc, 0, sizeof(desc)); surface = CALLOC_STRUCT(vmw_svga_winsys_surface); if(!surface) goto no_surface; pipe_reference_init(&surface->refcnt, 1); p_atomic_set(&surface->validated, 0); surface->screen = vws; pipe_mutex_init(surface->mutex); surface->shared = !!(usage & SVGA_SURFACE_USAGE_SHARED); provider = (surface->shared) ? vws->pools.gmr : vws->pools.mob_fenced; /* * Used for the backing buffer GB surfaces, and to approximate * when to flush on non-GB hosts. */ buffer_size = svga3dsurface_get_serialized_size(format, size, numMipLevels, numLayers); if (flags & SVGA3D_SURFACE_BIND_STREAM_OUTPUT) buffer_size += sizeof(SVGA3dDXSOState); if (buffer_size > vws->ioctl.max_texture_size) { goto no_sid; } if (sws->have_gb_objects) { SVGAGuestPtr ptr = {0,0}; /* * If the backing buffer size is small enough, try to allocate a * buffer out of the buffer cache. Otherwise, let the kernel allocate * a suitable buffer for us. */ if (buffer_size < VMW_TRY_CACHED_SIZE && !surface->shared) { struct pb_buffer *pb_buf; surface->size = buffer_size; desc.pb_desc.alignment = 4096; desc.pb_desc.usage = 0; pb_buf = provider->create_buffer(provider, buffer_size, &desc.pb_desc); surface->buf = vmw_svga_winsys_buffer_wrap(pb_buf); if (surface->buf && !vmw_gmr_bufmgr_region_ptr(pb_buf, &ptr)) assert(0); } surface->sid = vmw_ioctl_gb_surface_create(vws, flags, format, usage, size, numLayers, numMipLevels, sampleCount, ptr.gmrId, surface->buf ? NULL : &desc.region); if (surface->sid == SVGA3D_INVALID_ID && surface->buf) { /* * Kernel refused to allocate a surface for us. * Perhaps something was wrong with our buffer? * This is really a guard against future new size requirements * on the backing buffers. */ vmw_svga_winsys_buffer_destroy(sws, surface->buf); surface->buf = NULL; surface->sid = vmw_ioctl_gb_surface_create(vws, flags, format, usage, size, numLayers, numMipLevels, sampleCount, 0, &desc.region); if (surface->sid == SVGA3D_INVALID_ID) goto no_sid; } /* * If the kernel created the buffer for us, wrap it into a * vmw_svga_winsys_buffer. */ if (surface->buf == NULL) { struct pb_buffer *pb_buf; surface->size = vmw_region_size(desc.region); desc.pb_desc.alignment = 4096; desc.pb_desc.usage = VMW_BUFFER_USAGE_SHARED; pb_buf = provider->create_buffer(provider, surface->size, &desc.pb_desc); surface->buf = vmw_svga_winsys_buffer_wrap(pb_buf); if (surface->buf == NULL) { vmw_ioctl_region_destroy(desc.region); vmw_ioctl_surface_destroy(vws, surface->sid); goto no_sid; } } } else { surface->sid = vmw_ioctl_surface_create(vws, flags, format, usage, size, numLayers, numMipLevels, sampleCount); if(surface->sid == SVGA3D_INVALID_ID) goto no_sid; /* Best estimate for surface size, used for early flushing. */ surface->size = buffer_size; surface->buf = NULL; } return svga_winsys_surface(surface); no_sid: if (surface->buf) vmw_svga_winsys_buffer_destroy(sws, surface->buf); FREE(surface); no_surface: return NULL; }
static struct svga_winsys_surface * vmw_drm_surface_from_handle(struct svga_winsys_screen *sws, struct winsys_handle *whandle, SVGA3dSurfaceFormat *format) { struct vmw_svga_winsys_surface *vsrf; struct svga_winsys_surface *ssrf; struct vmw_winsys_screen *vws = vmw_winsys_screen(sws); union drm_vmw_surface_reference_arg arg; struct drm_vmw_surface_arg *req = &arg.req; struct drm_vmw_surface_create_req *rep = &arg.rep; uint32_t handle = 0; struct drm_vmw_size size; SVGA3dSize base_size; int ret; int i; if (whandle->offset != 0) { fprintf(stderr, "Attempt to import unsupported winsys offset %u\n", whandle->offset); return NULL; } switch (whandle->type) { case DRM_API_HANDLE_TYPE_SHARED: case DRM_API_HANDLE_TYPE_KMS: handle = whandle->handle; break; case DRM_API_HANDLE_TYPE_FD: ret = drmPrimeFDToHandle(vws->ioctl.drm_fd, whandle->handle, &handle); if (ret) { vmw_error("Failed to get handle from prime fd %d.\n", (int) whandle->handle); return NULL; } break; default: vmw_error("Attempt to import unsupported handle type %d.\n", whandle->type); return NULL; } memset(&arg, 0, sizeof(arg)); req->sid = handle; rep->size_addr = (unsigned long)&size; ret = drmCommandWriteRead(vws->ioctl.drm_fd, DRM_VMW_REF_SURFACE, &arg, sizeof(arg)); /* * Need to close the handle we got from prime. */ if (whandle->type == DRM_API_HANDLE_TYPE_FD) vmw_ioctl_surface_destroy(vws, handle); if (ret) { /* * Any attempt to share something other than a surface, like a dumb * kms buffer, should fail here. */ vmw_error("Failed referencing shared surface. SID %d.\n" "Error %d (%s).\n", handle, ret, strerror(-ret)); return NULL; } if (rep->mip_levels[0] != 1) { vmw_error("Incorrect number of mipmap levels on shared surface." " SID %d, levels %d\n", handle, rep->mip_levels[0]); goto out_mip; } for (i=1; i < DRM_VMW_MAX_SURFACE_FACES; ++i) { if (rep->mip_levels[i] != 0) { vmw_error("Incorrect number of faces levels on shared surface." " SID %d, face %d present.\n", handle, i); goto out_mip; } } vsrf = CALLOC_STRUCT(vmw_svga_winsys_surface); if (!vsrf) goto out_mip; pipe_reference_init(&vsrf->refcnt, 1); p_atomic_set(&vsrf->validated, 0); vsrf->screen = vws; vsrf->sid = handle; ssrf = svga_winsys_surface(vsrf); *format = rep->format; /* Estimate usage, for early flushing. */ base_size.width = size.width; base_size.height = size.height; base_size.depth = size.depth; vsrf->size = svga3dsurface_get_serialized_size(rep->format, base_size, rep->mip_levels[0], FALSE); return ssrf; out_mip: vmw_ioctl_surface_destroy(vws, handle); return NULL; }
