AnyType matrix_mem_trans::run(AnyType & args) { ArrayHandle<double> m = args[0].getAs<ArrayHandle<double> >(); if (m.dims() != 2){ throw std::invalid_argument( "invalid argument - 2-d array expected"); } int row_m = static_cast<int>(m.sizeOfDim(0)); int col_m = static_cast<int>(m.sizeOfDim(1)); int dims[2] = {col_m, row_m}; int lbs[2] = {1, 1}; MutableArrayHandle<double> r = madlib_construct_md_array( NULL, NULL, 2, dims, lbs, FLOAT8TI.oid, FLOAT8TI.len, FLOAT8TI.byval, FLOAT8TI.align); for (int i = 0; i < row_m; i++){ for(int j = 0; j < col_m; j++){ *(r.ptr() + j * row_m + i) = *(m.ptr() + i * col_m + j); } } return r; }
/** * @brief This function is the sfunc of an aggregator computing the * perplexity. * @param args[0] The current state * @param args[1] The unique words in the documents * @param args[2] The counts of each unique words * @param args[3] The topic counts in the document * @param args[4] The model (word topic counts and corpus topic * counts) * @param args[5] The Dirichlet parameter for per-document topic * multinomial, i.e. alpha * @param args[6] The Dirichlet parameter for per-topic word * multinomial, i.e. beta * @param args[7] The size of vocabulary * @param args[8] The number of topics * @return The updated state **/ AnyType lda_perplexity_sfunc::run(AnyType & args){ ArrayHandle<int32_t> words = args[1].getAs<ArrayHandle<int32_t> >(); ArrayHandle<int32_t> counts = args[2].getAs<ArrayHandle<int32_t> >(); ArrayHandle<int32_t> topic_counts = args[3].getAs<ArrayHandle<int32_t> >(); double alpha = args[5].getAs<double>(); double beta = args[6].getAs<double>(); int32_t voc_size = args[7].getAs<int32_t>(); int32_t topic_num = args[8].getAs<int32_t>(); if(alpha <= 0) throw std::invalid_argument("invalid argument - alpha"); if(beta <= 0) throw std::invalid_argument("invalid argument - beta"); if(voc_size <= 0) throw std::invalid_argument( "invalid argument - voc_size"); if(topic_num <= 0) throw std::invalid_argument( "invalid argument - topic_num"); if(words.size() != counts.size()) throw std::invalid_argument( "dimensions mismatch: words.size() != counts.size()"); if(__min(words) < 0 || __max(words) >= voc_size) throw std::invalid_argument( "invalid values in words"); if(__min(counts) <= 0) throw std::invalid_argument( "invalid values in counts"); if(topic_counts.size() != (size_t)(topic_num)) throw std::invalid_argument( "invalid dimension - topic_counts.size() != topic_num"); if(__min(topic_counts, 0, topic_num) < 0) throw std::invalid_argument("invalid values in topic_counts"); MutableArrayHandle<int64_t> state(NULL); if(args[0].isNull()){ if(args[4].isNull()) throw std::invalid_argument("invalid argument - the model \ parameter should not be null for the first call"); ArrayHandle<int64_t> model = args[4].getAs<ArrayHandle<int64_t> >(); if(model.size() != (size_t)((voc_size + 1) * topic_num)) throw std::invalid_argument( "invalid dimension - model.size() != (voc_size + 1) * topic_num"); if(__min(model) < 0) throw std::invalid_argument("invalid topic counts in model"); state = madlib_construct_array(NULL, static_cast<int>(model.size()) + 1, INT8TI.oid, INT8TI.len, INT8TI.byval, INT8TI.align); memcpy(state.ptr(), model.ptr(), model.size() * sizeof(int64_t)); }else{
