Example #1
0
ExprList *sqliteExprListDup(ExprList *p){
  ExprList *pNew;
  struct ExprList_item *pItem;
  int i;
  if( p==0 ) return 0;
  pNew = sqliteMalloc( sizeof(*pNew) );
  if( pNew==0 ) return 0;
  pNew->nExpr = pNew->nAlloc = p->nExpr;
  pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) );
  for(i=0; pItem && i<p->nExpr; i++, pItem++){
    Expr *pNewExpr, *pOldExpr;
    pItem->pExpr = pNewExpr = sqliteExprDup(pOldExpr = p->a[i].pExpr);
    if( pOldExpr->span.z!=0 && pNewExpr ){
      /* Always make a copy of the span for top-level expressions in the
      ** expression list.  The logic in SELECT processing that determines
      ** the names of columns in the result set needs this information */
      sqliteTokenCopy(&pNewExpr->span, &pOldExpr->span);
    }
    assert( pNewExpr==0 || pNewExpr->span.z!=0 
            || pOldExpr->span.z==0 || sqlite_malloc_failed );
    pItem->zName = sqliteStrDup(p->a[i].zName);
    pItem->sortOrder = p->a[i].sortOrder;
    pItem->isAgg = p->a[i].isAgg;
    pItem->done = 0;
  }
  return pNew;
}
Example #2
0
/*
** EXPERIMENTAL - This is not an official function.  The interface may
** change.  This function may disappear.  Do not write code that depends
** on this function.
**
** Implementation of the QUOTE() function.  This function takes a single
** argument.  If the argument is numeric, the return value is the same as
** the argument.  If the argument is NULL, the return value is the string
** "NULL".  Otherwise, the argument is enclosed in single quotes with
** single-quote escapes.
*/
static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv) {
    if( argc<1 ) return;
    switch( sqlite3_value_type(argv[0]) ) {
    case SQLITE_NULL: {
        sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
        break;
    }
    case SQLITE_INTEGER:
    case SQLITE_FLOAT: {
        sqlite3_result_value(context, argv[0]);
        break;
    }
    case SQLITE_BLOB: {
        char *zText = 0;
        int nBlob = sqlite3_value_bytes(argv[0]);
        char const *zBlob = sqlite3_value_blob(argv[0]);

        zText = (char *)sqliteMalloc((2*nBlob)+4);
        if( !zText ) {
            sqlite3_result_error(context, "out of memory", -1);
        } else {
            int i;
            for(i=0; i<nBlob; i++) {
                zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
                zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
            }
            zText[(nBlob*2)+2] = '\'';
            zText[(nBlob*2)+3] = '\0';
            zText[0] = 'X';
            zText[1] = '\'';
            sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
            sqliteFree(zText);
        }
        break;
    }
    case SQLITE_TEXT: {
        int i,j,n;
        const unsigned char *zArg = sqlite3_value_text(argv[0]);
        char *z;

        for(i=n=0; zArg[i]; i++) {
            if( zArg[i]=='\'' ) n++;
        }
        z = sqliteMalloc( i+n+3 );
        if( z==0 ) return;
        z[0] = '\'';
        for(i=0, j=1; zArg[i]; i++) {
            z[j++] = zArg[i];
            if( zArg[i]=='\'' ) {
                z[j++] = '\'';
            }
        }
        z[j++] = '\'';
        z[j] = 0;
        sqlite3_result_text(context, z, j, SQLITE_TRANSIENT);
        sqliteFree(z);
    }
    }
}
Example #3
0
/*
** Make sure the given Mem is \u0000 terminated.
*/
int sqlite3VdbeMemNulTerminate(Mem *pMem) {
    /* In SQLite, a string without a nul terminator occurs when a string
    ** is loaded from disk (in this case the memory management is ephemeral),
    ** or when it is supplied by the user as a bound variable or function
    ** return value. Therefore, the memory management of the string must be
    ** either ephemeral, static or controlled by a user-supplied destructor.
    */
    assert(
        !(pMem->flags&MEM_Str) ||                /* it's not a string, or      */
        (pMem->flags&MEM_Term) ||                /* it's nul term. already, or */
        (pMem->flags&(MEM_Ephem|MEM_Static)) ||  /* it's static or ephem, or   */
        (pMem->flags&MEM_Dyn && pMem->xDel)      /* external management        */
    );
    if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ) {
        return SQLITE_OK;   /* Nothing to do */
    }