/** * vmw_drm_gb_surface_from_handle - Create a shared surface * * @sws: Screen to register the surface with. * @whandle: struct winsys_handle identifying the kernel surface object * @format: On successful return points to a value describing the * surface format. * * Returns a refcounted pointer to a struct svga_winsys_surface * embedded in a struct vmw_svga_winsys_surface on success or NULL * on failure. */ static struct svga_winsys_surface * vmw_drm_gb_surface_from_handle(struct svga_winsys_screen *sws, struct winsys_handle *whandle, SVGA3dSurfaceFormat *format) { struct vmw_svga_winsys_surface *vsrf; struct svga_winsys_surface *ssrf; struct vmw_winsys_screen *vws = vmw_winsys_screen(sws); SVGA3dSurfaceFlags flags; uint32_t mip_levels; struct vmw_buffer_desc desc; struct pb_manager *provider = vws->pools.gmr; struct pb_buffer *pb_buf; uint32_t handle; int ret; if (whandle->offset != 0) { fprintf(stderr, "Attempt to import unsupported winsys offset %u\n", whandle->offset); return NULL; } ret = vmw_ioctl_gb_surface_ref(vws, whandle, &flags, format, &mip_levels, &handle, &desc.region); if (ret) { fprintf(stderr, "Failed referencing shared surface. SID %d.\n" "Error %d (%s).\n", whandle->handle, ret, strerror(-ret)); return NULL; } if (mip_levels != 1) { fprintf(stderr, "Incorrect number of mipmap levels on shared surface." " SID %d, levels %d\n", whandle->handle, mip_levels); goto out_mip; } vsrf = CALLOC_STRUCT(vmw_svga_winsys_surface); if (!vsrf) goto out_mip; pipe_reference_init(&vsrf->refcnt, 1); p_atomic_set(&vsrf->validated, 0); vsrf->screen = vws; vsrf->sid = handle; vsrf->size = vmw_region_size(desc.region); /* * Synchronize backing buffers of shared surfaces using the * kernel, since we don't pass fence objects around between * processes. */ desc.pb_desc.alignment = 4096; desc.pb_desc.usage = VMW_BUFFER_USAGE_SHARED | VMW_BUFFER_USAGE_SYNC; pb_buf = provider->create_buffer(provider, vsrf->size, &desc.pb_desc); vsrf->buf = vmw_svga_winsys_buffer_wrap(pb_buf); if (!vsrf->buf) goto out_no_buf; ssrf = svga_winsys_surface(vsrf); return ssrf; out_no_buf: FREE(vsrf); out_mip: vmw_ioctl_region_destroy(desc.region); vmw_ioctl_surface_destroy(vws, whandle->handle); return NULL; }
static struct pipe_buffer * vmw_drm_buffer_from_handle(struct drm_api *drm_api, struct pipe_screen *screen, const char *name, unsigned handle) { struct vmw_svga_winsys_surface *vsrf; struct svga_winsys_surface *ssrf; struct vmw_winsys_screen *vws = vmw_winsys_screen(svga_winsys_screen(screen)); struct pipe_buffer *buf; union drm_vmw_surface_reference_arg arg; struct drm_vmw_surface_arg *req = &arg.req; struct drm_vmw_surface_create_req *rep = &arg.rep; int ret; int i; /** * The vmware device specific handle is the hardware SID. * FIXME: We probably want to move this to the ioctl implementations. */ memset(&arg, 0, sizeof(arg)); req->sid = handle; ret = drmCommandWriteRead(vws->ioctl.drm_fd, DRM_VMW_REF_SURFACE, &arg, sizeof(arg)); if (ret) { fprintf(stderr, "Failed referencing shared surface. SID %d.\n" "Error %d (%s).\n", handle, ret, strerror(-ret)); return NULL; } if (rep->mip_levels[0] != 1) { fprintf(stderr, "Incorrect number of mipmap levels on shared surface." " SID %d, levels %d\n", handle, rep->mip_levels[0]); goto out_mip; } for (i=1; i < DRM_VMW_MAX_SURFACE_FACES; ++i) { if (rep->mip_levels[i] != 0) { fprintf(stderr, "Incorrect number of faces levels on shared surface." " SID %d, face %d present.\n", handle, i); goto out_mip; } } vsrf = CALLOC_STRUCT(vmw_svga_winsys_surface); if (!vsrf) goto out_mip; pipe_reference_init(&vsrf->refcnt, 1); p_atomic_set(&vsrf->validated, 0); vsrf->sid = handle; ssrf = svga_winsys_surface(vsrf); buf = svga_screen_buffer_wrap_surface(screen, rep->format, ssrf); if (!buf) vmw_svga_winsys_surface_reference(&vsrf, NULL); return buf; out_mip: vmw_ioctl_surface_destroy(vws, handle); return NULL; }
static boolean st_api_make_current(struct st_api *stapi, struct st_context_iface *stctxi, struct st_framebuffer_iface *stdrawi, struct st_framebuffer_iface *streadi) { struct st_context *st = (struct st_context *) stctxi; struct st_framebuffer *stdraw, *stread; boolean ret; _glapi_check_multithread(); if (st) { /* reuse or create the draw fb */ stdraw = st_framebuffer_reuse_or_create(st->ctx->WinSysDrawBuffer, stdrawi); if (streadi != stdrawi) { /* do the same for the read fb */ stread = st_framebuffer_reuse_or_create(st->ctx->WinSysReadBuffer, streadi); } else { stread = NULL; /* reuse the draw fb for the read fb */ if (stdraw) st_framebuffer_reference(&stread, stdraw); } if (stdraw && stread) { if (stctxi != st_api_get_current(stapi)) { p_atomic_set(&stdraw->revalidate, TRUE); p_atomic_set(&stread->revalidate, TRUE); } st_framebuffer_validate(stdraw, st); if (stread != stdraw) st_framebuffer_validate(stread, st); /* modify the draw/read buffers of the context */ if (stdraw->iface) { st_visual_to_default_buffer(stdraw->iface->visual, &st->ctx->Color.DrawBuffer[0], NULL); } if (stread->iface) { st_visual_to_default_buffer(stread->iface->visual, &st->ctx->Pixel.ReadBuffer, NULL); } ret = _mesa_make_current(st->ctx, &stdraw->Base, &stread->Base); } else { struct gl_framebuffer *incomplete = _mesa_get_incomplete_framebuffer(); ret = _mesa_make_current(st->ctx, incomplete, incomplete); } st_framebuffer_reference(&stdraw, NULL); st_framebuffer_reference(&stread, NULL); } else { ret = _mesa_make_current(NULL, NULL, NULL); } return ret; }
