Example #1
0
static DecodeStatus DecodeMSA128Mem(MCInst &Inst, unsigned Insn,
                                    uint64_t Address, const void *Decoder) {
  int Offset = SignExtend32<10>(fieldFromInstruction(Insn, 16, 10));
  unsigned Reg = fieldFromInstruction(Insn, 6, 5);
  unsigned Base = fieldFromInstruction(Insn, 11, 5);

  Reg = getReg(Decoder, Mips::MSA128BRegClassID, Reg);
  Base = getReg(Decoder, Mips::GPR32RegClassID, Base);

  Inst.addOperand(MCOperand::CreateReg(Reg));
  Inst.addOperand(MCOperand::CreateReg(Base));

  // The immediate field of an LD/ST instruction is scaled which means it must
  // be multiplied (when decoding) by the size (in bytes) of the instructions'
  // data format.
  // .b - 1 byte
  // .h - 2 bytes
  // .w - 4 bytes
  // .d - 8 bytes
  switch(Inst.getOpcode())
  {
  default:
    assert (0 && "Unexpected instruction");
    return MCDisassembler::Fail;
    break;
  case Mips::LD_B:
  case Mips::ST_B:
    Inst.addOperand(MCOperand::CreateImm(Offset));
    break;
  case Mips::LD_H:
  case Mips::ST_H:
    Inst.addOperand(MCOperand::CreateImm(Offset << 1));
    break;
  case Mips::LD_W:
  case Mips::ST_W:
    Inst.addOperand(MCOperand::CreateImm(Offset << 2));
    break;
  case Mips::LD_D:
  case Mips::ST_D:
    Inst.addOperand(MCOperand::CreateImm(Offset << 3));
    break;
  }

  return MCDisassembler::Success;
}
/// printMachineInstruction -- Print out a single Hexagon MI in Darwin syntax to
/// the current output stream.
///
void HexagonAsmPrinter::EmitInstruction(const MachineInstr *MI) {
  MCInst MCB;
  MCB.setOpcode(Hexagon::BUNDLE);
  MCB.addOperand(MCOperand::createImm(0));

  if (MI->isBundle()) {
    const MachineBasicBlock* MBB = MI->getParent();
    MachineBasicBlock::const_instr_iterator MII = MI;
    unsigned IgnoreCount = 0;

    for (++MII; MII != MBB->end() && MII->isInsideBundle(); ++MII) {
      if (MII->getOpcode() == TargetOpcode::DBG_VALUE ||
          MII->getOpcode() == TargetOpcode::IMPLICIT_DEF)
        ++IgnoreCount;
      else {
        HexagonLowerToMC(MII, MCB, *this);
      }
    }
  }
  else {
    HexagonLowerToMC(MI, MCB, *this);
    HexagonMCInstrInfo::padEndloop(MCB);
  }
  // Examine the packet and try to find instructions that can be converted
  // to compounds.
  HexagonMCInstrInfo::tryCompound(*Subtarget->getInstrInfo(),
                                  OutStreamer->getContext(), MCB);
  // Examine the packet and convert pairs of instructions to duplex
  // instructions when possible.
  SmallVector<DuplexCandidate, 8> possibleDuplexes;
  possibleDuplexes = HexagonMCInstrInfo::getDuplexPossibilties(
      *Subtarget->getInstrInfo(), MCB);
  HexagonMCShuffle(*Subtarget->getInstrInfo(), *Subtarget,
                   OutStreamer->getContext(), MCB, possibleDuplexes);
  EmitToStreamer(*OutStreamer, MCB);
}
Example #3
0
/// LowerMOffset - Lower an 'moffset' form of an instruction, which just has a
/// imm operand, to having "rm" or "mr" operands with the offset in the disp
/// field.
static void LowerMOffset(MCInst &Inst, unsigned Opc, unsigned RegNo,
                         bool isMR) {
  MCOperand Disp = Inst.getOperand(0);

  // Start over with an empty instruction.
  Inst = MCInst();
  Inst.setOpcode(Opc);
  
  if (!isMR)
    Inst.addOperand(MCOperand::CreateReg(RegNo));
  
  // Add the mem operand.
  Inst.addOperand(MCOperand::CreateReg(0));  // Segment
  Inst.addOperand(MCOperand::CreateImm(1));  // Scale
  Inst.addOperand(MCOperand::CreateReg(0));  // IndexReg
  Inst.addOperand(Disp);                     // Displacement
  Inst.addOperand(MCOperand::CreateReg(0));  // BaseReg
 
  if (isMR)
    Inst.addOperand(MCOperand::CreateReg(RegNo));
}
Example #4
0
static void EmitIndirectBranch(const MCOperand &Op, bool Is64Bit, bool IsCall,
                               MCStreamer &Out) {
  const bool UseZeroBasedSandbox = FlagUseZeroBasedSandbox;
  const int JmpMask = FlagSfiX86JmpMask;
  const unsigned Reg32 = Op.getReg();
  const unsigned Reg64 = getX86SubSuperRegister_(Reg32, MVT::i64);

  Out.EmitBundleLock(IsCall);

  MCInst ANDInst;
  ANDInst.setOpcode(X86::AND32ri8);
  ANDInst.addOperand(MCOperand::CreateReg(Reg32));
  ANDInst.addOperand(MCOperand::CreateReg(Reg32));
  ANDInst.addOperand(MCOperand::CreateImm(JmpMask));
  Out.EmitInstruction(ANDInst);

  if (Is64Bit && !UseZeroBasedSandbox) {
    MCInst InstADD;
    InstADD.setOpcode(X86::ADD64rr);
    InstADD.addOperand(MCOperand::CreateReg(Reg64));
    InstADD.addOperand(MCOperand::CreateReg(Reg64));
    InstADD.addOperand(MCOperand::CreateReg(X86::R15));
    Out.EmitInstruction(InstADD);
  }

  if (IsCall) {
    MCInst CALLInst;
    CALLInst.setOpcode(Is64Bit ? X86::CALL64r : X86::CALL32r);
    CALLInst.addOperand(MCOperand::CreateReg(Is64Bit ? Reg64 : Reg32));
    Out.EmitInstruction(CALLInst);
  } else {
    MCInst JMPInst;
    JMPInst.setOpcode(Is64Bit ? X86::JMP64r : X86::JMP32r);
    JMPInst.addOperand(MCOperand::CreateReg(Is64Bit ? Reg64 : Reg32));
    Out.EmitInstruction(JMPInst);
  }
  Out.EmitBundleUnlock();
}
Example #5
0
/// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to
/// the current output stream.
///
void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
  MCInst TmpInst;
  bool isPPC64 = Subtarget.isPPC64();
  
  // Lower multi-instruction pseudo operations.
  switch (MI->getOpcode()) {
  default: break;
  case TargetOpcode::DBG_VALUE:
    llvm_unreachable("Should be handled target independently");
  case PPC::MovePCtoLR:
  case PPC::MovePCtoLR8: {
    // Transform %LR = MovePCtoLR
    // Into this, where the label is the PIC base: 
    //     bl L1$pb
    // L1$pb:
    MCSymbol *PICBase = MF->getPICBaseSymbol();
    
    // Emit the 'bl'.
    EmitToStreamer(OutStreamer, MCInstBuilder(PPC::BL)
      // FIXME: We would like an efficient form for this, so we don't have to do
      // a lot of extra uniquing.
      .addExpr(MCSymbolRefExpr::Create(PICBase, OutContext)));
    
