Example #1
0
static int zd1201_fw_upload(struct usb_device *dev, int apfw)
{
	const struct firmware *fw_entry;
	const char *data;
	unsigned long len;
	int err;
	unsigned char ret;
	char *buf;
	char *fwfile;

	if (apfw)
		fwfile = "zd1201-ap.fw";
	else
		fwfile = "zd1201.fw";

	err = request_firmware(&fw_entry, fwfile, &dev->dev);
	if (err) {
		dev_err(&dev->dev, "Failed to load %s firmware file!\n", fwfile);
		dev_err(&dev->dev, "Make sure the hotplug firmware loader is installed.\n");
		dev_err(&dev->dev, "Goto http://linux-lc100020.sourceforge.net for more info.\n");
		return err;
	}

	data = fw_entry->data;
        len = fw_entry->size;

	buf = kmalloc(1024, GFP_ATOMIC);
	if (!buf) {
		err = -ENOMEM;
		goto exit;
	}
	
	while (len > 0) {
		int translen = (len > 1024) ? 1024 : len;
		memcpy(buf, data, translen);

		err = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 0,
		    USB_DIR_OUT | 0x40, 0, 0, buf, translen,
		    ZD1201_FW_TIMEOUT);
		if (err < 0)
			goto exit;

		len -= translen;
		data += translen;
	}
                                        
	err = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 0x2,
	    USB_DIR_OUT | 0x40, 0, 0, NULL, 0, ZD1201_FW_TIMEOUT);
	if (err < 0)
		goto exit;

	err = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 0x4,
	    USB_DIR_IN | 0x40, 0, 0, buf, sizeof(ret), ZD1201_FW_TIMEOUT);
	if (err < 0)
		goto exit;

	memcpy(&ret, buf, sizeof(ret));

	if (ret & 0x80) {
		err = -EIO;
		goto exit;
	}

	err = 0;
exit:
	kfree(buf);
	release_firmware(fw_entry);
	return err;
}
/* FIXME: split and cleanup */
int wusb_dev_4way_handshake(struct wusbhc *wusbhc, struct wusb_dev *wusb_dev,
			    struct wusb_ckhdid *ck)
{
	int result = -ENOMEM;
	struct usb_device *usb_dev = wusb_dev->usb_dev;
	struct device *dev = &usb_dev->dev;
	u32 tkid;
	__le32 tkid_le;
	struct usb_handshake *hs;
	struct aes_ccm_nonce ccm_n;
	u8 mic[8];
	struct wusb_keydvt_in keydvt_in;
	struct wusb_keydvt_out keydvt_out;

	hs = kcalloc(3, sizeof(hs[0]), GFP_KERNEL);
	if (hs == NULL) {
		dev_err(dev, "can't allocate handshake data\n");
		goto error_kzalloc;
	}

	/* We need to turn encryption before beginning the 4way
	 * hshake (WUSB1.0[.3.2.2]) */
	result = wusb_dev_set_encryption(usb_dev, 1);
	if (result < 0)
		goto error_dev_set_encryption;

	tkid = wusbhc_next_tkid(wusbhc, wusb_dev);
	tkid_le = cpu_to_le32(tkid);

	hs[0].bMessageNumber = 1;
	hs[0].bStatus = 0;
	memcpy(hs[0].tTKID, &tkid_le, sizeof(hs[0].tTKID));
	hs[0].bReserved = 0;
	memcpy(hs[0].CDID, &wusb_dev->cdid, sizeof(hs[0].CDID));
	get_random_bytes(&hs[0].nonce, sizeof(hs[0].nonce));
	memset(hs[0].MIC, 0, sizeof(hs[0].MIC));	/* Per WUSB1.0[T7-22] */

	result = usb_control_msg(
		usb_dev, usb_sndctrlpipe(usb_dev, 0),
		USB_REQ_SET_HANDSHAKE,
		USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
		1, 0, &hs[0], sizeof(hs[0]), 1000 /* FIXME: arbitrary */);
	if (result < 0) {
		dev_err(dev, "Handshake1: request failed: %d\n", result);
		goto error_hs1;
	}

	/* Handshake 2, from the device -- need to verify fields */
	result = usb_control_msg(
		usb_dev, usb_rcvctrlpipe(usb_dev, 0),
		USB_REQ_GET_HANDSHAKE,
		USB_DIR_IN | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
		2, 0, &hs[1], sizeof(hs[1]), 1000 /* FIXME: arbitrary */);
	if (result < 0) {
		dev_err(dev, "Handshake2: request failed: %d\n", result);
		goto error_hs2;
	}

	result = -EINVAL;
	if (hs[1].bMessageNumber != 2) {
		dev_err(dev, "Handshake2 failed: bad message number %u\n",
			hs[1].bMessageNumber);
		goto error_hs2;
	}
	if (hs[1].bStatus != 0) {
		dev_err(dev, "Handshake2 failed: bad status %u\n",
			hs[1].bStatus);
		goto error_hs2;
	}
	if (memcmp(hs[0].tTKID, hs[1].tTKID, sizeof(hs[0].tTKID))) {
		dev_err(dev, "Handshake2 failed: TKID mismatch "
			"(#1 0x%02x%02x%02x vs #2 0x%02x%02x%02x)\n",
			hs[0].tTKID[0], hs[0].tTKID[1], hs[0].tTKID[2],
			hs[1].tTKID[0], hs[1].tTKID[1], hs[1].tTKID[2]);
		goto error_hs2;
	}
	if (memcmp(hs[0].CDID, hs[1].CDID, sizeof(hs[0].CDID))) {
		dev_err(dev, "Handshake2 failed: CDID mismatch\n");
		goto error_hs2;
	}

	/* Setup the CCM nonce */
	memset(&ccm_n.sfn, 0, sizeof(ccm_n.sfn));	/* Per WUSB1.0[6.5.2] */
	memcpy(ccm_n.tkid, &tkid_le, sizeof(ccm_n.tkid));
	ccm_n.src_addr = wusbhc->uwb_rc->uwb_dev.dev_addr;
	ccm_n.dest_addr.data[0] = wusb_dev->addr;
	ccm_n.dest_addr.data[1] = 0;

	/* Derive the KCK and PTK from CK, the CCM, H and D nonces */
	memcpy(keydvt_in.hnonce, hs[0].nonce, sizeof(keydvt_in.hnonce));
	memcpy(keydvt_in.dnonce, hs[1].nonce, sizeof(keydvt_in.dnonce));
	result = wusb_key_derive(&keydvt_out, ck->data, &ccm_n, &keydvt_in);
	if (result < 0) {
		dev_err(dev, "Handshake2 failed: cannot derive keys: %d\n",
			result);
		goto error_hs2;
	}

	/* Compute MIC and verify it */
	result = wusb_oob_mic(mic, keydvt_out.kck, &ccm_n, &hs[1]);
	if (result < 0) {
		dev_err(dev, "Handshake2 failed: cannot compute MIC: %d\n",
			result);
		goto error_hs2;
	}

	if (memcmp(hs[1].MIC, mic, sizeof(hs[1].MIC))) {
		dev_err(dev, "Handshake2 failed: MIC mismatch\n");
		goto error_hs2;
	}

	/* Send Handshake3 */
	hs[2].bMessageNumber = 3;
	hs[2].bStatus = 0;
	memcpy(hs[2].tTKID, &tkid_le, sizeof(hs[2].tTKID));
	hs[2].bReserved = 0;
	memcpy(hs[2].CDID, &wusb_dev->cdid, sizeof(hs[2].CDID));
	memcpy(hs[2].nonce, hs[0].nonce, sizeof(hs[2].nonce));
	result = wusb_oob_mic(hs[2].MIC, keydvt_out.kck, &ccm_n, &hs[2]);
	if (result < 0) {
		dev_err(dev, "Handshake3 failed: cannot compute MIC: %d\n",
			result);
		goto error_hs2;
	}

	result = usb_control_msg(
		usb_dev, usb_sndctrlpipe(usb_dev, 0),
		USB_REQ_SET_HANDSHAKE,
		USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
		3, 0, &hs[2], sizeof(hs[2]), 1000 /* FIXME: arbitrary */);
	if (result < 0) {
		dev_err(dev, "Handshake3: request failed: %d\n", result);
		goto error_hs3;
	}

	result = wusbhc->set_ptk(wusbhc, wusb_dev->port_idx, tkid,
				 keydvt_out.ptk, sizeof(keydvt_out.ptk));
	if (result < 0)
		goto error_wusbhc_set_ptk;

	result = wusb_dev_set_gtk(wusbhc, wusb_dev);
	if (result < 0) {
		dev_err(dev, "Set GTK for device: request failed: %d\n",
			result);
		goto error_wusbhc_set_gtk;
	}

	/* Update the device's address from unauth to auth */
	if (usb_dev->authenticated == 0) {
		result = wusb_dev_update_address(wusbhc, wusb_dev);
		if (result < 0)
			goto error_dev_update_address;
	}
	result = 0;
	dev_info(dev, "device authenticated\n");

error_dev_update_address:
error_wusbhc_set_gtk:
error_wusbhc_set_ptk:
error_hs3:
error_hs2:
error_hs1:
	memset(hs, 0, 3*sizeof(hs[0]));
	memset(&keydvt_out, 0, sizeof(keydvt_out));
	memset(&keydvt_in, 0, sizeof(keydvt_in));
	memset(&ccm_n, 0, sizeof(ccm_n));
	memset(mic, 0, sizeof(mic));
	if (result < 0)
		wusb_dev_set_encryption(usb_dev, 0);
error_dev_set_encryption:
	kfree(hs);
error_kzalloc:
	return result;
}
Example #3
0
/*
 * Function kingsun_net_open (dev)
 *
 *    Network device is taken up. Usually this is done by "ifconfig irda0 up"
 */
static int ks959_net_open(struct net_device *netdev)
{
	struct ks959_cb *kingsun = netdev_priv(netdev);
	int err = -ENOMEM;
	char hwname[16];

	/* At this point, urbs are NULL, and skb is NULL (see kingsun_probe) */
	kingsun->receiving = 0;

	/* Initialize for SIR to copy data directly into skb.  */
	kingsun->rx_unwrap_buff.in_frame = FALSE;
	kingsun->rx_unwrap_buff.state = OUTSIDE_FRAME;
	kingsun->rx_unwrap_buff.truesize = IRDA_SKB_MAX_MTU;
	kingsun->rx_unwrap_buff.skb = dev_alloc_skb(IRDA_SKB_MAX_MTU);
	if (!kingsun->rx_unwrap_buff.skb)
		goto free_mem;

	skb_reserve(kingsun->rx_unwrap_buff.skb, 1);
	kingsun->rx_unwrap_buff.head = kingsun->rx_unwrap_buff.skb->data;

	kingsun->rx_urb = usb_alloc_urb(0, GFP_KERNEL);
	if (!kingsun->rx_urb)
		goto free_mem;

	kingsun->tx_urb = usb_alloc_urb(0, GFP_KERNEL);
	if (!kingsun->tx_urb)
		goto free_mem;

	kingsun->speed_urb = usb_alloc_urb(0, GFP_KERNEL);
	if (!kingsun->speed_urb)
		goto free_mem;

	/* Initialize speed for dongle */
	kingsun->new_speed = 9600;
	err = ks959_change_speed(kingsun, 9600);
	if (err < 0)
		goto free_mem;

	/*
	 * Now that everything should be initialized properly,
	 * Open new IrLAP layer instance to take care of us...
	 */
	sprintf(hwname, "usb#%d", kingsun->usbdev->devnum);
	kingsun->irlap = irlap_open(netdev, &kingsun->qos, hwname);
	if (!kingsun->irlap) {
		err = -ENOMEM;
		dev_err(&kingsun->usbdev->dev, "irlap_open failed\n");
		goto free_mem;
	}

	/* Start reception. Setup request already pre-filled in ks959_probe */
	usb_fill_control_urb(kingsun->rx_urb, kingsun->usbdev,
			     usb_rcvctrlpipe(kingsun->usbdev, 0),
			     (unsigned char *)kingsun->rx_setuprequest,
			     kingsun->rx_buf, KINGSUN_RCV_FIFO_SIZE,
			     ks959_rcv_irq, kingsun);
	kingsun->rx_urb->status = 0;
	err = usb_submit_urb(kingsun->rx_urb, GFP_KERNEL);
	if (err) {
		dev_err(&kingsun->usbdev->dev,
			"first urb-submit failed: %d\n", err);
		goto close_irlap;
	}

	netif_start_queue(netdev);