/** * Validate a framebuffer to make sure up-to-date pipe_textures are used. */ static void st_framebuffer_validate(struct st_framebuffer *stfb, struct st_context *st) { struct pipe_context *pipe = st->pipe; struct pipe_resource *textures[ST_ATTACHMENT_COUNT]; uint width, height; unsigned i; boolean changed = FALSE; if (!p_atomic_read(&stfb->revalidate)) return; /* validate the fb */ if (!stfb->iface->validate(stfb->iface, stfb->statts, stfb->num_statts, textures)) return; width = stfb->Base.Width; height = stfb->Base.Height; for (i = 0; i < stfb->num_statts; i++) { struct st_renderbuffer *strb; struct pipe_surface *ps, surf_tmpl; gl_buffer_index idx; if (!textures[i]) continue; idx = attachment_to_buffer_index(stfb->statts[i]); if (idx >= BUFFER_COUNT) { pipe_resource_reference(&textures[i], NULL); continue; } strb = st_renderbuffer(stfb->Base.Attachment[idx].Renderbuffer); assert(strb); if (strb->texture == textures[i]) { pipe_resource_reference(&textures[i], NULL); continue; } memset(&surf_tmpl, 0, sizeof(surf_tmpl)); u_surface_default_template(&surf_tmpl, textures[i], PIPE_BIND_RENDER_TARGET); ps = pipe->create_surface(pipe, textures[i], &surf_tmpl); if (ps) { pipe_surface_reference(&strb->surface, ps); pipe_resource_reference(&strb->texture, ps->texture); /* ownership transfered */ pipe_surface_reference(&ps, NULL); changed = TRUE; strb->Base.Width = strb->surface->width; strb->Base.Height = strb->surface->height; width = strb->Base.Width; height = strb->Base.Height; } pipe_resource_reference(&textures[i], NULL); } if (changed) { st->dirty.st |= ST_NEW_FRAMEBUFFER; _mesa_resize_framebuffer(st->ctx, &stfb->Base, width, height); assert(stfb->Base.Width == width); assert(stfb->Base.Height == height); } p_atomic_set(&stfb->revalidate, FALSE); }
/** * Bind the context to the given framebuffers. */ static boolean vg_context_bind_framebuffers(struct st_context_iface *stctxi, struct st_framebuffer_iface *stdrawi, struct st_framebuffer_iface *streadi) { struct vg_context *ctx = (struct vg_context *) stctxi; struct st_framebuffer *stfb; enum st_attachment_type strb_att; /* the draw and read framebuffers must be the same */ if (stdrawi != streadi) return FALSE; p_atomic_set(&ctx->draw_buffer_invalid, TRUE); strb_att = (stdrawi) ? choose_attachment(stdrawi) : ST_ATTACHMENT_INVALID; if (ctx->draw_buffer) { stfb = ctx->draw_buffer; /* free the existing fb */ if (!stdrawi || stfb->strb_att != strb_att || stfb->strb->format != stdrawi->visual->color_format) { destroy_renderbuffer(stfb->strb); destroy_renderbuffer(stfb->dsrb); FREE(stfb); ctx->draw_buffer = NULL; } } if (!stdrawi) return TRUE; if (strb_att == ST_ATTACHMENT_INVALID) return FALSE; /* create a new fb */ if (!ctx->draw_buffer) { stfb = CALLOC_STRUCT(st_framebuffer); if (!stfb) return FALSE; stfb->strb = create_renderbuffer(stdrawi->visual->color_format); if (!stfb->strb) { FREE(stfb); return FALSE; } stfb->dsrb = create_renderbuffer(ctx->ds_format); if (!stfb->dsrb) { FREE(stfb->strb); FREE(stfb); return FALSE; } stfb->width = 0; stfb->height = 0; stfb->strb_att = strb_att; ctx->draw_buffer = stfb; } ctx->draw_buffer->iface = stdrawi; return TRUE; }
int iris_bo_busy(struct iris_bo *bo) { struct iris_bufmgr *bufmgr = bo->bufmgr; struct drm_i915_gem_busy busy = { .handle = bo->gem_handle }; int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy); if (ret == 0) { bo->idle = !busy.busy; return busy.busy; } return false; } int iris_bo_madvise(struct iris_bo *bo, int state) { struct drm_i915_gem_madvise madv = { .handle = bo->gem_handle, .madv = state, .retained = 1, }; drm_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv); return madv.retained; } /* drop the oldest entries that have been purged by the kernel */ static void iris_bo_cache_purge_bucket(struct iris_bufmgr *bufmgr, struct bo_cache_bucket *bucket) { list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) { if (iris_bo_madvise(bo, I915_MADV_DONTNEED)) break; list_del(&bo->head); bo_free(bo); } } static struct iris_bo * bo_calloc(void) { struct iris_bo *bo = calloc(1, sizeof(*bo)); if (bo) { bo->hash = _mesa_hash_pointer(bo); } return bo; } static struct iris_bo * bo_alloc_internal(struct iris_bufmgr *bufmgr, const char *name, uint64_t size, enum iris_memory_zone memzone, unsigned flags, uint32_t tiling_mode, uint32_t stride) { struct iris_bo *bo; unsigned int page_size = getpagesize(); int ret; struct bo_cache_bucket *bucket; bool alloc_from_cache; uint64_t bo_size; bool zeroed = false; if (flags & BO_ALLOC_ZEROED) zeroed = true; if ((flags & BO_ALLOC_COHERENT) && !bufmgr->has_llc) { bo_size = MAX2(ALIGN(size, page_size), page_size); bucket = NULL; goto skip_cache; } /* Round the allocated size up to a power of two number of pages. */ bucket = bucket_for_size(bufmgr, size); /* If we don't have caching at this size, don't actually round the * allocation up. */ if (bucket == NULL) { bo_size = MAX2(ALIGN(size, page_size), page_size); } else { bo_size = bucket->size; } mtx_lock(&bufmgr->lock); /* Get a buffer out of the cache if available */ retry: alloc_from_cache = false; if (bucket != NULL && !list_empty(&bucket->head)) { /* If the last BO in the cache is idle, then reuse it. Otherwise, * allocate a fresh buffer to avoid stalling. */ bo = LIST_ENTRY(struct iris_bo, bucket->head.next, head); if (!iris_bo_busy(bo)) { alloc_from_cache = true; list_del(&bo->head); } if (alloc_from_cache) { if (!iris_bo_madvise(bo, I915_MADV_WILLNEED)) { bo_free(bo); iris_bo_cache_purge_bucket(bufmgr, bucket); goto retry; } if (bo_set_tiling_internal(bo, tiling_mode, stride)) { bo_free(bo); goto retry; } if (zeroed) { void *map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW); if (!map) { bo_free(bo); goto retry; } memset(map, 0, bo_size); } } } if (alloc_from_cache) { /* If the cached BO isn't in the right memory zone, free the old * memory and assign it a new address. */ if (memzone != iris_memzone_for_address(bo->gtt_offset)) { vma_free(bufmgr, bo->gtt_offset, bo->size); bo->gtt_offset = 0ull; } } else { skip_cache: bo = bo_calloc(); if (!bo) goto err; bo->size = bo_size; bo->idle = true; struct drm_i915_gem_create create = { .size = bo_size }; /* All new BOs we get from the kernel are zeroed, so we don't need to * worry about that here. */ ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create); if (ret != 0) { free(bo); goto err; } bo->gem_handle = create.handle; bo->bufmgr = bufmgr; bo->tiling_mode = I915_TILING_NONE; bo->swizzle_mode = I915_BIT_6_SWIZZLE_NONE; bo->stride = 0; if (bo_set_tiling_internal(bo, tiling_mode, stride)) goto err_free; /* Calling set_domain() will allocate pages for the BO outside of the * struct mutex lock in the kernel, which is more efficient than waiting * to create them during the first execbuf that uses the BO. */ struct drm_i915_gem_set_domain sd = { .handle = bo->gem_handle, .read_domains = I915_GEM_DOMAIN_CPU, .write_domain = 0, }; if (drm_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd) != 0) goto err_free; } bo->name = name; p_atomic_set(&bo->refcount, 1); bo->reusable = bucket && bufmgr->bo_reuse; bo->cache_coherent = bufmgr->has_llc; bo->index = -1; bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED; /* By default, capture all driver-internal buffers like shader kernels, * surface states, dynamic states, border colors, and so on. */ if (memzone < IRIS_MEMZONE_OTHER) bo->kflags |= EXEC_OBJECT_CAPTURE; if (bo->gtt_offset == 0ull) { bo->gtt_offset = vma_alloc(bufmgr, memzone, bo->size, 1); if (bo->gtt_offset == 0ull) goto err_free; } mtx_unlock(&bufmgr->lock); if ((flags & BO_ALLOC_COHERENT) && !bo->cache_coherent) { struct drm_i915_gem_caching arg = { .handle = bo->gem_handle, .caching = 1, }; if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_CACHING, &arg) == 0) { bo->cache_coherent = true; bo->reusable = false; } } DBG("bo_create: buf %d (%s) (%s memzone) %llub\n", bo->gem_handle, bo->name, memzone_name(memzone), (unsigned long long) size); return bo; err_free: bo_free(bo); err: mtx_unlock(&bufmgr->lock); return NULL; } struct iris_bo * iris_bo_alloc(struct iris_bufmgr *bufmgr, const char *name, uint64_t size, enum iris_memory_zone memzone) { return bo_alloc_internal(bufmgr, name, size, memzone, 0, I915_TILING_NONE, 0); } struct iris_bo * iris_bo_alloc_tiled(struct iris_bufmgr *bufmgr, const char *name, uint64_t size, enum iris_memory_zone memzone, uint32_t tiling_mode, uint32_t pitch, unsigned flags) { return bo_alloc_internal(bufmgr, name, size, memzone, flags, tiling_mode, pitch); } struct iris_bo * iris_bo_create_userptr(struct iris_bufmgr *bufmgr, const char *name, void *ptr, size_t size, enum iris_memory_zone memzone) { struct iris_bo *bo; bo = bo_calloc(); if (!bo) return NULL; struct drm_i915_gem_userptr arg = { .user_ptr = (uintptr_t)ptr, .user_size = size, }; if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_USERPTR, &arg)) goto err_free; bo->gem_handle = arg.handle; /* Check the buffer for validity before we try and use it in a batch */ struct drm_i915_gem_set_domain sd = { .handle = bo->gem_handle, .read_domains = I915_GEM_DOMAIN_CPU, }; if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd)) goto err_close; bo->name = name; bo->size = size; bo->map_cpu = ptr; bo->bufmgr = bufmgr; bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED; bo->gtt_offset = vma_alloc(bufmgr, memzone, size, 1); if (bo->gtt_offset == 0ull) goto err_close; p_atomic_set(&bo->refcount, 1); bo->userptr = true; bo->cache_coherent = true; bo->index = -1; bo->idle = true; return bo; err_close: drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &bo->gem_handle); err_free: free(bo); return NULL; } /** * Returns a iris_bo wrapping the given buffer object handle. * * This can be used when one application needs to pass a buffer object * to another. */ struct iris_bo * iris_bo_gem_create_from_name(struct iris_bufmgr *bufmgr, const char *name, unsigned int handle) { struct iris_bo *bo; /* At the moment most applications only have a few named bo. * For instance, in a DRI client only the render buffers passed * between X and the client are named. And since X returns the * alternating names for the front/back buffer a linear search * provides a sufficiently fast match. */ mtx_lock(&bufmgr->lock); bo = hash_find_bo(bufmgr->name_table, handle); if (bo) { iris_bo_reference(bo); goto out; } struct drm_gem_open open_arg = { .name = handle }; int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg); if (ret != 0) { DBG("Couldn't reference %s handle 0x%08x: %s\n", name, handle, strerror(errno)); bo = NULL; goto out; } /* Now see if someone has used a prime handle to get this * object from the kernel before by looking through the list * again for a matching