bool llsd_equals(const LLSD& lhs, const LLSD& rhs, unsigned bits)
{
    // We're comparing strict equality of LLSD representation rather than
    // performing any conversions. So if the types aren't equal, the LLSD
    // values aren't equal.
    if (lhs.type() != rhs.type())
    {
        return false;
    }

    // Here we know both types are equal. Now compare values.
    switch (lhs.type())
    {
    case LLSD::TypeUndefined:
        // Both are TypeUndefined. There's nothing more to know.
        return true;

    case LLSD::TypeReal:
        // This is where the 'bits' argument comes in handy. If passed
        // explicitly, it means to use is_approx_equal_fraction() to compare.
        if (bits >= 0)
        {
            return is_approx_equal_fraction(lhs.asReal(), rhs.asReal(), bits);
        }
        // Otherwise we compare bit representations, and the usual caveats
        // about comparing floating-point numbers apply. Omitting 'bits' when
        // comparing Real values is only useful when we expect identical bit
        // representation for a given Real value, e.g. for integer-valued
        // Reals.
        return (lhs.asReal() == rhs.asReal());

#define COMPARE_SCALAR(type)                                    \
    case LLSD::Type##type:                                      \
        /* LLSD::URI has operator!=() but not operator==() */   \
        /* rely on the optimizer for all others */              \
        return (! (lhs.as##type() != rhs.as##type()))

    COMPARE_SCALAR(Boolean);
    COMPARE_SCALAR(Integer);
    COMPARE_SCALAR(String);
    COMPARE_SCALAR(UUID);
    COMPARE_SCALAR(Date);
    COMPARE_SCALAR(URI);
    COMPARE_SCALAR(Binary);

#undef COMPARE_SCALAR

    case LLSD::TypeArray:
    {
        LLSD::array_const_iterator
            lai(lhs.beginArray()), laend(lhs.endArray()),
            rai(rhs.beginArray()), raend(rhs.endArray());
        // Compare array elements, walking the two arrays in parallel.
        for ( ; lai != laend && rai != raend; ++lai, ++rai)
        {
            // If any one array element is unequal, the arrays are unequal.
            if (! llsd_equals(*lai, *rai, bits))
                return false;
        }
        // Here we've reached the end of one or the other array. They're equal
        // only if they're BOTH at end: that is, if they have equal length too.
        return (lai == laend && rai == raend);
    }

    case LLSD::TypeMap:
    {
        // Build a set of all rhs keys.
        std::set<LLSD::String> rhskeys;
        for (LLSD::map_const_iterator rmi(rhs.beginMap()), rmend(rhs.endMap());
             rmi != rmend; ++rmi)
        {
            rhskeys.insert(rmi->first);
        }
        // Now walk all the lhs keys.
        for (LLSD::map_const_iterator lmi(lhs.beginMap()), lmend(lhs.endMap());
             lmi != lmend; ++lmi)
        {
            // Try to erase this lhs key from the set of rhs keys. If rhs has
            // no such key, the maps are unequal. erase(key) returns count of
            // items erased.
            if (rhskeys.erase(lmi->first) != 1)
                return false;
            // Both maps have the current key. Compare values.
            if (! llsd_equals(lmi->second, rhs[lmi->first], bits))
                return false;
        }
        // We've now established that all the lhs keys have equal values in
        // both maps. The maps are equal unless rhs contains a superset of
        // those keys.
        return rhskeys.empty();
    }