    if( pMem->flags & (MEM_Static|MEM_Ephem) ) {
        return sqlite3VdbeMemMakeWriteable(pMem);
    } else {
        char *z = sqliteMalloc(pMem->n+2);
        if( !z ) return SQLITE_NOMEM;
        memcpy(z, pMem->z, pMem->n);
        z[pMem->n] = 0;
        z[pMem->n+1] = 0;
        pMem->xDel(pMem->z);
        pMem->xDel = 0;
        pMem->z = z;
    }
    return SQLITE_OK;
}
Example #4
0
/*
** Add a new element to the end of a statement list.  If pList is
** initially NULL, then create a new statement list.
*/
StmtList *sqliteStmtListAppend(StmtList *pList, Stmt *pStmt){
  if( pList==0 ){
    pList = sqliteMalloc( sizeof(StmtList) );
    if( pList==0 ){
      /* sqliteStmtDelete(pExpr); // Leak memory if malloc fails */
      return 0;
    }
    assert( pList->nAlloc==0 );
  }
  if( pList->nAlloc<=pList->nStmt ){
    pList->nAlloc = pList->nAlloc*2 + 4;
    pList->a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]));
    if( pList->a==0 ){
      /* sqliteStmtDelete(pExpr); // Leak memory if malloc fails */
      pList->nStmt = pList->nAlloc = 0;
      return pList;
    }
  }
  assert( pList->a!=0 );
  if( pStmt ){
    struct StmtList_item *pItem = &pList->a[pList->nStmt++];
    memset(pItem, 0, sizeof(*pItem));
    pItem->pStmt = pStmt;
  }
  return pList;
}
Example #5
0
/*
** The parser calls this routine when it sees a SQL statement inside the
** body of a block
*/
Stmt *sqliteSQLStmt(
  int op,			        /* One of TK_SELECT, TK_INSERT, TK_UPDATE, TK_DELETE */
  Token *pTableName,  /* Name of the table into which we insert */
  IdList *pColumn,    /* List of columns in pTableName to insert into */
  ExprList *pEList,   /* The VALUE clause: a list of values to be inserted */
  Select *pSelect,    /* A SELECT statement that supplies values */
  Expr *pWhere,       /* The WHERE clause */
  int orconf          /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */
){
  Stmt *pNew;

  pNew = sqliteMalloc( sizeof(Stmt)+sizeof(SQLStmt) );
  if( pNew==0 ){
    /* When malloc fails, we leak memory */
    return 0;
  }
  pNew->pSql = (SQLStmt*) (pNew+1);

  pNew->op = TK_SQL;
  pNew->pSql->op		  = op;
  pNew->pSql->pSelect   = pSelect;
  if( pTableName ) {
    pNew->pSql->target    = *pTableName;
  }
  pNew->pSql->pIdList   = pColumn;
  pNew->pSql->pExprList = pEList;
  pNew->pSql->pWhere    = pWhere;
  pNew->pSql->orconf	  = orconf;