gem_handle */ bo = hash_find_bo(bufmgr->handle_table, open_arg.handle); if (bo) { iris_bo_reference(bo); goto out; } bo = bo_calloc(); if (!bo) goto out; p_atomic_set(&bo->refcount, 1); bo->size = open_arg.size; bo->gtt_offset = 0; bo->bufmgr = bufmgr; bo->gem_handle = open_arg.handle; bo->name = name; bo->global_name = handle; bo->reusable = false; bo->external = true; bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED; bo->gtt_offset = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1); _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo); _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo); struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle }; ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling); if (ret != 0) goto err_unref; bo->tiling_mode = get_tiling.tiling_mode; bo->swizzle_mode = get_tiling.swizzle_mode; /* XXX stride is unknown */ DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name); out: mtx_unlock(&bufmgr->lock); return bo; err_unref: bo_free(bo); mtx_unlock(&bufmgr->lock); return NULL; } static void bo_free(struct iris_bo *bo) { struct iris_bufmgr *bufmgr = bo->bufmgr; if (bo->map_cpu && !bo->userptr) { VG_NOACCESS(bo->map_cpu, bo->size); munmap(bo->map_cpu, bo->size); } if (bo->map_wc) { VG_NOACCESS(bo->map_wc, bo->size); munmap(bo->map_wc, bo->size); } if (bo->map_gtt) { VG_NOACCESS(bo->map_gtt, bo->size); munmap(bo->map_gtt, bo->size); } if (bo->external) { struct hash_entry *entry; if (bo->global_name) { entry = _mesa_hash_table_search(bufmgr->name_table, &bo->global_name); _mesa_hash_table_remove(bufmgr->name_table, entry); } entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle); _mesa_hash_table_remove(bufmgr->handle_table, entry); } /* Close this object */ struct drm_gem_close close = { .handle = bo->gem_handle }; int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close); if (ret != 0) { DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n", bo->gem_handle, bo->name, strerror(errno)); } vma_free(bo->bufmgr, bo->gtt_offset, bo->size); free(bo); } /** Frees all cached buffers significantly older than @time. */ static void cleanup_bo_cache(struct iris_bufmgr *bufmgr, time_t time) { int i; if (bufmgr->time == time) return; for (i = 0; i < bufmgr->num_buckets; i++) { struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i]; list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) { if (time - bo->free_time <= 1) break; list_del(&bo->head); bo_free(bo); } } bufmgr->time = time; } static void bo_unreference_final(struct iris_bo *bo, time_t time) { struct iris_bufmgr *bufmgr = bo->bufmgr; struct bo_cache_bucket *bucket; DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name); bucket = NULL; if (bo->reusable) bucket = bucket_for_size(bufmgr, bo->size); /* Put the buffer into our internal cache for reuse if we can. */ if (bucket && iris_bo_madvise(bo, I915_MADV_DONTNEED)) { bo->free_time = time; bo->name = NULL; list_addtail(&bo->head, &bucket->head); } else { bo_free(bo); } } void iris_bo_unreference(struct iris_bo *bo) { if (bo == NULL) return; assert(p_atomic_read(&bo->refcount) > 0); if (atomic_add_unless(&bo->refcount, -1, 1)) { struct iris_bufmgr *bufmgr = bo->bufmgr; struct timespec time; clock_gettime(CLOCK_MONOTONIC, &time); mtx_lock(&bufmgr->lock); if (p_atomic_dec_zero(&bo->refcount)) { bo_unreference_final(bo, time.tv_sec); cleanup_bo_cache(bufmgr, time.tv_sec); } mtx_unlock(&bufmgr->lock); } } static void bo_wait_with_stall_warning(struct pipe_debug_callback *dbg, struct iris_bo *bo, const char *action) { bool busy = dbg && !bo->idle; double elapsed = unlikely(busy) ? -get_time() : 0.0; iris_bo_wait_rendering(bo); if (unlikely(busy)) { elapsed += get_time(); if (elapsed > 1e-5) /* 0.01ms */ { perf_debug(dbg, "%s a busy \"%s\" BO stalled and took %.03f ms.\n", action, bo->name, elapsed * 1000); } } } static void print_flags(unsigned flags) { if (flags & MAP_READ) DBG("READ "); if (flags & MAP_WRITE) DBG("WRITE "); if (flags & MAP_ASYNC) DBG("ASYNC "); if (flags & MAP_PERSISTENT) DBG("PERSISTENT "); if (flags & MAP_COHERENT) DBG("COHERENT "); if (flags & MAP_RAW) DBG("RAW "); DBG("\n"); } static void * iris_bo_map_cpu(struct pipe_debug_callback *dbg, struct iris_bo *bo, unsigned flags) { struct iris_bufmgr *bufmgr = bo->bufmgr; /* We disallow CPU maps for writing to non-coherent buffers, as the * CPU map can become invalidated when a batch is flushed out, which * can happen at unpredictable times. You should use WC maps instead. */ assert(bo->cache_coherent || !(flags & MAP_WRITE)); if (!bo->map_cpu) { DBG("iris_bo_map_cpu: %d (%s)\n", bo->gem_handle, bo->name); struct drm_i915_gem_mmap mmap_arg = { .handle = bo->gem_handle, .size = bo->size, }; int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg); if (ret != 0) { DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno)); return NULL; } void *map = (void *) (uintptr_t) mmap_arg.addr_ptr; VG_DEFINED(map, bo->size); if (p_atomic_cmpxchg(&bo->map_cpu, NULL, map)) { VG_NOACCESS(map, bo->size); munmap(map, bo->size); } } assert(bo->map_cpu); DBG("iris_bo_map_cpu: %d (%s) -> %p, ", bo->gem_handle, bo->name, bo->map_cpu); print_flags(flags); if (!