    // Emit the label.
    OutStreamer.EmitLabel(PICBase);
    return;
  }
  case PPC::GetGBRO: {
    // Get the offset from the GOT Base Register to the GOT
    LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());
    MCSymbol *PICOffset = MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol();
    TmpInst.setOpcode(PPC::LWZ);
    const MCExpr *Exp =
      MCSymbolRefExpr::Create(PICOffset, MCSymbolRefExpr::VK_None, OutContext);
    const MCExpr *PB =
      MCSymbolRefExpr::Create(MF->getPICBaseSymbol(),
                              MCSymbolRefExpr::VK_None,
                              OutContext);
    const MCOperand MO = TmpInst.getOperand(1);
    TmpInst.getOperand(1) = MCOperand::CreateExpr(MCBinaryExpr::CreateSub(Exp,
                                                                          PB,
                                                                          OutContext));
    TmpInst.addOperand(MO);
    EmitToStreamer(OutStreamer, TmpInst);
    return;
  }
  case PPC::UpdateGBR: {
    // Update the GOT Base Register to point to the GOT.  It may be possible to
    // merge this with the PPC::GetGBRO, doing it all in one step.
    LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());
    TmpInst.setOpcode(PPC::ADD4);
    TmpInst.addOperand(TmpInst.getOperand(0));
    EmitToStreamer(OutStreamer, TmpInst);
    return;
  }
  case PPC::LWZtoc: {
    // Transform %X3 = LWZtoc <ga:@min1>, %X2
    LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());

    // Change the opcode to LWZ, and the global address operand to be a
    // reference to the GOT entry we will synthesize later.
    TmpInst.setOpcode(PPC::LWZ);
    const MachineOperand &MO = MI->getOperand(1);

    // Map symbol -> label of TOC entry
    assert(MO.isGlobal() || MO.isCPI() || MO.isJTI());
    MCSymbol *MOSymbol = nullptr;
    if (MO.isGlobal())
      MOSymbol = getSymbol(MO.getGlobal());
    else if (MO.isCPI())
      MOSymbol = GetCPISymbol(MO.getIndex());
    else if (MO.isJTI())
      MOSymbol = GetJTISymbol(MO.getIndex());

    MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol);

    const MCExpr *Exp =
      MCSymbolRefExpr::Create(TOCEntry, MCSymbolRefExpr::VK_None,
                              OutContext);
    const MCExpr *PB =
      MCSymbolRefExpr::Create(OutContext.GetOrCreateSymbol(Twine(".L.TOC.")),
                                                           OutContext);
    Exp = MCBinaryExpr::CreateSub(Exp, PB, OutContext);
    TmpInst.getOperand(1) = MCOperand::CreateExpr(Exp);
    EmitToStreamer(OutStreamer, TmpInst);
    return;
  }
  case PPC::LDtocJTI:
  case PPC::LDtocCPT:
  case PPC::LDtoc: {
    // Transform %X3 = LDtoc <ga:@min1>, %X2
    LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());

    // Change the opcode to LD, and the global address operand to be a
    // reference to the TOC entry we will synthesize later.
    TmpInst.setOpcode(PPC::LD);
    const MachineOperand &MO = MI->getOperand(1);

    // Map symbol -> label of TOC entry
    assert(MO.isGlobal() || MO.isCPI() || MO.isJTI());
    MCSymbol *MOSymbol = nullptr;
    if (MO.isGlobal())
      MOSymbol = getSymbol(MO.getGlobal());
    else if (MO.isCPI())
      MOSymbol = GetCPISymbol(MO.getIndex());
    else if (MO.isJTI())
      MOSymbol = GetJTISymbol(MO.getIndex());

    MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol);

    const MCExpr *Exp =
      MCSymbolRefExpr::Create(TOCEntry, MCSymbolRefExpr::VK_PPC_TOC,
                              OutContext);
    TmpInst.getOperand(1) = MCOperand::CreateExpr(Exp);
    EmitToStreamer(OutStreamer, TmpInst);
    return;
  }
      
  case PPC::ADDIStocHA: {
    // Transform %Xd = ADDIStocHA %X2, <ga:@sym>
    LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());

    // Change the opcode to ADDIS8.  If the global address is external, has
    // common linkage, is a non-local function address, or is a jump table
    // address, then generate a TOC entry and reference that.  Otherwise
    // reference the symbol directly.
    TmpInst.setOpcode(PPC::ADDIS8);
    const MachineOperand &MO = MI->getOperand(2);
    assert((MO.isGlobal() || MO.isCPI() || MO.isJTI()) &&
           "Invalid operand for ADDIStocHA!");
    MCSymbol *MOSymbol = nullptr;
    bool IsExternal = false;
    bool IsNonLocalFunction = false;
    bool IsCommon = false;
    bool IsAvailExt = false;

    if (MO.isGlobal()) {
      const GlobalValue *GV = MO.getGlobal();
      MOSymbol = getSymbol(GV);
      IsExternal = GV->isDeclaration();
      IsCommon = GV->hasCommonLinkage();
      IsNonLocalFunction = GV->getType()->getElementType()->isFunctionTy() &&
        (GV->isDeclaration() || GV->isWeakForLinker());
      IsAvailExt = GV->hasAvailableExternallyLinkage();
    } else if (MO.isCPI())
      MOSymbol = GetCPISymbol(MO.getIndex());
    else if (MO.isJTI())
      MOSymbol = GetJTISymbol(MO.getIndex());

    if (IsExternal || IsNonLocalFunction || IsCommon || IsAvailExt ||
        MO.isJTI() || TM.getCodeModel() == CodeModel::Large)
      MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);

    const MCExpr *Exp =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_TOC_HA,
                              OutContext);
    TmpInst.getOperand(2) = MCOperand::CreateExpr(Exp);
    EmitToStreamer(OutStreamer, TmpInst);
    return;
  }
  case PPC::LDtocL: {
    // Transform %Xd = LDtocL <ga:@sym>, %Xs
    LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());

    // Change the opcode to LD.  If the global address is external, has
    // common linkage, or is a jump table address, then reference the
    // associated TOC entry.  Otherwise reference the symbol directly.
    TmpInst.setOpcode(PPC::LD);
    const MachineOperand &MO = MI->getOperand(1);
    assert((MO.isGlobal() || MO.isJTI() || MO.isCPI()) &&
           "Invalid operand for LDtocL!");
    MCSymbol *MOSymbol = nullptr;

    if (MO.isJTI())
      MOSymbol = lookUpOrCreateTOCEntry(GetJTISymbol(MO.getIndex()));
    else if (MO.isCPI()) {
      MOSymbol = GetCPISymbol(MO.getIndex());
      if (TM.getCodeModel() == CodeModel::Large)
        MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);
    }
    else if (MO.isGlobal()) {
      const GlobalValue *GValue = MO.getGlobal();
      MOSymbol = getSymbol(GValue);
      if (GValue->getType()->getElementType()->isFunctionTy() ||
          GValue->isDeclaration() || GValue->hasCommonLinkage() ||
          GValue->hasAvailableExternallyLinkage() ||
          TM.getCodeModel() == CodeModel::Large)
        MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);
    }

    const MCExpr *Exp =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_TOC_LO,
                              OutContext);
    TmpInst.getOperand(1) = MCOperand::CreateExpr(Exp);
    EmitToStreamer(OutStreamer, TmpInst);
    return;
  }
  case PPC::ADDItocL: {
    // Transform %Xd = ADDItocL %Xs, <ga:@sym>
    LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());