AnyType lda_parse_model::run(AnyType & args){ ArrayHandle<int64_t> state = args[0].getAs<ArrayHandle<int64_t> >(); int32_t voc_size = args[1].getAs<int32_t>(); int32_t topic_num = args[2].getAs<int32_t>(); const int32_t *model = reinterpret_cast<const int32_t *>(state.ptr()); int dims[2] = {voc_size/2, topic_num}; int lbs[2] = {1, 1}; MutableArrayHandle<int32_t> model_part1( madlib_construct_md_array( NULL, NULL, 2, dims, lbs, INT4TI.oid, INT4TI.len, INT4TI.byval, INT4TI.align)); for(int32_t i = 0; i < voc_size/2; i++){ for(int32_t j = 0; j < topic_num; j++){ model_part1[i * topic_num + j] = model[i * (topic_num+1) + j]; } } int dims2[2] = {voc_size - voc_size/2, topic_num}; MutableArrayHandle<int32_t> model_part2( madlib_construct_md_array( NULL, NULL, 2, dims2, lbs, INT4TI.oid, INT4TI.len, INT4TI.byval, INT4TI.align)); for(int32_t i = voc_size/2; i < voc_size; i++){ for(int32_t j = 0; j < topic_num; j++){ model_part2[(i-voc_size/2) * topic_num + j] = model[i * (topic_num+1) + j]; } } //int dims3[1] = {topic_num}; //int lbs3[1] = {1}; MutableNativeColumnVector total_topic_counts(allocateArray<double>(topic_num)); for (int i = 0; i < voc_size; i ++) { for (int j = 0; j < topic_num; j ++) { total_topic_counts[j] += static_cast<double>(model[i * (topic_num + 1) + j]); } } AnyType tuple; tuple << model_part1 << model_part2 << total_topic_counts; return tuple; }
/** * @brief The function is used for the initlization of the SRF. The SRF unnests * a 2-D array into a set of 1-D arrays. **/ void * lda_unnest::SRF_init(AnyType &args) { ArrayHandle<int64_t> inarray = args[0].getAs<ArrayHandle<int64_t> >(); if(inarray.dims() != 2) throw std::invalid_argument("invalid dimension"); sr_ctx * ctx = new sr_ctx; ctx->inarray = inarray.ptr(); ctx->maxcall = static_cast<int32_t>(inarray.sizeOfDim(0)); ctx->dim = static_cast<int32_t>(inarray.sizeOfDim(1)); ctx->curcall = 0; return ctx; }
inline HandleMap<const Matrix, ArrayHandle<double> >::HandleMap( const ArrayHandle<double>& inHandle) : Base(const_cast<double*>(inHandle.ptr()), inHandle.sizeOfDim(1), inHandle.sizeOfDim(0)), mMemoryHandle(inHandle) { }
/** * @brief This function is the finalfunc of an aggregator computing the * perplexity. * @param args[0] The global state * @return The perplexity **/ AnyType lda_perplexity_ffunc::run(AnyType & args){ ArrayHandle<int64_t> state = args[0].getAs<ArrayHandle<int64_t> >(); const double * perp = reinterpret_cast<const double *>(state.ptr() + state.size() - 1); return *perp; }
/** * @brief Get the sum of an array - for parameter checking * @return The sum * @note The caller will ensure that ah is always non-null. **/ static int32_t __sum(ArrayHandle<int32_t> ah){ const int32_t * array = ah.ptr(); size_t size = ah.size(); return std::accumulate(array, array + size, static_cast<int32_t>(0)); }
/** * @brief Get the max value of an array - for parameter checking * @return The max value * @note The caller will ensure that ah is always non-null. **/ template<class T> static T __max( ArrayHandle<T> ah, size_t start, size_t len){ const T * array = ah.ptr() + start; return *std::max_element(array, array + len); }
/** * @brief This function learns the topics of words in a document and is the * main step of a Gibbs sampling iteration. The word topic counts and * corpus topic counts are passed to this function in the first call and * then transfered to the rest calls through args.mSysInfo->user_fctx for * efficiency. * @param args[0] The unique words in the documents * @param args[1] The counts of each unique words * @param args[2] The topic counts and topic assignments in the document * @param args[3] The model (word topic counts and corpus topic * counts) * @param args[4] The Dirichlet parameter for per-document topic * multinomial, i.e. alpha * @param