	/* Situation at this point:
	   - all work buffers allocated
	   - urbs allocated and ready to fill
	   - max rx packet known (in max_rx)
	   - unwrap state machine initialized, in state outside of any frame
	   - receive request in progress
	   - IrLAP layer started, about to hand over packets to send
	 */

	return 0;

      close_irlap:
	irlap_close(kingsun->irlap);
      free_mem:
	usb_free_urb(kingsun->speed_urb);
	kingsun->speed_urb = NULL;
	usb_free_urb(kingsun->tx_urb);
	kingsun->tx_urb = NULL;
	usb_free_urb(kingsun->rx_urb);
	kingsun->rx_urb = NULL;
	if (kingsun->rx_unwrap_buff.skb) {
		kfree_skb(kingsun->rx_unwrap_buff.skb);
		kingsun->rx_unwrap_buff.skb = NULL;
		kingsun->rx_unwrap_buff.head = NULL;
	}
	return err;
}
Example #4
0
/*
 * Called when a process tries to open the device file, like
 * "cat /dev/usbtherm0".
 */
static int device_open(struct inode *inode, struct file *filp)
{
	int err = 0;
	int minor = 0;
	struct usb_interface *interface = NULL;
	struct usbtherm *dev = NULL;
	char data[8];
	char *urb_transfer_buffer;

	urb_transfer_buffer = kzalloc(sizeof(data), GFP_KERNEL);

	minor = iminor(inode);

	interface = usb_find_interface(&usbtherm_driver, minor);
	if (! interface)
	{
		err = -ENODEV;
		printk(KERN_WARNING "usbtherm: Could not find USB interface!\n");
		goto error;
	}

	dev = usb_get_intfdata(interface);
	if (! dev)
	{
		err = -ENODEV;
		printk(KERN_WARNING "usbtherm: Could not get USB device!\n");
		goto error;
	}

	/*
	 * If dev is needed in for example device_read.
	 */
	/* filp->private_data = dev; */

	/*
	 * Send a custom "vendor" type status request to read
	 * the temperature value from the device.
	 */
	err = usb_control_msg(dev->usbdev,
			usb_rcvctrlpipe(dev->usbdev, USB_DIR_OUT),
			CUSTOM_REQ_TEMP, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
			0, 0, urb_transfer_buffer, sizeof(urb_transfer_buffer), 1000);

	strlcpy(data, urb_transfer_buffer, sizeof(data));
	kfree(urb_transfer_buffer);

	if (err < 0)
	{
		err = -EIO;
		goto error;
	}

	snprintf(message, MSG_LEN, "%s\n", data);

	/* printk(KERN_DEBUG "usbtherm: Device was opened"); */

	return SUCCESS;

error:
	return err;
}
Example #5
0
static void wdm_int_callback(struct urb *urb)
{
	int rv = 0;
	int status = urb->status;
	struct wdm_device *desc;
	struct usb_ctrlrequest *req;
	struct usb_cdc_notification *dr;

	desc = urb->context;
	req = desc->irq;
	dr = (struct usb_cdc_notification *)desc->sbuf;

	if (status) {
		switch (status) {
		case -ESHUTDOWN:
		case -ENOENT:
		case -ECONNRESET:
			return; /* unplug */
		case -EPIPE:
			set_bit(WDM_INT_STALL, &desc->flags);
			dev_err(&desc->intf->dev, "Stall on int endpoint\n");
			goto sw; /* halt is cleared in work */
		default:
			dev_err(&desc->intf->dev,
				"nonzero urb status received: %d\n", status);
			break;
		}
	}

	if (urb->actual_length < sizeof(struct usb_cdc_notification)) {
		dev_err(&desc->intf->dev, "wdm_int_callback - %d bytes\n",
			urb->actual_length);
		goto exit;
	}

	switch (dr->bNotificationType) {
	case USB_CDC_NOTIFY_RESPONSE_AVAILABLE:
		dev_dbg(&desc->intf->dev,
			"NOTIFY_RESPONSE_AVAILABLE received: index %d len %d",
			dr->wIndex, dr->wLength);
		break;

	case USB_CDC_NOTIFY_NETWORK_CONNECTION:

		dev_dbg(&desc->intf->dev,
			"NOTIFY_NETWORK_CONNECTION %s network",
			dr->wValue ? "connected to" : "disconnected from");
		goto exit;
	default:
		clear_bit(WDM_POLL_RUNNING, &desc->flags);
		dev_err(&desc->intf->dev,
			"unknown notification %d received: index %d len %d\n",
			dr->bNotificationType, dr->wIndex, dr->wLength);
		goto exit;
	}

	req->bRequestType = (USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE);
	req->bRequest = USB_CDC_GET_ENCAPSULATED_RESPONSE;
	req->wValue = 0;
	req->wIndex = desc->inum;
	req->wLength = cpu_to_le16(desc->wMaxCommand);

	usb_fill_control_urb(
		desc->response,
		interface_to_usbdev(desc->intf),
		/* using common endpoint 0 */
		usb_rcvctrlpipe(interface_to_usbdev(desc->intf), 0),
		(unsigned char *)req,
		desc->inbuf,
		desc->wMaxCommand,
		wdm_in_callback,
		desc
	);
	desc->response->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
	spin_lock(&desc->iuspin);
	clear_bit(WDM_READ, &desc->flags);
	set_bit(WDM_RESPONDING, &desc->flags);
	if (!test_bit(WDM_DISCONNECTING, &desc->flags)
		&& !test_bit(WDM_SUSPENDING, &desc->flags)) {
		rv = usb_submit_urb(desc->response, GFP_ATOMIC);
		dev_dbg(&desc->intf->dev, "%s: usb_submit_urb %d",
			__func__, rv);
	}
	spin_unlock(&desc->iuspin);
	if (rv < 0) {
		clear_bit(WDM_RESPONDING, &desc->flags);
		if (rv == -EPERM)
			return;
		if (rv == -ENOMEM) {
sw:
			rv = schedule_work(&desc->rxwork);
			if (rv)
				dev_err(&desc->intf->dev,
					"Cannot schedule work\n");
		}
	}
exit:
	rv = usb_submit_urb(urb, GFP_ATOMIC);
	if (rv)
		dev_err(&desc->intf->dev,
			"%s - usb_submit_urb failed with result %d\n",
			__func__, rv);

}
Example #6
0
static int qt2_open(struct tty_struct *tty, struct usb_serial_port *port)
{
	struct usb_serial *serial;
	struct qt2_port_private *port_priv;
	u8 *data;
	u16 device_port;
	int status;
	unsigned long flags;

	device_port = port->port_number;

	serial = port->serial;

	port_priv = usb_get_serial_port_data(port);

	/* set the port to RS232 mode */
	status = qt2_control_msg(serial->dev, QT2_GET_SET_QMCR,
				 QT2_QMCR_RS232, device_port);
	if (status < 0) {
		dev_err(&port->dev,
			"%s failed to set RS232 mode for port %i error %i\n",
			__func__, device_port, status);
		return status;
	}

	data = kzalloc(2, GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	/* open the port */
	status = usb_control_msg(serial->dev,
				 usb_rcvctrlpipe(serial->dev, 0),
				 QT_OPEN_CLOSE_CHANNEL,
				 0xc0, 0,
				 device_port, data, 2, QT2_USB_TIMEOUT);

	if (status < 0) {
		dev_err(&port->dev, "%s - open port failed %i\n", __func__,
			status);
		kfree(data);
		return status;
	}

	spin_lock_irqsave(&port_priv->lock, flags);
	port_priv->shadowLSR = data[0];
	port_priv->shadowMSR = data[1];
	spin_unlock_irqrestore(&port_priv->lock, flags);

	kfree(data);

	/* set to default speed and 8bit word size */
	status = qt2_set_port_config(serial->dev, device_port,
				     DEFAULT_BAUD_RATE, UART_LCR_WLEN8);
	if (status < 0) {
		dev_err(&port->dev, "%s - initial setup failed (%i)\n",
			__func__, device_port);
		return status;
	}

	port_priv->device_port = (u8) device_port;

	if (tty)
		qt2_set_termios(tty, port, &tty->termios);

	return 0;

}
Example #7
0
static void notification_available_cb(struct urb *urb)
{
	int				status;
	struct usb_cdc_notification	*ctrl;
	struct usb_device		*udev;
	struct rmnet_ctrl_dev		*dev = urb->context;

	udev = interface_to_usbdev(dev->intf);

	switch (urb->status) {
	case 0:
		/*success*/
		break;

	/*do not resubmit*/
	case -ESHUTDOWN:
	case -ENOENT:
	case -ECONNRESET:
	case -EPROTO:
		return;
	case -EPIPE:
		pr_err_ratelimited("%s: Stall on int endpoint\n", __func__);
		/* TBD : halt to be cleared in work */
		return;

	/*resubmit*/
	case -EOVERFLOW:
		pr_err_ratelimited("%s: Babble error happened\n", __func__);
	default:
		 pr_debug_ratelimited("%s: Non zero urb status = %d\n",
			__func__, urb->status);
		goto resubmit_int_urb;
	}

	ctrl = urb->transfer_buffer;

	switch (ctrl->bNotificationType) {
	case USB_CDC_NOTIFY_RESPONSE_AVAILABLE:
		dev->resp_avail_cnt++;
		usb_fill_control_urb(dev->rcvurb, udev,
					usb_rcvctrlpipe(udev, 0),
					(unsigned char *)dev->in_ctlreq,
					dev->rcvbuf,
					DEFAULT_READ_URB_LENGTH,
					resp_avail_cb, dev);

		status = usb_submit_urb(dev->rcvurb, GFP_ATOMIC);
		if (status) {
			dev_err(dev->devicep,
			"%s: Error submitting Read URB %d\n", __func__, status);
			goto resubmit_int_urb;
		}

		usb_mark_last_busy(udev);

		if (!dev->resp_available) {
			dev->resp_available = true;
			wake_up(&dev->open_wait_queue);
		}

		return;
	default:
		 dev_err(dev->devicep,
			"%s:Command not implemented\n", __func__);
	}

resubmit_int_urb:
	status = usb_submit_urb(urb, GFP_ATOMIC);
	if (status)
		dev_err(dev->devicep, "%s: Error re-submitting Int URB %d\n",
		__func__, status);

	return;
}
Example #8
0
static int ce6230_rw_udev(struct usb_device *udev, struct req_t *req)
{
	int ret;
	unsigned int pipe;
	u8 request;
	u8 requesttype;
	u16 value;
	u16 index;
	u8 *buf;

	request = req->cmd;
	value = req->value;
	index = req->index;

	switch (req->cmd) {
	case I2C_READ:
	case DEMOD_READ:
	case REG_READ:
		requesttype = (USB_TYPE_VENDOR | USB_DIR_IN);
		break;
	case I2C_WRITE:
	case DEMOD_WRITE:
	case REG_WRITE:
		requesttype = (USB_TYPE_VENDOR | USB_DIR_OUT);
		break;
	default:
		err("unknown command:%02x", req->cmd);
		ret = -EPERM;
		goto error;
	}

	buf = kmalloc(req->data_len, GFP_KERNEL);
	if (!buf) {
		ret = -ENOMEM;
		goto error;
	}

	if (requesttype == (USB_TYPE_VENDOR | USB_DIR_OUT)) {
		/* write */
		memcpy(buf, req->data, req->data_len);
		pipe = usb_sndctrlpipe(udev, 0);
	} else {
		/* read */
		pipe = usb_rcvctrlpipe(udev, 0);
	}

	msleep(1); /* avoid I2C errors */

	ret = usb_control_msg(udev, pipe, request, requesttype, value, index,
				buf, req->data_len, CE6230_USB_TIMEOUT);

	ce6230_debug_dump(request, requesttype, value, index, buf,
		req->data_len, deb_xfer);

	if (ret < 0)
		deb_info("%s: usb_control_msg failed:%d\n", __func__, ret);
	else
		ret = 0;

