/** * @brief This function is the sfunc of an aggregator computing the * perplexity. * @param args[0] The current state * @param args[1] The unique words in the documents * @param args[2] The counts of each unique words * @param args[3] The topic counts in the document * @param args[4] The model (word topic counts and corpus topic * counts) * @param args[5] The Dirichlet parameter for per-document topic * multinomial, i.e. alpha * @param args[6] The Dirichlet parameter for per-topic word * multinomial, i.e. beta * @param args[7] The size of vocabulary * @param args[8] The number of topics * @return The updated state **/ AnyType lda_perplexity_sfunc::run(AnyType & args){ ArrayHandle<int32_t> words = args[1].getAs<ArrayHandle<int32_t> >(); ArrayHandle<int32_t> counts = args[2].getAs<ArrayHandle<int32_t> >(); ArrayHandle<int32_t> topic_counts = args[3].getAs<ArrayHandle<int32_t> >(); double alpha = args[5].getAs<double>(); double beta = args[6].getAs<double>(); int32_t voc_size = args[7].getAs<int32_t>(); int32_t topic_num = args[8].getAs<int32_t>(); if(alpha <= 0) throw std::invalid_argument("invalid argument - alpha"); if(beta <= 0) throw std::invalid_argument("invalid argument - beta"); if(voc_size <= 0) throw std::invalid_argument( "invalid argument - voc_size"); if(topic_num <= 0) throw std::invalid_argument( "invalid argument - topic_num"); if(words.size() != counts.size()) throw std::invalid_argument( "dimensions mismatch: words.size() != counts.size()"); if(__min(words) < 0 || __max(words) >= voc_size) throw std::invalid_argument( "invalid values in words"); if(__min(counts) <= 0) throw std::invalid_argument( "invalid values in counts"); if(topic_counts.size() != (size_t)(topic_num)) throw std::invalid_argument( "invalid dimension - topic_counts.size() != topic_num"); if(__min(topic_counts, 0, topic_num) < 0) throw std::invalid_argument("invalid values in topic_counts"); MutableArrayHandle<int64_t> state(NULL); if(args[0].isNull()){ if(args[4].isNull()) throw std::invalid_argument("invalid argument - the model \ parameter should not be null for the first call"); ArrayHandle<int64_t> model = args[4].getAs<ArrayHandle<int64_t> >(); if(model.size() != (size_t)((voc_size + 1) * topic_num)) throw std::invalid_argument( "invalid dimension - model.size() != (voc_size + 1) * topic_num"); if(__min(model) < 0) throw std::invalid_argument("invalid topic counts in model"); state = madlib_construct_array(NULL, static_cast<int>(model.size()) + 1, INT8TI.oid, INT8TI.len, INT8TI.byval, INT8TI.align); memcpy(state.ptr(), model.ptr(), model.size() * sizeof(int64_t)); }else{
/** * @brief This function is the finalfunc of an aggregator computing the * perplexity. * @param args[0] The global state * @return The perplexity **/ AnyType lda_perplexity_ffunc::run(AnyType & args){ ArrayHandle<int64_t> state = args[0].getAs<ArrayHandle<int64_t> >(); const double * perp = reinterpret_cast<const double *>(state.ptr() + state.size() - 1); return *perp; }
/** * @brief This function is the sfunc of an aggregator computing the * perplexity. * @param args[0] The current state * @param args[1] The unique words in the documents * @param args[2] The counts of each unique words * @param args[3] The topic counts in the document * @param args[4] The model (word topic counts and corpus topic * counts) * @param args[5] The Dirichlet parameter for per-document topic * multinomial, i.e. alpha * @param args[6] The Dirichlet parameter for per-topic word * multinomial, i.e. beta * @param args[7] The size of vocabulary * @param args[8] The number of topics * @return The updated state **/ AnyType lda_perplexity_sfunc::run(AnyType & args){ ArrayHandle<int32_t> words = args[1].getAs<ArrayHandle<int32_t> >(); ArrayHandle<int32_t> counts = args[2].getAs<ArrayHandle<int32_t> >(); ArrayHandle<int32_t> doc_topic_counts = args[3].getAs<ArrayHandle<int32_t> >(); double alpha = args[5].getAs<double>(); double beta = args[6].getAs<double>(); int32_t voc_size = args[7].getAs<int32_t>(); int32_t topic_num = args[8].getAs<int32_t>(); size_t model64_size = static_cast<size_t>(voc_size * (topic_num + 1) + 1) * sizeof(int32_t) / sizeof(int64_t); if(alpha <= 0) throw std::invalid_argument("invalid argument - alpha"); if(beta <= 0) throw std::invalid_argument("invalid argument - beta"); if(voc_size <= 0) throw std::invalid_argument( "invalid argument - voc_size"); if(topic_num <= 0) throw std::invalid_argument( "invalid argument - topic_num"); if(words.size() != counts.size()) throw std::invalid_argument( "dimensions mismatch: words.size() != counts.size()"); if(__min(words) < 0 || __max(words) >= voc_size) throw std::invalid_argument( "invalid values in words"); if(__min(counts) <= 0) throw std::invalid_argument( "invalid values in counts"); if(doc_topic_counts.size() != (size_t)(topic_num)) throw std::invalid_argument( "invalid dimension - doc_topic_counts.size() != topic_num"); if(__min(doc_topic_counts, 0, topic_num) < 0) throw std::invalid_argument("invalid values in doc_topic_counts"); MutableArrayHandle<int64_t> state(NULL); if (args[0].isNull()) { ArrayHandle<int64_t> model64 = args[4].getAs<ArrayHandle<int64_t> >(); if (model64.size() != model64_size) { std::stringstream ss; ss << "invalid dimension: model64.size() = " << model64.size(); throw std::invalid_argument(ss.str()); } if(__min(model64) < 0) { throw std::invalid_argument("invalid topic counts in model"); } state = madlib_construct_array(NULL, static_cast<int>(model64.size()) + topic_num + sizeof(double) / sizeof(int64_t), INT8TI.oid, INT8TI.len, INT8TI.byval, INT8TI.align); memcpy(state.ptr(), model64.ptr(), model64.size() * sizeof(int64_t)); int32_t *_model = reinterpret_cast<int32_t *>(state.ptr()); int64_t *_total_topic_counts = reinterpret_cast<int64_t *>(state.ptr() + model64.size()); for (int i = 0; i < voc_size; i ++) { for (int j = 0; j < topic_num; j ++) { _total_topic_counts[j] += _model[i * (topic_num + 1) + j]; } } } else { state = args[0].getAs<MutableArrayHandle<int64_t> >(); } int32_t *model = reinterpret_cast<int32_t *>(state.ptr()); int64_t *total_topic_counts = reinterpret_cast<int64_t *>(state.ptr() + model64_size); double *perp = reinterpret_cast<double *>(state.ptr() + state.size() - 1); int32_t n_d = 0; for(size_t i = 0; i < words.size(); i++){ n_d += counts[i]; } for(size_t i = 0; i < words.size(); i++){ int32_t w = words[i]; int32_t n_dw = counts[i]; double sum_p = 0.0; for(int32_t z = 0; z < topic_num; z++){ int32_t n_dz = doc_topic_counts[z]; int32_t n_wz = model[w * (topic_num + 1) + z]; int64_t n_z = total_topic_counts[z]; sum_p += (static_cast<double>(n_wz) + beta) * (n_dz + alpha) / (static_cast<double>(n_z) + voc_size * beta); } sum_p /= (n_d + topic_num * alpha); *perp += n_dw * log(sum_p); } return state; }
/** * @brief This function is the sfunc for the aggregator computing the topic * counts. It scans the topic assignments in a document and updates the word * topic counts. * @param args[0] The state variable, current topic counts * @param args[1] The unique words in the document * @param args[2] The counts of each unique word in the document * @param args[3] The topic assignments in the document * @param args[4] The size of vocabulary * @param args[5] The number of topics * @return The updated state **/ AnyType lda_count_topic_sfunc::run(AnyType & args) { if(args[4].isNull() || args[5].isNull()) throw std::invalid_argument("null parameter - voc_size and/or \ topic_num is