    default:
        // We expect that every possible type() value is specifically handled
        // above. Failing to extend this switch to support a new LLSD type is
        // an error that must be brought to the coder's attention.
        LL_ERRS("llsd_equals") << "llsd_equals(" << lhs << ", " << rhs << ", " << bits << "): "
            "unknown type " << lhs.type() << LL_ENDL;
        return false;               // pacify the compiler
    }
}
static bool handleFlexLODChanged(const LLSD& newvalue)
{
	LLVolumeImplFlexible::sUpdateFactor = (F32) newvalue.asReal();
	return true;
}
static bool handleBandwidthChanged(const LLSD& newvalue)
{
	gViewerThrottle.setMaxBandwidth((F32) newvalue.asReal());
	return true;
}
static bool handleTerrainScaleChanged(const LLSD& inputvalue)
{
	LLSD newvalue = 1.f / inputvalue.asReal();
	LLDrawPoolTerrain::sDetailScale = newvalue.asReal();
	return true;
}
static bool handleAvatarPhysicsLODChanged(const LLSD& newvalue)
{
	LLVOAvatar::sPhysicsLODFactor = (F32) newvalue.asReal();
	return true;
}
static bool handleAvatarBoobXYInfluence(const LLSD& newvalue)
{
	LLVOAvatar::sBoobConfig.XYInfluence = (F32) newvalue.asReal();
	return true;
}
Example #7
0
void LLFilterSD2XMLRPC::streamOut(std::ostream& ostr, const LLSD& sd)
{
    ostr << "<value>";
    switch(sd.type())
    {
    case LLSD::TypeMap:
    {
#if LL_SPEW_STREAM_OUT_DEBUGGING
        llinfos << "streamOut(map) BEGIN" << llendl;
#endif
        ostr << "<struct>";
        if(ostr.fail())
        {
            llinfos << "STREAM FAILURE writing struct" << llendl;
        }
        LLSD::map_const_iterator it = sd.beginMap();
        LLSD::map_const_iterator end = sd.endMap();
        for(; it != end; ++it)
        {
            ostr << "<member><name>" << xml_escape_string((*it).first)
                 << "</name>";
            streamOut(ostr, (*it).second);
            if(ostr.fail())
            {
                llinfos << "STREAM FAILURE writing '" << (*it).first
                        << "' with sd type " << (*it).second.type() << llendl;
            }
            ostr << "</member>";
        }
        ostr << "</struct>";
#if LL_SPEW_STREAM_OUT_DEBUGGING
        llinfos << "streamOut(map) END" << llendl;
#endif
        break;
    }
    case LLSD::TypeArray:
    {
#if LL_SPEW_STREAM_OUT_DEBUGGING
        llinfos << "streamOut(array) BEGIN" << llendl;
#endif
        ostr << "<array><data>";
        LLSD::array_const_iterator it = sd.beginArray();
        LLSD::array_const_iterator end = sd.endArray();
        for(; it != end; ++it)
        {
            streamOut(ostr, *it);
            if(ostr.fail())
            {
                llinfos << "STREAM FAILURE writing array element sd type "
                        << (*it).type() << llendl;
            }
        }
#if LL_SPEW_STREAM_OUT_DEBUGGING
        llinfos << "streamOut(array) END" << llendl;
#endif
        ostr << "</data></array>";
        break;
    }
    case LLSD::TypeUndefined:
    // treat undefined as a bool with a false value.
    case LLSD::TypeBoolean:
#if LL_SPEW_STREAM_OUT_DEBUGGING
        llinfos << "streamOut(bool)" << llendl;
#endif
        ostr << "<boolean>" << (sd.asBoolean() ? "1" : "0") << "</boolean>";
        break;
    case LLSD::TypeInteger:
#if LL_SPEW_STREAM_OUT_DEBUGGING
        llinfos << "streamOut(int)" << llendl;
#endif
        ostr << "<i4>" << sd.asInteger() << "</i4>";
        break;
    case LLSD::TypeReal:
#if LL_SPEW_STREAM_OUT_DEBUGGING
        llinfos << "streamOut(real)" << llendl;
#endif
        ostr << "<double>" << sd.asReal() << "</double>";
        break;
    case LLSD::TypeString:
#if LL_SPEW_STREAM_OUT_DEBUGGING
        llinfos << "streamOut(string)" << llendl;
#endif
        ostr << "<string>" << xml_escape_string(sd.asString()) << "</string>";
        break;
    case LLSD::TypeUUID:
#if LL_SPEW_STREAM_OUT_DEBUGGING
        llinfos << "streamOut(uuid)" << llendl;
#endif
        // serialize it as a string
        ostr << "<string>" << sd.asString() << "</string>";
        break;
    case LLSD::TypeURI:
    {
#if LL_SPEW_STREAM_OUT_DEBUGGING
        llinfos << "streamOut(uri)" << llendl;
#endif
        // serialize it as a string
        ostr << "<string>" << xml_escape_string(sd.asString()) << "</string>";
        break;
    }
    case LLSD::TypeBinary:
    {
#if LL_SPEW_STREAM_OUT_DEBUGGING
        llinfos << "streamOut(binary)" << llendl;
#endif
        // this is pretty inefficient, but we'll deal with that
        // problem when it becomes one.
        ostr << "<base64>";
        LLSD::Binary buffer = sd.asBinary();
        if(!buffer.empty())
        {
            // *TODO: convert to LLBase64
            int b64_buffer_length = apr_base64_encode_len(buffer.size());
            char* b64_buffer = new char[b64_buffer_length];
            b64_buffer_length = apr_base64_encode_binary(
                                    b64_buffer,
                                    &buffer[0],
                                    buffer.size());
            ostr.write(b64_buffer, b64_buffer_length - 1);
            delete[] b64_buffer;
        }
        ostr << "</base64>";
        break;
    }
    case LLSD::TypeDate:
#if LL_SPEW_STREAM_OUT_DEBUGGING
        llinfos << "streamOut(date)" << llendl;
#endif
        // no need to escape this since it will be alpha-numeric.
        ostr << "<dateTime.iso8601>" << sd.asString() << "</dateTime.iso8601>";
        break;
    default:
        // unhandled type
        llwarns << "Unhandled structured data type: " << sd.type()
                << llendl;
        break;
    }
    ostr << "</value>";
}
Example #8
0
static bool handleAvatarBoobVelMaxChanged(const LLSD& newvalue)
{
	LLVOAvatar::sBoobConfig.velMax = Meta7BoobUtils::convertVelMax((F32) newvalue.asReal());
	LLVOAvatar::sBoobConfig.velMin = LLVOAvatar::sBoobConfig.velMin*LLVOAvatar::sBoobConfig.velMax;
	return true;
}
// virtual
S32 LLSDBinaryFormatter::format(const LLSD& data, std::ostream& ostr, U32 options) const
{
	S32 format_count = 1;
	switch(data.type())
	{
	case LLSD::TypeMap:
	{
		ostr.put('{');
		U32 size_nbo = htonl(data.size());
		ostr.write((const char*)(&size_nbo), sizeof(U32));
		LLSD::map_const_iterator iter = data.beginMap();
		LLSD::map_const_iterator end = data.endMap();
		for(; iter != end; ++iter)
		{
			ostr.put('k');
			formatString((*iter).first, ostr);
			format_count += format((*iter).second, ostr);
		}
		ostr.put('}');
		break;
	}