	/* read request, copy returned data to return buf */
	if (!ret && requesttype == (USB_TYPE_VENDOR | USB_DIR_IN))
		memcpy(req->data, buf, req->data_len);

	kfree(buf);
error:
	return ret;
}
Example #9
0
static int redrat3_transmit_ir(struct rc_dev *rcdev, int *txbuf, u32 n)
{
	struct redrat3_dev *rr3 = rcdev->priv;
	struct device *dev = rr3->dev;
	struct redrat3_signal_header header;
	int i, j, count, ret, ret_len, offset;
	int lencheck, cur_sample_len, pipe;
	char *buffer = NULL, *sigdata = NULL;
	int *sample_lens = NULL;
	u32 tmpi;
	u16 tmps;
	u8 *datap;
	u8 curlencheck = 0;
	u16 *lengths_ptr;
	int sendbuf_len;

	rr3_ftr(dev, "Entering %s\n", __func__);

	if (rr3->transmitting) {
		dev_warn(dev, "%s: transmitter already in use\n", __func__);
		return -EAGAIN;
	}

	count = n / sizeof(int);
	if (count > (RR3_DRIVER_MAXLENS * 2))
		return -EINVAL;

	rr3->transmitting = true;

	redrat3_disable_detector(rr3);

	if (rr3->det_enabled) {
		dev_err(dev, "%s: cannot tx while rx is enabled\n", __func__);
		ret = -EIO;
		goto out;
	}

	sample_lens = kzalloc(sizeof(int) * RR3_DRIVER_MAXLENS, GFP_KERNEL);
	if (!sample_lens) {
		ret = -ENOMEM;
		goto out;
	}

	for (i = 0; i < count; i++) {
		for (lencheck = 0; lencheck < curlencheck; lencheck++) {
			cur_sample_len = redrat3_us_to_len(txbuf[i]);
			if (sample_lens[lencheck] == cur_sample_len)
				break;
		}
		if (lencheck == curlencheck) {
			cur_sample_len = redrat3_us_to_len(txbuf[i]);
			rr3_dbg(dev, "txbuf[%d]=%u, pos %d, enc %u\n",
				i, txbuf[i], curlencheck, cur_sample_len);
			if (curlencheck < 255) {
				/* now convert the value to a proper
				 * rr3 value.. */
				sample_lens[curlencheck] = cur_sample_len;
				curlencheck++;
			} else {
				dev_err(dev, "signal too long\n");
				ret = -EINVAL;
				goto out;
			}
		}
	}

	sigdata = kzalloc((count + RR3_TX_TRAILER_LEN), GFP_KERNEL);
	if (!sigdata) {
		ret = -ENOMEM;
		goto out;
	}

	sigdata[count] = RR3_END_OF_SIGNAL;
	sigdata[count + 1] = RR3_END_OF_SIGNAL;
	for (i = 0; i < count; i++) {
		for (j = 0; j < curlencheck; j++) {
			if (sample_lens[j] == redrat3_us_to_len(txbuf[i]))
				sigdata[i] = j;
		}
	}

	offset = RR3_TX_HEADER_OFFSET;
	sendbuf_len = RR3_HEADER_LENGTH + (sizeof(u16) * RR3_DRIVER_MAXLENS)
			+ count + RR3_TX_TRAILER_LEN + offset;

	buffer = kzalloc(sendbuf_len, GFP_KERNEL);
	if (!buffer) {
		ret = -ENOMEM;
		goto out;
	}

	/* fill in our packet header */
	header.length = sendbuf_len - offset;
	header.transfer_type = RR3_MOD_SIGNAL_OUT;
	header.pause = redrat3_len_to_us(100);
	header.mod_freq_count = mod_freq_to_val(rr3->carrier);
	header.no_periods = 0; /* n/a to transmit */
	header.max_lengths = RR3_DRIVER_MAXLENS;
	header.no_lengths = curlencheck;
	header.max_sig_size = RR3_MAX_SIG_SIZE;
	header.sig_size = count + RR3_TX_TRAILER_LEN;
	/* we currently rely on repeat handling in the IR encoding source */
	header.no_repeats = 0;

	tmps = cpu_to_be16(header.length);
	memcpy(buffer, &tmps, 2);

	tmps = cpu_to_be16(header.transfer_type);
	memcpy(buffer + 2, &tmps, 2);

	tmpi = cpu_to_be32(header.pause);
	memcpy(buffer + offset, &tmpi, sizeof(tmpi));

	tmps = cpu_to_be16(header.mod_freq_count);
	memcpy(buffer + offset + RR3_FREQ_COUNT_OFFSET, &tmps, 2);

	buffer[offset + RR3_NUM_LENGTHS_OFFSET] = header.no_lengths;

	tmps = cpu_to_be16(header.sig_size);
	memcpy(buffer + offset + RR3_NUM_SIGS_OFFSET, &tmps, 2);

	buffer[offset + RR3_REPEATS_OFFSET] = header.no_repeats;

	lengths_ptr = (u16 *)(buffer + offset + RR3_HEADER_LENGTH);
	for (i = 0; i < curlencheck; ++i)
		lengths_ptr[i] = cpu_to_be16(sample_lens[i]);

	datap = (u8 *)(buffer + offset + RR3_HEADER_LENGTH +
			    (sizeof(u16) * RR3_DRIVER_MAXLENS));
	memcpy(datap, sigdata, (count + RR3_TX_TRAILER_LEN));

	if (debug) {
		redrat3_dump_signal_header(&header);
		redrat3_dump_signal_data(buffer, header.sig_size);
	}

	pipe = usb_sndbulkpipe(rr3->udev, rr3->ep_out->bEndpointAddress);
	tmps = usb_bulk_msg(rr3->udev, pipe, buffer,
			    sendbuf_len, &ret_len, 10 * HZ);
	rr3_dbg(dev, "sent %d bytes, (ret %d)\n", ret_len, tmps);

	/* now tell the hardware to transmit what we sent it */
	pipe = usb_rcvctrlpipe(rr3->udev, 0);
	ret = usb_control_msg(rr3->udev, pipe, RR3_TX_SEND_SIGNAL,
			      USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
			      0, 0, buffer, 2, HZ * 10);

	if (ret < 0)
		dev_err(dev, "Error: control msg send failed, rc %d\n", ret);
	else
		ret = n;

out:
	kfree(sample_lens);
	kfree(buffer);
	kfree(sigdata);

	rr3->transmitting = false;

	redrat3_enable_detector(rr3);

	return ret;
}
/* cdc-ncm specific functions */
static u8 cdc_ncm_setup(struct if_usb_devdata *pipe_data)
{
	u32 val;
	u8 flags;
	u8 iface_no;
	int err;
	u16 ntb_fmt_supported;
	struct cdc_ncm_ctx *ctx = (struct cdc_ncm_ctx *)pipe_data->sedata;
	struct usb_device *usbdev = pipe_data->usbdev;

	iface_no = ctx->control->cur_altsetting->desc.bInterfaceNumber;

	mif_debug("iface_no=%d\n", iface_no);

	err = usb_control_msg(usbdev,
				usb_rcvctrlpipe(usbdev, 0),
				USB_CDC_GET_NTB_PARAMETERS,
				USB_TYPE_CLASS | USB_DIR_IN
				 | USB_RECIP_INTERFACE,
				0, iface_no, &ctx->ncm_parm,
				sizeof(ctx->ncm_parm), 10000);
	if (err < 0) {
		mif_debug("failed GET_NTB_PARAMETERS\n");
		return 1;
	}

	/* read correct set of parameters according to device mode */
	ctx->rx_max = le32_to_cpu(ctx->ncm_parm.dwNtbInMaxSize);
	ctx->tx_max = le32_to_cpu(ctx->ncm_parm.dwNtbOutMaxSize);
	ctx->tx_remainder = le16_to_cpu(ctx->ncm_parm.wNdpOutPayloadRemainder);
	ctx->tx_modulus = le16_to_cpu(ctx->ncm_parm.wNdpOutDivisor);
	ctx->tx_ndp_modulus = le16_to_cpu(ctx->ncm_parm.wNdpOutAlignment);
	/* devices prior to NCM Errata shall set this field to zero */
	ctx->tx_max_datagrams = le16_to_cpu(ctx->ncm_parm.wNtbOutMaxDatagrams);
	ntb_fmt_supported = le16_to_cpu(ctx->ncm_parm.bmNtbFormatsSupported);

	if (ctx->func_desc != NULL)
		flags = ctx->func_desc->bmNetworkCapabilities;
	else
		flags = 0;

	mif_debug("dwNtbInMaxSize=%u dwNtbOutMaxSize=%u "
		"wNdpOutPayloadRemainder=%u wNdpOutDivisor=%u "
		"wNdpOutAlignment=%u wNtbOutMaxDatagrams=%u flags=0x%x\n",
		ctx->rx_max, ctx->tx_max, ctx->tx_remainder, ctx->tx_modulus,
		ctx->tx_ndp_modulus, ctx->tx_max_datagrams, flags);

	/* max count of tx datagrams */
	if ((ctx->tx_max_datagrams == 0) ||
			(ctx->tx_max_datagrams > CDC_NCM_DPT_DATAGRAMS_MAX))
		ctx->tx_max_datagrams = CDC_NCM_DPT_DATAGRAMS_MAX;

	/* verify maximum size of received NTB in bytes */
	if (ctx->rx_max < USB_CDC_NCM_NTB_MIN_IN_SIZE) {
		mif_debug("Using min receive length=%d\n",
						USB_CDC_NCM_NTB_MIN_IN_SIZE);
		ctx->rx_max = USB_CDC_NCM_NTB_MIN_IN_SIZE;
	}

	if (ctx->rx_max > CDC_NCM_NTB_MAX_SIZE_RX) {
		mif_debug("Using default maximum receive length=%d\n",
						CDC_NCM_NTB_MAX_SIZE_RX);
		ctx->rx_max = CDC_NCM_NTB_MAX_SIZE_RX;
	}

	/* inform device about NTB input size changes */
	if (ctx->rx_max != le32_to_cpu(ctx->ncm_parm.dwNtbInMaxSize)) {

		if (flags & USB_CDC_NCM_NCAP_NTB_INPUT_SIZE) {
			struct usb_cdc_ncm_ndp_input_size *ndp_in_sz;

			ndp_in_sz = kzalloc(sizeof(*ndp_in_sz), GFP_KERNEL);
			if (!ndp_in_sz) {
				err = -ENOMEM;
				goto size_err;
			}

			err = usb_control_msg(usbdev,
					usb_sndctrlpipe(usbdev, 0),
					USB_CDC_SET_NTB_INPUT_SIZE,
					USB_TYPE_CLASS | USB_DIR_OUT
					 | USB_RECIP_INTERFACE,
					0, iface_no, ndp_in_sz, 8, 1000);
			kfree(ndp_in_sz);
		} else {
			__le32 *dwNtbInMaxSize;
			dwNtbInMaxSize = kzalloc(sizeof(*dwNtbInMaxSize),
					GFP_KERNEL);
			if (!dwNtbInMaxSize) {
				err = -ENOMEM;
				goto size_err;
			}
			*dwNtbInMaxSize = cpu_to_le32(ctx->rx_max);

			err = usb_control_msg(usbdev,
					usb_sndctrlpipe(usbdev, 0),
					USB_CDC_SET_NTB_INPUT_SIZE,
					USB_TYPE_CLASS | USB_DIR_OUT
					 | USB_RECIP_INTERFACE,
					0, iface_no, dwNtbInMaxSize, 4, 1000);
			kfree(dwNtbInMaxSize);
		}
size_err:
		if (err < 0)
			mif_debug("Setting NTB Input Size failed\n");
	}

	/* verify maximum size of transmitted NTB in bytes */
	if ((ctx->tx_max <
	    (CDC_NCM_MIN_HDR_SIZE + CDC_NCM_MIN_DATAGRAM_SIZE)) ||
	    (ctx->tx_max > CDC_NCM_NTB_MAX_SIZE_TX)) {
		mif_debug("Using default maximum transmit length=%d\n",
						CDC_NCM_NTB_MAX_SIZE_TX);
		ctx->tx_max = CDC_NCM_NTB_MAX_SIZE_TX;
	}
	ctx->tx_max_setup = ctx->tx_max;

	/*
	 * verify that the structure alignment is:
	 * - power of two
	 * - not greater than the maximum transmit length
	 * - not less than four bytes
	 */
	val = ctx->tx_ndp_modulus;

	if ((val < USB_CDC_NCM_NDP_ALIGN_MIN_SIZE) ||
	    (val != ((-val) & val)) || (val >= ctx->tx_max)) {
		mif_debug("Using default alignment: 4 bytes\n");
		ctx->tx_ndp_modulus = USB_CDC_NCM_NDP_ALIGN_MIN_SIZE;
	}

	/*
	 * verify that the payload alignment is:
	 * - power of two
	 * - not greater than the maximum transmit length
	 * - not less than four bytes
	 */
	val = ctx->tx_modulus;

	if ((val < USB_CDC_NCM_NDP_ALIGN_MIN_SIZE) ||
	    (val != ((-val) & val)) || (val >= ctx->tx_max)) {
		mif_debug("Using default transmit modulus: 4 bytes\n");
		ctx->tx_modulus = USB_CDC_NCM_NDP_ALIGN_MIN_SIZE;
	}

	/* verify the payload remainder */
	if (ctx->tx_remainder >= ctx->tx_modulus) {
		mif_debug("Using default transmit remainder: 0 bytes\n");
		ctx->tx_remainder = 0;
	}

	/* adjust TX-remainder according to NCM specification. */
	ctx->tx_remainder = ((ctx->tx_remainder - ETH_HLEN) &
						(ctx->tx_modulus - 1));