null"); if(args[1].isNull() || args[2].isNull() || args[3].isNull()) return args[0]; int32_t voc_size = args[4].getAs<int32_t>(); int32_t topic_num = args[5].getAs<int32_t>(); if(voc_size <= 0) throw std::invalid_argument( "invalid argument - voc_size"); if(topic_num <= 0) throw std::invalid_argument( "invalid argument - topic_num"); ArrayHandle<int32_t> words = args[1].getAs<ArrayHandle<int32_t> >(); ArrayHandle<int32_t> counts = args[2].getAs<ArrayHandle<int32_t> >(); ArrayHandle<int32_t> topic_assignment = args[3].getAs<ArrayHandle<int32_t> >(); if(words.size() != counts.size()) throw std::invalid_argument( "dimensions mismatch - words.size() != counts.size()"); if(__min(words) < 0 || __max(words) >= voc_size) throw std::invalid_argument( "invalid values in words"); if(__min(counts) <= 0) throw std::invalid_argument( "invalid values in counts"); if(__min(topic_assignment) < 0 || __max(topic_assignment) >= topic_num) throw std::invalid_argument("invalid values in topics"); if((size_t)__sum(counts) != topic_assignment.size()) throw std::invalid_argument( "dimension mismatch - sum(counts) != topic_assignment.size()"); MutableArrayHandle<int64_t> state(NULL); int32_t *model; if(args[0].isNull()) { // to store a voc_size x (topic_num+1) integer matrix in // bigint[] (the +1 is for a flag of ceiling the count), // we need padding if the size is odd. // 1. when voc_size * (topic_num + 1) is (2n+1), gives (n+1) // 2. when voc_size * (topic_num + 1) is (2n), gives (n) int dims[1] = {static_cast<int>( (voc_size * (topic_num + 1) + 1) * sizeof(int32_t) / sizeof(int64_t) )}; int lbs[1] = {1}; state = madlib_construct_md_array( NULL, NULL, 1, dims, lbs, INT8TI.oid, INT8TI.len, INT8TI.byval, INT8TI.align); // the reason we use bigint[] because integer[] has limit on number of // elements and thus cannot be larger than 500MB model = reinterpret_cast<int32_t *>(state.ptr()); } else { state = args[0].getAs<MutableArrayHandle<int64_t> >(); model = reinterpret_cast<int32_t *>(state.ptr()); } int32_t unique_word_count = static_cast<int32_t>(words.size()); int32_t word_index = 0; for(int32_t i = 0; i < unique_word_count; i++){ int32_t wordid = words[i]; for(int32_t j = 0; j < counts[i]; j++){ int32_t topic = topic_assignment[word_index]; if (model[wordid * (topic_num + 1) + topic] <= 2e9) { model[wordid * (topic_num + 1) + topic]++; } else { model[wordid * (topic_num + 1) + topic_num] = 1; } word_index++; } } return state; }
/** * @brief This function learns the topics of words in a document and is the * main step of a Gibbs sampling iteration. The word topic counts and * corpus topic counts are passed to this function in the first call and * then transfered to the rest calls through args.mSysInfo->user_fctx for * efficiency. * @param args[0] The unique words in the documents * @param args[1] The counts of each unique words * @param args[2] The topic counts and topic assignments in the document * @param args[3] The model (word topic counts and corpus topic * counts) * @param args[4] The Dirichlet parameter for per-document topic * multinomial, i.e. alpha * @param args[5] The Dirichlet parameter for per-topic word * multinomial, i.e. beta * @param args[6] The size of vocabulary * @param args[7] The number of topics * @param args[8] The number of iterations (=1:training, >1:prediction) * @return The updated topic counts and topic assignments for * the document **/ AnyType lda_gibbs_sample::run(AnyType & args) { ArrayHandle<int32_t> words = args[0].getAs<ArrayHandle<int32_t> >(); ArrayHandle<int32_t> counts = args[1].getAs<ArrayHandle<int32_t> >(); MutableArrayHandle<int32_t> doc_topic = args[2].getAs<MutableArrayHandle<int32_t> >(); double alpha = args[4].getAs<double>(); double