	case LLSD::TypeArray:
	{
		ostr.put('[');
		U32 size_nbo = htonl(data.size());
		ostr.write((const char*)(&size_nbo), sizeof(U32));
		LLSD::array_const_iterator iter = data.beginArray();
		LLSD::array_const_iterator end = data.endArray();
		for(; iter != end; ++iter)
		{
			format_count += format(*iter, ostr);
		}
		ostr.put(']');
		break;
	}

	case LLSD::TypeUndefined:
		ostr.put('!');
		break;

	case LLSD::TypeBoolean:
		if(data.asBoolean()) ostr.put(BINARY_TRUE_SERIAL);
		else ostr.put(BINARY_FALSE_SERIAL);
		break;

	case LLSD::TypeInteger:
	{
		ostr.put('i');
		U32 value_nbo = htonl(data.asInteger());
		ostr.write((const char*)(&value_nbo), sizeof(U32));
		break;
	}

	case LLSD::TypeReal:
	{
		ostr.put('r');
		F64 value_nbo = ll_htond(data.asReal());
		ostr.write((const char*)(&value_nbo), sizeof(F64));
		break;
	}

	case LLSD::TypeUUID:
        {
		ostr.put('u');
                LLUUID value = data.asUUID();
                ostr.write((const char*)(&value.mData), UUID_BYTES);
		break;
        }

	case LLSD::TypeString:
		ostr.put('s');
		formatString(data.asString(), ostr);
		break;

	case LLSD::TypeDate:
	{
		ostr.put('d');
		F64 value = data.asReal();
		ostr.write((const char*)(&value), sizeof(F64));
		break;
	}

	case LLSD::TypeURI:
		ostr.put('l');
		formatString(data.asString(), ostr);
		break;

	case LLSD::TypeBinary:
	{
		// *FIX: memory inefficient.
		ostr.put('b');
		std::vector<U8> buffer = data.asBinary();
		U32 size_nbo = htonl(buffer.size());
		ostr.write((const char*)(&size_nbo), sizeof(U32));
		if(buffer.size()) ostr.write((const char*)&buffer[0], buffer.size());
		break;
	}