	/* additional configuration */

	/* set CRC Mode */
	if (flags & USB_CDC_NCM_NCAP_CRC_MODE) {
		err = usb_control_msg(usbdev, usb_sndctrlpipe(usbdev, 0),
				USB_CDC_SET_CRC_MODE,
				USB_TYPE_CLASS | USB_DIR_OUT
				 | USB_RECIP_INTERFACE,
				USB_CDC_NCM_CRC_NOT_APPENDED,
				iface_no, NULL, 0, 1000);
		if (err < 0)
			mif_debug("Setting CRC mode off failed\n");
	}

	/* set NTB format, if both formats are supported */
	if (ntb_fmt_supported & USB_CDC_NCM_NTH32_SIGN) {
		err = usb_control_msg(usbdev, usb_sndctrlpipe(usbdev, 0),
				USB_CDC_SET_NTB_FORMAT, USB_TYPE_CLASS
				 | USB_DIR_OUT | USB_RECIP_INTERFACE,
				USB_CDC_NCM_NTB16_FORMAT,
				iface_no, NULL, 0, 1000);
		if (err < 0)
			mif_debug("Setting NTB format to 16-bit failed\n");
	}

	ctx->max_datagram_size = CDC_NCM_MIN_DATAGRAM_SIZE;

	/* set Max Datagram Size (MTU) */
	if (flags & USB_CDC_NCM_NCAP_MAX_DATAGRAM_SIZE) {
		__le16 *max_datagram_size;
		u16 eth_max_sz = le16_to_cpu(ctx->ether_desc->wMaxSegmentSize);

		max_datagram_size = kzalloc(sizeof(*max_datagram_size),
				GFP_KERNEL);
		if (!max_datagram_size) {
			err = -ENOMEM;
			goto max_dgram_err;
		}

		err = usb_control_msg(usbdev, usb_rcvctrlpipe(usbdev, 0),
				USB_CDC_GET_MAX_DATAGRAM_SIZE,
				USB_TYPE_CLASS | USB_DIR_IN
				 | USB_RECIP_INTERFACE,
				0, iface_no, max_datagram_size,
				2, 1000);
		if (err < 0) {
			mif_debug("GET_MAX_DATAGRAM_SIZE failed, use size=%u\n",
						CDC_NCM_MIN_DATAGRAM_SIZE);
		} else {
			ctx->max_datagram_size =
				le16_to_cpu(*max_datagram_size);
			/* Check Eth descriptor value */
			if (ctx->max_datagram_size > eth_max_sz)
					ctx->max_datagram_size = eth_max_sz;

			if (ctx->max_datagram_size > CDC_NCM_MAX_DATAGRAM_SIZE)
				ctx->max_datagram_size =
						CDC_NCM_MAX_DATAGRAM_SIZE;

			if (ctx->max_datagram_size < CDC_NCM_MIN_DATAGRAM_SIZE)
				ctx->max_datagram_size =
					CDC_NCM_MIN_DATAGRAM_SIZE;

			/* if value changed, update device */
			if (ctx->max_datagram_size !=
					le16_to_cpu(*max_datagram_size)) {
				err = usb_control_msg(usbdev,
						usb_sndctrlpipe(usbdev, 0),
						USB_CDC_SET_MAX_DATAGRAM_SIZE,
						USB_TYPE_CLASS | USB_DIR_OUT
						 | USB_RECIP_INTERFACE,
						0,
						iface_no, max_datagram_size,
						2, 1000);
				if (err < 0)
					pr_debug("SET_MAX_DGRAM_SIZE failed\n");
			}
		}
		kfree(max_datagram_size);
	}

max_dgram_err:
	if (pipe_data->iod->ndev->mtu != (ctx->max_datagram_size - ETH_HLEN))
		pipe_data->iod->ndev->mtu = ctx->max_datagram_size - ETH_HLEN;

	return 0;
}
Example #11
0
static VOID adv_fai_terminate_device(adv_device *device)
{
	private_data *privdata = (private_data *) (device->private_data);
	INT32U tmp;
	INT32S ret;
	

	/* send command to device to stop fai */
	if (down_interruptible(privdata->usb_urb_sema)) {
		return;
	}

	if (privdata->udev == NULL) {
		up(privdata->usb_urb_sema);
		return;
	}

	ret = adv_usb_ctrl_msg(privdata->udev, usb_sndctrlpipe(privdata->udev, 0),
			       MAJOR_AI, 0x40,
			       MINOR_FAI_TERMINATE, 0,
			       (INT8U *) &tmp,
			       sizeof(INT32U));
	if (ret < 0) {
		up(privdata->usb_urb_sema);
		return;
	}
	
	switch (privdata->device_type) {
	case USB4711A:	
		break;
	case USB4711B:
		ret = adv_usb_ctrl_msg(privdata->udev,
				       usb_rcvctrlpipe(privdata->udev, 0),
				       MAJOR_SYSTEM, (0x40 | 0x80),
				       MINOR_GET_USB_FLAG, 0,
				       (INT8U *) &tmp,
				       sizeof(INT32U));
		if (ret < 0) {
			up(privdata->usb_urb_sema);
			return;
		}
		
		if (tmp & FAI_BUSY) {
			ret = adv_usb_ctrl_msg(privdata->udev,
					       usb_sndctrlpipe(privdata->udev, 0),
					       MAJOR_AI, 0x40,
					       MINOR_FAI_TERMINATE, 0,
					       (INT8U *) &tmp,
					       sizeof(INT32U));
			if (ret < 0) {
				up(privdata->usb_urb_sema);
				return;
			}
		}
		break;
	default:
		up(privdata->usb_urb_sema);
		return;
	}

	switch (privdata->device_type) {
	case USB4711A: {
		INT16U i;
		
		for (i = 0; i < 256; i++) {
			mdelay(500);
			
			ret = adv_usb_ctrl_msg(privdata->udev,
					       usb_sndctrlpipe(privdata->udev, 0),
					       MAJOR_AI, 0x40,
					       MINOR_FAI_ZLP, 0,
					       (INT8U *) &tmp,
					       sizeof(INT32U));
			if (ret < 0) {
				up(privdata->usb_urb_sema);
				return;
			}
		}
	}
		break;
	case USB4711B:
		break;
	default:
		up(privdata->usb_urb_sema);
		return;
	}

	up(privdata->usb_urb_sema);

	return;
}
Example #12
0
static int  usb_get_hub_descriptor(USB_DEV_T *dev, void *data, int size)
{
    return USBH_SendCtrlMsg(dev, usb_rcvctrlpipe(dev, 0),
                            USB_REQ_GET_DESCRIPTOR, USB_DIR_IN | USB_RT_HUB,
                            USB_DT_HUB << 8, 0, data, size, HZ);
}
int usbctrl_vendorreq(struct intf_hdl *pintfhdl, u8 request, u16 value, u16 index, void *pdata, u16 len, u8 requesttype)
{
	_adapter	*padapter = pintfhdl->padapter;
	struct dvobj_priv  *pdvobjpriv = adapter_to_dvobj(padapter);
	struct pwrctrl_priv *pwrctl = dvobj_to_pwrctl(pdvobjpriv);
	struct usb_device *udev=pdvobjpriv->pusbdev;

	unsigned int pipe;
	int status = 0;
	u32 tmp_buflen=0;
	u8 reqtype;
	u8 *pIo_buf;
	int vendorreq_times = 0;

	#ifdef CONFIG_USB_VENDOR_REQ_BUFFER_DYNAMIC_ALLOCATE
	u8 *tmp_buf;
	#else // use stack memory
	u8 tmp_buf[MAX_USB_IO_CTL_SIZE];
	#endif

#ifdef CONFIG_CONCURRENT_MODE
	if(padapter->adapter_type > PRIMARY_ADAPTER)
	{
		padapter = padapter->pbuddy_adapter;
		pdvobjpriv = adapter_to_dvobj(padapter);
		udev = pdvobjpriv->pusbdev;
	}
#endif

	//DBG_871X("%s %s:%d\n",__FUNCTION__, current->comm, current->pid);

	if (RTW_CANNOT_IO(padapter)){
		RT_TRACE(_module_hci_ops_os_c_,_drv_err_,("usbctrl_vendorreq:(RTW_CANNOT_IO)!!!\n"));
		status = -EPERM;
		goto exit;
	}

	if(len>MAX_VENDOR_REQ_CMD_SIZE){
		DBG_8192C( "[%s] Buffer len error ,vendor request failed\n", __FUNCTION__ );
		status = -EINVAL;
		goto exit;
	}

	#ifdef CONFIG_USB_VENDOR_REQ_MUTEX
	_enter_critical_mutex(&pdvobjpriv->usb_vendor_req_mutex, NULL);
	#endif


	// Acquire IO memory for vendorreq
#ifdef CONFIG_USB_VENDOR_REQ_BUFFER_PREALLOC
	pIo_buf = pdvobjpriv->usb_vendor_req_buf;
#else
	#ifdef CONFIG_USB_VENDOR_REQ_BUFFER_DYNAMIC_ALLOCATE
	tmp_buf = rtw_malloc( (u32) len + ALIGNMENT_UNIT);
	tmp_buflen =  (u32)len + ALIGNMENT_UNIT;
	#else // use stack memory
	tmp_buflen = MAX_USB_IO_CTL_SIZE;
	#endif

	// Added by Albert 2010/02/09
	// For mstar platform, mstar suggests the address for USB IO should be 16 bytes alignment.
	// Trying to fix it here.
	pIo_buf = (tmp_buf==NULL)?NULL:tmp_buf + ALIGNMENT_UNIT -((SIZE_PTR)(tmp_buf) & 0x0f );
#endif

	if ( pIo_buf== NULL) {
		DBG_8192C( "[%s] pIo_buf == NULL \n", __FUNCTION__ );
		status = -ENOMEM;
		goto release_mutex;
	}

	while(++vendorreq_times<= MAX_USBCTRL_VENDORREQ_TIMES)
	{
		_rtw_memset(pIo_buf, 0, len);

		if (requesttype == 0x01)
		{
			pipe = usb_rcvctrlpipe(udev, 0);//read_in
			reqtype =  REALTEK_USB_VENQT_READ;
		}
		else
		{
			pipe = usb_sndctrlpipe(udev, 0);//write_out
			reqtype =  REALTEK_USB_VENQT_WRITE;
			_rtw_memcpy( pIo_buf, pdata, len);
		}

		status = rtw_usb_control_msg(udev, pipe, request, reqtype, value, index, pIo_buf, len, RTW_USB_CONTROL_MSG_TIMEOUT);

		if ( status == len)   // Success this control transfer.
		{
			rtw_reset_continual_io_error(pdvobjpriv);
			if ( requesttype == 0x01 )
			{   // For Control read transfer, we have to copy the read data from pIo_buf to pdata.
				_rtw_memcpy( pdata, pIo_buf,  len );
			}
		}
		else { // error cases
			DBG_8192C("reg 0x%x, usb %s %u fail, status:%d value=0x%x, vendorreq_times:%d\n"
				, value,(requesttype == 0x01)?"read":"write" , len, status, *(u32*)pdata, vendorreq_times);

			if (status < 0) {
				if(status == (-ESHUTDOWN)	|| status == -ENODEV	)
				{
					padapter->bSurpriseRemoved = _TRUE;
				} else {
					#ifdef DBG_CONFIG_ERROR_DETECT
					{
						HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(padapter);
						pHalData->srestpriv.Wifi_Error_Status = USB_VEN_REQ_CMD_FAIL;
					}
					#endif
				}
			}
			else // status != len && status >= 0
			{
				if(status > 0) {
					if ( requesttype == 0x01 )
					{   // For Control read transfer, we have to copy the read data from pIo_buf to pdata.
						_rtw_memcpy( pdata, pIo_buf,  len );
					}
				}
			}

			if(rtw_inc_and_chk_continual_io_error(pdvobjpriv) == _TRUE ){
				padapter->bSurpriseRemoved = _TRUE;
				break;
			}

		}

		// firmware download is checksumed, don't retry
		if( (value >= FW_START_ADDRESS ) || status == len )
			break;

	}

	// release IO memory used by vendorreq
	#ifdef CONFIG_USB_VENDOR_REQ_BUFFER_DYNAMIC_ALLOCATE
	rtw_mfree(tmp_buf, tmp_buflen);
	#endif

release_mutex:
	#ifdef CONFIG_USB_VENDOR_REQ_MUTEX
	_exit_critical_mutex(&pdvobjpriv->usb_vendor_req_mutex, NULL);
	#endif
exit:
	return status;