    // Change the opcode to ADDI8.  If the global address is external, then
    // generate a TOC entry and reference that.  Otherwise reference the
    // symbol directly.
    TmpInst.setOpcode(PPC::ADDI8);
    const MachineOperand &MO = MI->getOperand(2);
    assert((MO.isGlobal() || MO.isCPI()) && "Invalid operand for ADDItocL");
    MCSymbol *MOSymbol = nullptr;
    bool IsExternal = false;
    bool IsNonLocalFunction = false;

    if (MO.isGlobal()) {
      const GlobalValue *GV = MO.getGlobal();
      MOSymbol = getSymbol(GV);
      IsExternal = GV->isDeclaration();
      IsNonLocalFunction = GV->getType()->getElementType()->isFunctionTy() &&
        (GV->isDeclaration() || GV->isWeakForLinker());
    } else if (MO.isCPI())
      MOSymbol = GetCPISymbol(MO.getIndex());

    if (IsNonLocalFunction || IsExternal ||
        TM.getCodeModel() == CodeModel::Large)
      MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);

    const MCExpr *Exp =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_TOC_LO,
                              OutContext);
    TmpInst.getOperand(2) = MCOperand::CreateExpr(Exp);
    EmitToStreamer(OutStreamer, TmpInst);
    return;
  }
  case PPC::ADDISgotTprelHA: {
    // Transform: %Xd = ADDISgotTprelHA %X2, <ga:@sym>
    // Into:      %Xd = ADDIS8 %X2, sym@got@tlsgd@ha
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = getSymbol(GValue);
    const MCExpr *SymGotTprel =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA,
                              OutContext);
    EmitToStreamer(OutStreamer, MCInstBuilder(PPC::ADDIS8)
                                .addReg(MI->getOperand(0).getReg())
                                .addReg(PPC::X2)
                                .addExpr(SymGotTprel));
    return;
  }
  case PPC::LDgotTprelL:
  case PPC::LDgotTprelL32: {
    // Transform %Xd = LDgotTprelL <ga:@sym>, %Xs
    LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());

    // Change the opcode to LD.
    TmpInst.setOpcode(isPPC64 ? PPC::LD : PPC::LWZ);
    const MachineOperand &MO = MI->getOperand(1);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = getSymbol(GValue);
    const MCExpr *Exp =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO,
                              OutContext);
    TmpInst.getOperand(1) = MCOperand::CreateExpr(Exp);
    EmitToStreamer(OutStreamer, TmpInst);
    return;
  }

  case PPC::PPC32GOT: {
    MCSymbol *GOTSymbol = OutContext.GetOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
    const MCExpr *SymGotTlsL =
      MCSymbolRefExpr::Create(GOTSymbol, MCSymbolRefExpr::VK_PPC_LO,
                              OutContext);
    const MCExpr *SymGotTlsHA =                               
      MCSymbolRefExpr::Create(GOTSymbol, MCSymbolRefExpr::VK_PPC_HA,
                              OutContext);
    EmitToStreamer(OutStreamer, MCInstBuilder(PPC::LI)
                                .addReg(MI->getOperand(0).getReg())
                                .addExpr(SymGotTlsL));
    EmitToStreamer(OutStreamer, MCInstBuilder(PPC::ADDIS)
                                .addReg(MI->getOperand(0).getReg())
                                .addReg(MI->getOperand(0).getReg())
                                .addExpr(SymGotTlsHA));
    return;
  }
  case PPC::ADDIStlsgdHA: {
    // Transform: %Xd = ADDIStlsgdHA %X2, <ga:@sym>
    // Into:      %Xd = ADDIS8 %X2, sym@got@tlsgd@ha
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = getSymbol(GValue);
    const MCExpr *SymGotTlsGD =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA,
                              OutContext);
    EmitToStreamer(OutStreamer, MCInstBuilder(PPC::ADDIS8)
                                .addReg(MI->getOperand(0).getReg())
                                .addReg(PPC::X2)
                                .addExpr(SymGotTlsGD));
    return;
  }
  case PPC::ADDItlsgdL: {
    // Transform: %Xd = ADDItlsgdL %Xs, <ga:@sym>
    // Into:      %Xd = ADDI8 %Xs, sym@got@tlsgd@l
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = getSymbol(GValue);
    const MCExpr *SymGotTlsGD =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO,
                              OutContext);
    EmitToStreamer(OutStreamer, MCInstBuilder(PPC::ADDI8)
                                .addReg(MI->getOperand(0).getReg())
                                .addReg(MI->getOperand(1).getReg())
                                .addExpr(SymGotTlsGD));
    return;
  }
  case PPC::GETtlsADDR: {
    // Transform: %X3 = GETtlsADDR %X3, <ga:@sym>
    // Into:      BL8_NOP_TLS __tls_get_addr(sym@tlsgd)
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");

    StringRef Name = "__tls_get_addr";
    MCSymbol *TlsGetAddr = OutContext.GetOrCreateSymbol(Name);
    const MCSymbolRefExpr *TlsRef = 
      MCSymbolRefExpr::Create(TlsGetAddr, MCSymbolRefExpr::VK_None, OutContext);
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = getSymbol(GValue);
    const MCExpr *SymVar =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_TLSGD,
                              OutContext);
    EmitToStreamer(OutStreamer, MCInstBuilder(PPC::BL8_NOP_TLS)
                                .addExpr(TlsRef)
                                .addExpr(SymVar));
    return;
  }
  case PPC::ADDIStlsldHA: {
    // Transform: %Xd = ADDIStlsldHA %X2, <ga:@sym>
    // Into:      %Xd = ADDIS8 %X2, sym@got@tlsld@ha
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = getSymbol(GValue);
    const MCExpr *SymGotTlsLD =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA,
                              OutContext);
    EmitToStreamer(OutStreamer, MCInstBuilder(PPC::ADDIS8)
                                .addReg(MI->getOperand(0).getReg())
                                .addReg(PPC::X2)
                                .addExpr(SymGotTlsLD));
    return;
  }
  case PPC::ADDItlsldL: {
    // Transform: %Xd = ADDItlsldL %Xs, <ga:@sym>
    // Into:      %Xd = ADDI8 %Xs, sym@got@tlsld@l
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = getSymbol(GValue);
    const MCExpr *SymGotTlsLD =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO,
                              OutContext);
    EmitToStreamer(OutStreamer, MCInstBuilder(PPC::ADDI8)
                                .addReg(MI->getOperand(0).getReg())
                                .addReg(MI->getOperand(1).getReg())
                                .addExpr(SymGotTlsLD));
    return;
  }
  case PPC::GETtlsldADDR: {
    // Transform: %X3 = GETtlsldADDR %X3, <ga:@sym>
    // Into:      BL8_NOP_TLS __tls_get_addr(sym@tlsld)
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");

