//---------------------------------------------------------------------
	void TangentSpaceCalc::extendBuffers(VertexSplits& vertexSplits)
	{
		if (!vertexSplits.empty())
		{
			// ok, need to increase the vertex buffer size, and alter some indexes

			// vertex buffers first
			VertexBufferBinding* newBindings = HardwareBufferManager::getSingleton().createVertexBufferBinding();
			const VertexBufferBinding::VertexBufferBindingMap& bindmap = 
				mVData->vertexBufferBinding->getBindings();
			for (VertexBufferBinding::VertexBufferBindingMap::const_iterator i = 
				bindmap.begin(); i != bindmap.end(); ++i)
			{
				HardwareVertexBufferSharedPtr srcbuf = i->second;
				// Derive vertex count from buffer not vertex data, in case using
				// the vertexStart option in vertex data
				size_t newVertexCount = srcbuf->getNumVertices() + vertexSplits.size();
				// Create new buffer & bind
				HardwareVertexBufferSharedPtr newBuf = 
					HardwareBufferManager::getSingleton().createVertexBuffer(
					srcbuf->getVertexSize(), newVertexCount, srcbuf->getUsage(), 
					srcbuf->hasShadowBuffer());
				newBindings->setBinding(i->first, newBuf);

				// Copy existing contents (again, entire buffer, not just elements referenced)
				newBuf->copyData(*(srcbuf.get()), 0, 0, srcbuf->getNumVertices() * srcbuf->getVertexSize(), true);

				// Split vertices, read / write from new buffer
				char* pBase = static_cast<char*>(newBuf->lock(HardwareBuffer::HBL_NORMAL));
				for (VertexSplits::iterator spliti = vertexSplits.begin(); 
					spliti != vertexSplits.end(); ++spliti)
				{
					const char* pSrcBase = pBase + spliti->first * newBuf->getVertexSize();
					char* pDstBase = pBase + spliti->second * newBuf->getVertexSize();
					memcpy(pDstBase, pSrcBase, newBuf->getVertexSize());
				}
				newBuf->unlock();

			}

			// Update vertex data
			// Increase vertex count according to num splits
			mVData->vertexCount += vertexSplits.size();
			// Flip bindings over to new buffers (old buffers released)
			HardwareBufferManager::getSingleton().destroyVertexBufferBinding(mVData->vertexBufferBinding);
			mVData->vertexBufferBinding = newBindings;
			
		}

	}
	//---------------------------------------------------------------------
	void TangentSpaceCalc::extendBuffers(VertexSplits& vertexSplits)
	{
		if (!vertexSplits.empty())
		{
			// ok, need to increase the vertex buffer size, and alter some indexes

			// vertex buffers first
			VertexBufferBinding* newBindings = HardwareBufferManager::getSingleton().createVertexBufferBinding();
			const VertexBufferBinding::VertexBufferBindingMap& bindmap = 
				mVData->vertexBufferBinding->getBindings();
			for (VertexBufferBinding::VertexBufferBindingMap::const_iterator i = 
				bindmap.begin(); i != bindmap.end(); ++i)
			{
				HardwareVertexBufferSharedPtr srcbuf = i->second;
				// Derive vertex count from buffer not vertex data, in case using
				// the vertexStart option in vertex data
				size_t newVertexCount = srcbuf->getNumVertices() + vertexSplits.size();
				// Create new buffer & bind
				HardwareVertexBufferSharedPtr newBuf = 
					HardwareBufferManager::getSingleton().createVertexBuffer(
					srcbuf->getVertexSize(), newVertexCount, srcbuf->getUsage(), 
					srcbuf->hasShadowBuffer());
				newBindings->setBinding(i->first, newBuf);

				// Copy existing contents (again, entire buffer, not just elements referenced)
				newBuf->copyData(*(srcbuf.get()), 0, 0, srcbuf->getNumVertices() * srcbuf->getVertexSize(), true);