}
static int ehset_probe(struct usb_interface *intf,
		       const struct usb_device_id *id)
{
	int ret = -EINVAL;
	struct usb_device *dev = interface_to_usbdev(intf);
	struct usb_device *hub_udev = dev->parent;
	struct usb_device_descriptor *buf;
	u8 portnum = dev->portnum;
	u16 test_pid = le16_to_cpu(dev->descriptor.idProduct);
	struct otg_fsm *fsm = dev->bus->otg_fsm;

	switch (test_pid) {
	case TEST_SE0_NAK_PID:
		ret = usb_control_msg(hub_udev, usb_sndctrlpipe(hub_udev, 0),
					USB_REQ_SET_FEATURE, USB_RT_PORT,
					USB_PORT_FEAT_TEST,
					(TEST_SE0_NAK << 8) | portnum,
					NULL, 0, 1000);
		break;
	case TEST_J_PID:
		ret = usb_control_msg(hub_udev, usb_sndctrlpipe(hub_udev, 0),
					USB_REQ_SET_FEATURE, USB_RT_PORT,
					USB_PORT_FEAT_TEST,
					(TEST_J << 8) | portnum,
					NULL, 0, 1000);
		break;
	case TEST_K_PID:
		ret = usb_control_msg(hub_udev, usb_sndctrlpipe(hub_udev, 0),
					USB_REQ_SET_FEATURE, USB_RT_PORT,
					USB_PORT_FEAT_TEST,
					(TEST_K << 8) | portnum,
					NULL, 0, 1000);
		break;
	case TEST_PACKET_PID:
		ret = usb_control_msg(hub_udev, usb_sndctrlpipe(hub_udev, 0),
					USB_REQ_SET_FEATURE, USB_RT_PORT,
					USB_PORT_FEAT_TEST,
					(TEST_PACKET << 8) | portnum,
					NULL, 0, 1000);
		break;
	case TEST_HS_HOST_PORT_SUSPEND_RESUME:
		/* Test: wait for 15secs -> suspend -> 15secs delay -> resume */
		msleep(15 * 1000);
		ret = usb_control_msg(hub_udev, usb_sndctrlpipe(hub_udev, 0),
					USB_REQ_SET_FEATURE, USB_RT_PORT,
					USB_PORT_FEAT_SUSPEND, portnum,
					NULL, 0, 1000);
		if (ret < 0)
			break;

		msleep(15 * 1000);
		ret = usb_control_msg(hub_udev, usb_sndctrlpipe(hub_udev, 0),
					USB_REQ_CLEAR_FEATURE, USB_RT_PORT,
					USB_PORT_FEAT_SUSPEND, portnum,
					NULL, 0, 1000);
		break;
	case TEST_SINGLE_STEP_GET_DEV_DESC:
		/* Test: wait for 15secs -> GetDescriptor request */
		msleep(15 * 1000);
		buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL);
		if (!buf)
			return -ENOMEM;

		ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
					USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
					USB_DT_DEVICE << 8, 0,
					buf, USB_DT_DEVICE_SIZE,
					USB_CTRL_GET_TIMEOUT);
		kfree(buf);
		break;
	case TEST_SINGLE_STEP_SET_FEATURE:
		/*
		 * GetDescriptor SETUP request -> 15secs delay -> IN & STATUS
		 *
		 * Note, this test is only supported on root hubs since the
		 * SetPortFeature handling can only be done inside the HCD's
		 * hub_control callback function.
		 */
		if (hub_udev != dev->bus->root_hub) {
			dev_err(&intf->dev, "SINGLE_STEP_SET_FEATURE test only supported on root hub\n");
			break;
		}

		ret = usb_control_msg(hub_udev, usb_sndctrlpipe(hub_udev, 0),
					USB_REQ_SET_FEATURE, USB_RT_PORT,
					USB_PORT_FEAT_TEST,
					(6 << 8) | portnum,
					NULL, 0, 60 * 1000);

		break;
	case TEST_OTG_TEST_DEVICE_SUPPORT:
		if (!fsm)
			return ret;

		/* B host enumerate test device */
		if (dev->bus->is_b_host) {
			otg_add_timer(fsm, B_TST_SUSP);
			ret = 0;
			break;
		}

		mutex_lock(&fsm->lock);
		fsm->tst_maint = 1;
		if (le16_to_cpu(dev->descriptor.bcdDevice) & 0x1)
			fsm->otg_vbus_off = 1;
		else
			fsm->otg_vbus_off = 0;
		mutex_unlock(&fsm->lock);
		otg_add_timer(fsm, A_TST_MAINT);
		ret = 0;
		break;
	default:
		dev_err(&intf->dev, "%s: unsupported PID: 0x%x\n",
			__func__, test_pid);
	}

	return (ret < 0) ? ret : 0;
}
Example #15
0
static int ec168_rw_udev(struct usb_device *udev, struct ec168_req *req)
{
	int ret;
	unsigned int pipe;
	u8 request, requesttype;
	u8 *buf;



	switch (req->cmd) {
	case DOWNLOAD_FIRMWARE:
	case GPIO:
	case WRITE_I2C:
	case STREAMING_CTRL:
		requesttype = (USB_TYPE_VENDOR | USB_DIR_OUT);
		request = req->cmd;
		break;
	case READ_I2C:
		requesttype = (USB_TYPE_VENDOR | USB_DIR_IN);
		request = req->cmd;
		break;
	case GET_CONFIG:
		requesttype = (USB_TYPE_VENDOR | USB_DIR_IN);
		request = CONFIG;
		break;
	case SET_CONFIG:
		requesttype = (USB_TYPE_VENDOR | USB_DIR_OUT);
		request = CONFIG;
		break;
	case WRITE_DEMOD:
		requesttype = (USB_TYPE_VENDOR | USB_DIR_OUT);
		request = DEMOD_RW;
		break;
	case READ_DEMOD:
		requesttype = (USB_TYPE_VENDOR | USB_DIR_IN);
		request = DEMOD_RW;
		break;
	default:
		err("unknown command:%02x", req->cmd);
		ret = -EPERM;
		goto error;
	}

	buf = kmalloc(req->size, GFP_KERNEL);
	if (!buf) {
		ret = -ENOMEM;
		goto error;
	}

	if (requesttype == (USB_TYPE_VENDOR | USB_DIR_OUT)) {
		/* write */
		memcpy(buf, req->data, req->size);
		pipe = usb_sndctrlpipe(udev, 0);
	} else {
		/* read */
		pipe = usb_rcvctrlpipe(udev, 0);
	}

	msleep(1); /* avoid I2C errors */

	ret = usb_control_msg(udev, pipe, request, requesttype, req->value,
		req->index, buf, req->size, EC168_USB_TIMEOUT);

	ec168_debug_dump(request, requesttype, req->value, req->index, buf,
		req->size, deb_xfer);

	if (ret < 0)
		goto err_dealloc;
	else
		ret = 0;

	/* read request, copy returned data to return buf */
	if (!ret && requesttype == (USB_TYPE_VENDOR | USB_DIR_IN))
		memcpy(req->data, buf, req->size);

	kfree(buf);
	return ret;

err_dealloc:
	kfree(buf);
error:
	deb_info("%s: failed:%d\n", __func__, ret);
	return ret;
}
static int wacom_parse_hid(struct usb_interface *intf,
			   struct hid_descriptor *hid_desc,
			   struct wacom_features *features)
{
	struct usb_device *dev = interface_to_usbdev(intf);
	char limit = 0;
	/*                                                  */
	int result = 0;
	int i = 0, usage = WCM_UNDEFINED, finger = 0, pen = 0;
	unsigned char *report;

	report = kzalloc(hid_desc->wDescriptorLength, GFP_KERNEL);
	if (!report)
		return -ENOMEM;

	/*                            */
	do {
		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
			USB_REQ_GET_DESCRIPTOR,
			USB_RECIP_INTERFACE | USB_DIR_IN,
			HID_DEVICET_REPORT << 8,
			intf->altsetting[0].desc.bInterfaceNumber, /*           */
			report,
			hid_desc->wDescriptorLength,
			5000); /*        */
	} while (result < 0 && limit++ < WAC_MSG_RETRIES);

	/*                                                           */
	if (result < 0)
		goto out;

	for (i = 0; i < hid_desc->wDescriptorLength; i++) {

		switch (report[i]) {
		case HID_USAGE_PAGE:
			switch (report[i + 1]) {
			case HID_USAGE_PAGE_DIGITIZER:
				usage = WCM_DIGITIZER;
				i++;
				break;

			case HID_USAGE_PAGE_DESKTOP:
				usage = WCM_DESKTOP;
				i++;
				break;
			}
			break;

		case HID_USAGE:
			switch (report[i + 1]) {
			case HID_USAGE_X:
				if (usage == WCM_DESKTOP) {
					if (finger) {
						features->device_type = BTN_TOOL_FINGER;
						if (features->type == TABLETPC2FG) {
							/*                    */
							features->pktlen = WACOM_PKGLEN_TPC2FG;
						}
						if (features->type == BAMBOO_PT) {
							/*                    */
							features->pktlen = WACOM_PKGLEN_BBTOUCH;
							features->x_phy =
								get_unaligned_le16(&report[i + 5]);
							features->x_max =
								get_unaligned_le16(&report[i + 8]);
							i += 15;
						} else {
							features->x_max =
								get_unaligned_le16(&report[i + 3]);
							features->x_phy =
								get_unaligned_le16(&report[i + 6]);
							features->unit = report[i + 9];
							features->unitExpo = report[i + 11];
							i += 12;
						}
					} else if (pen) {
						/*                                           */
						if (features->type == TABLETPC2FG)
							features->pktlen = WACOM_PKGLEN_GRAPHIRE;
						features->device_type = BTN_TOOL_PEN;
						features->x_max =
							get_unaligned_le16(&report[i + 3]);
						i += 4;
					}
				}
				break;

			case HID_USAGE_Y:
				if (usage == WCM_DESKTOP) {
					if (finger) {
						features->device_type = BTN_TOOL_FINGER;
						if (features->type == TABLETPC2FG) {
							/*                    */
							features->pktlen = WACOM_PKGLEN_TPC2FG;
							features->y_max =
								get_unaligned_le16(&report[i + 3]);
							features->y_phy =
								get_unaligned_le16(&report[i + 6]);
							i += 7;
						} else if (features->type == BAMBOO_PT) {
							/*                    */
							features->pktlen = WACOM_PKGLEN_BBTOUCH;
							features->y_phy =
								get_unaligned_le16(&report[i + 3]);
							features->y_max =
								get_unaligned_le16(&report[i + 6]);
							i += 12;
						} else {
							features->y_max =
								features->x_max;
							features->y_phy =
								get_unaligned_le16(&report[i + 3]);
							i += 4;
						}
					} else if (pen) {
						/*                                           */
						if (features->type == TABLETPC2FG)
							features->pktlen = WACOM_PKGLEN_GRAPHIRE;
						features->device_type = BTN_TOOL_PEN;
						features->y_max =
							get_unaligned_le16(&report[i + 3]);
						i += 4;
					}
				}
				break;

			case HID_USAGE_FINGER:
				finger = 1;
				i++;
				break;

			/*
                                                   
                                                        
                               
    */
			case HID_USAGE_STYLUS:
				pen = 1;
				i++;
				break;
			}
			break;

		case HID_COLLECTION_END:
			/*                            */
			finger = usage = 0;
			break;

		case HID_COLLECTION:
			i++;
			switch (report[i]) {
			case HID_COLLECTION_LOGICAL:
				i += wacom_parse_logical_collection(&report[i],
								    features);
				break;
			}
			break;
		}
	}

 out:
	result = 0;
	kfree(report);
	return result;
}
Example #17
0
static inline int qt2_getdevice(struct usb_device *dev, u8 *data)
{
	return usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
			       QT_SET_GET_DEVICE, 0xc0, 0, 0,
			       data, 3, QT2_USB_TIMEOUT);
}
Example #18
0
/*
 * parse the format descriptor and stores the possible sample rates
 * on the audioformat table (audio class v2).
 */
static int parse_audio_format_rates_v2(struct snd_usb_audio *chip,
				       struct audioformat *fp)
{
	struct usb_device *dev = chip->dev;
	unsigned char tmp[2], *data;
	int nr_triplets, data_size, ret = 0;
	int clock = snd_usb_clock_find_source(chip, fp->clock);

	if (clock < 0) {
		snd_printk(KERN_ERR "%s(): unable to find clock source (clock %d)\n",
				__func__, clock);
		goto err;
	}

	/* get the number of sample rates first by only fetching 2 bytes */
	ret = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), UAC2_CS_RANGE,
			      USB_TYPE_CLASS | USB_RECIP_INTERFACE | USB_DIR_IN,
			      UAC2_CS_CONTROL_SAM_FREQ << 8,
			      snd_usb_ctrl_intf(chip) | (clock << 8),
			      tmp, sizeof(tmp));

	if (ret < 0) {
		snd_printk(KERN_ERR "%s(): unable to retrieve number of sample rates (clock %d)\n",
				__func__, clock);
		goto err;
	}

	nr_triplets = (tmp[1] << 8) | tmp[0];
	data_size = 2 + 12 * nr_triplets;
	data = kzalloc(data_size, GFP_KERNEL);
	if (!data) {
		ret = -ENOMEM;
		goto err;
	}