	default:
		// *NOTE: This should never happen.
		ostr.put('!');
		break;
	}
	return format_count;
}
Example #10
0
static bool handleAvMorphTimeChanged(const LLSD& newvalue)
{
	LLVOAvatar::sAvMorphTime = (F32) newvalue.asReal();
	return true;
}
Example #11
0
static bool handleAvatarBoobMassChanged(const LLSD& newvalue)
{
	LLVOAvatar::sBoobConfig.mass = Meta7BoobUtils::convertMass((F32) newvalue.asReal());
	return true;
}
Example #12
0
//static
void LLManip::updatePivotZ(const LLSD &data)
{
	sPivotZ = (F32)data.asReal();
}
Example #13
0
template <>					void jc_rebind::rebind_callback<F32>(const LLSD &data, F32 *reciever){ *reciever = data.asReal(); }
Example #14
0
void LLStatGraph::setValue(const LLSD& value)
{
	mValue = (F32)value.asReal();
}
static bool handleAvatarBoobVelMinChanged(const LLSD& newvalue)
{
	LLVOAvatar::sBoobConfig.velMin = EmeraldBoobUtils::convertVelMin((F32) newvalue.asReal())*LLVOAvatar::sBoobConfig.velMax;
	return true;
}
void LLInspectAvatar::onVolumeChange(const LLSD& data)
{
	F32 volume = (F32)data.asReal();
	gVoiceClient->setUserVolume(mAvatarID, volume);
}
static bool handleAvatarBoobToggleChanged(const LLSD& newvalue)
{
	LLVOAvatar::sBoobConfig.enabled = (BOOL) newvalue.asReal();
	return true;
}
S32 LLSDXMLFormatter::format_impl(const LLSD& data, std::ostream& ostr, U32 options, U32 level) const
{
	S32 format_count = 1;
	std::string pre;
	std::string post;

	if (options & LLSDFormatter::OPTIONS_PRETTY)
	{
		for (U32 i = 0; i < level; i++)
		{
			pre += "    ";
		}
		post = "\n";
	}

	switch(data.type())
	{
	case LLSD::TypeMap:
		if (0 == data.size())
		{
			ostr << pre << "<map />" << post;
		}
		else
		{
			ostr << pre << "<map>" << post;
			LLSD::map_const_iterator iter = data.beginMap();
			LLSD::map_const_iterator end = data.endMap();
			for (; iter != end; ++iter)
			{
				ostr << pre << "<key>" << escapeString((*iter).first) << "</key>" << post;
				format_count += format_impl((*iter).second, ostr, options, level + 1);
			}
			ostr << pre <<  "</map>" << post;
		}
		break;

	case LLSD::TypeArray:
		if (0 == data.size())
		{
			ostr << pre << "<array />" << post;
		}
		else
		{
			ostr << pre << "<array>" << post;
			LLSD::array_const_iterator iter = data.beginArray();
			LLSD::array_const_iterator end = data.endArray();
			for(; iter != end; ++iter)
			{
				format_count += format_impl(*iter, ostr, options, level + 1);
			}
			ostr << pre << "</array>" << post;
		}
		break;

	case LLSD::TypeUndefined:
		ostr << pre << "<undef />" << post;
		break;

	case LLSD::TypeBoolean:
		ostr << pre << "<boolean>";
		if (mBoolAlpha || (ostr.flags() & std::ios::boolalpha))
		{
			ostr << (data.asBoolean() ? "true" : "false");
		}
		else
		{
			ostr << (data.asBoolean() ? 1 : 0);
		}
		ostr << "</boolean>" << post;
		break;

	case LLSD::TypeInteger:
		ostr << pre << "<integer>" << data.asInteger() << "</integer>" << post;
		break;

	case LLSD::TypeReal:
		ostr << pre << "<real>";
		if (mRealFormat.empty())
		{
			ostr << data.asReal();
		}
		else
		{
			formatReal(data.asReal(), ostr);
		}
		ostr << "</real>" << post;
		break;

	case LLSD::TypeUUID:
		if (data.asUUID().isNull())
		{
			ostr << pre << "<uuid />" << post;
		}
		else
		{
			ostr << pre << "<uuid>" << data.asUUID() << "</uuid>" << post;
		}
		break;