				// Split vertices, read / write from new buffer
				char* pBase = static_cast<char*>(newBuf->lock(HardwareBuffer::HBL_NORMAL));
				for (VertexSplits::iterator spliti = vertexSplits.begin(); 
					spliti != vertexSplits.end(); ++spliti)
				{
					const char* pSrcBase = pBase + spliti->first * newBuf->getVertexSize();
					char* pDstBase = pBase + spliti->second * newBuf->getVertexSize();
					memcpy(pDstBase, pSrcBase, newBuf->getVertexSize());
				}
				newBuf->unlock();

			}

			// Update vertex data
			// Increase vertex count according to num splits
			mVData->vertexCount += vertexSplits.size();
			// Flip bindings over to new buffers (old buffers released)
			HardwareBufferManager::getSingleton().destroyVertexBufferBinding(mVData->vertexBufferBinding);
			mVData->vertexBufferBinding = newBindings;

			// If vertex size requires 32bit index buffer
			if (mVData->vertexCount > 65536)
			{
				for (size_t i = 0; i < mIDataList.size(); ++i)
				{
					// check index size
					IndexData* idata = mIDataList[i];
					HardwareIndexBufferSharedPtr srcbuf = idata->indexBuffer;
					if (srcbuf->getType() == HardwareIndexBuffer::IT_16BIT)
					{
						size_t indexCount = srcbuf->getNumIndexes();

						// convert index buffer to 32bit.
						HardwareIndexBufferSharedPtr newBuf =
							HardwareBufferManager::getSingleton().createIndexBuffer(
							HardwareIndexBuffer::IT_32BIT, indexCount,
							srcbuf->getUsage(), srcbuf->hasShadowBuffer());

						uint16* pSrcBase = static_cast<uint16*>(srcbuf->lock(HardwareBuffer::HBL_NORMAL));
						uint32* pBase = static_cast<uint32*>(newBuf->lock(HardwareBuffer::HBL_NORMAL));

						size_t j = 0;
						while (j < indexCount)
						{
							*pBase++ = *pSrcBase++;
							++j;
						}

						srcbuf->unlock();
						newBuf->unlock();

						// assign new index buffer.
						idata->indexBuffer = newBuf;
					}
				}
			}
		}

	}
Example #3
0
    //-----------------------------------------------------------------------
    void InstanceManager::unshareVertices(const Ogre::MeshPtr &mesh)
    {
        // Retrieve data to copy bone assignments
        const Mesh::VertexBoneAssignmentList& boneAssignments = mesh->getBoneAssignments();
        Mesh::VertexBoneAssignmentList::const_iterator it = boneAssignments.begin();
        Mesh::VertexBoneAssignmentList::const_iterator end = boneAssignments.end();
        size_t curVertexOffset = 0;

        // Access shared vertices
        VertexData* sharedVertexData = mesh->sharedVertexData;

        for (size_t subMeshIdx = 0; subMeshIdx < mesh->getNumSubMeshes(); subMeshIdx++)
        {
            SubMesh *subMesh = mesh->getSubMesh(subMeshIdx);

            IndexData *indexData = subMesh->indexData;
            HardwareIndexBuffer::IndexType idxType = indexData->indexBuffer->getType();
            IndicesMap indicesMap = (idxType == HardwareIndexBuffer::IT_16BIT) ? getUsedIndices<uint16>(indexData) :
                                                                                 getUsedIndices<uint32>(indexData);


            VertexData *newVertexData = new VertexData();
            newVertexData->vertexCount = indicesMap.size();
            newVertexData->vertexDeclaration = sharedVertexData->vertexDeclaration->clone();

            for (size_t bufIdx = 0; bufIdx < sharedVertexData->vertexBufferBinding->getBufferCount(); bufIdx++) 
            {
                HardwareVertexBufferSharedPtr sharedVertexBuffer = sharedVertexData->vertexBufferBinding->getBuffer(bufIdx);
                size_t vertexSize = sharedVertexBuffer->getVertexSize();                