	/* now get the full information */
	ret = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), UAC2_CS_RANGE,
			      USB_TYPE_CLASS | USB_RECIP_INTERFACE | USB_DIR_IN,
			      UAC2_CS_CONTROL_SAM_FREQ << 8,
			      snd_usb_ctrl_intf(chip) | (clock << 8),
			      data, data_size);

	if (ret < 0) {
		snd_printk(KERN_ERR "%s(): unable to retrieve sample rate range (clock %d)\n",
				__func__, clock);
		ret = -EINVAL;
		goto err_free;
	}

	/* Call the triplet parser, and make sure fp->rate_table is NULL.
	 * We just use the return value to know how many sample rates we
	 * will have to deal with. */
	kfree(fp->rate_table);
	fp->rate_table = NULL;
	fp->nr_rates = parse_uac2_sample_rate_range(fp, nr_triplets, data);

	if (fp->nr_rates == 0) {
		/* SNDRV_PCM_RATE_CONTINUOUS */
		ret = 0;
		goto err_free;
	}

	fp->rate_table = kmalloc(sizeof(int) * fp->nr_rates, GFP_KERNEL);
	if (!fp->rate_table) {
		ret = -ENOMEM;
		goto err_free;
	}

	/* Call the triplet parser again, but this time, fp->rate_table is
	 * allocated, so the rates will be stored */
	parse_uac2_sample_rate_range(fp, nr_triplets, data);

err_free:
	kfree(data);
err:
	return ret;
}
Example #19
0
static long ioctl_rio(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct RioCommand rio_cmd;
	struct rio_usb_data *rio = &rio_instance;
	void __user *data;
	unsigned char *buffer;
	int result, requesttype;
	int retries;
	int retval=0;

	mutex_lock(&(rio->lock));
        /* Sanity check to make sure rio is connected, powered, etc */
        if (rio->present == 0 || rio->rio_dev == NULL) {
		retval = -ENODEV;
		goto err_out;
	}

	switch (cmd) {
	case RIO_RECV_COMMAND:
		data = (void __user *) arg;
		if (data == NULL)
			break;
		if (copy_from_user(&rio_cmd, data, sizeof(struct RioCommand))) {
			retval = -EFAULT;
			goto err_out;
		}
		if (rio_cmd.length < 0 || rio_cmd.length > PAGE_SIZE) {
			retval = -EINVAL;
			goto err_out;
		}
		buffer = (unsigned char *) __get_free_page(GFP_KERNEL);
		if (buffer == NULL) {
			retval = -ENOMEM;
			goto err_out;
		}
		if (copy_from_user(buffer, rio_cmd.buffer, rio_cmd.length)) {
			retval = -EFAULT;
			free_page((unsigned long) buffer);
			goto err_out;
		}

		requesttype = rio_cmd.requesttype | USB_DIR_IN |
		    USB_TYPE_VENDOR | USB_RECIP_DEVICE;
		dbg
		    ("sending command:reqtype=%0x req=%0x value=%0x index=%0x len=%0x",
		     requesttype, rio_cmd.request, rio_cmd.value,
		     rio_cmd.index, rio_cmd.length);
		/* Send rio control message */
		retries = 3;
		while (retries) {
			result = usb_control_msg(rio->rio_dev,
						 usb_rcvctrlpipe(rio-> rio_dev, 0),
						 rio_cmd.request,
						 requesttype,
						 rio_cmd.value,
						 rio_cmd.index, buffer,
						 rio_cmd.length,
						 jiffies_to_msecs(rio_cmd.timeout));
			if (result == -ETIMEDOUT)
				retries--;
			else if (result < 0) {
				err("Error executing ioctrl. code = %d", result);
				retries = 0;
			} else {
				dbg("Executed ioctl. Result = %d (data=%02x)",
				     result, buffer[0]);
				if (copy_to_user(rio_cmd.buffer, buffer,
						 rio_cmd.length)) {
					free_page((unsigned long) buffer);
					retval = -EFAULT;
					goto err_out;
				}
				retries = 0;
			}

			/* rio_cmd.buffer contains a raw stream of single byte
			   data which has been returned from rio.  Data is
			   interpreted at application level.  For data that
			   will be cast to data types longer than 1 byte, data
			   will be little_endian and will potentially need to
			   be swapped at the app level */

		}
		free_page((unsigned long) buffer);
		break;

	case RIO_SEND_COMMAND:
		data = (void __user *) arg;
		if (data == NULL)
			break;
		if (copy_from_user(&rio_cmd, data, sizeof(struct RioCommand))) {
			retval = -EFAULT;
			goto err_out;
		}
		if (rio_cmd.length < 0 || rio_cmd.length > PAGE_SIZE) {
			retval = -EINVAL;
			goto err_out;
		}
		buffer = (unsigned char *) __get_free_page(GFP_KERNEL);
		if (buffer == NULL) {
			retval = -ENOMEM;
			goto err_out;
		}
		if (copy_from_user(buffer, rio_cmd.buffer, rio_cmd.length)) {
			free_page((unsigned long)buffer);
			retval = -EFAULT;
			goto err_out;
		}

		requesttype = rio_cmd.requesttype | USB_DIR_OUT |
		    USB_TYPE_VENDOR | USB_RECIP_DEVICE;
		dbg("sending command: reqtype=%0x req=%0x value=%0x index=%0x len=%0x",
		     requesttype, rio_cmd.request, rio_cmd.value,
		     rio_cmd.index, rio_cmd.length);
		/* Send rio control message */
		retries = 3;
		while (retries) {
			result = usb_control_msg(rio->rio_dev,
						 usb_sndctrlpipe(rio-> rio_dev, 0),
						 rio_cmd.request,
						 requesttype,
						 rio_cmd.value,
						 rio_cmd.index, buffer,
						 rio_cmd.length,
						 jiffies_to_msecs(rio_cmd.timeout));
			if (result == -ETIMEDOUT)
				retries--;
			else if (result < 0) {
				err("Error executing ioctrl. code = %d", result);
				retries = 0;
			} else {
				dbg("Executed ioctl. Result = %d", result);
				retries = 0;

			}

		}
		free_page((unsigned long) buffer);
		break;

	default:
		retval = -ENOTTY;
		break;
	}


err_out:
	mutex_unlock(&(rio->lock));
	return retval;
}
Example #20
0
static int zte_ev_usb_serial_open(struct tty_struct *tty,
				  struct usb_serial_port *port)
{
	struct usb_device *udev = port->serial->dev;
	struct device *dev = &port->dev;
	int result = 0;
	int len;
	unsigned char *buf;

	buf = kmalloc(MAX_SETUP_DATA_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* send 1st ctl cmd(CTL    21 22 01 00  00 00 00 00) */
	len = 0;
	result = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
				 0x22, 0x21,
				 0x0001, 0x0000, NULL, len,
				 USB_CTRL_GET_TIMEOUT);
	dev_dbg(dev, "result = %d\n", result);

	/* send  2st cmd and recieve data */
	/*
	 * 16.0  CTL    a1 21 00 00  00 00 07 00   CLASS              25.1.0(5)
	 * 16.0  DI     00 96 00 00  00 00 08
	 */
	len = 0x0007;
	result = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
				 0x21, 0xa1,
				 0x0000, 0x0000, buf, len,
				 USB_CTRL_GET_TIMEOUT);
	debug_data(dev, __func__, len, buf, result);

	/* send 3 cmd */
	/*
	 * 16.0 CTL    21 20 00 00  00 00 07 00    CLASS                30.1.0
	 * 16.0 DO     80 25 00 00  00 00 08       .%.....              30.2.0
	 */
	len = 0x0007;
	buf[0] = 0x80;
	buf[1] = 0x25;
	buf[2] = 0x00;
	buf[3] = 0x00;
	buf[4] = 0x00;
	buf[5] = 0x00;
	buf[6] = 0x08;
	result = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
				 0x20, 0x21,
				 0x0000, 0x0000, buf, len,
				 USB_CTRL_GET_TIMEOUT);
	debug_data(dev, __func__, len, buf, result);

	/* send 4 cmd */
	/*
	 * 16.0 CTL    21 22 03 00  00 00 00 00
	 */
	len = 0;
	result = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
				 0x22, 0x21,
				 0x0003, 0x0000, NULL, len,
				 USB_CTRL_GET_TIMEOUT);
	dev_dbg(dev, "result = %d\n", result);

	/* send 5 cmd */
	/*
	 * 16.0  CTL    a1 21 00 00  00 00 07 00   CLASS               33.1.0
	 * 16.0  DI     80 25 00 00  00 00 08
	 */
	len = 0x0007;
	result = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
				 0x21, 0xa1,
				 0x0000, 0x0000, buf, len,
				 USB_CTRL_GET_TIMEOUT);
	debug_data(dev, __func__, len, buf, result);

	/* send 6 cmd */
	/*
	 * 16.0  CTL    21 20 00 00  00 00 07 00    CLASS               34.1.0
	 * 16.0  DO     80 25 00 00  00 00 08
	 */
	len = 0x0007;
	buf[0] = 0x80;
	buf[1] = 0x25;
	buf[2] = 0x00;
	buf[3] = 0x00;
	buf[4] = 0x00;
	buf[5] = 0x00;
	buf[6] = 0x08;
	result = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
				 0x20, 0x21,
				 0x0000, 0x0000, buf, len,
				 USB_CTRL_GET_TIMEOUT);
	debug_data(dev, __func__, len, buf, result);
	kfree(buf);

	return usb_serial_generic_open(tty, port);
}
Example #21
0
int rmnet_usb_ctrl_probe(struct usb_interface *intf,
		struct usb_host_endpoint *int_in, struct rmnet_ctrl_dev *dev)
{
	u16				wMaxPacketSize;
	struct usb_endpoint_descriptor	*ep;
	struct usb_device		*udev;
	int				interval;
	int				ret = 0;

	udev = interface_to_usbdev(intf);

	if (!dev) {
		pr_err("%s: Ctrl device not found\n", __func__);
		return -ENODEV;
	}
	dev->int_pipe = usb_rcvintpipe(udev,
		int_in->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);

	mutex_lock(&dev->dev_lock);
	dev->intf = intf;

	/*TBD: for now just update CD status*/
	dev->cbits_tolocal = ACM_CTRL_CD;

	/*send DTR high to modem*/
	dev->cbits_tomdm = ACM_CTRL_DTR;
	mutex_unlock(&dev->dev_lock);

	dev->resp_available = false;
	dev->snd_encap_cmd_cnt = 0;
	dev->get_encap_resp_cnt = 0;
	dev->resp_avail_cnt = 0;
	dev->tx_ctrl_err_cnt = 0;
	dev->set_ctrl_line_state_cnt = 0;

	ret = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
			USB_CDC_REQ_SET_CONTROL_LINE_STATE,
			(USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE),
			dev->cbits_tomdm,
			dev->intf->cur_altsetting->desc.bInterfaceNumber,
			NULL, 0, USB_CTRL_SET_TIMEOUT);
	if (ret < 0)
		return ret;

	dev->set_ctrl_line_state_cnt++;

	dev->inturb = usb_alloc_urb(0, GFP_KERNEL);
	if (!dev->inturb) {
		dev_err(dev->devicep, "Error allocating int urb\n");
		return -ENOMEM;
	}