  return pNew;
}
Example #6
0
/*
** Add a new element to the end of an expression list.  If pList is
** initially NULL, then create a new expression list.
*/
ExprList *sqliteExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){
  if( pList==0 ){
    pList = sqliteMalloc( sizeof(ExprList) );
    if( pList==0 ){
      /* sqliteExprDelete(pExpr); // Leak memory if malloc fails */
      return 0;
    }
    assert( pList->nAlloc==0 );
  }
  if( pList->nAlloc<=pList->nExpr ){
    pList->nAlloc = pList->nAlloc*2 + 4;
    pList->a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]));
    if( pList->a==0 ){
      /* sqliteExprDelete(pExpr); // Leak memory if malloc fails */
      pList->nExpr = pList->nAlloc = 0;
      return pList;
    }
  }
  assert( pList->a!=0 );
  if( pExpr || pName ){
    struct ExprList_item *pItem = &pList->a[pList->nExpr++];
    memset(pItem, 0, sizeof(*pItem));
    pItem->pExpr = pExpr;
    if( pName ){
      sqliteSetNString(&pItem->zName, pName->z, pName->n, 0);
      sqliteDequote(pItem->zName);
    }
  }
  return pList;
}
Example #7
0
/*
** Construct a new expression node and return a pointer to it.  Memory
** for this node is obtained from sqliteMalloc().  The calling function
** is responsible for making sure the node eventually gets freed.
*/
Expr *sqliteExpr(int op, Expr *pLeft, Expr *pRight, Token *pToken){
  Expr *pNew;
  pNew = sqliteMalloc( sizeof(Expr) );
  if( pNew==0 ){
    /* When malloc fails, we leak memory from pLeft and pRight */
    return 0;
  }
  pNew->op = op;
  pNew->pLeft = pLeft;
  pNew->pRight = pRight;
  if( pToken ){
    assert( pToken->dyn==0 );
    pNew->token = *pToken;
    pNew->span = *pToken;
  }else{
    assert( pNew->token.dyn==0 );
    assert( pNew->token.z==0 );
    assert( pNew->token.n==0 );
    if( pLeft && pRight ){
      sqliteExprSpan(pNew, &pLeft->span, &pRight->span);
    }else{
      pNew->span = pNew->token;
    }
  }
  return pNew;
}
/*
** Locate and return an entry from the db.aCollSeq hash table. If the entry
** specified by zName and nName is not found and parameter 'create' is
** true, then create a new entry. Otherwise return NULL.
**
** Each pointer stored in the sqlite3.aCollSeq hash table contains an
** array of three CollSeq structures. The first is the collation sequence
** prefferred for UTF-8, the second UTF-16le, and the third UTF-16be.
**
** Stored immediately after the three collation sequences is a copy of
** the collation sequence name. A pointer to this string is stored in
** each collation sequence structure.
*/
static CollSeq * findCollSeqEntry(
  sqlite3 *db,
  const char *zName,
  int nName,
  int create
){
  CollSeq *pColl;
  if( nName<0 ) nName = strlen(zName);
  pColl = sqlite3HashFind(&db->aCollSeq, zName, nName);

  if( 0==pColl && create ){
    pColl = sqliteMalloc( 3*sizeof(*pColl) + nName + 1 );
    if( pColl ){
      CollSeq *pDel = 0;
      pColl[0].zName = (char*)&pColl[3];
      pColl[0].enc = SQLITE_UTF8;
      pColl[1].zName = (char*)&pColl[3];
      pColl[1].enc = SQLITE_UTF16LE;
      pColl[2].zName = (char*)&pColl[3];
      pColl[2].enc = SQLITE_UTF16BE;
      memcpy(pColl[0].zName, zName, nName);
      pColl[0].zName[nName] = 0;
      pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, nName, pColl);

      /* If a malloc() failure occured in sqlite3HashInsert(), it will 
      ** return the pColl pointer to be deleted (because it wasn't added
      ** to the hash table).
      */
      assert( !pDel || (sqlite3_malloc_failed && pDel==pColl) );
      sqliteFree(pDel);
    }
  }
  return pColl;
}
Example #9
0
/*
** EXPERIMENTAL - This is not an official function.  The interface may
** change.  This function may disappear.  Do not write code that depends
** on this function.
**
** Implementation of the QUOTE() function.  This function takes a single
** argument.  If the argument is numeric, the return value is the same as
** the argument.  If the argument is NULL, the return value is the string
** "NULL".  Otherwise, the argument is enclosed in single quotes with
** single-quote escapes.
*/
static void quoteFunc(sqlite_func *context, int argc, const char **argv){
  if( argc<1 ) return;
  if( argv[0]==0 ){
    sqlite_set_result_string(context, "NULL", 4);
  }else if( sqliteIsNumber(argv[0]) ){
    sqlite_set_result_string(context, argv[0], -1);
  }else{
    int i,j,n;
    char *z;
    for(i=n=0; argv[0][i]; i++){ if( argv[0][i]=='\'' ) n++; }
    z = sqliteMalloc( i+n+3 );
    if( z==0 ) return;
    z[0] = '\'';
    for(i=0, j=1; argv[0][i]; i++){
      z[j++] = argv[0][i];
      if( argv[0][i]=='\'' ){
        z[j++] = '\'';
      }
    }
    z[j++] = '\'';
    z[j] = 0;
    sqlite_set_result_string(context, z, j);
    sqliteFree(z);
  }
}
Example #10
0
/*
** Routines to implement min() and max() aggregate functions.
*/
static void minmaxStep(sqlite_func *context, int argc, const char **argv){
  MinMaxCtx *p;
  int (*xCompare)(const char*, const char*);
  int mask;    /* 0 for min() or 0xffffffff for max() */