    StringRef Name = "__tls_get_addr";
    MCSymbol *TlsGetAddr = OutContext.GetOrCreateSymbol(Name);
    const MCSymbolRefExpr *TlsRef = 
      MCSymbolRefExpr::Create(TlsGetAddr, MCSymbolRefExpr::VK_None, OutContext);
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = getSymbol(GValue);
    const MCExpr *SymVar =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_TLSLD,
                              OutContext);
    EmitToStreamer(OutStreamer, MCInstBuilder(PPC::BL8_NOP_TLS)
                                .addExpr(TlsRef)
                                .addExpr(SymVar));
    return;
  }
  case PPC::ADDISdtprelHA: {
    // Transform: %Xd = ADDISdtprelHA %X3, <ga:@sym>
    // Into:      %Xd = ADDIS8 %X3, sym@dtprel@ha
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = getSymbol(GValue);
    const MCExpr *SymDtprel =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_HA,
                              OutContext);
    EmitToStreamer(OutStreamer, MCInstBuilder(PPC::ADDIS8)
                                .addReg(MI->getOperand(0).getReg())
                                .addReg(PPC::X3)
                                .addExpr(SymDtprel));
    return;
  }
  case PPC::ADDIdtprelL: {
    // Transform: %Xd = ADDIdtprelL %Xs, <ga:@sym>
    // Into:      %Xd = ADDI8 %Xs, sym@dtprel@l
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = getSymbol(GValue);
    const MCExpr *SymDtprel =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_LO,
                              OutContext);
    EmitToStreamer(OutStreamer, MCInstBuilder(PPC::ADDI8)
                                .addReg(MI->getOperand(0).getReg())
                                .addReg(MI->getOperand(1).getReg())
                                .addExpr(SymDtprel));
    return;
  }
  case PPC::MFOCRF:
  case PPC::MFOCRF8:
    if (!Subtarget.hasMFOCRF()) {
      // Transform: %R3 = MFOCRF %CR7
      // Into:      %R3 = MFCR   ;; cr7
      unsigned NewOpcode =
        MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8;
      OutStreamer.AddComment(PPCInstPrinter::
                             getRegisterName(MI->getOperand(1).getReg()));
      EmitToStreamer(OutStreamer, MCInstBuilder(NewOpcode)
                                  .addReg(MI->getOperand(0).getReg()));
      return;
    }
    break;
  case PPC::MTOCRF:
  case PPC::MTOCRF8:
    if (!Subtarget.hasMFOCRF()) {
      // Transform: %CR7 = MTOCRF %R3
      // Into:      MTCRF mask, %R3 ;; cr7
      unsigned NewOpcode =
        MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8;
      unsigned Mask = 0x80 >> OutContext.getRegisterInfo()
                              ->getEncodingValue(MI->getOperand(0).getReg());
      OutStreamer.AddComment(PPCInstPrinter::
                             getRegisterName(MI->getOperand(0).getReg()));
      EmitToStreamer(OutStreamer, MCInstBuilder(NewOpcode)
                                  .addImm(Mask)
                                  .addReg(MI->getOperand(1).getReg()));
      return;
    }
    break;
  case PPC::LD:
  case PPC::STD:
  case PPC::LWA_32:
  case PPC::LWA: {
    // Verify alignment is legal, so we don't create relocations
    // that can't be supported.
    // FIXME:  This test is currently disabled for Darwin.  The test
    // suite shows a handful of test cases that fail this check for
    // Darwin.  Those need to be investigated before this sanity test
    // can be enabled for those subtargets.
    if (!Subtarget.isDarwin()) {
      unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1;
      const MachineOperand &MO = MI->getOperand(OpNum);
      if (MO.isGlobal() && MO.getGlobal()->getAlignment() < 4)
        llvm_unreachable("Global must be word-aligned for LD, STD, LWA!");
    }
    // Now process the instruction normally.
    break;
  }
  }
Example #6
0
static DecodeStatus decodeRegisterClass(MCInst &Inst, uint64_t RegNo,
                                        const unsigned (&Regs)[N]) {
  assert(RegNo < N && "Invalid register number");
  Inst.addOperand(MCOperand::createReg(Regs[RegNo]));
  return MCDisassembler::Success;
}
Example #7
0
void HexagonAsmPrinter::HexagonProcessInstruction(MCInst &Inst,
                                                  const MachineInstr &MI) {
  MCInst &MappedInst = static_cast <MCInst &>(Inst);
  const MCRegisterInfo *RI = OutStreamer->getContext().getRegisterInfo();

  switch (Inst.getOpcode()) {
  default: return;

  case Hexagon::A2_iconst: {
    Inst.setOpcode(Hexagon::A2_addi);
    MCOperand Reg = Inst.getOperand(0);
    MCOperand S16 = Inst.getOperand(1);
    HexagonMCInstrInfo::setMustNotExtend(*S16.getExpr());
    HexagonMCInstrInfo::setS23_2_reloc(*S16.getExpr());
    Inst.clear();
    Inst.addOperand(Reg);
    Inst.addOperand(MCOperand::createReg(Hexagon::R0));
    Inst.addOperand(S16);
    break;
  }

  // "$dst = CONST64(#$src1)",
  case Hexagon::CONST64:
    if (!OutStreamer->hasRawTextSupport()) {
      const MCOperand &Imm = MappedInst.getOperand(1);
      MCSectionSubPair Current = OutStreamer->getCurrentSection();

      MCSymbol *Sym = smallData(*this, MI, *OutStreamer, Imm, 8);

      OutStreamer->SwitchSection(Current.first, Current.second);
      MCInst TmpInst;
      MCOperand &Reg = MappedInst.getOperand(0);
      TmpInst.setOpcode(Hexagon::L2_loadrdgp);
      TmpInst.addOperand(Reg);
      TmpInst.addOperand(MCOperand::createExpr(
                         MCSymbolRefExpr::create(Sym, OutContext)));
      MappedInst = TmpInst;

    }
    break;
  case Hexagon::CONST32:
    if (!OutStreamer->hasRawTextSupport()) {
      MCOperand &Imm = MappedInst.getOperand(1);
      MCSectionSubPair Current = OutStreamer->getCurrentSection();
      MCSymbol *Sym = smallData(*this, MI, *OutStreamer, Imm, 4);
      OutStreamer->SwitchSection(Current.first, Current.second);
      MCInst TmpInst;
      MCOperand &Reg = MappedInst.getOperand(0);
      TmpInst.setOpcode(Hexagon::L2_loadrigp);
      TmpInst.addOperand(Reg);
      TmpInst.addOperand(MCOperand::createExpr(HexagonMCExpr::create(
          MCSymbolRefExpr::create(Sym, OutContext), OutContext)));
      MappedInst = TmpInst;
    }
    break;

  // C2_pxfer_map maps to C2_or instruction. Though, it's possible to use
  // C2_or during instruction selection itself but it results
  // into suboptimal code.
  case Hexagon::C2_pxfer_map: {
    MCOperand &Ps = Inst.getOperand(1);
    MappedInst.setOpcode(Hexagon::C2_or);
    MappedInst.addOperand(Ps);
    return;
  }

  // Vector reduce complex multiply by scalar, Rt & 1 map to :hi else :lo
  // The insn is mapped from the 4 operand to the 3 operand raw form taking
  // 3 register pairs.
  case Hexagon::M2_vrcmpys_acc_s1: {
    MCOperand &Rt = Inst.getOperand(3);
    assert (Rt.isReg() && "Expected register and none was found");
    unsigned Reg = RI->getEncodingValue(Rt.getReg());
    if (Reg & 1)
      MappedInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_h);
    else
      MappedInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_l);
    Rt.setReg(getHexagonRegisterPair(Rt.getReg(), RI));
    return;
  }
  case Hexagon::M2_vrcmpys_s1: {
    MCOperand &Rt = Inst.getOperand(2);
    assert (Rt.isReg() && "Expected register and none was found");
    unsigned Reg = RI->getEncodingValue(Rt.getReg());
    if (Reg & 1)
      MappedInst.setOpcode(Hexagon::M2_vrcmpys_s1_h);
    else
      MappedInst.setOpcode(Hexagon::M2_vrcmpys_s1_l);
    Rt.setReg(getHexagonRegisterPair(Rt.getReg(), RI));
    return;
  }

  case Hexagon::M2_vrcmpys_s1rp: {
    MCOperand &Rt = Inst.getOperand(2);
    assert (Rt.isReg() && "Expected register and none was found");
    unsigned Reg = RI->getEncodingValue(Rt.getReg());
    if (Reg & 1)
      MappedInst.setOpcode(Hexagon::M2_vrcmpys_s1rp_h);
    else
      MappedInst.setOpcode(Hexagon::M2_vrcmpys_s1rp_l);
    Rt.setReg(getHexagonRegisterPair(Rt.getReg(), RI));
    return;
  }