	/*use max pkt size from ep desc*/
	ep = &dev->intf->cur_altsetting->endpoint[0].desc;
	wMaxPacketSize = le16_to_cpu(ep->wMaxPacketSize);

	dev->intbuf = kmalloc(wMaxPacketSize, GFP_KERNEL);
	if (!dev->intbuf) {
		usb_free_urb(dev->inturb);
		dev_err(dev->devicep, "Error allocating int buffer\n");
		return -ENOMEM;
	}

	dev->in_ctlreq->bRequestType =
		(USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE);
	dev->in_ctlreq->bRequest  = USB_CDC_GET_ENCAPSULATED_RESPONSE;
	dev->in_ctlreq->wValue = 0;
	dev->in_ctlreq->wIndex =
		dev->intf->cur_altsetting->desc.bInterfaceNumber;
	dev->in_ctlreq->wLength = cpu_to_le16(DEFAULT_READ_URB_LENGTH);

	interval = max((int)int_in->desc.bInterval,
			(udev->speed == USB_SPEED_HIGH) ? HS_INTERVAL
							: FS_LS_INTERVAL);

	usb_fill_int_urb(dev->inturb, udev,
			 dev->int_pipe,
			 dev->intbuf, wMaxPacketSize,
			 notification_available_cb, dev, interval);

	usb_mark_last_busy(udev);
	ret = rmnet_usb_ctrl_start_rx(dev);
	if (!ret)
		dev->is_connected = true;

	return ret;
}
Example #22
0
/*
 * Interface Descriptor of wacom devices can be incomplete and
 * inconsistent so wacom_features table is used to store stylus
 * device's packet lengths, various maximum values, and tablet
 * resolution based on product ID's.
 *
 * For devices that contain 2 interfaces, wacom_features table is
 * inaccurate for the touch interface.  Since the Interface Descriptor
 * for touch interfaces has pretty complete data, this function exists
 * to query tablet for this missing information instead of hard coding in
 * an additional table.
 *
 * A typical Interface Descriptor for a stylus will contain a
 * boot mouse application collection that is not of interest and this
 * function will ignore it.
 *
 * It also contains a digitizer application collection that also is not
 * of interest since any information it contains would be duplicate
 * of what is in wacom_features. Usually it defines a report of an array
 * of bytes that could be used as max length of the stylus packet returned.
 * If it happens to define a Digitizer-Stylus Physical Collection then
 * the X and Y logical values contain valid data but it is ignored.
 *
 * A typical Interface Descriptor for a touch interface will contain a
 * Digitizer-Finger Physical Collection which will define both logical
 * X/Y maximum as well as the physical size of tablet. Since touch
 * interfaces haven't supported pressure or distance, this is enough
 * information to override invalid values in the wacom_features table.
 *
 * 3rd gen Bamboo Touch no longer define a Digitizer-Finger Pysical
 * Collection. Instead they define a Logical Collection with a single
 * Logical Maximum for both X and Y.
 */
static int wacom_parse_hid(struct usb_interface *intf,
			   struct hid_descriptor *hid_desc,
			   struct wacom_features *features)
{
	struct usb_device *dev = interface_to_usbdev(intf);
	char limit = 0;
	/* result has to be defined as int for some devices */
	int result = 0;
	int i = 0, usage = WCM_UNDEFINED, finger = 0, pen = 0;
	unsigned char *report;

	report = kzalloc(hid_desc->wDescriptorLength, GFP_KERNEL);
	if (!report)
		return -ENOMEM;

	/* retrive report descriptors */
	do {
		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
			USB_REQ_GET_DESCRIPTOR,
			USB_RECIP_INTERFACE | USB_DIR_IN,
			HID_DEVICET_REPORT << 8,
			intf->altsetting[0].desc.bInterfaceNumber, /* interface */
			report,
			hid_desc->wDescriptorLength,
			5000); /* 5 secs */
	} while (result < 0 && limit++ < WAC_MSG_RETRIES);

	/* No need to parse the Descriptor. It isn't an error though */
	if (result < 0)
		goto out;

	for (i = 0; i < hid_desc->wDescriptorLength; i++) {

		switch (report[i]) {
		case HID_USAGE_PAGE:
			switch (report[i + 1]) {
			case HID_USAGE_PAGE_DIGITIZER:
				usage = WCM_DIGITIZER;
				i++;
				break;

			case HID_USAGE_PAGE_DESKTOP:
				usage = WCM_DESKTOP;
				i++;
				break;
			}
			break;

		case HID_USAGE:
			switch (report[i + 1]) {
			case HID_USAGE_X:
				if (usage == WCM_DESKTOP) {
					if (finger) {
						features->device_type = BTN_TOOL_FINGER;
						if (features->type == TABLETPC2FG) {
							/* need to reset back */
							features->pktlen = WACOM_PKGLEN_TPC2FG;
						}
						if (features->type == BAMBOO_PT) {
							/* need to reset back */
							features->pktlen = WACOM_PKGLEN_BBTOUCH;
							features->x_phy =
								get_unaligned_le16(&report[i + 5]);
							features->x_max =
								get_unaligned_le16(&report[i + 8]);
							i += 15;
						} else {
							features->x_max =
								get_unaligned_le16(&report[i + 3]);
							features->x_phy =
								get_unaligned_le16(&report[i + 6]);
							features->unit = report[i + 9];
							features->unitExpo = report[i + 11];
							i += 12;
						}
					} else if (pen) {
						/* penabled only accepts exact bytes of data */
						if (features->type == TABLETPC2FG)
							features->pktlen = WACOM_PKGLEN_GRAPHIRE;
						features->device_type = BTN_TOOL_PEN;
						features->x_max =
							get_unaligned_le16(&report[i + 3]);
						i += 4;
					}
				}
				break;

			case HID_USAGE_Y:
				if (usage == WCM_DESKTOP) {
					if (finger) {
						features->device_type = BTN_TOOL_FINGER;
						if (features->type == TABLETPC2FG) {
							/* need to reset back */
							features->pktlen = WACOM_PKGLEN_TPC2FG;
							features->y_max =
								get_unaligned_le16(&report[i + 3]);
							features->y_phy =
								get_unaligned_le16(&report[i + 6]);
							i += 7;
						} else if (features->type == BAMBOO_PT) {
							/* need to reset back */
							features->pktlen = WACOM_PKGLEN_BBTOUCH;
							features->y_phy =
								get_unaligned_le16(&report[i + 3]);
							features->y_max =
								get_unaligned_le16(&report[i + 6]);
							i += 12;
						} else {
							features->y_max =
								features->x_max;
							features->y_phy =
								get_unaligned_le16(&report[i + 3]);
							i += 4;
						}
					} else if (pen) {
						/* penabled only accepts exact bytes of data */
						if (features->type == TABLETPC2FG)
							features->pktlen = WACOM_PKGLEN_GRAPHIRE;
						features->device_type = BTN_TOOL_PEN;
						features->y_max =
							get_unaligned_le16(&report[i + 3]);
						i += 4;
					}
				}
				break;

			case HID_USAGE_FINGER:
				finger = 1;
				i++;
				break;

			/*
			 * Requiring Stylus Usage will ignore boot mouse
			 * X/Y values and some cases of invalid Digitizer X/Y
			 * values commonly reported.
			 */
			case HID_USAGE_STYLUS:
				pen = 1;
				i++;
				break;
			}
			break;

		case HID_COLLECTION_END:
			/* reset UsagePage and Finger */
			finger = usage = 0;
			break;

		case HID_COLLECTION:
			i++;
			switch (report[i]) {
			case HID_COLLECTION_LOGICAL:
				i += wacom_parse_logical_collection(&report[i],
								    features);
				break;
			}
			break;
		}
	}

 out:
	result = 0;
	kfree(report);
	return result;
}
static int
pnwotg_test_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
	struct pnwotg_test_dev	*dev;
	int retval, portNum;

	dev_dbg(&intf->dev, "Penwell OTG test mode is initiated.\n");
	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return -ENOMEM;

	dev->buf = kmalloc(TBUF_SIZE, GFP_KERNEL);
	if (!dev->buf) {
		kfree(dev);
		return -ENOMEM;
	}

	dev->udev = usb_get_dev(interface_to_usbdev(intf));
	dev->hcd = usb_get_hcd(bus_to_hcd(dev->udev->bus));
	usb_set_intfdata(intf, dev);
	portNum = dev->udev->portnum & 0xff;

	dev_dbg(&intf->dev, "test mode PID 0x%04x\n",
		le16_to_cpu(dev->udev->descriptor.idProduct));
	switch (le16_to_cpu(dev->udev->descriptor.idProduct)) {
	case 0x0101:
		/* TEST_SE0_NAK */
		dev->hcd->driver->hub_control(dev->hcd, SetPortFeature,
			USB_PORT_FEAT_TEST, 0x300 + portNum, NULL, 0);
		break;
	case 0x0102:
		/* TEST_J */
		dev->hcd->driver->hub_control(dev->hcd, SetPortFeature,
			USB_PORT_FEAT_TEST, 0x100 + portNum, NULL, 0);
		break;
	case 0x0103:
		/* TEST_K */
		dev->hcd->driver->hub_control(dev->hcd, SetPortFeature,
			USB_PORT_FEAT_TEST, 0x200 + portNum, NULL, 0);
		break;
	case 0x0104:
		/* TEST_PACKET */
		dev->hcd->driver->hub_control(dev->hcd, SetPortFeature,
			USB_PORT_FEAT_TEST, 0x400 + portNum, NULL, 0);
		break;
	case 0x0106:
		/* HS_HOST_PORT_SUSPEND_RESUME */
		msleep(15000);
		dev->hcd->driver->hub_control(dev->hcd, SetPortFeature,
			USB_PORT_FEAT_SUSPEND, portNum, NULL, 0);
		msleep(15000);
		dev->hcd->driver->hub_control(dev->hcd, ClearPortFeature,
			USB_PORT_FEAT_SUSPEND, portNum, NULL, 0);
		break;
	case 0x0107:
		/* SINGLE_STEP_GET_DEV_DESC */
		msleep(15000);
		retval = usb_control_msg(dev->udev,
				usb_rcvctrlpipe(dev->udev, 0),
				USB_REQ_GET_DESCRIPTOR,
				USB_DIR_IN | USB_RECIP_DEVICE,
				cpu_to_le16(USB_DT_DEVICE << 8),
				0, dev->buf,
				USB_DT_DEVICE_SIZE,
				USB_CTRL_GET_TIMEOUT);
		break;
	case 0x0108:
		/* SINGLE_STEP_SET_FEATURE */

		/* FIXME */
		/* set size = 0 to ignore DATA phase */
		retval = usb_control_msg(dev->udev,
				usb_rcvctrlpipe(dev->udev, 0),
				USB_REQ_GET_DESCRIPTOR,
				USB_DIR_IN | USB_RECIP_DEVICE,
				cpu_to_le16(USB_DT_DEVICE << 8),
				0, dev->buf, 0,
				USB_CTRL_GET_TIMEOUT);
		msleep(15000);
		retval = usb_control_msg(dev->udev,
				usb_rcvctrlpipe(dev->udev, 0),
				USB_REQ_GET_DESCRIPTOR,
				USB_DIR_IN | USB_RECIP_DEVICE,
				cpu_to_le16(USB_DT_DEVICE << 8),
				0, dev->buf,
				USB_DT_DEVICE_SIZE,
				USB_CTRL_GET_TIMEOUT);
		break;
	default:
		dev_info(&intf->dev, "unknown test mode with PID 0x%04x",
			id->idProduct);
		usb_notify_warning(dev->udev, USB_WARNING_NOT_SUPPORT);
	}

	return 0;
}
Example #24
0
static int usb_get_hub_descriptor(struct usb_device *dev, void *data, int size)
{
	return usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
		USB_REQ_GET_DESCRIPTOR, USB_DIR_IN | USB_RT_HUB,
		USB_DT_HUB << 8, 0, data, size, USB_CNTL_TIMEOUT);
}
/*
 * RPC done RNDIS-style.  Caller guarantees:
 * - message is properly byteswapped
 * - there's no other request pending
 * - buf can hold up to 1KB response (required by RNDIS spec)
 * On return, the first few entries are already byteswapped.
 *
 * Call context is likely probe(), before interface name is known,
 * which is why we won't try to use it in the diagnostics.
 */
int rndis_command(struct usbnet *dev, struct rndis_msg_hdr *buf, int buflen)
{
	struct cdc_state	*info = (void *) &dev->data;
	struct usb_cdc_notification notification;
	int			master_ifnum;
	int			retval;
	int			partial;
	unsigned		count;
	__le32			rsp;
	u32			xid = 0, msg_len, request_id;

	/* REVISIT when this gets called from contexts other than probe() or
	 * disconnect(): either serialize, or dispatch responses on xid
	 */

	/* Issue the request; xid is unique, don't bother byteswapping it */
	if (likely(buf->msg_type != RNDIS_MSG_HALT &&
		   buf->msg_type != RNDIS_MSG_RESET)) {
		xid = dev->xid++;
		if (!xid)
			xid = dev->xid++;
		buf->request_id = (__force __le32) xid;
	}
	master_ifnum = info->control->cur_altsetting->desc.bInterfaceNumber;
	retval = usb_control_msg(dev->udev,
		usb_sndctrlpipe(dev->udev, 0),
		USB_CDC_SEND_ENCAPSULATED_COMMAND,
		USB_TYPE_CLASS | USB_RECIP_INTERFACE,
		0, master_ifnum,
		buf, le32_to_cpu(buf->msg_len),
		RNDIS_CONTROL_TIMEOUT_MS);
	if (unlikely(retval < 0 || xid == 0))
		return retval;

	/* Some devices don't respond on the control channel until
	 * polled on the status channel, so do that first. */
	retval = usb_interrupt_msg(
		dev->udev,
		usb_rcvintpipe(dev->udev, dev->status->desc.bEndpointAddress),
		&notification, sizeof(notification), &partial,
		RNDIS_CONTROL_TIMEOUT_MS);
	if (unlikely(retval < 0))
		return retval;