  assert( argc==2 );
  if( argv[0]==0 ) return;  /* Ignore NULL values */
  if( argv[1][0]=='n' ){
    xCompare = sqliteCompare;
  }else{
    xCompare = strcmp;
  }
  mask = (int)sqlite_user_data(context);
  assert( mask==0 || mask==-1 );
  p = sqlite_aggregate_context(context, sizeof(*p));
  if( p==0 || argc<1 ) return;
  if( p->z==0 || (xCompare(argv[0],p->z)^mask)<0 ){
    int len;
    if( p->zBuf[0] ){
      sqliteFree(p->z);
    }
    len = strlen(argv[0]);
    if( len < sizeof(p->zBuf)-1 ){
      p->z = &p->zBuf[1];
      p->zBuf[0] = 0;
    }else{
      p->z = sqliteMalloc( len+1 );
      p->zBuf[0] = 1;
      if( p->z==0 ) return;
    }
    strcpy(p->z, argv[0]);
  }
}
Example #11
0
/*
** Set the values of all variables.  Variable $1 in the original SQL will
** be the string azValue[0].  $2 will have the value azValue[1].  And
** so forth.  If a value is out of range (for example $3 when nValue==2)
** then its value will be NULL.
**
** This routine overrides any prior call.
*/
int sqlite_bind(sqlite_vm *pVm, int i, const char *zVal, int len, int copy){
  Vdbe *p = (Vdbe*)pVm;
  if( p->magic!=VDBE_MAGIC_RUN || p->pc!=0 ){
    return SQLITE_MISUSE;
  }
  if( i<1 || i>p->nVar ){
    return SQLITE_RANGE;
  }
  i--;
  if( p->abVar[i] ){
    sqliteFree(p->azVar[i]);
  }
  if( zVal==0 ){
    copy = 0;
    len = 0;
  }
  if( len<0 ){
    len = strlen(zVal)+1;
  }
  if( copy ){
    p->azVar[i] = sqliteMalloc( len );
    if( p->azVar[i] ) memcpy(p->azVar[i], zVal, len);
  }else{
    p->azVar[i] = (char*)zVal;
  }
  p->abVar[i] = copy;
  p->anVar[i] = len;
  return SQLITE_OK;
}
Example #12
0
/*
** Build a trigger step out of an INSERT statement.  Return a pointer
** to the new trigger step.
**
** The parser calls this routine when it sees an INSERT inside the
** body of a trigger.
*/
TriggerStep *sqlite3TriggerInsertStep(
  Token *pTableName,  /* Name of the table into which we insert */
  IdList *pColumn,    /* List of columns in pTableName to insert into */
  ExprList *pEList,   /* The VALUE clause: a list of values to be inserted */
  Select *pSelect,    /* A SELECT statement that supplies values */
  int orconf          /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */
){
  TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));

  assert(pEList == 0 || pSelect == 0);
  assert(pEList != 0 || pSelect != 0);

  if( pTriggerStep ){
    pTriggerStep->op = TK_INSERT;
    pTriggerStep->pSelect = pSelect;
    pTriggerStep->target  = *pTableName;
    pTriggerStep->pIdList = pColumn;
    pTriggerStep->pExprList = pEList;
    pTriggerStep->orconf = orconf;
    sqlitePersistTriggerStep(pTriggerStep);
  }else{
    sqlite3IdListDelete(pColumn);
    sqlite3ExprListDelete(pEList);
    sqlite3SelectDup(pSelect);
  }

  return pTriggerStep;
}
Example #13
0
int sqliteRbtreeOpen(
  const char *zFilename,
  int mode,
  int nPg,
  Btree **ppBtree
){
  Rbtree **ppRbtree = (Rbtree**)ppBtree;
  *ppRbtree = (Rbtree *)sqliteMalloc(sizeof(Rbtree));
  if( sqlite_malloc_failed ) goto open_no_mem;
  sqliteHashInit(&(*ppRbtree)->tblHash, SQLITE_HASH_INT, 0);

