Example #1
0
bool
jit::LICM(MIRGenerator *mir, MIRGraph &graph)
{
    JitSpew(JitSpew_LICM, "Beginning LICM pass");

    // Iterate in RPO to visit outer loops before inner loops. We'd hoist the
    // same things either way, but outer first means we do a little less work.
    for (auto i(graph.rpoBegin()), e(graph.rpoEnd()); i != e; ++i) {
        MBasicBlock *header = *i;
        if (!header->isLoopHeader())
            continue;

        bool canOsr;
        MarkLoopBlocks(graph, header, &canOsr);

        // Hoisting out of a loop that has an entry from the OSR block in
        // addition to its normal entry is tricky. In theory we could clone
        // the instruction and insert phis.
        if (!canOsr)
            VisitLoop(graph, header);
        else
            JitSpew(JitSpew_LICM, "  Skipping loop with header block%u due to OSR", header->id());

        UnmarkLoopBlocks(graph, header);

        if (mir->shouldCancel("LICM (main loop)"))
            return false;
    }

    return true;
}
Example #2
0
bool
LICM::analyze()
{
    IonSpew(IonSpew_LICM, "Beginning LICM pass.");

    // Iterate in RPO to visit outer loops before inner loops.
    for (ReversePostorderIterator i(graph.rpoBegin()); i != graph.rpoEnd(); i++) {
        MBasicBlock *header = *i;

        // Skip non-headers and self-loops.
        if (!header->isLoopHeader() || header->numPredecessors() < 2)
            continue;

        // Attempt to optimize loop.
        Loop loop(mir, header);

        Loop::LoopReturn lr = loop.init();
        if (lr == Loop::LoopReturn_Error)
            return false;
        if (lr == Loop::LoopReturn_Skip) {
            graph.unmarkBlocks();
            continue;
        }

        if (!loop.optimize())
            return false;

        graph.unmarkBlocks();
    }

    return true;
}
bool
RangeAnalysis::analyze()
{
    IonSpew(IonSpew_Range, "Doing range propagation");

    for (ReversePostorderIterator iter(graph_.rpoBegin()); iter != graph_.rpoEnd(); iter++) {
        MBasicBlock *block = *iter;

        for (MDefinitionIterator iter(block); iter; iter++) {
            MDefinition *def = *iter;

            def->computeRange();
            IonSpew(IonSpew_Range, "computing range on %d", def->id());
            SpewRange(def);
        }

        if (block->isLoopHeader())
            analyzeLoop(block);
    }

    return true;
}
bool
ValueNumberer::insertOSRFixups()
{
    ReversePostorderIterator end(graph_.end());
    for (ReversePostorderIterator iter(graph_.begin()); iter != end; ) {
        MBasicBlock* block = *iter++;

        // Only add fixup block above for loops which can be reached from OSR.
        if (!block->isLoopHeader())
            continue;

        // If the loop header is not self-dominated, then this loop does not
        // have to deal with a second entry point, so there is no need to add a
        // second entry point with a fixup block.
        if (block->immediateDominator() != block)
            continue;

        if (!fixupOSROnlyLoop(block, block->backedge()))
            return false;
    }

    return true;
}
bool
LiveRangeAllocator<VREG>::buildLivenessInfo()
{
    if (!init())
        return false;

    Vector<MBasicBlock *, 1, SystemAllocPolicy> loopWorkList;
    BitSet *loopDone = BitSet::New(alloc(), graph.numBlockIds());
    if (!loopDone)
        return false;

    for (size_t i = graph.numBlocks(); i > 0; i--) {
        if (mir->shouldCancel("Build Liveness Info (main loop)"))
            return false;

        LBlock *block = graph.getBlock(i - 1);
        MBasicBlock *mblock = block->mir();

        BitSet *live = BitSet::New(alloc(), graph.numVirtualRegisters());
        if (!live)
            return false;
        liveIn[mblock->id()] = live;

        // Propagate liveIn from our successors to us
        for (size_t i = 0; i < mblock->lastIns()->numSuccessors(); i++) {
            MBasicBlock *successor = mblock->lastIns()->getSuccessor(i);
            // Skip backedges, as we fix them up at the loop header.
            if (mblock->id() < successor->id())
                live->insertAll(liveIn[successor->id()]);
        }