	case LLSD::TypeString:
		if (data.asString().empty()) ostr << pre << "<string />" << post;
		else ostr << pre << "<string>" << escapeString(data.asString()) <<"</string>" << post;
		break;

	case LLSD::TypeDate:
		ostr << pre << "<date>" << data.asDate() << "</date>" << post;
		break;

	case LLSD::TypeURI:
		ostr << pre << "<uri>" << escapeString(data.asString()) << "</uri>" << post;
		break;

	case LLSD::TypeBinary:
	{
		LLSD::Binary buffer = data.asBinary();
		if (buffer.empty())
		{
			ostr << pre << "<binary />" << post;
		}
		else
		{
			// *FIX: memory inefficient.
			// *TODO: convert to use LLBase64
			ostr << pre << "<binary encoding=\"base64\">";
			int b64_buffer_length = apr_base64_encode_len(buffer.size());
			char* b64_buffer = new char[b64_buffer_length];
			b64_buffer_length = apr_base64_encode_binary(b64_buffer,
														 &buffer[0],
														 buffer.size());
			ostr.write(b64_buffer, b64_buffer_length - 1);
			delete[] b64_buffer;
			ostr << "</binary>" << post;
		}
		break;
	}

	default:
		// *NOTE: This should never happen.
		ostr << pre << "<undef />" << post;
		break;
	}
	return format_count;
}
Example #19
0
	void ensure_equals(const std::string& msg, const LLSD& actual,
		const LLSD& expected)
	{
		ensure_equals(msg + " type", actual.type(), expected.type());
		switch (actual.type())
		{
			case LLSD::TypeUndefined:
				return;
			
			case LLSD::TypeBoolean:
				ensure_equals(msg + " boolean", actual.asBoolean(), expected.asBoolean());
				return;
			
			case LLSD::TypeInteger:
				ensure_equals(msg + " integer", actual.asInteger(), expected.asInteger());
				return;
			
			case LLSD::TypeReal:
				ensure_equals(msg + " real", actual.asReal(), expected.asReal());
				return;
			
			case LLSD::TypeString:
				ensure_equals(msg + " string", actual.asString(), expected.asString());
				return;
			
			case LLSD::TypeUUID:
				ensure_equals(msg + " uuid", actual.asUUID(), expected.asUUID());
				return;
			
			case LLSD::TypeDate:
				ensure_equals(msg + " date", actual.asDate(), expected.asDate());
				return;
				
			case LLSD::TypeURI:
				ensure_equals(msg + " uri", actual.asURI(), expected.asURI());
				return;
		
			case LLSD::TypeBinary:
				ensure_equals(msg + " binary", actual.asBinary(), expected.asBinary());
				return;
		
			case LLSD::TypeMap:
			{
				ensure_equals(msg + " map size", actual.size(), expected.size());
				
				LLSD::map_const_iterator actual_iter = actual.beginMap();
				LLSD::map_const_iterator expected_iter = expected.beginMap();
				
				while(actual_iter != actual.endMap())
				{
					ensure_equals(msg + " map keys", 
						actual_iter->first, expected_iter->first);
					ensure_equals(msg + "[" + actual_iter->first + "]",
						actual_iter->second, expected_iter->second);
					++actual_iter;
					++expected_iter;
				}
				return;
			}
			case LLSD::TypeArray:
			{
				ensure_equals(msg + " array size", actual.size(), expected.size());
				