  /* Create a binary tree for the SQLITE_MASTER table at location 2 */
  btreeCreateTable(*ppRbtree, 2);
  if( sqlite_malloc_failed ) goto open_no_mem;
  (*ppRbtree)->next_idx = 3;
  (*ppRbtree)->pOps = &sqliteRbtreeOps;
  /* Set file type to 4; this is so that "attach ':memory:' as ...."  does not
  ** think that the database in uninitialised and refuse to attach
  */
  (*ppRbtree)->aMetaData[2] = 4;
  
  return SQLITE_OK;

open_no_mem:
  *ppBtree = 0;
  return SQLITE_NOMEM;
}
Example #14
0
/*
** Locate a user function given a name and a number of arguments.
** Return a pointer to the FuncDef structure that defines that
** function, or return NULL if the function does not exist.
**
** If the createFlag argument is true, then a new (blank) FuncDef
** structure is created and liked into the "db" structure if a
** no matching function previously existed.  When createFlag is true
** and the nArg parameter is -1, then only a function that accepts
** any number of arguments will be returned.
**
** If createFlag is false and nArg is -1, then the first valid
** function found is returned.  A function is valid if either xFunc
** or xStep is non-zero.
*/
FuncDef *sqliteFindFunction(
  sqlite *db,        /* An open database */
  const char *zName, /* Name of the function.  Not null-terminated */
  int nName,         /* Number of characters in the name */
  int nArg,          /* Number of arguments.  -1 means any number */
  int createFlag     /* Create new entry if true and does not otherwise exist */
){
  FuncDef *pFirst, *p, *pMaybe;
  pFirst = p = (FuncDef*)sqliteHashFind(&db->aFunc, zName, nName);
  if( p && !createFlag && nArg<0 ){
    while( p && p->xFunc==0 && p->xStep==0 ){ p = p->pNext; }
    return p;
  }
  pMaybe = 0;
  while( p && p->nArg!=nArg ){
    if( p->nArg<0 && !createFlag && (p->xFunc || p->xStep) ) pMaybe = p;
    p = p->pNext;
  }
  if( p && !createFlag && p->xFunc==0 && p->xStep==0 ){
    return 0;
  }
  if( p==0 && pMaybe ){
    assert( createFlag==0 );
    return pMaybe;
  }
  if( p==0 && createFlag && (p = sqliteMalloc(sizeof(*p)))!=0 ){
    p->nArg = nArg;
    p->pNext = pFirst;
    p->dataType = pFirst ? pFirst->dataType : SQLITE_NUMERIC;
    sqliteHashInsert(&db->aFunc, zName, nName, (void*)p);
  }
  return p;
}
Example #15
0
static void test_destructor(
  sqlite3_context *pCtx, 
  int nArg,
  sqlite3_value **argv
){
  char *zVal;
  int len;
  sqlite3 *db = sqlite3_user_data(pCtx);
 