        // Add successor phis
        if (mblock->successorWithPhis()) {
            LBlock *phiSuccessor = mblock->successorWithPhis()->lir();
            for (unsigned int j = 0; j < phiSuccessor->numPhis(); j++) {
                LPhi *phi = phiSuccessor->getPhi(j);
                LAllocation *use = phi->getOperand(mblock->positionInPhiSuccessor());
                uint32_t reg = use->toUse()->virtualRegister();
                live->insert(reg);
            }
        }

        // Variables are assumed alive for the entire block, a define shortens
        // the interval to the point of definition.
        for (BitSet::Iterator liveRegId(*live); liveRegId; liveRegId++) {
            if (!vregs[*liveRegId].getInterval(0)->addRangeAtHead(inputOf(block->firstId()),
                                                                  outputOf(block->lastId()).next()))
            {
                return false;
            }
        }

        // Shorten the front end of live intervals for live variables to their
        // point of definition, if found.
        for (LInstructionReverseIterator ins = block->rbegin(); ins != block->rend(); ins++) {
            // Calls may clobber registers, so force a spill and reload around the callsite.
            if (ins->isCall()) {
                for (AnyRegisterIterator iter(allRegisters_); iter.more(); iter++) {
                    if (forLSRA) {
                        if (!addFixedRangeAtHead(*iter, inputOf(*ins), outputOf(*ins)))
                            return false;
                    } else {
                        bool found = false;
                        for (size_t i = 0; i < ins->numDefs(); i++) {
                            if (ins->getDef(i)->isPreset() &&
                                *ins->getDef(i)->output() == LAllocation(*iter)) {
                                found = true;
                                break;
                            }
                        }
                        if (!found && !addFixedRangeAtHead(*iter, outputOf(*ins), outputOf(*ins).next()))
                            return false;
                    }
                }
            }

            for (size_t i = 0; i < ins->numDefs(); i++) {
                if (ins->getDef(i)->policy() != LDefinition::PASSTHROUGH) {
                    LDefinition *def = ins->getDef(i);

                    CodePosition from;
                    if (def->policy() == LDefinition::PRESET && def->output()->isRegister() && forLSRA) {
                        // The fixed range covers the current instruction so the
                        // interval for the virtual register starts at the next
                        // instruction. If the next instruction has a fixed use,
                        // this can lead to unnecessary register moves. To avoid
                        // special handling for this, assert the next instruction
                        // has no fixed uses. defineFixed guarantees this by inserting
                        // an LNop.
                        JS_ASSERT(!NextInstructionHasFixedUses(block, *ins));
                        AnyRegister reg = def->output()->toRegister();
                        if (!addFixedRangeAtHead(reg, inputOf(*ins), outputOf(*ins).next()))
                            return false;
                        from = outputOf(*ins).next();
                    } else {
                        from = forLSRA ? inputOf(*ins) : outputOf(*ins);
                    }

                    if (def->policy() == LDefinition::MUST_REUSE_INPUT) {
                        // MUST_REUSE_INPUT is implemented by allocating an output
                        // register and moving the input to it. Register hints are
                        // used to avoid unnecessary moves. We give the input an
                        // LUse::ANY policy to avoid allocating a register for the
                        // input.
                        LUse *inputUse = ins->getOperand(def->getReusedInput())->toUse();
                        JS_ASSERT(inputUse->policy() == LUse::REGISTER);
                        JS_ASSERT(inputUse->usedAtStart());
                        *inputUse = LUse(inputUse->virtualRegister(), LUse::ANY, /* usedAtStart = */ true);
                    }

                    LiveInterval *interval = vregs[def].getInterval(0);
                    interval->setFrom(from);

                    // Ensure that if there aren't any uses, there's at least
                    // some interval for the output to go into.
                    if (interval->numRanges() == 0) {
                        if (!interval->addRangeAtHead(from, from.next()))
                            return false;
                    }
                    live->remove(def->virtualRegister());
                }
            }

            for (size_t i = 0; i < ins->numTemps(); i++) {
                LDefinition *temp = ins->getTemp(i);
                if (temp->isBogusTemp())
                    continue;

                if (forLSRA) {
                    if (temp->policy() == LDefinition::PRESET) {
                        if (ins->isCall())
                            continue;
                        AnyRegister reg = temp->output()->toRegister();
                        if (!addFixedRangeAtHead(reg, inputOf(*ins), outputOf(*ins)))
                            return false;

