int main(int argc, char* argv[]) { #ifdef TESTING_ cases.push_back(make_pair( "3 3\n" "111\n" "110\n" "101\n" , "4\n" )); cases.push_back(make_pair( "5 10\n" "1011011111\n" "0111111110\n" "1111111111\n" "1011111111\n" "1101110111\n" , "21\n" )); cases.push_back(make_pair( "3 3\n" "111\n" "111\n" "111\n" , "9\n" )); cases.push_back(make_pair( "7 7\n" "1101101\n" "1111110\n" "1010100\n" "0011100\n" "1000010\n" "1100111\n" "1001110\n" , "6\n" )); cases.push_back(make_pair( "7 7\n" "1101101\n" "1111110\n" "1011100\n" "0011100\n" "1000010\n" "1100111\n" "1001110\n" , "9\n" )); cases.push_back(make_pair( "2 2\n" "00\n" "10\n" , "1\n" )); cases.push_back(make_pair( "2 2\n" "00\n" "00\n" , "0\n" )); cases.push_back(make_pair( "2 2\n" "11\n" "11\n" , "4\n" )); cases.push_back(make_pair( "1 1\n" "1\n" , "1\n" )); cases.push_back(make_pair( "1 1\n" "0\n" , "0\n" )); cases.push_back(make_pair( "4 4\n" "1111\n" "1011\n" "1111\n" "1111\n" , "8\n" )); cases.push_back(make_pair( "4 4\n" "1111\n" "1111\n" "1111\n" "1111\n" , "16\n" )); cases.push_back(make_pair( "2 2\n" "00\n" "01\n" , "1\n" )); cases.push_back(make_pair( "2 2\n" "01\n" "00\n" , "1\n" )); cases.push_back(make_pair( "2 2\n" "10\n" "00\n" , "1\n" )); cases.push_back(make_pair( "2 2\n" "01\n" "10\n" , "1\n" )); cases.push_back(make_pair( "4 4\n" "1011\n" "1111\n" "1111\n" "1111\n" , "12\n" )); runner(cases, -1); getchar(); #else ifstream is("INPUT.TXT"); ofstream os("OUTPUT.TXT"); solve(is, os); #endif }
void ApParser::train(SentenceReader* sentenceReader, char const* modelFile) { WordIndex labelIndex; vector<string> labels; vector<string> predLabels; // collect events list<Tanl::Classifier::Event*> events; WordCounts predCount; // count predicate occurrences int evCount = 0; Tanl::Classifier::PID pID = 1; // leave 0 for bias // create inverted index of predicate names // used to create vector of pIDs EventStream eventStream(sentenceReader, &info); while (eventStream.hasNext()) { Tanl::Classifier::Event* ev = eventStream.next(); events.push_back(ev); evCount++; // count them explicitly, since size() is costly if (config.verbose) { if (evCount % 10000 == 0) cerr << '+' << flush; else if (evCount % 1000 == 0) cerr << '.' << flush; } vector<string>& ec = ev->features; // ec = {p1, ... , pn} for (unsigned j = 0; j < ec.size(); j++) { string& pred = ec[j]; // decide whether to retain it (# occurrences > cutoff) if (predIndex.find(pred.c_str()) == predIndex.end()) { // not yet among those retained WordCounts::iterator wcit = predCount.find(pred); // increment # of occurrences int count; if (wcit == predCount.end()) count = predCount[pred] = 1; else count = ++wcit->second; if (count >= config.featureCutoff) { predLabels.push_back(pred); // accept it into predLabels predIndex[pred.c_str()] = pID++; predCount.erase(pred); } } } } if (config.verbose) cerr << endl; // build cases Cases cases; cases.reserve(evCount); int n = 0; Tanl::Classifier::ClassID oID = 0; while (!events.empty()) { Tanl::Classifier::Event* ev = events.front(); events.pop_front(); cases.push_back(Case()); X& x = cases[n].first; // features // add features vector<string>& ec = ev->features; // ec = {p1, ... , pn} char const* c = ev->className.c_str(); for (unsigned j = 0; j < ec.size(); j++) { string& pred = ec[j]; WordIndex::const_iterator pit = predIndex.find(pred.c_str()); if (pit != predIndex.end()) { x.push_back(pit->second); } } if (x.size()) { if (labelIndex.find(c) == labelIndex.end()) { labelIndex[c] = oID++; labels.push_back(c); } cases[n].second = labelIndex[c]; n++; if (config.verbose) { if (n % 10000 == 0) cerr << '+' << flush; else if (n % 1000 == 0) cerr << '.' << flush; } x.push_back(0); // bias } delete ev; } cases.resize(n); if (config.verbose) cerr << endl; int predSize = predLabels.size(); predSize++; // bias APSV ap(labels.size(), predSize); ofstream ofs(modelFile, ios::binary | ios::trunc); // dump configuration settings config.writeHeader(ofs); // dump labels ofs << labels.size() << endl; FOR_EACH (vector<string>, labels, pit) ofs << *pit << endl; // dump predLabels ofs << predLabels.size() << endl; FOR_EACH (vector<string>, predLabels, pit) ofs << *pit << endl; // free memory predIndex.clear(); WordIndex().swap(predIndex); // STL map do not deallocate. resize(0) has no effect labelIndex.clear(); WordIndex().swap(labelIndex); // clear memory for unfrequent entities info.clearRareEntities(); // perform training ap.train(cases, iter); // dump parameters ap.save(ofs); // dump global info info.save(ofs); }