beta = args[5].getAs<double>(); int32_t voc_size = args[6].getAs<int32_t>(); int32_t topic_num = args[7].getAs<int32_t>(); int32_t iter_num = args[8].getAs<int32_t>(); size_t model64_size = static_cast<size_t>(voc_size * (topic_num + 1) + 1) * sizeof(int32_t) / sizeof(int64_t); if(alpha <= 0) throw std::invalid_argument("invalid argument - alpha"); if(beta <= 0) throw std::invalid_argument("invalid argument - beta"); if(voc_size <= 0) throw std::invalid_argument( "invalid argument - voc_size"); if(topic_num <= 0) throw std::invalid_argument( "invalid argument - topic_num"); if(iter_num <= 0) throw std::invalid_argument( "invalid argument - iter_num"); if(words.size() != counts.size()) throw std::invalid_argument( "dimensions mismatch: words.size() != counts.size()"); if(__min(words) < 0 || __max(words) >= voc_size) throw std::invalid_argument( "invalid values in words"); if(__min(counts) <= 0) throw std::invalid_argument( "invalid values in counts"); int32_t word_count = __sum(counts); if(doc_topic.size() != (size_t)(word_count + topic_num)) throw std::invalid_argument( "invalid dimension - doc_topic.size() != word_count + topic_num"); if(__min(doc_topic, 0, topic_num) < 0) throw std::invalid_argument("invalid values in topic_count"); if( __min(doc_topic, topic_num, word_count) < 0 || __max(doc_topic, topic_num, word_count) >= topic_num) throw std::invalid_argument( "invalid values in topic_assignment"); if (!args.getUserFuncContext()) { ArrayHandle<int64_t> model64 = args[3].getAs<ArrayHandle<int64_t> >(); if (model64.size() != model64_size) { std::stringstream ss; ss << "invalid dimension: model64.size() = " << model64.size(); throw std::invalid_argument(ss.str()); } if (__min(model64) < 0) { throw std::invalid_argument("invalid topic counts in model"); } int32_t *context = static_cast<int32_t *>( MemoryContextAllocZero( args.getCacheMemoryContext(), model64.size() * sizeof(int64_t) + topic_num * sizeof(int64_t))); memcpy(context, model64.ptr(), model64.size() * sizeof(int64_t)); int32_t *model = context; int64_t *running_topic_counts = reinterpret_cast<int64_t *>( context + model64_size * sizeof(int64_t) / sizeof(int32_t)); for (int i = 0; i < voc_size; i ++) { for (int j = 0; j < topic_num; j ++) { running_topic_counts[j] += model[i * (topic_num + 1) + j]; } } args.setUserFuncContext(context); } int32_t *context = static_cast<int32_t *>(args.getUserFuncContext()); if (context == NULL) { throw std::runtime_error("args.mSysInfo->user_fctx is null"); } int32_t *model = context; int64_t *running_topic_counts = reinterpret_cast<int64_t *>( context + model64_size * sizeof(int64_t) / sizeof(int32_t)); int32_t unique_word_count = static_cast<int32_t>(words.size()); for(int32_t it = 0; it < iter_num; it++){ int32_t word_index = topic_num; for(int32_t i = 0; i < unique_word_count; i++) { int32_t wordid = words[i]; for(int32_t j = 0; j < counts[i]; j++){ int32_t topic = doc_topic[word_index]; int32_t retopic = __lda_gibbs_sample( topic_num, topic, doc_topic.ptr(), model + wordid * (topic_num + 1), running_topic_counts, alpha, beta); doc_topic[word_index] = retopic; doc_topic[topic]--; doc_topic[retopic]++; if(iter_num == 1) { if (model[wordid * (topic_num + 1) + retopic] <= 2e9) { running_topic_counts[topic] --; running_topic_counts[retopic] ++; model[wordid * (topic_num + 1) + topic]--; model[wordid * (topic_num + 1) + retopic]++; } else { model[wordid * (topic_num + 1) + topic_num] = 1; } } word_index++; } } } return doc_topic; }
/** * @brief Get the sum of an array - for parameter checking * @return The sum * @note The caller will ensure that ah is always non-null. **/ static int32_t __sum(ArrayHandle<int32_t> ah){ const int32_t * array = ah.ptr(); size_t size = ah.size(); return std::accumulate(array, array + size, static_cast<int32_t>(0)); }