                        // Fixed intervals are not added to safepoints, so do it
                        // here.
                        if (LSafepoint *safepoint = ins->safepoint())
                            AddRegisterToSafepoint(safepoint, reg, *temp);
                    } else {
                        JS_ASSERT(!ins->isCall());
                        if (!vregs[temp].getInterval(0)->addRangeAtHead(inputOf(*ins), outputOf(*ins)))
                            return false;
                    }
                } else {
                    // Normally temps are considered to cover both the input
                    // and output of the associated instruction. In some cases
                    // though we want to use a fixed register as both an input
                    // and clobbered register in the instruction, so watch for
                    // this and shorten the temp to cover only the output.
                    CodePosition from = inputOf(*ins);
                    if (temp->policy() == LDefinition::PRESET) {
                        AnyRegister reg = temp->output()->toRegister();
                        for (LInstruction::InputIterator alloc(**ins); alloc.more(); alloc.next()) {
                            if (alloc->isUse()) {
                                LUse *use = alloc->toUse();
                                if (use->isFixedRegister()) {
                                    if (GetFixedRegister(vregs[use].def(), use) == reg)
                                        from = outputOf(*ins);
                                }
                            }
                        }
                    }

                    CodePosition to =
                        ins->isCall() ? outputOf(*ins) : outputOf(*ins).next();
                    if (!vregs[temp].getInterval(0)->addRangeAtHead(from, to))
                        return false;
                }
            }

            DebugOnly<bool> hasUseRegister = false;
            DebugOnly<bool> hasUseRegisterAtStart = false;

            for (LInstruction::InputIterator inputAlloc(**ins); inputAlloc.more(); inputAlloc.next()) {
                if (inputAlloc->isUse()) {
                    LUse *use = inputAlloc->toUse();

                    // The first instruction, LLabel, has no uses.
                    JS_ASSERT(inputOf(*ins) > outputOf(block->firstId()));

                    // Call uses should always be at-start or fixed, since the fixed intervals
                    // use all registers.
                    JS_ASSERT_IF(ins->isCall() && !inputAlloc.isSnapshotInput(),
                                 use->isFixedRegister() || use->usedAtStart());

#ifdef DEBUG
                    // Don't allow at-start call uses if there are temps of the same kind,
                    // so that we don't assign the same register.
                    if (ins->isCall() && use->usedAtStart()) {
                        for (size_t i = 0; i < ins->numTemps(); i++)
                            JS_ASSERT(vregs[ins->getTemp(i)].isDouble() != vregs[use].isDouble());
                    }

                    // If there are both useRegisterAtStart(x) and useRegister(y)
                    // uses, we may assign the same register to both operands due to
                    // interval splitting (bug 772830). Don't allow this for now.
                    if (use->policy() == LUse::REGISTER) {
                        if (use->usedAtStart()) {
                            if (!IsInputReused(*ins, use))
                                hasUseRegisterAtStart = true;
                        } else {
                            hasUseRegister = true;
                        }
                    }

                    JS_ASSERT(!(hasUseRegister && hasUseRegisterAtStart));
#endif

                    // Don't treat RECOVERED_INPUT uses as keeping the vreg alive.
                    if (use->policy() == LUse::RECOVERED_INPUT)
                        continue;

                    CodePosition to;
                    if (forLSRA) {
                        if (use->isFixedRegister()) {
                            AnyRegister reg = GetFixedRegister(vregs[use].def(), use);
                            if (!addFixedRangeAtHead(reg, inputOf(*ins), outputOf(*ins)))
                                return false;
                            to = inputOf(*ins);

                            // Fixed intervals are not added to safepoints, so do it
                            // here.
                            LSafepoint *safepoint = ins->safepoint();
                            if (!ins->isCall() && safepoint)
                                AddRegisterToSafepoint(safepoint, reg, *vregs[use].def());
                        } else {
                            to = use->usedAtStart() ? inputOf(*ins) : outputOf(*ins);
                        }
                    } else {
                        to = (use->usedAtStart() || ins->isCall())
                           ? inputOf(*ins) : outputOf(*ins);
                        if (use->isFixedRegister()) {
                            LAllocation reg(AnyRegister::FromCode(use->registerCode()));
                            for (size_t i = 0; i < ins->numDefs(); i++) {
                                LDefinition *def = ins->getDef(i);
                                if (def->policy() == LDefinition::PRESET && *def->output() == reg)
                                    to = inputOf(*ins);
                            }
                        }
                    }