  case Hexagon::A4_boundscheck: {
    MCOperand &Rs = Inst.getOperand(1);
    assert (Rs.isReg() && "Expected register and none was found");
    unsigned Reg = RI->getEncodingValue(Rs.getReg());
    if (Reg & 1) // Odd mapped to raw:hi, regpair is rodd:odd-1, like r3:2
      MappedInst.setOpcode(Hexagon::A4_boundscheck_hi);
    else         // raw:lo
      MappedInst.setOpcode(Hexagon::A4_boundscheck_lo);
    Rs.setReg(getHexagonRegisterPair(Rs.getReg(), RI));
    return;
  }
  case Hexagon::S5_asrhub_rnd_sat_goodsyntax: {
    MCOperand &MO = MappedInst.getOperand(2);
    int64_t Imm;
    MCExpr const *Expr = MO.getExpr();
    bool Success = Expr->evaluateAsAbsolute(Imm);
    assert (Success && "Expected immediate and none was found");
    (void)Success;
    MCInst TmpInst;
    if (Imm == 0) {
      TmpInst.setOpcode(Hexagon::S2_vsathub);
      TmpInst.addOperand(MappedInst.getOperand(0));
      TmpInst.addOperand(MappedInst.getOperand(1));
      MappedInst = TmpInst;
      return;
    }
    TmpInst.setOpcode(Hexagon::S5_asrhub_rnd_sat);
    TmpInst.addOperand(MappedInst.getOperand(0));
    TmpInst.addOperand(MappedInst.getOperand(1));
    const MCExpr *One = MCConstantExpr::create(1, OutContext);
    const MCExpr *Sub = MCBinaryExpr::createSub(Expr, One, OutContext);
    TmpInst.addOperand(
        MCOperand::createExpr(HexagonMCExpr::create(Sub, OutContext)));
    MappedInst = TmpInst;
    return;
  }
  case Hexagon::S5_vasrhrnd_goodsyntax:
  case Hexagon::S2_asr_i_p_rnd_goodsyntax: {
    MCOperand &MO2 = MappedInst.getOperand(2);
    MCExpr const *Expr = MO2.getExpr();
    int64_t Imm;
    bool Success = Expr->evaluateAsAbsolute(Imm);
    assert (Success && "Expected immediate and none was found");
    (void)Success;
    MCInst TmpInst;
    if (Imm == 0) {
      TmpInst.setOpcode(Hexagon::A2_combinew);
      TmpInst.addOperand(MappedInst.getOperand(0));
      MCOperand &MO1 = MappedInst.getOperand(1);
      unsigned High = RI->getSubReg(MO1.getReg(), Hexagon::subreg_hireg);
      unsigned Low = RI->getSubReg(MO1.getReg(), Hexagon::subreg_loreg);
      // Add a new operand for the second register in the pair.
      TmpInst.addOperand(MCOperand::createReg(High));
      TmpInst.addOperand(MCOperand::createReg(Low));
      MappedInst = TmpInst;
      return;
    }

    if (Inst.getOpcode() == Hexagon::S2_asr_i_p_rnd_goodsyntax)
      TmpInst.setOpcode(Hexagon::S2_asr_i_p_rnd);
    else
      TmpInst.setOpcode(Hexagon::S5_vasrhrnd);
    TmpInst.addOperand(MappedInst.getOperand(0));
    TmpInst.addOperand(MappedInst.getOperand(1));
    const MCExpr *One = MCConstantExpr::create(1, OutContext);
    const MCExpr *Sub = MCBinaryExpr::createSub(Expr, One, OutContext);
    TmpInst.addOperand(
        MCOperand::createExpr(HexagonMCExpr::create(Sub, OutContext)));
    MappedInst = TmpInst;
    return;
  }
  // if ("#u5==0") Assembler mapped to: "Rd=Rs"; else Rd=asr(Rs,#u5-1):rnd
  case Hexagon::S2_asr_i_r_rnd_goodsyntax: {
    MCOperand &MO = Inst.getOperand(2);
    MCExpr const *Expr = MO.getExpr();
    int64_t Imm;
    bool Success = Expr->evaluateAsAbsolute(Imm);
    assert (Success && "Expected immediate and none was found");
    (void)Success;
    MCInst TmpInst;
    if (Imm == 0) {
      TmpInst.setOpcode(Hexagon::A2_tfr);
      TmpInst.addOperand(MappedInst.getOperand(0));
      TmpInst.addOperand(MappedInst.getOperand(1));
      MappedInst = TmpInst;
      return;
    }
    TmpInst.setOpcode(Hexagon::S2_asr_i_r_rnd);
    TmpInst.addOperand(MappedInst.getOperand(0));
    TmpInst.addOperand(MappedInst.getOperand(1));
    const MCExpr *One = MCConstantExpr::create(1, OutContext);
    const MCExpr *Sub = MCBinaryExpr::createSub(Expr, One, OutContext);
    TmpInst.addOperand(
        MCOperand::createExpr(HexagonMCExpr::create(Sub, OutContext)));
    MappedInst = TmpInst;
    return;
  }

  // Translate a "$Rdd = #imm" to "$Rdd = combine(#[-1,0], #imm)"
  case Hexagon::A2_tfrpi: {
    MCInst TmpInst;
    MCOperand &Rdd = MappedInst.getOperand(0);
    MCOperand &MO = MappedInst.getOperand(1);

    TmpInst.setOpcode(Hexagon::A2_combineii);
    TmpInst.addOperand(Rdd);
    int64_t Imm;
    bool Success = MO.getExpr()->evaluateAsAbsolute(Imm);
    if (Success && Imm < 0) {
      const MCExpr *MOne = MCConstantExpr::create(-1, OutContext);
      TmpInst.addOperand(MCOperand::createExpr(HexagonMCExpr::create(MOne, OutContext)));
    } else {
      const MCExpr *Zero = MCConstantExpr::create(0, OutContext);
      TmpInst.addOperand(MCOperand::createExpr(HexagonMCExpr::create(Zero, OutContext)));
    }
    TmpInst.addOperand(MO);
    MappedInst = TmpInst;
    return;
  }
  // Translate a "$Rdd = $Rss" to "$Rdd = combine($Rs, $Rt)"
  case Hexagon::A2_tfrp: {
    MCOperand &MO = MappedInst.getOperand(1);
    unsigned High = RI->getSubReg(MO.getReg(), Hexagon::subreg_hireg);
    unsigned Low = RI->getSubReg(MO.getReg(), Hexagon::subreg_loreg);
    MO.setReg(High);
    // Add a new operand for the second register in the pair.
    MappedInst.addOperand(MCOperand::createReg(Low));
    MappedInst.setOpcode(Hexagon::A2_combinew);
    return;
  }

  case Hexagon::A2_tfrpt:
  case Hexagon::A2_tfrpf: {
    MCOperand &MO = MappedInst.getOperand(2);
    unsigned High = RI->getSubReg(MO.getReg(), Hexagon::subreg_hireg);
    unsigned Low = RI->getSubReg(MO.getReg(), Hexagon::subreg_loreg);
    MO.setReg(High);
    // Add a new operand for the second register in the pair.
    MappedInst.addOperand(MCOperand::createReg(Low));
    MappedInst.setOpcode((Inst.getOpcode() == Hexagon::A2_tfrpt)
                          ? Hexagon::C2_ccombinewt
                          : Hexagon::C2_ccombinewf);
    return;
  }
  case Hexagon::A2_tfrptnew:
  case Hexagon::A2_tfrpfnew: {
    MCOperand &MO = MappedInst.getOperand(2);
    unsigned High = RI->getSubReg(MO.getReg(), Hexagon::subreg_hireg);
    unsigned Low = RI->getSubReg(MO.getReg(), Hexagon::subreg_loreg);
    MO.setReg(High);
    // Add a new operand for the second register in the pair.
    MappedInst.addOperand(MCOperand::createReg(Low));
    MappedInst.setOpcode((Inst.getOpcode() == Hexagon::A2_tfrptnew)
                          ? Hexagon::C2_ccombinewnewt
                          : Hexagon::C2_ccombinewnewf);
    return;
  }