(flags & MAP_ASYNC)) { bo_wait_with_stall_warning(dbg, bo, "CPU mapping"); } if (!bo->cache_coherent && !bo->bufmgr->has_llc) { /* If we're reusing an existing CPU mapping, the CPU caches may * contain stale data from the last time we read from that mapping. * (With the BO cache, it might even be data from a previous buffer!) * Even if it's a brand new mapping, the kernel may have zeroed the * buffer via CPU writes. * * We need to invalidate those cachelines so that we see the latest * contents, and so long as we only read from the CPU mmap we do not * need to write those cachelines back afterwards. * * On LLC, the emprical evidence suggests that writes from the GPU * that bypass the LLC (i.e. for scanout) do *invalidate* the CPU * cachelines. (Other reads, such as the display engine, bypass the * LLC entirely requiring us to keep dirty pixels for the scanout * out of any cache.) */ gen_invalidate_range(bo->map_cpu, bo->size); } return bo->map_cpu; } static void * iris_bo_map_wc(struct pipe_debug_callback *dbg, struct iris_bo *bo, unsigned flags) { struct iris_bufmgr *bufmgr = bo->bufmgr; if (!bo->map_wc) { DBG("iris_bo_map_wc: %d (%s)\n", bo->gem_handle, bo->name); struct drm_i915_gem_mmap mmap_arg = { .handle = bo->gem_handle, .size = bo->size, .flags = I915_MMAP_WC, }; int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg); if (ret != 0) { DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno)); return NULL; } void *map = (void *) (uintptr_t) mmap_arg.addr_ptr; VG_DEFINED(map, bo->size); if (p_atomic_cmpxchg(&bo->map_wc, NULL, map)) { VG_NOACCESS(map, bo->size); munmap(map, bo->size); } } assert(bo->map_wc); DBG("iris_bo_map_wc: %d (%s) -> %p\n", bo->gem_handle, bo->name, bo->map_wc); print_flags(flags); if (!(flags & MAP_ASYNC)) { bo_wait_with_stall_warning(dbg, bo, "WC mapping"); } return bo->map_wc; } /** * Perform an uncached mapping via the GTT. * * Write access through the GTT is not quite fully coherent. On low power * systems especially, like modern Atoms, we can observe reads from RAM before * the write via GTT has landed. A write memory barrier that flushes the Write * Combining Buffer (i.e. sfence/mfence) is not sufficient to order the later * read after the write as the GTT write suffers a small delay through the GTT * indirection. The kernel uses an uncached mmio read to ensure the GTT write * is ordered with reads (either by the GPU, WB or WC) and unconditionally * flushes prior to execbuf submission. However, if we are not informing the * kernel about our GTT writes, it will not flush before earlier access, such * as when using the cmdparser. Similarly, we need to be careful if we should * ever issue a CPU read immediately following a GTT write. * * Telling the kernel about write access also has one more important * side-effect. Upon receiving notification about the write, it cancels any * scanout buffering for FBC/PSR and friends. Later FBC/PSR is then flushed by * either SW_FINISH or DIRTYFB. The presumption is that we never write to the * actual scanout via a mmaping, only to a backbuffer and so all the FBC/PSR * tracking is handled on the buffer exchange instead. */ static void * iris_bo_map_gtt(struct pipe_debug_callback *dbg, struct iris_bo *bo, unsigned flags) { struct iris_bufmgr *bufmgr = bo->bufmgr; /* Get a mapping of the buffer if we haven't before. */ if (bo->map_gtt == NULL) { DBG("bo_map_gtt: mmap %d (%s)\n", bo->gem_handle, bo->name); struct drm_i915_gem_mmap_gtt mmap_arg = { .handle = bo->gem_handle }; /* Get the fake offset back... */ int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg); if (ret != 0) { DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n", __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno)); return NULL; } /* and mmap it. */ void *map = mmap(0, bo->size, PROT_READ | PROT_WRITE, MAP_SHARED, bufmgr->fd, mmap_arg.offset); if (map == MAP_FAILED) { DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno)); return NULL; } /* We don't need to use VALGRIND_MALLOCLIKE_BLOCK because Valgrind will * already intercept this mmap call. However, for consistency between * all the mmap paths, we mark the pointer as defined now and mark it * as inaccessible afterwards. */ VG_DEFINED(map, bo->size); if (p_atomic_cmpxchg(&bo->map_gtt, NULL, map)) { VG_NOACCESS(map, bo->size); munmap(map, bo->size); } } assert(bo->map_gtt); DBG("bo_map_gtt: %d (%s) -> %p, ", bo->gem_handle, bo->name, bo->map_gtt); print_flags(flags); if (!(flags & MAP_ASYNC)) { bo_wait_with_stall_warning(dbg, bo, "GTT mapping"); } return bo->map_gtt; } static bool can_map_cpu(struct iris_bo *bo, unsigned flags) { if (bo->cache_coherent) return true; /* Even if the buffer itself is not cache-coherent (such as a scanout), on * an LLC platform reads always are coherent (as they are performed via the * central system agent). It is just the writes that we need to take special * care to ensure that land in main memory and not stick in the CPU cache. */ if (!(flags & MAP_WRITE) && bo->bufmgr->has_llc) return true; /* If PERSISTENT or COHERENT are set, the mmapping needs to remain valid * across batch flushes where the kernel will change cache domains of the * bo, invalidating continued access to the CPU mmap on non-LLC device. * * Similarly, ASYNC typically means that the buffer will be accessed via * both the CPU and the GPU simultaneously. Batches may be executed that * use the BO even while it is mapped. While OpenGL technically disallows * most drawing while non-persistent mappings are active, we may still use * the GPU for blits or other operations, causing batches to happen at * inconvenient times. * * If RAW is set, we expect the caller to be able to handle a WC buffer * more efficiently than the involuntary clflushes. */ if (flags & (MAP_PERSISTENT | MAP_COHERENT | MAP_ASYNC | MAP_RAW)) return false; return !