                HardwareVertexBufferSharedPtr newVertexBuffer = HardwareBufferManager::getSingleton().createVertexBuffer
                    (vertexSize, newVertexData->vertexCount, sharedVertexBuffer->getUsage(), sharedVertexBuffer->hasShadowBuffer());

                uint8 *oldLock = (uint8*)sharedVertexBuffer->lock(0, sharedVertexData->vertexCount * vertexSize, HardwareBuffer::HBL_READ_ONLY);
                uint8 *newLock = (uint8*)newVertexBuffer->lock(0, newVertexData->vertexCount * vertexSize, HardwareBuffer::HBL_NORMAL);

                IndicesMap::iterator indIt = indicesMap.begin();
                IndicesMap::iterator endIndIt = indicesMap.end();
                for (; indIt != endIndIt; ++indIt)
                {
                    memcpy(newLock + vertexSize * indIt->second, oldLock + vertexSize * indIt->first, vertexSize);
                }

                sharedVertexBuffer->unlock();
                newVertexBuffer->unlock();

                newVertexData->vertexBufferBinding->setBinding(bufIdx, newVertexBuffer);
            }

            if (idxType == HardwareIndexBuffer::IT_16BIT)
            {
                copyIndexBuffer<uint16>(indexData, indicesMap);
            }
            else
            {
                copyIndexBuffer<uint32>(indexData, indicesMap);
            }

            // Store new attributes
            subMesh->useSharedVertices = false;
            subMesh->vertexData = newVertexData;

            // Transfer bone assignments to the submesh
            size_t offset = curVertexOffset + newVertexData->vertexCount;
            for (; it != end; ++it)
            {
                size_t vertexIdx = (*it).first;
                if (vertexIdx > offset)
                    break;

                VertexBoneAssignment boneAssignment = (*it).second;
                boneAssignment.vertexIndex = static_cast<unsigned int>(boneAssignment.vertexIndex - curVertexOffset);
                subMesh->addBoneAssignment(boneAssignment);
            }
            curVertexOffset = newVertexData->vertexCount + 1;
        }

        // Release shared vertex data
        delete mesh->sharedVertexData;
        mesh->sharedVertexData = NULL;
        mesh->clearBoneAssignments();
    }
    SkeletonPtr MergeSkeleton::bake()
    {    
        MeshCombiner::getSingleton().log( 
             "Baking: New Skeleton started" );

        SkeletonPtr sp = SkeletonManager::getSingleton().create( "mergeSkeleton", 
             ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME, true );
        
        for( std::vector< Ogre::SkeletonPtr >::iterator it = m_Skeletons.begin();
             it != m_Skeletons.end(); ++it )
        {   
            if(  it == m_Skeletons.begin() )
            {
                MeshCombiner::getSingleton().log( 
                    "Baking: using " + (*it)->getName() + " as the base skeleton"   );

                MeshCombiner::getSingleton().log( 
                    "Baking: adding bones"   );
                Skeleton::BoneIterator bit = (*it)->getBoneIterator();
                while( bit.hasMoreElements() )
                {
                    Bone* bone = bit.getNext();
                    Bone* newbone = sp->createBone( bone->getName(), bone->getHandle() );
                    newbone->setScale( bone->getScale() );
                    newbone->setOrientation( bone->getOrientation() );
                    newbone->setPosition( bone->getPosition() );
                }
                MeshCombiner::getSingleton().log( 
                    "Baking: building bone hierarchy"   );
                // bone hierarchy
                bit = (*it)->getBoneIterator();
                while( bit.hasMoreElements() )
                {
                    Bone* bone = bit.getNext();
                    Node* pnode = bone->getParent();
                    if( pnode != NULL )
                    {
                        Bone* pbone = static_cast<Bone*>( pnode );
                        sp->getBone( pbone->getHandle() )->addChild( sp->getBone( bone->getHandle() ) );
                    }
                }
            }   

            MeshCombiner::getSingleton().log( 
                "Baking: adding animations for " + (*it)->getName() );