  case Hexagon::M2_mpysmi: {
    MCOperand &Imm = MappedInst.getOperand(2);
    MCExpr const *Expr = Imm.getExpr();
    int64_t Value;
    bool Success = Expr->evaluateAsAbsolute(Value);
    assert(Success);
    (void)Success;
    if (Value < 0 && Value > -256) {
      MappedInst.setOpcode(Hexagon::M2_mpysin);
      Imm.setExpr(HexagonMCExpr::create(
          MCUnaryExpr::createMinus(Expr, OutContext), OutContext));
    } else
      MappedInst.setOpcode(Hexagon::M2_mpysip);
    return;
  }

  case Hexagon::A2_addsp: {
    MCOperand &Rt = Inst.getOperand(1);
    assert (Rt.isReg() && "Expected register and none was found");
    unsigned Reg = RI->getEncodingValue(Rt.getReg());
    if (Reg & 1)
      MappedInst.setOpcode(Hexagon::A2_addsph);
    else
      MappedInst.setOpcode(Hexagon::A2_addspl);
    Rt.setReg(getHexagonRegisterPair(Rt.getReg(), RI));
    return;
  }
  case Hexagon::HEXAGON_V6_vd0_pseudo:
  case Hexagon::HEXAGON_V6_vd0_pseudo_128B: {
    MCInst TmpInst;
    assert (Inst.getOperand(0).isReg() &&
            "Expected register and none was found");

    TmpInst.setOpcode(Hexagon::V6_vxor);
    TmpInst.addOperand(Inst.getOperand(0));
    TmpInst.addOperand(Inst.getOperand(0));
    TmpInst.addOperand(Inst.getOperand(0));
    MappedInst = TmpInst;
    return;
  }

  }
}
Example #8
0
/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
void Thumb2InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
  NopInst.setOpcode(ARM::tNOP);
  NopInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
  NopInst.addOperand(MCOperand::CreateReg(0));
}
Example #9
0
/// LowerUnaryToTwoAddr - R = setb   -> R = sbb R, R
static void LowerUnaryToTwoAddr(MCInst &OutMI, unsigned NewOpc) {
  OutMI.setOpcode(NewOpc);
  OutMI.addOperand(OutMI.getOperand(0));
  OutMI.addOperand(OutMI.getOperand(0));
}
static void LowerTlsAddr(MCStreamer &OutStreamer,
                         X86MCInstLower &MCInstLowering,
                         const MachineInstr &MI,
                         const MCSubtargetInfo& STI) {

  bool is64Bits = MI.getOpcode() == X86::TLS_addr64 ||
                  MI.getOpcode() == X86::TLS_base_addr64;

  bool needsPadding = MI.getOpcode() == X86::TLS_addr64;

  MCContext &context = OutStreamer.getContext();

  if (needsPadding)
    OutStreamer.EmitInstruction(MCInstBuilder(X86::DATA16_PREFIX), STI);

  MCSymbolRefExpr::VariantKind SRVK;
  switch (MI.getOpcode()) {
    case X86::TLS_addr32:
    case X86::TLS_addr64:
      SRVK = MCSymbolRefExpr::VK_TLSGD;
      break;
    case X86::TLS_base_addr32:
      SRVK = MCSymbolRefExpr::VK_TLSLDM;
      break;
    case X86::TLS_base_addr64:
      SRVK = MCSymbolRefExpr::VK_TLSLD;
      break;
    default:
      llvm_unreachable("unexpected opcode");
  }

  MCSymbol *sym = MCInstLowering.GetSymbolFromOperand(MI.getOperand(3));
  const MCSymbolRefExpr *symRef = MCSymbolRefExpr::Create(sym, SRVK, context);

  MCInst LEA;
  if (is64Bits) {
    LEA.setOpcode(X86::LEA64r);
    LEA.addOperand(MCOperand::CreateReg(X86::RDI)); // dest
    LEA.addOperand(MCOperand::CreateReg(X86::RIP)); // base
    LEA.addOperand(MCOperand::CreateImm(1));        // scale
    LEA.addOperand(MCOperand::CreateReg(0));        // index
    LEA.addOperand(MCOperand::CreateExpr(symRef));  // disp
    LEA.addOperand(MCOperand::CreateReg(0));        // seg
  } else if (SRVK == MCSymbolRefExpr::VK_TLSLDM) {
    LEA.setOpcode(X86::LEA32r);
    LEA.addOperand(MCOperand::CreateReg(X86::EAX)); // dest
    LEA.addOperand(MCOperand::CreateReg(X86::EBX)); // base
    LEA.addOperand(MCOperand::CreateImm(1));        // scale
    LEA.addOperand(MCOperand::CreateReg(0));        // index
    LEA.addOperand(MCOperand::CreateExpr(symRef));  // disp
    LEA.addOperand(MCOperand::CreateReg(0));        // seg
  } else {
    LEA.setOpcode(X86::LEA32r);
    LEA.addOperand(MCOperand::CreateReg(X86::EAX)); // dest
    LEA.addOperand(MCOperand::CreateReg(0));        // base
    LEA.addOperand(MCOperand::CreateImm(1));        // scale
    LEA.addOperand(MCOperand::CreateReg(X86::EBX)); // index
    LEA.addOperand(MCOperand::CreateExpr(symRef));  // disp
    LEA.addOperand(MCOperand::CreateReg(0));        // seg
  }
  OutStreamer.EmitInstruction(LEA, STI);

  if (needsPadding) {
    OutStreamer.EmitInstruction(MCInstBuilder(X86::DATA16_PREFIX), STI);
    OutStreamer.EmitInstruction(MCInstBuilder(X86::DATA16_PREFIX), STI);
    OutStreamer.EmitInstruction(MCInstBuilder(X86::REX64_PREFIX), STI);
  }

  StringRef name = is64Bits ? "__tls_get_addr" : "___tls_get_addr";
  MCSymbol *tlsGetAddr = context.GetOrCreateSymbol(name);
  const MCSymbolRefExpr *tlsRef =
    MCSymbolRefExpr::Create(tlsGetAddr,
                            MCSymbolRefExpr::VK_PLT,
                            context);

  OutStreamer.EmitInstruction(MCInstBuilder(is64Bits ? X86::CALL64pcrel32
                                                     : X86::CALLpcrel32)
    .addExpr(tlsRef), STI);
}
Example #11
0
static DecodeStatus DecodeSIMM13(MCInst &MI, unsigned insn,
                                 uint64_t Address, const void *Decoder) {
  unsigned tgt = SignExtend32<13>(fieldFromInstruction(insn, 0, 13));
  MI.addOperand(MCOperand::createImm(tgt));
  return MCDisassembler::Success;
}
void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
  OutMI.setOpcode(MI->getOpcode());

  for (const MachineOperand &MO : MI->operands())
    if (auto MaybeMCOp = LowerMachineOperand(MI, MO))
      OutMI.addOperand(MaybeMCOp.getValue());

  // Handle a few special cases to eliminate operand modifiers.
ReSimplify:
  switch (OutMI.getOpcode()) {
  case X86::LEA64_32r:
  case X86::LEA64r:
  case X86::LEA16r:
  case X86::LEA32r:
    // LEA should have a segment register, but it must be empty.
    assert(OutMI.getNumOperands() == 1+X86::AddrNumOperands &&
           "Unexpected # of LEA operands");
    assert(OutMI.getOperand(1+X86::AddrSegmentReg).getReg() == 0 &&
           "LEA has segment specified!");
    break;

  case X86::MOV32ri64:
    OutMI.setOpcode(X86::MOV32ri);
    break;

  // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B
  // if one of the registers is extended, but other isn't.
  case X86::VMOVAPDrr:
  case X86::VMOVAPDYrr:
  case X86::VMOVAPSrr:
  case X86::VMOVAPSYrr:
  case X86::VMOVDQArr:
  case X86::VMOVDQAYrr:
  case X86::VMOVDQUrr:
  case X86::VMOVDQUYrr:
  case X86::VMOVUPDrr:
  case X86::VMOVUPDYrr:
  case X86::VMOVUPSrr:
  case X86::VMOVUPSYrr: {
    if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
        X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) {
      unsigned NewOpc;
      switch (OutMI.getOpcode()) {
      default: llvm_unreachable("Invalid opcode");
      case X86::VMOVAPDrr:  NewOpc = X86::VMOVAPDrr_REV;  break;
      case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
      case X86::VMOVAPSrr:  NewOpc = X86::VMOVAPSrr_REV;  break;
      case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
      case X86::VMOVDQArr:  NewOpc = X86::VMOVDQArr_REV;  break;
      case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
      case X86::VMOVDQUrr:  NewOpc = X86::VMOVDQUrr_REV;  break;
      case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
      case X86::VMOVUPDrr:  NewOpc = X86::VMOVUPDrr_REV;  break;
      case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
      case X86::VMOVUPSrr:  NewOpc = X86::VMOVUPSrr_REV;  break;
      case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
      }
      OutMI.setOpcode(NewOpc);
    }
    break;
  }
  case X86::VMOVSDrr:
  case X86::VMOVSSrr: {
    if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
        X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) {
      unsigned NewOpc;
      switch (OutMI.getOpcode()) {
      default: llvm_unreachable("Invalid opcode");
      case X86::VMOVSDrr:   NewOpc = X86::VMOVSDrr_REV;   break;
      case X86::VMOVSSrr:   NewOpc = X86::VMOVSSrr_REV;   break;
      }
      OutMI.setOpcode(NewOpc);
    }
    break;
  }

  // TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have register
  // inputs modeled as normal uses instead of implicit uses.  As such, truncate
  // off all but the first operand (the callee).  FIXME: Change isel.
  case X86::TAILJMPr64:
  case X86::TAILJMPr64_REX:
  case X86::CALL64r:
  case X86::CALL64pcrel32: {
    unsigned Opcode = OutMI.getOpcode();
    MCOperand Saved = OutMI.getOperand(0);
    OutMI = MCInst();
    OutMI.setOpcode(Opcode);
    OutMI.addOperand(Saved);
    break;
  }

  case X86::EH_RETURN:
  case X86::EH_RETURN64: {
    OutMI = MCInst();
    OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
    break;
  }

  // TAILJMPd, TAILJMPd64 - Lower to the correct jump instructions.
  case X86::TAILJMPr:
  case X86::TAILJMPd:
  case X86::TAILJMPd64: {
    unsigned Opcode;
    switch (OutMI.getOpcode()) {
    default: llvm_unreachable("Invalid opcode");
    case X86::TAILJMPr: Opcode = X86::JMP32r; break;
    case X86::TAILJMPd:
    case X86::TAILJMPd64: Opcode = X86::JMP_1; break;
    }

    MCOperand Saved = OutMI.getOperand(0);
    OutMI = MCInst();
    OutMI.setOpcode(Opcode);
    OutMI.addOperand(Saved);
    break;
  }

  case X86::DEC16r:
  case X86::DEC32r:
  case X86::INC16r:
  case X86::INC32r:
    // If we aren't in 64-bit mode we can use the 1-byte inc/dec instructions.
    if (!AsmPrinter.getSubtarget().is64Bit()) {
      unsigned Opcode;
      switch (OutMI.getOpcode()) {
      default: llvm_unreachable("Invalid opcode");
      case X86::DEC16r: Opcode = X86::DEC16r_alt; break;
      case X86::DEC32r: Opcode = X86::DEC32r_alt; break;
      case X86::INC16r: Opcode = X86::INC16r_alt; break;
      case X86::INC32r: Opcode = X86::INC32r_alt; break;
      }
      OutMI.setOpcode(Opcode);
    }
    break;

  // These are pseudo-ops for OR to help with the OR->ADD transformation.  We do
  // this with an ugly goto in case the resultant OR uses EAX and needs the
  // short form.
  case X86::ADD16rr_DB:   OutMI.setOpcode(X86::OR16rr); goto ReSimplify;
  case X86::ADD32rr_DB:   OutMI.setOpcode(X86::OR32rr); goto ReSimplify;
  case X86::ADD64rr_DB:   OutMI.setOpcode(X86::OR64rr); goto ReSimplify;
  case X86::ADD16ri_DB:   OutMI.setOpcode(X86::OR16ri); goto ReSimplify;
  case X86::ADD32ri_DB:   OutMI.setOpcode(X86::OR32ri); goto ReSimplify;
  case X86::ADD64ri32_DB: OutMI.setOpcode(X86::OR64ri32); goto ReSimplify;
  case X86::ADD16ri8_DB:  OutMI.setOpcode(X86::OR16ri8); goto ReSimplify;
  case X86::ADD32ri8_DB:  OutMI.setOpcode(X86::OR32ri8); goto ReSimplify;
  case X86::ADD64ri8_DB:  OutMI.setOpcode(X86::OR64ri8); goto ReSimplify;

  // Atomic load and store require a separate pseudo-inst because Acquire
  // implies mayStore and Release implies mayLoad; fix these to regular MOV
  // instructions here
  case X86::ACQUIRE_MOV8rm:    OutMI.setOpcode(X86::MOV8rm); goto ReSimplify;
  case X86::ACQUIRE_MOV16rm:   OutMI.setOpcode(X86::MOV16rm); goto ReSimplify;
  case X86::ACQUIRE_MOV32rm:   OutMI.setOpcode(X86::MOV32rm); goto ReSimplify;
  case X86::ACQUIRE_MOV64rm:   OutMI.setOpcode(X86::MOV64rm); goto ReSimplify;
  case X86::RELEASE_MOV8mr:    OutMI.setOpcode(X86::MOV8mr); goto ReSimplify;
  case X86::RELEASE_MOV16mr:   OutMI.setOpcode(X86::MOV16mr); goto ReSimplify;
  case X86::RELEASE_MOV32mr:   OutMI.setOpcode(X86::MOV32mr); goto ReSimplify;
  case X86::RELEASE_MOV64mr:   OutMI.setOpcode(X86::MOV64mr); goto ReSimplify;
  case X86::RELEASE_MOV8mi:    OutMI.setOpcode(X86::MOV8mi); goto ReSimplify;
  case X86::RELEASE_MOV16mi:   OutMI.setOpcode(X86::MOV16mi); goto ReSimplify;
  case X86::RELEASE_MOV32mi:   OutMI.setOpcode(X86::MOV32mi); goto ReSimplify;
  case X86::RELEASE_MOV64mi32: OutMI.setOpcode(X86::MOV64mi32); goto ReSimplify;
  case X86::RELEASE_ADD8mi:    OutMI.setOpcode(X86::ADD8mi); goto ReSimplify;
  case X86::RELEASE_ADD32mi:   OutMI.setOpcode(X86::ADD32mi); goto ReSimplify;
  case X86::RELEASE_ADD64mi32: OutMI.setOpcode(X86::ADD64mi32); goto ReSimplify;
  case X86::RELEASE_AND8mi:    OutMI.setOpcode(X86::AND8mi); goto ReSimplify;
  case X86::RELEASE_AND32mi:   OutMI.setOpcode(X86::AND32mi); goto ReSimplify;
  case X86::RELEASE_AND64mi32: OutMI.setOpcode(X86::AND64mi32); goto ReSimplify;
  case X86::RELEASE_OR8mi:     OutMI.setOpcode(X86::OR8mi); goto ReSimplify;
  case X86::RELEASE_OR32mi:    OutMI.setOpcode(X86::OR32mi); goto ReSimplify;
  case X86::RELEASE_OR64mi32:  OutMI.setOpcode(X86::OR64mi32); goto ReSimplify;
  case X86::RELEASE_XOR8mi:    OutMI.setOpcode(X86::XOR8mi); goto ReSimplify;
  case X86::RELEASE_XOR32mi:   OutMI.setOpcode(X86::XOR32mi); goto ReSimplify;
  case X86::RELEASE_XOR64mi32: OutMI.setOpcode(X86::XOR64mi32); goto ReSimplify;
  case X86::RELEASE_INC8m:     OutMI.setOpcode(X86::INC8m); goto ReSimplify;
  case X86::RELEASE_INC16m:    OutMI.setOpcode(X86::INC16m); goto ReSimplify;
  case X86::RELEASE_INC32m:    OutMI.setOpcode(X86::INC32m); goto ReSimplify;
  case X86::RELEASE_INC64m:    OutMI.setOpcode(X86::INC64m); goto ReSimplify;
  case X86::RELEASE_DEC8m:     OutMI.setOpcode(X86::DEC8m); goto ReSimplify;
  case X86::RELEASE_DEC16m:    OutMI.setOpcode(X86::DEC16m); goto ReSimplify;
  case X86::RELEASE_DEC32m:    OutMI.setOpcode(X86::DEC32m); goto ReSimplify;
  case X86::RELEASE_DEC64m:    OutMI.setOpcode(X86::DEC64m); goto ReSimplify;