  test_destructor_count_var++;
  assert( nArg==1 );
  if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
  len = sqlite3ValueBytes(argv[0], ENC(db)); 
  zVal = sqliteMalloc(len+3);
  zVal[len] = 0;
  zVal[len-1] = 0;
  assert( zVal );
  zVal++;
  memcpy(zVal, sqlite3ValueText(argv[0], ENC(db)), len);
  if( ENC(db)==SQLITE_UTF8 ){
    sqlite3_result_text(pCtx, zVal, -1, destructor);
#ifndef SQLITE_OMIT_UTF16
  }else if( ENC(db)==SQLITE_UTF16LE ){
    sqlite3_result_text16le(pCtx, zVal, -1, destructor);
  }else{
    sqlite3_result_text16be(pCtx, zVal, -1, destructor);
#endif /* SQLITE_OMIT_UTF16 */
  }
}
Example #16
0
static void test_auxdata(
  sqlite3_context *pCtx, 
  int nArg,
  sqlite3_value **argv
){
  int i;
  char *zRet = sqliteMalloc(nArg*2);
  if( !zRet ) return;
  for(i=0; i<nArg; i++){
    char const *z = (char*)sqlite3_value_text(argv[i]);
    if( z ){
      char *zAux = sqlite3_get_auxdata(pCtx, i);
      if( zAux ){
        zRet[i*2] = '1';
        if( strcmp(zAux, z) ){
          sqlite3_result_error(pCtx, "Auxilary data corruption", -1);
          return;
        }
      }else{
        zRet[i*2] = '0';
        zAux = sqliteStrDup(z);
        sqlite3_set_auxdata(pCtx, i, zAux, free_test_auxdata);
      }
      zRet[i*2+1] = ' ';
    }
  }
  sqlite3_result_text(pCtx, zRet, 2*nArg-1, free_test_auxdata);
}
/*
** Load block 'blk' into the cache of pFile.
*/
static int cacheBlock(OsTestFile *pFile, int blk){
  if( blk>=pFile->nBlk ){
    int n = ((pFile->nBlk * 2) + 100 + blk);
    /* if( pFile->nBlk==0 ){ printf("DIRTY %s\n", pFile->zName); } */
    pFile->apBlk = (u8 **)sqliteRealloc(pFile->apBlk, n * sizeof(u8*));
    if( !pFile->apBlk ) return SQLITE_NOMEM;
    memset(&pFile->apBlk[pFile->nBlk], 0, (n - pFile->nBlk)*sizeof(u8*));
    pFile->nBlk = n;
  }

  if( !pFile->apBlk[blk] ){
    i64 filesize;
    int rc;

    u8 *p = sqliteMalloc(BLOCKSIZE);
    if( !p ) return SQLITE_NOMEM;
    pFile->apBlk[blk] = p;

    rc = sqlite3RealFileSize(&pFile->fd, &filesize);
    if( rc!=SQLITE_OK ) return rc;

    if( BLOCK_OFFSET(blk)<filesize ){
      int len = BLOCKSIZE;
      rc = sqlite3RealSeek(&pFile->fd, blk*BLOCKSIZE);
      if( BLOCK_OFFSET(blk+1)>filesize ){
        len = filesize - BLOCK_OFFSET(blk);
      }
      if( rc!=SQLITE_OK ) return rc;
      rc = sqlite3RealRead(&pFile->fd, p, len);
      if( rc!=SQLITE_OK ) return rc;
    }
  }

  return SQLITE_OK;
}
Example #18
0
/*
** Set P3 of the most recently inserted opcode to a column affinity
** string for table pTab. A column affinity string has one character
** for each column indexed by the index, according to the affinity of the
** column:
**
**  Character      Column affinity
**  ------------------------------
**  'a'            TEXT
**  'b'            NONE
**  'c'            NUMERIC
**  'd'            INTEGER
**  'e'            REAL
*/
void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
  /* The first time a column affinity string for a particular table
  ** is required, it is allocated and populated here. It is then 
  ** stored as a member of the Table structure for subsequent use.
  **
  ** The column affinity string will eventually be deleted by
  ** sqlite3DeleteTable() when the Table structure itself is cleaned up.
  */
  if( !pTab->zColAff ){
    char *zColAff;
    int i;

    zColAff = (char *)sqliteMalloc(pTab->nCol+1);
    if( !zColAff ){
      return;
    }

    for(i=0; i<pTab->nCol; i++){
      zColAff[i] = pTab->aCol[i].affinity;
    }
    zColAff[pTab->nCol] = '\0';