            // insert all animations
            for (unsigned short a=0; a < (*it)->getNumAnimations(); ++a )
            {
                Animation* anim = (*it)->getAnimation( a );
                Animation* newanim = sp->createAnimation( anim->getName(), anim->getLength() );

                if( anim->getNumNodeTracks() > 0 )
                    MeshCombiner::getSingleton().log( 
                        "Baking: adding node tracks" );
                for( unsigned short na=0; na < anim->getNumNodeTracks(); ++na )
                {
                    if( anim->hasNodeTrack( na ) )
                    {
                        NodeAnimationTrack* nat = anim->getNodeTrack( na );
                        NodeAnimationTrack* newnat = newanim->createNodeTrack( na );
                        // all key frames
                        for( unsigned short nf=0; nf < nat->getNumKeyFrames(); ++nf )
                        {
                            TransformKeyFrame* tkf = nat->getNodeKeyFrame( nf );
                            TransformKeyFrame* newtkf = newnat->createNodeKeyFrame( tkf->getTime() );
                            newtkf->setRotation( tkf->getRotation() );
                            newtkf->setTranslate( tkf->getTranslate() );
                            newtkf->setScale( tkf->getScale() );
                        }

                        newnat->setAssociatedNode( sp->getBone( nat->getHandle() ) );
                    }
                }

                if( anim->getNumNumericTracks() > 0 )
                    MeshCombiner::getSingleton().log( 
                        "Baking: adding numeric tracks" );
                for( unsigned short na=0; na < anim->getNumNumericTracks(); ++na )
                {
                    if( anim->hasNumericTrack( na ) )
                    {
                        NumericAnimationTrack* nat = anim->getNumericTrack( na );
                        NumericAnimationTrack* newnat = newanim->createNumericTrack( na );

                        // all key frames
                        for( unsigned short nf=0; nf < nat->getNumKeyFrames(); ++nf )
                        {
                            NumericKeyFrame* nkf = nat->getNumericKeyFrame( nf );
                            NumericKeyFrame* newnkf = newnat->createNumericKeyFrame( nkf->getTime() );
                            newnkf->setValue( nkf->getValue() );
                        }
                    }
                }

                if( anim->getNumVertexTracks() > 0 )
                    MeshCombiner::getSingleton().log( 
                        "Baking: adding vertex tracks" );
                for( unsigned short va=0; va < anim->getNumVertexTracks(); ++va )
                {
                    if( anim->hasVertexTrack( va ) )
                    {
                        VertexAnimationTrack* vat = anim->getVertexTrack( va );
                        VertexAnimationTrack* newvat = newanim->createVertexTrack( va, vat->getAnimationType() );

                        // all key frames
                        for( unsigned short nf=0; nf < vat->getNumKeyFrames(); ++nf )
                        {
                            // all morphs
                            VertexMorphKeyFrame* vmkf = vat->getVertexMorphKeyFrame( nf );
                            if( vmkf != NULL )
                            {
                                VertexMorphKeyFrame* newvmkf = newvat->createVertexMorphKeyFrame( vmkf->getTime() );
                                // @todo vertex buffer copying correct??
                                HardwareVertexBufferSharedPtr buf = vmkf->getVertexBuffer();
                                HardwareVertexBufferSharedPtr newbuf = HardwareBufferManager::getSingleton().createVertexBuffer(
                                    buf->getVertexSize(), buf->getNumVertices(), buf->getUsage(), buf->hasShadowBuffer() );
                                newbuf->copyData( *buf.getPointer(), 0, 0, buf->getSizeInBytes() );
                            }

                            // all poses
                            VertexPoseKeyFrame* vpkf = vat->getVertexPoseKeyFrame( nf );
                            if( vpkf != NULL )
                            {
                                VertexPoseKeyFrame* newvpkf = newvat->createVertexPoseKeyFrame( vpkf->getTime() );
                                
                                VertexPoseKeyFrame::PoseRefIterator pit = vpkf->getPoseReferenceIterator();
                                while( pit.hasMoreElements() )
                                {
                                    VertexPoseKeyFrame::PoseRef pr = pit.getNext();
                                    newvpkf->addPoseReference( pr.poseIndex, pr.influence );
                                }
                            }

                        }
                    }
                }
            }
        }           

        return sp;
	}