template<class T> static T __max(ArrayHandle<T> ah){ return __max(ah, 0, ah.size()); }
AnyType vcrf_top1_label::run(AnyType& args) { ArrayHandle<double> mArray = args[0].getAs<ArrayHandle<double> >(); ArrayHandle<double> rArray = args[1].getAs<ArrayHandle<double> >(); const int32_t numLabels = args[2].getAs<int32_t>(); if (numLabels == 0) throw std::invalid_argument("Number of labels cannot be zero"); int doc_len = static_cast<int>(rArray.size() / numLabels); double* prev_top1_array = new double[numLabels]; double* curr_top1_array = new double[numLabels]; double* prev_norm_array = new double[numLabels]; double* curr_norm_array = new double[numLabels]; int* path = new int[doc_len*numLabels]; memset(prev_top1_array, 0, numLabels*sizeof(double)); memset(prev_norm_array, 0, numLabels*sizeof(double)); memset(path, 0, doc_len*numLabels*sizeof(int)); for(int start_pos = 0; start_pos < doc_len; start_pos++) { memset(curr_top1_array, 0, numLabels*sizeof(double)); memset(curr_norm_array, 0, numLabels*sizeof(double)); if (start_pos == 0) { for (int label = 0; label < numLabels; label++) { curr_norm_array[label] = rArray[label] + mArray[label]; curr_top1_array[label] = rArray[label] + mArray[label]; } } else { for (int curr_label = 0; curr_label < numLabels; curr_label++) { for (int prev_label = 0; prev_label < numLabels; prev_label++) { double top1_new_score = prev_top1_array[prev_label] + rArray[start_pos*numLabels + curr_label] + mArray[(prev_label+1)*numLabels + curr_label]; if (start_pos == doc_len - 1) top1_new_score += mArray[(numLabels+1)*numLabels + curr_label]; if (top1_new_score > curr_top1_array[curr_label]) { curr_top1_array[curr_label] = top1_new_score; path[start_pos*numLabels + curr_label] = prev_label; } /* calculate the probability of the best label sequence */ double norm_new_score = prev_norm_array[prev_label] + rArray[start_pos * numLabels + curr_label] + mArray[(prev_label+1)*numLabels + curr_label]; /* last token in a sentence, the end feature should be fired */ if (start_pos == doc_len - 1) norm_new_score += mArray[(numLabels+1)*numLabels + curr_label]; /* The following wants to do z = log(exp(x)+exp(y)), the faster implementation is * z=min(x,y) + log(exp(abs(x-y))+1) * 0.5 is for rounding */ if (curr_norm_array[curr_label] == 0) curr_norm_array[curr_label] = norm_new_score; else { double x = curr_norm_array[curr_label]; double y = norm_new_score; curr_norm_array[curr_label] = std::min(x,y) + static_cast<double>(log(std::exp(std::abs(y-x)/1000.0) +1)*1000.0 + 0.5); } } } } for (int label = 0; label < numLabels; label++) { prev_top1_array[label] = curr_top1_array[label]; prev_norm_array[label] = curr_norm_array[label]; } } /* find the label of the last token in a sentence */ double max_score = 0.0; int top1_label = 0; for(int label = 0; label < numLabels; label++) { if(curr_top1_array[label] > max_score) { max_score = curr_top1_array[label]; top1_label = label; } } /* Define the result array with doc_len+1 elements, where the first doc_len * elements are used to store the best labels and the last element is used * to store the conditional probability of the sequence. */ MutableArrayHandle<int> result( madlib_construct_array( NULL, doc_len+1, INT4TI.oid, INT4TI.len, INT4TI.byval, INT4TI.align)); /* trace back to get the labels for the rest tokens in a sentence */ result[doc_len - 1] = top1_label; for (int pos = doc_len - 1; pos >= 1; pos--) { top1_label = path[pos * numLabels + top1_label]; result[pos-1] = top1_label; } /* compute the sum_i of log(v1[i]/1000), return (e^sum)*1000 * used in the UDFs which needs marginalization e.g., normalization * the following wants