				for(int i = 0; i < actual.size(); ++i)
				{
					ensure_equals(msg + llformat("[%d]", i),
						actual[i], expected[i]);
				}
				return;
			}
			default:
				// should never get here, but compiler produces warning if we
				// don't cover this case, and at Linden warnings are fatal.
				throw failure(STRINGIZE("invalid type field " << actual.type()));
		}
	}
void LLAvatarListItem::onVolumeChange(const LLSD& data)
{
    F32 volume = (F32)data.asReal();
    LLVoiceClient::getInstance()->setUserVolume(mAvatarId, volume);
}
void LLPanelIMControlPanel::onVolumeChange(const LLSD& data)
{
    F32 volume = (F32)data.asReal();
    LLVoiceClient::getInstance()->setUserVolume(mAvatarID, volume);
}
Example #22
0
// static
void LLViewerCamera::updateCameraAngle( void* user_data, const LLSD& value)
{
	LLViewerCamera* self=(LLViewerCamera*)user_data;
	self->setDefaultFOV(value.asReal());	
}
static bool handleVolumeLODChanged(const LLSD& newvalue)
{
	LLVOVolume::sLODFactor = (F32) newvalue.asReal();
	LLVOVolume::sDistanceFactor = 1.f-LLVOVolume::sLODFactor * 0.1f;
	return true;
}
static bool handleHTTPBandwidthChanged(const LLSD& newvalue)
{
	AIPerService::setHTTPThrottleBandwidth((F32) newvalue.asReal());
	return true;
}
static bool handleTreeLODChanged(const LLSD& newvalue)
{
	LLVOTree::sTreeFactor = (F32) newvalue.asReal();
	return true;
}
static bool handleAvatarBoobHardnessChanged(const LLSD& newvalue)
{
	LLVOAvatar::sBoobConfig.hardness = EmeraldBoobUtils::convertHardness((F32) newvalue.asReal());
	return true;
}
static bool handleFogRatioChanged(const LLSD& newvalue)
{
	F32 fog_ratio = llmax(MIN_USER_FOG_RATIO, llmin((F32) newvalue.asReal(), MAX_USER_FOG_RATIO));
	gSky.setFogRatio(fog_ratio);
	return true;
}
static bool handleAvatarBoobFrictionChanged(const LLSD& newvalue)
{
	LLVOAvatar::sBoobConfig.friction = EmeraldBoobUtils::convertFriction((F32) newvalue.asReal());
	return true;
}
Example #29
0
// virtual
S32 LLSDNotationFormatter::format(const LLSD& data, std::ostream& ostr, U32 options) const
{
	S32 format_count = 1;
	switch(data.type())
	{
	case LLSD::TypeMap:
	{
		ostr << "{";
		bool need_comma = false;
		LLSD::map_const_iterator iter = data.beginMap();
		LLSD::map_const_iterator end = data.endMap();
		for(; iter != end; ++iter)
		{
			if(need_comma) ostr << ",";
			need_comma = true;
			ostr << '\'';
			serialize_string((*iter).first, ostr);
			ostr << "':";
			format_count += format((*iter).second, ostr);
		}
		ostr << "}";
		break;
	}

	case LLSD::TypeArray:
	{
		ostr << "[";
		bool need_comma = false;
		LLSD::array_const_iterator iter = data.beginArray();
		LLSD::array_const_iterator end = data.endArray();
		for(; iter != end; ++iter)
		{
			if(need_comma) ostr << ",";
			need_comma = true;
			format_count += format(*iter, ostr);
		}
		ostr << "]";
		break;
	}

	case LLSD::TypeUndefined:
		ostr << "!";
		break;

	case LLSD::TypeBoolean:
		if(mBoolAlpha ||
#if( LL_WINDOWS || __GNUC__ > 2)
		   (ostr.flags() & std::ios::boolalpha)
#else
		   (ostr.flags() & 0x0100)
#endif
			)
		{
			ostr << (data.asBoolean()
					 ? NOTATION_TRUE_SERIAL : NOTATION_FALSE_SERIAL);
		}
		else
		{
			ostr << (data.asBoolean() ? 1 : 0);
		}
		break;

	case LLSD::TypeInteger:
		ostr << "i" << data.asInteger();
		break;

	case LLSD::TypeReal:
		ostr << "r";
		if(mRealFormat.empty())
		{
			ostr << data.asReal();
		}
		else
		{
			formatReal(data.asReal(), ostr);
		}
		break;

	case LLSD::TypeUUID:
		ostr << "u" << data.asUUID();
		break;

	case LLSD::TypeString:
		ostr << '\'';
		serialize_string(data.asString(), ostr);
		ostr << '\'';
		break;

	case LLSD::TypeDate:
		ostr << "d\"" << data.asDate() << "\"";
		break;

	case LLSD::TypeURI:
		ostr << "l\"";
		serialize_string(data.asString(), ostr);
		ostr << "\"";
		break;

	case LLSD::TypeBinary:
	{
		// *FIX: memory inefficient.
		std::vector<U8> buffer = data.asBinary();
		ostr << "b(" << buffer.size() << ")\"";
		if(buffer.size()) ostr.write((const char*)&buffer[0], buffer.size());
		ostr << "\"";
		break;
	}

	default:
		// *NOTE: This should never happen.
		ostr << "!";
		break;
	}
	return format_count;
}
Example #30
0
void LLWLParamSet::mix(LLWLParamSet& src, LLWLParamSet& dest, F32 weight)
{
	// set up the iterators