                    LiveInterval *interval = vregs[use].getInterval(0);
                    if (!interval->addRangeAtHead(inputOf(block->firstId()), forLSRA ? to : to.next()))
                        return false;
                    interval->addUse(new(alloc()) UsePosition(use, to));

                    live->insert(use->virtualRegister());
                }
            }
        }

        // Phis have simultaneous assignment semantics at block begin, so at
        // the beginning of the block we can be sure that liveIn does not
        // contain any phi outputs.
        for (unsigned int i = 0; i < block->numPhis(); i++) {
            LDefinition *def = block->getPhi(i)->getDef(0);
            if (live->contains(def->virtualRegister())) {
                live->remove(def->virtualRegister());
            } else {
                // This is a dead phi, so add a dummy range over all phis. This
                // can go away if we have an earlier dead code elimination pass.
                if (!vregs[def].getInterval(0)->addRangeAtHead(inputOf(block->firstId()),
                                                               outputOf(block->firstId())))
                {
                    return false;
                }
            }
        }

        if (mblock->isLoopHeader()) {
            // A divergence from the published algorithm is required here, as
            // our block order does not guarantee that blocks of a loop are
            // contiguous. As a result, a single live interval spanning the
            // loop is not possible. Additionally, we require liveIn in a later
            // pass for resolution, so that must also be fixed up here.
            MBasicBlock *loopBlock = mblock->backedge();
            while (true) {
                // Blocks must already have been visited to have a liveIn set.
                JS_ASSERT(loopBlock->id() >= mblock->id());

                // Add an interval for this entire loop block
                CodePosition from = inputOf(loopBlock->lir()->firstId());
                CodePosition to = outputOf(loopBlock->lir()->lastId()).next();

                for (BitSet::Iterator liveRegId(*live); liveRegId; liveRegId++) {
                    if (!vregs[*liveRegId].getInterval(0)->addRange(from, to))
                        return false;
                }

                // Fix up the liveIn set to account for the new interval
                liveIn[loopBlock->id()]->insertAll(live);

                // Make sure we don't visit this node again
                loopDone->insert(loopBlock->id());

                // If this is the loop header, any predecessors are either the
                // backedge or out of the loop, so skip any predecessors of
                // this block
                if (loopBlock != mblock) {
                    for (size_t i = 0; i < loopBlock->numPredecessors(); i++) {
                        MBasicBlock *pred = loopBlock->getPredecessor(i);
                        if (loopDone->contains(pred->id()))
                            continue;
                        if (!loopWorkList.append(pred))
                            return false;
                    }
                }

                // Terminate loop if out of work.
                if (loopWorkList.empty())
                    break;

                // Grab the next block off the work list, skipping any OSR block.
                while (!loopWorkList.empty()) {
                    loopBlock = loopWorkList.popCopy();
                    if (loopBlock->lir() != graph.osrBlock())
                        break;
                }

                // If end is reached without finding a non-OSR block, then no more work items were found.
                if (loopBlock->lir() == graph.osrBlock()) {
                    JS_ASSERT(loopWorkList.empty());
                    break;
                }
            }

            // Clear the done set for other loops
            loopDone->clear();
        }

        JS_ASSERT_IF(!mblock->numPredecessors(), live->empty());
    }

    validateVirtualRegisters();

    // If the script has an infinite loop, there may be no MReturn and therefore
    // no fixed intervals. Add a small range to fixedIntervalsUnion so that the
    // rest of the allocator can assume it has at least one range.
    if (fixedIntervalsUnion->numRanges() == 0) {
        if (!fixedIntervalsUnion->addRangeAtHead(CodePosition(0, CodePosition::INPUT),
                                                 CodePosition(0, CodePosition::OUTPUT)))
        {
            return false;
        }
    }

    return true;
}
bool
RangeAnalysis::analyze()
{
    int numBlocks = 0;
    for (PostorderIterator i(graph_.poBegin()); i != graph_.poEnd(); i++) {
        numBlocks++;
        MBasicBlock *curBlock = *i;
        if (!curBlock->isLoopHeader())
            continue;
        for (MPhiIterator pi(curBlock->phisBegin()); pi != curBlock->phisEnd(); pi++)
            if (!pi->initCounts())
                return false;
    }

    IonSpew(IonSpew_Range, "Doing range propagation");
    MDefinitionVector worklist;

    for (ReversePostorderIterator block(graph_.rpoBegin()); block != graph_.rpoEnd(); block++) {
        for (MDefinitionIterator iter(*block); iter; iter++) {
            MDefinition *def = *iter;