to do z=log(exp(x)+exp(y)), the faster implementation is * z = min(x,y) + log(exp(abs(x-y))+1) */ double norm_factor = 0.0; for (int i = 0; i < numLabels; i++) { if (i==0) norm_factor = curr_norm_array[0]; else { double x = curr_norm_array[i]; double y = norm_factor; norm_factor = std::min(x,y) + static_cast<double>(log(exp(std::abs(y-x)/1000.0) +1)*1000.0+0.5); } } /* calculate the conditional probability. * To convert the probability into integer, firstly,let it multiply 1000000, then later make the product divided by 1000000 * to get the real conditional probability */ result[doc_len] = static_cast<int>(std::exp((max_score - norm_factor)/1000.0)*1000000); delete[] prev_top1_array; delete[] curr_top1_array; delete[] prev_norm_array; delete[] curr_norm_array; delete[] path; return result; }
/** * @brief This function is the sfunc for the aggregator computing the topic * counts. It scans the topic assignments in a document and updates the word * topic counts. * @param args[0] The state variable, current topic counts * @param args[1] The unique words in the document * @param args[2] The counts of each unique word in the document * @param args[3] The topic assignments in the document * @param args[4] The size of vocabulary * @param args[5] The number of topics * @return The updated state **/ AnyType lda_count_topic_sfunc::run(AnyType & args) { if(args[4].isNull() || args[5].isNull()) throw std::invalid_argument("null parameter - voc_size and/or \ topic_num is null"); if(args[1].isNull() || args[2].isNull() || args[3].isNull()) return args[0]; int32_t voc_size = args[4].getAs<int32_t>(); int32_t topic_num = args[5].getAs<int32_t>(); if(voc_size <= 0) throw std::invalid_argument( "invalid argument - voc_size"); if(topic_num <= 0) throw std::invalid_argument( "invalid argument - topic_num"); ArrayHandle<int32_t> words = args[1].getAs<ArrayHandle<int32_t> >(); ArrayHandle<int32_t> counts = args[2].getAs<ArrayHandle<int32_t> >(); ArrayHandle<int32_t> topic_assignment = args[3].getAs<ArrayHandle<int32_t> >(); if(words.size() != counts.size()) throw std::invalid_argument( "dimensions mismatch - words.size() != counts.size()"); if(__min(words) < 0 || __max(words) >= voc_size) throw std::invalid_argument( "invalid values in words"); if(__min(counts) <= 0) throw std::invalid_argument( "invalid values in counts"); if(__min(topic_assignment) < 0 || __max(topic_assignment) >= topic_num) throw std::invalid_argument("invalid values in topics"); if((size_t)__sum(counts) != topic_assignment.size()) throw std::invalid_argument( "dimension mismatch - sum(counts) != topic_assignment.size()"); MutableArrayHandle<int64_t> state(NULL); if(args[0].isNull()){ int dims[2] = {voc_size + 1, topic_num}; int lbs[2] = {1, 1}; state = madlib_construct_md_array( NULL, NULL, 2, dims, lbs, INT8TI.oid, INT8TI.len, INT8TI.byval, INT8TI.align); } else { state = args[0].getAs<MutableArrayHandle<int64_t> >(); } int32_t unique_word_count = static_cast<int32_t>(words.size()); int32_t word_index = 0; for(int32_t i = 0; i < unique_word_count; i++){ int32_t wordid = words[i]; for(int32_t j = 0; j < counts[i]; j++){ int32_t topic = topic_assignment[word_index]; state[wordid * topic_num + topic]++; state[voc_size * topic_num + topic]++; word_index++; } } return state; }