    pTab->zColAff = zColAff;
  }

  sqlite3VdbeChangeP3(v, -1, pTab->zColAff, 0);
}
Example #19
0
/*
** Create a new sqlite3_value object.
*/
sqlite3_value* sqlite3ValueNew() {
    Mem *p = sqliteMalloc(sizeof(*p));
    if( p ) {
        p->flags = MEM_Null;
        p->type = SQLITE_NULL;
    }
    return p;
}
Example #20
0
/*
** The first parameter (pDef) is a function implementation.  The
** second parameter (pExpr) is the first argument to this function.
** If pExpr is a column in a virtual table, then let the virtual
** table implementation have an opportunity to overload the function.
**
** This routine is used to allow virtual table implementations to
** overload MATCH, LIKE, GLOB, and REGEXP operators.
**
** Return either the pDef argument (indicating no change) or a 
** new FuncDef structure that is marked as ephemeral using the
** SQLITE_FUNC_EPHEM flag.
*/
FuncDef *sqlite3VtabOverloadFunction(
  FuncDef *pDef,  /* Function to possibly overload */
  int nArg,       /* Number of arguments to the function */
  Expr *pExpr     /* First argument to the function */
){
  Table *pTab;
  sqlite3_vtab *pVtab;
  sqlite3_module *pMod;
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
  void *pArg;
  FuncDef *pNew;
  int rc;
  char *zLowerName;
  unsigned char *z;


  /* Check to see the left operand is a column in a virtual table */
  if( pExpr==0 ) return pDef;
  if( pExpr->op!=TK_COLUMN ) return pDef;
  pTab = pExpr->pTab;
  if( pTab==0 ) return pDef;
  if( !pTab->isVirtual ) return pDef;
  pVtab = pTab->pVtab;
  assert( pVtab!=0 );
  assert( pVtab->pModule!=0 );
  pMod = (sqlite3_module *)pVtab->pModule;
  if( pMod->xFindFunction==0 ) return pDef;
 
  /* Call the xFuncFunction method on the virtual table implementation
  ** to see if the implementation wants to overload this function 
  */
  zLowerName = sqlite3StrDup(pDef->zName);
  for(z=(unsigned char*)zLowerName; *z; z++){
    *z = sqlite3UpperToLower[*z];
  }
  rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg);
  sqliteFree(zLowerName);
  if( rc==0 ){
    return pDef;
  }

  /* Create a new ephemeral function definition for the overloaded
  ** function */
  pNew = sqliteMalloc( sizeof(*pNew) + strlen(pDef->zName) );
  if( pNew==0 ){
    return pDef;
  }
  *pNew = *pDef;
  strcpy(pNew->zName, pDef->zName);
  pNew->xFunc = xFunc;
  pNew->pUserData = pArg;
  pNew->flags |= SQLITE_FUNC_EPHEM;
  return pNew;
}
Example #21
0
/*
** Turn a SELECT statement (that the pSelect parameter points to) into
** a trigger step.  Return a pointer to a TriggerStep structure.
**
** The parser calls this routine when it finds a SELECT statement in
** body of a TRIGGER.  
*/
TriggerStep *sqlite3TriggerSelectStep(Select *pSelect){
  TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
  if( pTriggerStep==0 ) return 0;

  pTriggerStep->op = TK_SELECT;
  pTriggerStep->pSelect = pSelect;
  pTriggerStep->orconf = OE_Default;
  sqlitePersistTriggerStep(pTriggerStep);

  return pTriggerStep;
}
Example #22
0
/*
** Set the number of result columns that will be returned by this SQL
** statement. This is now set at compile time, rather than during
** execution of the vdbe program so that sqlite3_column_count() can
** be called on an SQL statement before sqlite3_step().
*/
void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
  Mem *pColName;
  int n;
  assert( 0==p->nResColumn );
  p->nResColumn = nResColumn;
  n = nResColumn*2;
  p->aColName = pColName = (Mem*)sqliteMalloc( sizeof(Mem)*n );
  if( p->aColName==0 ) return;
  while( n-- > 0 ){
    (pColName++)->flags = MEM_Null;
  }
}
/*
** Initialise the os_test.c specific fields of pFile.
*/
static void initFile(OsFile *id, char const *zName){
  OsTestFile *pFile = (OsTestFile *)
      sqliteMalloc(sizeof(OsTestFile) + strlen(zName)+1);
  pFile->nMaxWrite = 0; 
  pFile->nBlk = 0; 
  pFile->apBlk = 0; 
  pFile->zName = (char *)(&pFile[1]);
  strcpy(pFile->zName, zName);
  *id = pFile;
  pFile->pNext = pAllFiles;
  pAllFiles = pFile;
}
Example #24
0
/*
** Construct a trigger step that implements a DELETE statement and return
** a pointer to that trigger step.  The parser calls this routine when it
** sees a DELETE statement inside the body of a CREATE TRIGGER.
*/
TriggerStep *sqlite3TriggerDeleteStep(Token *pTableName, Expr *pWhere){
  TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
  if( pTriggerStep==0 ) return 0;