            AddToWorklist(worklist, def);

        }
    }
    size_t iters = 0;

    while (!worklist.empty()) {
        MDefinition *def = PopFromWorklist(worklist);
        IonSpew(IonSpew_Range, "recomputing range on %d", def->id());
        SpewRange(def);
        if (!def->earlyAbortCheck() && def->recomputeRange()) {
            JS_ASSERT(def->range()->lower() <= def->range()->upper());
            IonSpew(IonSpew_Range, "Range changed; adding consumers");
            IonSpew(IonSpew_Range, "New range for %d is: (%d, %d)", def->id(), def->range()->lower(), def->range()->upper());
            for (MUseDefIterator use(def); use; use++) {
                if(!AddToWorklist(worklist, use.def()))
                    return false;
            }
        }
        iters++;
        if (iters >= numBlocks * 100)
            return false;
    }
    // Cleanup (in case we stopped due to MAX_ITERS)
    for(size_t i = 0; i < worklist.length(); i++)
        worklist[i]->setNotInWorklist();


#ifdef DEBUG
    for (ReversePostorderIterator block(graph_.rpoBegin()); block != graph_.rpoEnd(); block++) {
        for (MDefinitionIterator iter(*block); iter; iter++) {
            MDefinition *def = *iter;
            SpewRange(def);
            JS_ASSERT(def->range()->lower() <= def->range()->upper());
            JS_ASSERT(!def->isInWorklist());
        }
    }
#endif
    return true;
}
// OSR fixups serve the purpose of representing the non-OSR entry into a loop
// when the only real entry is an OSR entry into the middle. However, if the
// entry into the middle is subsequently folded away, the loop may actually
// have become unreachable. Mark-and-sweep all blocks to remove all such code.
bool ValueNumberer::cleanupOSRFixups()
{
    // Mark.
    Vector<MBasicBlock*, 0, JitAllocPolicy> worklist(graph_.alloc());
    unsigned numMarked = 2;
    graph_.entryBlock()->mark();
    graph_.osrBlock()->mark();
    if (!worklist.append(graph_.entryBlock()) || !worklist.append(graph_.osrBlock()))
        return false;
    while (!worklist.empty()) {
        MBasicBlock* block = worklist.popCopy();
        for (size_t i = 0, e = block->numSuccessors(); i != e; ++i) {
            MBasicBlock* succ = block->getSuccessor(i);
            if (!succ->isMarked()) {
                ++numMarked;
                succ->mark();
                if (!worklist.append(succ))
                    return false;
            } else if (succ->isLoopHeader() &&
                       succ->loopPredecessor() == block &&
                       succ->numPredecessors() == 3)
            {
                // Unmark fixup blocks if the loop predecessor is marked after
                // the loop header.
                succ->getPredecessor(1)->unmarkUnchecked();
            }
        }

        // OSR fixup blocks are needed if and only if the loop header is
        // reachable from its backedge (via the OSR block) and not from its
        // original loop predecessor.
        //
        // Thus OSR fixup blocks are removed if the loop header is not
        // reachable, or if the loop header is reachable from both its backedge
        // and its original loop predecessor.
        if (block->isLoopHeader()) {
            MBasicBlock* maybeFixupBlock = nullptr;
            if (block->numPredecessors() == 2) {
                maybeFixupBlock = block->getPredecessor(0);
            } else {
                MOZ_ASSERT(block->numPredecessors() == 3);
                if (!block->loopPredecessor()->isMarked())
                    maybeFixupBlock = block->getPredecessor(1);
            }

            if (maybeFixupBlock &&
                !maybeFixupBlock->isMarked() &&
                maybeFixupBlock->numPredecessors() == 0)
            {
                MOZ_ASSERT(maybeFixupBlock->numSuccessors() == 1,
                           "OSR fixup block should have exactly one successor");
                MOZ_ASSERT(maybeFixupBlock != graph_.entryBlock(),
                           "OSR fixup block shouldn't be the entry block");
                MOZ_ASSERT(maybeFixupBlock != graph_.osrBlock(),
                           "OSR fixup block shouldn't be the OSR entry block");
                maybeFixupBlock->mark();
            }
        }
    }

    // And sweep.
    return RemoveUnmarkedBlocks(mir_, graph_, numMarked);
}