/** * @brief This function learns the topics of words in a document and is the * main step of a Gibbs sampling iteration. The word topic counts and * corpus topic counts are passed to this function in the first call and * then transfered to the rest calls through args.mSysInfo->user_fctx for * efficiency. * @param args[0] The unique words in the documents * @param args[1] The counts of each unique words * @param args[2] The topic counts and topic assignments in the document * @param args[3] The model (word topic counts and corpus topic * counts) * @param args[4] The Dirichlet parameter for per-document topic * multinomial, i.e. alpha * @param args[5] The Dirichlet parameter for per-topic word * multinomial, i.e. beta * @param args[6] The size of vocabulary * @param args[7] The number of topics * @param args[8] The number of iterations (=1:training, >1:prediction) * @return The updated topic counts and topic assignments for * the document **/ AnyType lda_gibbs_sample::run(AnyType & args) { ArrayHandle<int32_t> words = args[0].getAs<ArrayHandle<int32_t> >(); ArrayHandle<int32_t> counts = args[1].getAs<ArrayHandle<int32_t> >(); MutableArrayHandle<int32_t> doc_topic = args[2].getAs<MutableArrayHandle<int32_t> >(); double alpha = args[4].getAs<double>(); double beta = args[5].getAs<double>(); int32_t voc_size = args[6].getAs<int32_t>(); int32_t topic_num = args[7].getAs<int32_t>(); int32_t iter_num = args[8].getAs<int32_t>(); if(alpha <= 0) throw std::invalid_argument("invalid argument - alpha"); if(beta <= 0) throw std::invalid_argument("invalid argument - beta"); if(voc_size <= 0) throw std::invalid_argument( "invalid argument - voc_size"); if(topic_num <= 0) throw std::invalid_argument( "invalid argument - topic_num"); if(iter_num <= 0) throw std::invalid_argument( "invalid argument - iter_num"); if(words.size() != counts.size()) throw std::invalid_argument( "dimensions mismatch: words.size() != counts.size()"); if(__min(words) < 0 || __max(words) >= voc_size) throw std::invalid_argument( "invalid values in words"); if(__min(counts) <= 0) throw std::invalid_argument( "invalid values in counts"); int32_t word_count = __sum(counts); if(doc_topic.size() != (size_t)(word_count + topic_num)) throw std::invalid_argument( "invalid dimension - doc_topic.size() != word_count + topic_num"); if(__min(doc_topic, 0, topic_num) < 0) throw std::invalid_argument("invalid values in topic_count"); if( __min(doc_topic, topic_num, word_count) < 0 || __max(doc_topic, topic_num, word_count) >= topic_num) throw std::invalid_argument( "invalid values in topic_assignment"); if (!args.getUserFuncContext()) { if(args[3].isNull()) throw std::invalid_argument("invalid argument - the model \ parameter should not be null for the first call"); ArrayHandle<int64_t> model = args[3].getAs<ArrayHandle<int64_t> >(); if(model.size() != (size_t)((voc_size + 1) * topic_num)) throw std::invalid_argument( "invalid dimension - model.size() != (voc_size + 1) * topic_num"); if(__min(model) < 0) throw std::invalid_argument("invalid topic counts in model"); int64_t * state = static_cast<int64_t *>( MemoryContextAllocZero( args.getCacheMemoryContext(), model.size() * sizeof(int64_t))); memcpy(state, model.ptr(), model.size() * sizeof(int64_t)); args.setUserFuncContext(state); } int64_t * state = static_cast<int64_t *>(args.getUserFuncContext()); if(NULL == state){ throw std::runtime_error("args.mSysInfo->user_fctx is null"); } int32_t unique_word_count = static_cast<int32_t>(words.size()); for(int32_t it = 0; it < iter_num; it++){ int32_t word_index = topic_num; for(int32_t i = 0; i < unique_word_count; i++) { int32_t wordid = words[i]; for(int32_t j = 0; j < counts[i]; j++){ int32_t topic = doc_topic[word_index]; int32_t retopic = __lda_gibbs_sample( topic_num, topic, doc_topic.ptr(), state + wordid * topic_num, state + voc_size * topic_num, alpha, beta); doc_topic[word_index] = retopic; doc_topic[topic]--; doc_topic[retopic]++; if(iter_num == 1){ state[voc_size * topic_num + topic]--; state[voc_size * topic_num + retopic]++; state[wordid * topic_num + topic]--; state[wordid * topic_num + retopic]++; } word_index++; } } } return doc_topic; }