(flags & MAP_WRITE); } void * iris_bo_map(struct pipe_debug_callback *dbg, struct iris_bo *bo, unsigned flags) { if (bo->tiling_mode != I915_TILING_NONE && !(flags & MAP_RAW)) return iris_bo_map_gtt(dbg, bo, flags); void *map; if (can_map_cpu(bo, flags)) map = iris_bo_map_cpu(dbg, bo, flags); else map = iris_bo_map_wc(dbg, bo, flags); /* Allow the attempt to fail by falling back to the GTT where necessary. * * Not every buffer can be mmaped directly using the CPU (or WC), for * example buffers that wrap stolen memory or are imported from other * devices. For those, we have little choice but to use a GTT mmapping. * However, if we use a slow GTT mmapping for reads where we expected fast * access, that order of magnitude difference in throughput will be clearly * expressed by angry users. * * We skip MAP_RAW because we want to avoid map_gtt's fence detiling. */ if (!map && !(flags & MAP_RAW)) { perf_debug(dbg, "Fallback GTT mapping for %s with access flags %x\n", bo->name, flags); map = iris_bo_map_gtt(dbg, bo, flags); } return map; } /** Waits for all GPU rendering with the object to have completed. */ void iris_bo_wait_rendering(struct iris_bo *bo) { /* We require a kernel recent enough for WAIT_IOCTL support. * See intel_init_bufmgr() */ iris_bo_wait(bo, -1); } /** * Waits on a BO for the given amount of time. * * @bo: buffer object to wait for * @timeout_ns: amount of time to wait in nanoseconds. * If value is less than 0, an infinite wait will occur. * * Returns 0 if the wait was successful ie. the last batch referencing the * object has completed within the allotted time. Otherwise some negative return * value describes the error. Of particular interest is -ETIME when the wait has * failed to yield the desired result. * * Similar to iris_bo_wait_rendering except a timeout parameter allows * the operation to give up after a certain amount of time. Another subtle * difference is the internal locking semantics are different (this variant does * not hold the lock for the duration of the wait). This makes the wait subject * to a larger userspace race window. * * The implementation shall wait until the object is no longer actively * referenced within a batch buffer at the time of the call. The wait will * not guarantee that the buffer is re-issued via another thread, or an flinked * handle. Userspace must make sure this race does not occur if such precision * is important. * * Note that some kernels have broken the inifite wait for negative values * promise, upgrade to latest stable kernels if this is the case. */ int iris_bo_wait(struct iris_bo *bo, int64_t timeout_ns) { struct iris_bufmgr *bufmgr = bo->bufmgr; /* If we know it's idle, don't bother with the kernel round trip */ if (bo->idle && !bo->external) return 0; struct drm_i915_gem_wait wait = { .bo_handle = bo->gem_handle, .timeout_ns = timeout_ns, }; int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait); if (ret != 0) return -errno; bo->idle = true; return ret; } void iris_bufmgr_destroy(struct iris_bufmgr *bufmgr) { mtx_destroy(&bufmgr->lock); /* Free any cached buffer objects we were going to reuse */ for (int i = 0; i < bufmgr->num_buckets; i++) { struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i]; list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) { list_del(&bo->head); bo_free(bo); } } _mesa_hash_table_destroy(bufmgr->name_table, NULL); _mesa_hash_table_destroy(bufmgr->handle_table, NULL); for (int z = 0; z < IRIS_MEMZONE_COUNT; z++) { if (z != IRIS_MEMZONE_BINDER) util_vma_heap_finish(&bufmgr->vma_allocator[z]); } free(bufmgr); } static int bo_set_tiling_internal(struct iris_bo *bo, uint32_t tiling_mode, uint32_t stride) { struct iris_bufmgr *bufmgr = bo->bufmgr; struct drm_i915_gem_set_tiling set_tiling; int ret; if (bo->global_name == 0 && tiling_mode == bo->tiling_mode && stride == bo->stride) return 0; memset(&set_tiling, 0, sizeof(set_tiling)); do { /* set_tiling is slightly broken and overwrites the * input on the error path, so we have to open code * drm_ioctl. */ set_tiling.handle = bo->gem_handle; set_tiling.tiling_mode = tiling_mode; set_tiling.stride = stride; ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling); } while (ret == -1 && (errno == EINTR || errno == EAGAIN)); if (ret == -1) return -errno; bo->tiling_mode = set_tiling.tiling_mode; bo->swizzle_mode = set_tiling.swizzle_mode; bo->stride = set_tiling.stride; return 0; } int iris_bo_get_tiling(struct iris_bo *bo, uint32_t *tiling_mode, uint32_t *swizzle_mode) { *tiling_mode = bo->tiling_mode; *swizzle_mode = bo->swizzle_mode; return 0; } struct iris_bo * iris_bo_import_dmabuf(struct iris_bufmgr *bufmgr, int prime_fd) { uint32_t handle; struct iris_bo *bo; mtx_lock(&bufmgr->lock); int ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle); if (ret) { DBG("import_dmabuf: failed to obtain handle from fd: %s\n", strerror(errno)); mtx_unlock(&bufmgr->lock); return NULL; } /* * See if the kernel has already returned this buffer to us. Just as * for named buffers, we must not create two bo's pointing at the same * kernel object */ bo = hash_find_bo(bufmgr->handle_table, handle); if (bo) { iris_bo_reference(bo); goto out; } bo = bo_calloc(); if (!bo) goto out; p_atomic_set(&bo->refcount, 1); /* Determine size of bo. The fd-to-handle ioctl really should * return the size, but it doesn't. If we have kernel 3.12 or * later, we can lseek on the prime fd to get the size. Older * kernels will just fail, in which case we fall back to the * provided (estimated or guess size). */ ret = lseek(prime_fd, 0, SEEK_END); if (ret != -1) bo->size = ret; bo->bufmgr = bufmgr; bo->gem_handle = handle; _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo); bo->name = "prime"; bo->reusable = false; bo->external = true; bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED; bo->gtt_offset = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1); struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle }; if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling)) goto err; bo->tiling_mode = get_tiling.tiling_mode; bo->swizzle_mode = get_tiling.swizzle_mode; /* XXX stride is unknown */ out: mtx_unlock(&bufmgr->lock); return bo; err: bo_free(bo); mtx_unlock(&bufmgr->lock); return NULL; } static void iris_bo_make_external_locked(struct iris_bo *bo) { if (!bo->external) { _mesa_hash_table_insert(bo->bufmgr->handle_table, &bo->gem_handle, bo); bo->external = true; } } static void iris_bo_make_external(struct iris_bo *bo) { struct iris_bufmgr *bufmgr = bo->bufmgr; if (bo->external) return; mtx_lock(&bufmgr->lock); iris_bo_make_external_locked(bo); mtx_unlock(&bufmgr->lock); } int iris_bo_export_dmabuf(struct iris_bo *bo, int *prime_fd) { struct iris_bufmgr *bufmgr = bo->bufmgr; iris_bo_make_external(bo); if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle, DRM_CLOEXEC, prime_fd) != 0) return -errno; bo->reusable = false; return 0; } uint32_t iris_bo_export_gem_handle(struct iris_bo *bo) { iris_bo_make_external(bo); return bo->gem_handle; } int iris_bo_flink(struct iris_bo *bo, uint32_t *name) { struct iris_bufmgr *bufmgr = bo->bufmgr; if (!bo->global_name) { struct drm_gem_flink flink = { .handle = bo->gem_handle }; if (drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink)) return -errno; mtx_lock(&bufmgr->lock); if (!bo->global_name) { iris_bo_make_external_locked(bo); bo->global_name = flink.name; _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo); } mtx_unlock(&bufmgr->lock); bo->reusable = false; } *name = bo->global_name; return 0; } static void add_bucket(struct iris_bufmgr *bufmgr, int size) { unsigned int i = bufmgr->num_buckets; assert(i < ARRAY_SIZE(bufmgr->cache_bucket)); list_inithead(&bufmgr->cache_bucket[i].head); bufmgr->cache_bucket[i].size = size; bufmgr->num_buckets++; assert(bucket_for_size(bufmgr, size) == &bufmgr->cache_bucket[i]); assert(bucket_for_size(bufmgr, size - 2048) == &bufmgr->cache_bucket[i]); assert(bucket_for_size(bufmgr, size + 1) != &bufmgr->cache_bucket[i]); } static void init_cache_buckets(struct iris_bufmgr *bufmgr) { uint64_t size, cache_max_size = 64 * 1024 * 1024; /* OK, so power of two buckets was too wasteful of memory. * Give 3 other sizes between each power of two, to hopefully * cover things accurately enough. (The alternative is * probably to just go for exact matching of sizes, and assume * that for things like composited window resize the tiled * width/height alignment and rounding of sizes to pages will * get us useful cache hit rates anyway) */ add_bucket(bufmgr, PAGE_SIZE); add_bucket(bufmgr, PAGE_SIZE * 2); add_bucket(bufmgr, PAGE_SIZE * 3); /* Initialize the linked lists for BO reuse cache. */ for (size = 4 * PAGE_SIZE; size <= cache_max_size; size *= 2) { add_bucket(bufmgr, size); add_bucket(bufmgr, size + size * 1 / 4); add_bucket(bufmgr, size + size * 2 / 4); add_bucket(bufmgr, size + size * 3 / 4); } }
struct radeon_winsys *radeon_drm_winsys_create(int fd) { struct radeon_drm_winsys *ws; if (!fd_tab) { fd_tab = util_hash_table_create(hash_fd, compare_fd); } ws = util_hash_table_get(fd_tab, intptr_to_pointer(fd)); if (ws) { pipe_reference(NULL, &ws->base.reference); return &ws->base; } ws = CALLOC_STRUCT(radeon_drm_winsys); if (!ws) { return NULL; } ws->fd = fd; util_hash_table_set(fd_tab, intptr_to_pointer(fd), ws); if (!do_winsys_init(ws)) goto fail; /* Create managers. */ ws->kman = radeon_bomgr_create(ws); if (!ws->kman) goto fail; ws->cman = pb_cache_manager_create(ws->kman, 1000000); if (!ws->cman) goto fail; if (ws->gen >= DRV_R600) { ws->surf_man = radeon_surface_manager_new(fd); if (!ws->surf_man) goto fail; } /* init reference */ pipe_reference_init(&ws->base.reference, 1); /* Set functions. */ ws->base.destroy = radeon_winsys_destroy; ws->base.query_info = radeon_query_info; ws->base.cs_request_feature = radeon_cs_request_feature; ws->base.surface_init = radeon_drm_winsys_surface_init; ws->base.surface_best = radeon_drm_winsys_surface_best; ws->base.query_value = radeon_query_value; radeon_bomgr_init_functions(ws); radeon_drm_cs_init_functions(ws); pipe_mutex_init(ws->hyperz_owner_mutex); pipe_mutex_init(ws->cmask_owner_mutex); pipe_mutex_init(ws->cs_stack_lock); p_atomic_set(&ws->ncs, 0); pipe_semaphore_init(&ws->cs_queued, 0); pipe_condvar_init(ws->cs_queue_empty); if (ws->num_cpus > 1 && debug_get_option_thread()) ws->thread = pipe_thread_create(radeon_drm_cs_emit_ioctl, ws); return &ws->base; fail: if (ws->cman) ws->cman->destroy(ws->cman); if (ws->kman) ws->kman->destroy(ws->kman); if (ws->surf_man) radeon_surface_manager_free(ws->surf_man); FREE(ws); return NULL; }