	/* Poll the control channel; the request probably completed immediately */
	rsp = buf->msg_type | RNDIS_MSG_COMPLETION;
	for (count = 0; count < 10; count++) {
		memset(buf, 0, CONTROL_BUFFER_SIZE);
		retval = usb_control_msg(dev->udev,
			usb_rcvctrlpipe(dev->udev, 0),
			USB_CDC_GET_ENCAPSULATED_RESPONSE,
			USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE,
			0, master_ifnum,
			buf, buflen,
			RNDIS_CONTROL_TIMEOUT_MS);
		if (likely(retval >= 8)) {
			msg_len = le32_to_cpu(buf->msg_len);
			request_id = (__force u32) buf->request_id;
			if (likely(buf->msg_type == rsp)) {
				if (likely(request_id == xid)) {
					if (unlikely(rsp == RNDIS_MSG_RESET_C))
						return 0;
					if (likely(RNDIS_STATUS_SUCCESS
							== buf->status))
						return 0;
					dev_dbg(&info->control->dev,
						"rndis reply status %08x\n",
						le32_to_cpu(buf->status));
					return -EL3RST;
				}
				dev_dbg(&info->control->dev,
					"rndis reply id %d expected %d\n",
					request_id, xid);
				/* then likely retry */
			} else switch (buf->msg_type) {
			case RNDIS_MSG_INDICATE:	/* fault/event */
				rndis_msg_indicate(dev, (void *)buf, buflen);

				break;
			case RNDIS_MSG_KEEPALIVE: {	/* ping */
				struct rndis_keepalive_c *msg = (void *)buf;

				msg->msg_type = RNDIS_MSG_KEEPALIVE_C;
				msg->msg_len = cpu_to_le32(sizeof *msg);
				msg->status = RNDIS_STATUS_SUCCESS;
				retval = usb_control_msg(dev->udev,
					usb_sndctrlpipe(dev->udev, 0),
					USB_CDC_SEND_ENCAPSULATED_COMMAND,
					USB_TYPE_CLASS | USB_RECIP_INTERFACE,
					0, master_ifnum,
					msg, sizeof *msg,
					RNDIS_CONTROL_TIMEOUT_MS);
				if (unlikely(retval < 0))
					dev_dbg(&info->control->dev,
						"rndis keepalive err %d\n",
						retval);
				}
				break;
			default:
				dev_dbg(&info->control->dev,
					"unexpected rndis msg %08x len %d\n",
					le32_to_cpu(buf->msg_type), msg_len);
			}
		} else {
			/* device probably issued a protocol stall; ignore */
			dev_dbg(&info->control->dev,
				"rndis response error, code %d\n", retval);
		}
		msleep(20);
	}
	dev_dbg(&info->control->dev, "rndis response timeout\n");
	return -ETIMEDOUT;
}
Example #26
0
static int usb_get_port_status(struct usb_device *dev, int port, void *data)
{
	return usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
			USB_REQ_GET_STATUS, USB_DIR_IN | USB_RT_PORT, 0, port,
			data, sizeof(struct usb_hub_status), USB_CNTL_TIMEOUT);
}
Example #27
0
static inline int ssu100_getdevice(struct usb_device *dev, u8 *data)
{
	return usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
			       QT_SET_GET_DEVICE, 0xc0, 0, 0,
			       data, 3, 300);
}
Example #28
0
	_adapter *padapter=(_adapter *)intf_hdl->adapter;
	struct dvobj_priv   *pdev=&padapter->dvobjpriv;
	struct usb_device *udev=pdev->pusbdev;
	
	_func_enter_;
	if((addr>>8)==0xfe){
		DEBUG_INFO(("\n fe register read access!!\n"));
		status = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
			       RTL8187_REQ_GET_REGS, RTL8187_REQT_READ,
			       addr|0xfe00, 0, &res, 1, HZ / 2);

	}
	else{

		DEBUG_INFO(("\n ff register read access!!\n"));
		status = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
			       RTL8187_REQ_GET_REGS, RTL8187_REQT_READ,
			       (addr&0xff)|0xff00, (addr>>8)&0x03, &res, 1, HZ / 2);


	}

        if (status < 0)
        {
                DEBUG_ERR(("reg 0x%x, usb_read8 TimeOut! status:0x%x value=0x%x\n", addr, status,res));
        }

	_func_exit_;
	return res;
}
u16 usb_read16(struct intf_hdl *intf_hdl, u32 addr)
static int wacom_parse_hid(struct usb_interface *intf, struct hid_descriptor *hid_desc,
			   struct wacom_features *features)
{
	struct usb_device *dev = interface_to_usbdev(intf);
	char limit = 0;
	/* result has to be defined as int for some devices */
	int result = 0;
	int i = 0, usage = WCM_UNDEFINED, finger = 0, pen = 0;
	unsigned char *report;

	report = kzalloc(hid_desc->wDescriptorLength, GFP_KERNEL);
	if (!report)
		return -ENOMEM;

	/* retrive report descriptors */
	do {
		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
			USB_REQ_GET_DESCRIPTOR,
			USB_RECIP_INTERFACE | USB_DIR_IN,
			HID_DEVICET_REPORT << 8,
			intf->altsetting[0].desc.bInterfaceNumber, /* interface */
			report,
			hid_desc->wDescriptorLength,
			5000); /* 5 secs */
	} while (result < 0 && limit++ < 5);

	/* No need to parse the Descriptor. It isn't an error though */
	if (result < 0)
		goto out;

	for (i = 0; i < hid_desc->wDescriptorLength; i++) {

		switch (report[i]) {
		case HID_USAGE_PAGE:
			switch (report[i + 1]) {
			case HID_USAGE_PAGE_DIGITIZER:
				usage = WCM_DIGITIZER;
				i++;
				break;

			case HID_USAGE_PAGE_DESKTOP:
				usage = WCM_DESKTOP;
				i++;
				break;
			}
			break;

		case HID_USAGE:
			switch (report[i + 1]) {
			case HID_USAGE_X:
				if (usage == WCM_DESKTOP) {
					if (finger) {
						features->device_type = BTN_TOOL_DOUBLETAP;
						if (features->type == TABLETPC2FG) {
							/* need to reset back */
							features->pktlen = WACOM_PKGLEN_TPC2FG;
							features->device_type = BTN_TOOL_TRIPLETAP;
						}
						features->x_max =
							wacom_le16_to_cpu(&report[i + 3]);
						features->x_phy =
							wacom_le16_to_cpu(&report[i + 6]);
						features->unit = report[i + 9];
						features->unitExpo = report[i + 11];
						i += 12;
					} else if (pen) {
						/* penabled only accepts exact bytes of data */
						if (features->type == TABLETPC2FG)
							features->pktlen = WACOM_PKGLEN_GRAPHIRE;
						features->device_type = BTN_TOOL_PEN;
						features->x_max =
							wacom_le16_to_cpu(&report[i + 3]);
						i += 4;
					}
				} else if (usage == WCM_DIGITIZER) {
					/* max pressure isn't reported
					features->pressure_max = (unsigned short)
							(report[i+4] << 8  | report[i + 3]);
					*/
					features->pressure_max = 255;
					i += 4;
				}
				break;

			case HID_USAGE_Y:
				if (usage == WCM_DESKTOP) {
					if (finger) {
						features->device_type = BTN_TOOL_DOUBLETAP;
						if (features->type == TABLETPC2FG) {
							/* need to reset back */
							features->pktlen = WACOM_PKGLEN_TPC2FG;
							features->device_type = BTN_TOOL_TRIPLETAP;
							features->y_max =
								wacom_le16_to_cpu(&report[i + 3]);
							features->y_phy =
								wacom_le16_to_cpu(&report[i + 6]);
							i += 7;
						} else {
							features->y_max =
								features->x_max;
							features->y_phy =
								wacom_le16_to_cpu(&report[i + 3]);
							i += 4;
						}
					} else if (pen) {
						/* penabled only accepts exact bytes of data */
						if (features->type == TABLETPC2FG)
							features->pktlen = WACOM_PKGLEN_GRAPHIRE;
						features->device_type = BTN_TOOL_PEN;
						features->y_max =
							wacom_le16_to_cpu(&report[i + 3]);
						i += 4;
					}
				}
				break;

			case HID_USAGE_FINGER:
				finger = 1;
				i++;
				break;

			case HID_USAGE_STYLUS:
				pen = 1;
				i++;
				break;

			case HID_USAGE_UNDEFINED:
				if (usage == WCM_DESKTOP && finger) /* capacity */
					features->pressure_max =
						wacom_le16_to_cpu(&report[i + 3]);
				i += 4;
				break;
			}
			break;

		case HID_COLLECTION:
			/* reset UsagePage and Finger */
			finger = usage = 0;
			break;
		}
	}

 out:
	result = 0;
	kfree(report);
	return result;
}
Example #30
0
static int usbtmc_ioctl_clear(struct usbtmc_device_data *data)
{
	struct usb_host_interface *current_setting;
	struct usb_endpoint_descriptor *desc;
	struct device *dev;
	u8 *buffer;
	int rv;
	int n;
	int actual = 0;
	int max_size;

	dev = &data->intf->dev;

	dev_dbg(dev, "Sending INITIATE_CLEAR request\n");

	buffer = kmalloc(USBTMC_SIZE_IOBUFFER, GFP_KERNEL);
	if (!buffer)
		return -ENOMEM;

	rv = usb_control_msg(data->usb_dev,
			     usb_rcvctrlpipe(data->usb_dev, 0),
			     USBTMC_REQUEST_INITIATE_CLEAR,
			     USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE,
			     0, 0, buffer, 1, USBTMC_TIMEOUT);
	if (rv < 0) {
		dev_err(dev, "usb_control_msg returned %d\n", rv);
		goto exit;
	}

	dev_dbg(dev, "INITIATE_CLEAR returned %x\n", buffer[0]);

	if (buffer[0] != USBTMC_STATUS_SUCCESS) {
		dev_err(dev, "INITIATE_CLEAR returned %x\n", buffer[0]);
		rv = -EPERM;
		goto exit;
	}

	max_size = 0;
	current_setting = data->intf->cur_altsetting;
	for (n = 0; n < current_setting->desc.bNumEndpoints; n++) {
		desc = &current_setting->endpoint[n].desc;
		if (desc->bEndpointAddress == data->bulk_in)
			max_size = usb_endpoint_maxp(desc);
	}

	if (max_size == 0) {
		dev_err(dev, "Couldn't get wMaxPacketSize\n");
		rv = -EPERM;
		goto exit;
	}

	dev_dbg(dev, "wMaxPacketSize is %d\n", max_size);

	n = 0;

usbtmc_clear_check_status:

	dev_dbg(dev, "Sending CHECK_CLEAR_STATUS request\n");

	rv = usb_control_msg(data->usb_dev,
			     usb_rcvctrlpipe(data->usb_dev, 0),
			     USBTMC_REQUEST_CHECK_CLEAR_STATUS,
			     USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE,
			     0, 0, buffer, 2, USBTMC_TIMEOUT);
	if (rv < 0) {
		dev_err(dev, "usb_control_msg returned %d\n", rv);
		goto exit;
	}

	dev_dbg(dev, "CHECK_CLEAR_STATUS returned %x\n", buffer[0]);

	if (buffer[0] == USBTMC_STATUS_SUCCESS)
		goto usbtmc_clear_bulk_out_halt;

	if (buffer[0] != USBTMC_STATUS_PENDING) {
		dev_err(dev, "CHECK_CLEAR_STATUS returned %x\n", buffer[0]);
		rv = -EPERM;
		goto exit;
	}

	if (buffer[1] == 1)
		do {
			dev_dbg(dev, "Reading from bulk in EP\n");

			rv = usb_bulk_msg(data->usb_dev,
					  usb_rcvbulkpipe(data->usb_dev,
							  data->bulk_in),
					  buffer, USBTMC_SIZE_IOBUFFER,
					  &actual, USBTMC_TIMEOUT);
			n++;

			if (rv < 0) {
				dev_err(dev, "usb_control_msg returned %d\n",
					rv);
				goto exit;
			}
		} while ((actual == max_size) &&
			  (n < USBTMC_MAX_READS_TO_CLEAR_BULK_IN));

	if (actual == max_size) {
		dev_err(dev, "Couldn't clear device buffer within %d cycles\n",
			USBTMC_MAX_READS_TO_CLEAR_BULK_IN);
		rv = -EPERM;
		goto exit;
	}

	goto usbtmc_clear_check_status;

usbtmc_clear_bulk_out_halt:

	rv = usb_clear_halt(data->usb_dev,
			    usb_sndbulkpipe(data->usb_dev, data->bulk_out));
	if (rv < 0) {
		dev_err(dev, "usb_control_msg returned %d\n", rv);
		goto exit;
	}
	rv = 0;

exit:
	kfree(buffer);
	return rv;
}