	// keep cloud positions and coverage the same
	/// TODO masking will do this later
	F32 cloudPos1X = (F32) mParamValues["cloud_pos_density1"][0].asReal();
	F32 cloudPos1Y = (F32) mParamValues["cloud_pos_density1"][1].asReal();
	F32 cloudPos2X = (F32) mParamValues["cloud_pos_density2"][0].asReal();
	F32 cloudPos2Y = (F32) mParamValues["cloud_pos_density2"][1].asReal();
	F32 cloudCover = (F32) mParamValues["cloud_shadow"][0].asReal();

	LLSD srcVal;
	LLSD destVal;

	// Iterate through values
	for(LLSD::map_iterator iter = mParamValues.beginMap(); iter != mParamValues.endMap(); ++iter)
	{

		// If param exists in both src and dest, set the holder variables, otherwise skip
		if(src.mParamValues.has(iter->first) && dest.mParamValues.has(iter->first))
		{
			srcVal = src.mParamValues[iter->first];
			destVal = dest.mParamValues[iter->first];
		}
		else
		{
			continue;
		}
		
		if(iter->second.isReal())									// If it's a real, interpolate directly
		{
			iter->second = srcVal.asReal() + ((destVal.asReal() - srcVal.asReal()) * weight);
		}
		else if(iter->second.isArray() && iter->second[0].isReal()	// If it's an array of reals, loop through the reals and interpolate on those
				&& iter->second.size() == srcVal.size() && iter->second.size() == destVal.size())
		{
			// Actually do interpolation: old value + (difference in values * factor)
			for(int i=0; i < iter->second.size(); ++i) 
			{
				// iter->second[i] = (1.f-weight)*(F32)srcVal[i].asReal() + weight*(F32)destVal[i].asReal();	// old way of doing it -- equivalent but one more operation
				iter->second[i] = srcVal[i].asReal() + ((destVal[i].asReal() - srcVal[i].asReal()) * weight);
			}
		}
		else														// Else, skip
		{
			continue;
		}		
	}

	// now mix the extra parameters
	setStarBrightness((1 - weight) * (F32) src.getStarBrightness()
		+ weight * (F32) dest.getStarBrightness());

	llassert(src.getSunAngle() >= - F_PI && 
					src.getSunAngle() <= 3 * F_PI);
	llassert(dest.getSunAngle() >= - F_PI && 
					dest.getSunAngle() <= 3 * F_PI);
	llassert(src.getEastAngle() >= 0 && 
					src.getEastAngle() <= 4 * F_PI);
	llassert(dest.getEastAngle() >= 0 && 
					dest.getEastAngle() <= 4 * F_PI);

	// sun angle and east angle require some handling to make sure
	// they go in circles.  Yes quaternions would work better.
	F32 srcSunAngle = src.getSunAngle();
	F32 destSunAngle = dest.getSunAngle();
	F32 srcEastAngle = src.getEastAngle();
	F32 destEastAngle = dest.getEastAngle();
	
	if(fabsf(srcSunAngle - destSunAngle) > F_PI) 
	{
		if(srcSunAngle > destSunAngle) 
		{
			destSunAngle += 2 * F_PI;
		} 
		else 
		{
			srcSunAngle += 2 * F_PI;
		}
	}

	if(fabsf(srcEastAngle - destEastAngle) > F_PI) 
	{
		if(srcEastAngle > destEastAngle) 
		{
			destEastAngle += 2 * F_PI;
		} 
		else 
		{
			srcEastAngle += 2 * F_PI;
		}
	}

	setSunAngle((1 - weight) * srcSunAngle + weight * destSunAngle);
	setEastAngle((1 - weight) * srcEastAngle + weight * destEastAngle);
	
	// now setup the sun properly

	// reset those cloud positions
	mParamValues["cloud_pos_density1"][0] = cloudPos1X;
	mParamValues["cloud_pos_density1"][1] = cloudPos1Y;
	mParamValues["cloud_pos_density2"][0] = cloudPos2X;
	mParamValues["cloud_pos_density2"][1] = cloudPos2Y;
	mParamValues["cloud_shadow"][0] = cloudCover;
}