  pTriggerStep->op = TK_DELETE;
  pTriggerStep->target  = *pTableName;
  pTriggerStep->pWhere = pWhere;
  pTriggerStep->orconf = OE_Default;
  sqlitePersistTriggerStep(pTriggerStep);

  return pTriggerStep;
}
Example #25
0
/*
** Allocate or return the aggregate context for a user function.  A new
** context is allocated on the first call.  Subsequent calls return the
** same context that was returned on prior calls.
**
** This routine is defined here in vdbe.c because it depends on knowing
** the internals of the sqlite_func structure which is only defined in
** this source file.
*/
void *sqlite_aggregate_context(sqlite_func *p, int nByte){
  assert( p && p->pFunc && p->pFunc->xStep );
  if( p->pAgg==0 ){
    if( nByte<=NBFS ){
      p->pAgg = (void*)p->s.z;
      memset(p->pAgg, 0, nByte);
    }else{
      p->pAgg = sqliteMalloc( nByte );
    }
  }
  return p->pAgg;
}
Example #26
0
Delete* sqlite3DeleteNew(SrcList *pTabList, Expr *pWhere, Expr *pLimit, Expr *pOffset) {
    Delete* pNew = NULL;
    pNew = (Delete*) sqliteMalloc(sizeof(*pNew));
    if (pNew == NULL) {
        return NULL;
    }

    pNew->pTabList = pTabList;
    pNew->pWhere = pWhere;
    pNew->pLimit = pLimit;
    pNew->pOffset = pOffset;
    return pNew;
}
Example #27
0
static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
  unsigned char *z;
  int i;
  if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return;
  z = sqliteMalloc(sqlite3_value_bytes(argv[0])+1);
  if( z==0 ) return;
  strcpy((char*)z, (char*)sqlite3_value_text(argv[0]));
  for(i=0; z[i]; i++){
    z[i] = tolower(z[i]);
  }
  sqlite3_result_text(context, (char*)z, -1, SQLITE_TRANSIENT);
  sqliteFree(z);
}
Example #28
0
/*
** Create a new virtual database engine.
*/
Vdbe *sqlite3VdbeCreate(sqlite3 *db){
  Vdbe *p;
  p = sqliteMalloc( sizeof(Vdbe) );
  if( p==0 ) return 0;
  p->db = db;
  if( db->pVdbe ){
    db->pVdbe->pPrev = p;
  }
  p->pNext = db->pVdbe;
  p->pPrev = 0;
  db->pVdbe = p;
  p->magic = VDBE_MAGIC_INIT;
  return p;
}
Example #29
0
/*
** Find and return the schema associated with a BTree.  Create
** a new one if necessary.
*/
Schema *sqlite3SchemaGet(Btree *pBt){
  Schema * p;
  if( pBt ){
    p = (Schema *)sqlite3BtreeSchema(pBt,sizeof(Schema),sqlite3SchemaFree);
  }else{
    p = (Schema *)sqliteMalloc(sizeof(Schema));
  }
  if( p && 0==p->file_format ){
    sqlite3HashInit(&p->tblHash, SQLITE_HASH_STRING, 0);
    sqlite3HashInit(&p->idxHash, SQLITE_HASH_STRING, 0);
    sqlite3HashInit(&p->trigHash, SQLITE_HASH_STRING, 0);
    sqlite3HashInit(&p->aFKey, SQLITE_HASH_STRING, 1);
  }
  return p;
}
Example #30
0
/*
** Resize a prior allocation.  If p==0, then this routine
** works just like sqliteMalloc().  If n==0, then this routine
** works just like sqliteFree().
*/
void *sqlite3Realloc(void *p, int n){
  void *p2;
  if( p==0 ){
    return sqliteMalloc(n);
  }
  if( n==0 ){
    sqliteFree(p);
    return 0;
  }
  p2 = realloc(p, n);
  if( p2==0 ){
    if( n>0 ) sqlite3_malloc_failed++;
  }
  return p2;
}