args[5] The Dirichlet parameter for per-topic word * multinomial, i.e. beta * @param args[6] The size of vocabulary * @param args[7] The number of topics * @param args[8] The number of iterations (=1:training, >1:prediction) * @return The updated topic counts and topic assignments for * the document **/ AnyType lda_gibbs_sample::run(AnyType & args) { ArrayHandle<int32_t> words = args[0].getAs<ArrayHandle<int32_t> >(); ArrayHandle<int32_t> counts = args[1].getAs<ArrayHandle<int32_t> >(); MutableArrayHandle<int32_t> doc_topic = args[2].getAs<MutableArrayHandle<int32_t> >(); double alpha = args[4].getAs<double>(); double beta = args[5].getAs<double>(); int32_t voc_size = args[6].getAs<int32_t>(); int32_t topic_num = args[7].getAs<int32_t>(); int32_t iter_num = args[8].getAs<int32_t>(); if(alpha <= 0) throw std::invalid_argument("invalid argument - alpha"); if(beta <= 0) throw std::invalid_argument("invalid argument - beta"); if(voc_size <= 0) throw std::invalid_argument( "invalid argument - voc_size"); if(topic_num <= 0) throw std::invalid_argument( "invalid argument - topic_num"); if(iter_num <= 0) throw std::invalid_argument( "invalid argument - iter_num"); if(words.size() != counts.size()) throw std::invalid_argument( "dimensions mismatch: words.size() != counts.size()"); if(__min(words) < 0 || __max(words) >= voc_size) throw std::invalid_argument( "invalid values in words"); if(__min(counts) <= 0) throw std::invalid_argument( "invalid values in counts"); int32_t word_count = __sum(counts); if(doc_topic.size() != (size_t)(word_count + topic_num)) throw std::invalid_argument( "invalid dimension - doc_topic.size() != word_count + topic_num"); if(__min(doc_topic, 0, topic_num) < 0) throw std::invalid_argument("invalid values in topic_count"); if( __min(doc_topic, topic_num, word_count) < 0 || __max(doc_topic, topic_num, word_count) >= topic_num) throw std::invalid_argument( "invalid values in topic_assignment"); if (!args.getUserFuncContext()) { if(args[3].isNull()) throw std::invalid_argument("invalid argument - the model \ parameter should not be null for the first call"); ArrayHandle<int64_t> model = args[3].getAs<ArrayHandle<int64_t> >(); if(model.size() != (size_t)((voc_size + 1) * topic_num)) throw std::invalid_argument( "invalid dimension - model.size() != (voc_size + 1) * topic_num"); if(__min(model) < 0) throw std::invalid_argument("invalid topic counts in model"); int64_t * state = static_cast<int64_t *>( MemoryContextAllocZero( args.getCacheMemoryContext(), model.size() * sizeof(int64_t))); memcpy(state, model.ptr(), model.size() * sizeof(int64_t)); args.setUserFuncContext(state); } int64_t * state = static_cast<int64_t *>(args.getUserFuncContext()); if(NULL == state){ throw std::runtime_error("args.mSysInfo->user_fctx is null"); } int32_t unique_word_count = static_cast<int32_t>(words.size()); for(int32_t it = 0; it < iter_num; it++){ int32_t word_index = topic_num; for(int32_t i = 0; i < unique_word_count; i++) { int32_t wordid = words[i]; for(int32_t j = 0; j < counts[i]; j++){ int32_t topic = doc_topic[word_index]; int32_t retopic = __lda_gibbs_sample( topic_num, topic, doc_topic.ptr(), state + wordid * topic_num, state + voc_size * topic_num, alpha, beta); doc_topic[word_index] = retopic; doc_topic[topic]--; doc_topic[retopic]++; if(iter_num == 1){ state[voc_size * topic_num + topic]--; state[voc_size * topic_num + retopic]++; state[wordid * topic_num + topic]--; state[wordid * topic_num + retopic]++; } word_index++; } } } return doc_topic; }