  // We don't currently select the correct instruction form for instructions
  // which have a short %eax, etc. form. Handle this by custom lowering, for
  // now.
  //
  // Note, we are currently not handling the following instructions:
  // MOV64ao8, MOV64o8a
  // XCHG16ar, XCHG32ar, XCHG64ar
  case X86::MOV8mr_NOREX:
  case X86::MOV8mr:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8o32a); break;
  case X86::MOV8rm_NOREX:
  case X86::MOV8rm:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8ao32); break;
  case X86::MOV16mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16o32a); break;
  case X86::MOV16rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16ao32); break;
  case X86::MOV32mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32o32a); break;
  case X86::MOV32rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32ao32); break;

  case X86::ADC8ri:     SimplifyShortImmForm(OutMI, X86::ADC8i8);    break;
  case X86::ADC16ri:    SimplifyShortImmForm(OutMI, X86::ADC16i16);  break;
  case X86::ADC32ri:    SimplifyShortImmForm(OutMI, X86::ADC32i32);  break;
  case X86::ADC64ri32:  SimplifyShortImmForm(OutMI, X86::ADC64i32);  break;
  case X86::ADD8ri:     SimplifyShortImmForm(OutMI, X86::ADD8i8);    break;
  case X86::ADD16ri:    SimplifyShortImmForm(OutMI, X86::ADD16i16);  break;
  case X86::ADD32ri:    SimplifyShortImmForm(OutMI, X86::ADD32i32);  break;
  case X86::ADD64ri32:  SimplifyShortImmForm(OutMI, X86::ADD64i32);  break;
  case X86::AND8ri:     SimplifyShortImmForm(OutMI, X86::AND8i8);    break;
  case X86::AND16ri:    SimplifyShortImmForm(OutMI, X86::AND16i16);  break;
  case X86::AND32ri:    SimplifyShortImmForm(OutMI, X86::AND32i32);  break;
  case X86::AND64ri32:  SimplifyShortImmForm(OutMI, X86::AND64i32);  break;
  case X86::CMP8ri:     SimplifyShortImmForm(OutMI, X86::CMP8i8);    break;
  case X86::CMP16ri:    SimplifyShortImmForm(OutMI, X86::CMP16i16);  break;
  case X86::CMP32ri:    SimplifyShortImmForm(OutMI, X86::CMP32i32);  break;
  case X86::CMP64ri32:  SimplifyShortImmForm(OutMI, X86::CMP64i32);  break;
  case X86::OR8ri:      SimplifyShortImmForm(OutMI, X86::OR8i8);     break;
  case X86::OR16ri:     SimplifyShortImmForm(OutMI, X86::OR16i16);   break;
  case X86::OR32ri:     SimplifyShortImmForm(OutMI, X86::OR32i32);   break;
  case X86::OR64ri32:   SimplifyShortImmForm(OutMI, X86::OR64i32);   break;
  case X86::SBB8ri:     SimplifyShortImmForm(OutMI, X86::SBB8i8);    break;
  case X86::SBB16ri:    SimplifyShortImmForm(OutMI, X86::SBB16i16);  break;
  case X86::SBB32ri:    SimplifyShortImmForm(OutMI, X86::SBB32i32);  break;
  case X86::SBB64ri32:  SimplifyShortImmForm(OutMI, X86::SBB64i32);  break;
  case X86::SUB8ri:     SimplifyShortImmForm(OutMI, X86::SUB8i8);    break;
  case X86::SUB16ri:    SimplifyShortImmForm(OutMI, X86::SUB16i16);  break;
  case X86::SUB32ri:    SimplifyShortImmForm(OutMI, X86::SUB32i32);  break;
  case X86::SUB64ri32:  SimplifyShortImmForm(OutMI, X86::SUB64i32);  break;
  case X86::TEST8ri:    SimplifyShortImmForm(OutMI, X86::TEST8i8);   break;
  case X86::TEST16ri:   SimplifyShortImmForm(OutMI, X86::TEST16i16); break;
  case X86::TEST32ri:   SimplifyShortImmForm(OutMI, X86::TEST32i32); break;
  case X86::TEST64ri32: SimplifyShortImmForm(OutMI, X86::TEST64i32); break;
  case X86::XOR8ri:     SimplifyShortImmForm(OutMI, X86::XOR8i8);    break;
  case X86::XOR16ri:    SimplifyShortImmForm(OutMI, X86::XOR16i16);  break;
  case X86::XOR32ri:    SimplifyShortImmForm(OutMI, X86::XOR32i32);  break;
  case X86::XOR64ri32:  SimplifyShortImmForm(OutMI, X86::XOR64i32);  break;

  // Try to shrink some forms of movsx.
  case X86::MOVSX16rr8:
  case X86::MOVSX32rr16:
  case X86::MOVSX64rr32:
    SimplifyMOVSX(OutMI);
    break;
  }
}
Example #13
0
// This function tries to add a symbolic operand in place of the immediate
// Value in the MCInst. The immediate Value has had any PC adjustment made by
// the caller. If the instruction is a branch instruction then IsBranch is true,
// else false. If the getOpInfo() function was set as part of the
// setupForSymbolicDisassembly() call then that function is called to get any
// symbolic information at the Address for this instruction. If that returns
// non-zero then the symbolic information it returns is used to create an MCExpr
// and that is added as an operand to the MCInst. If getOpInfo() returns zero
// and IsBranch is true then a symbol look up for Value is done and if a symbol
// is found an MCExpr is created with that, else an MCExpr with Value is
// created. This function returns true if it adds an operand to the MCInst and
// false otherwise.
bool MCExternalSymbolizer::tryAddingSymbolicOperand(MCInst &MI,
                                                    raw_ostream &cStream,
                                                    int64_t Value,
                                                    uint64_t Address,
                                                    bool IsBranch,
                                                    uint64_t Offset,
                                                    uint64_t InstSize) {
  struct LLVMOpInfo1 SymbolicOp;
  std::memset(&SymbolicOp, '\0', sizeof(struct LLVMOpInfo1));
  SymbolicOp.Value = Value;

  if (!GetOpInfo ||
      !GetOpInfo(DisInfo, Address, Offset, InstSize, 1, &SymbolicOp)) {
    // Clear SymbolicOp.Value from above and also all other fields.
    std::memset(&SymbolicOp, '\0', sizeof(struct LLVMOpInfo1));

    // At this point, GetOpInfo() did not find any relocation information about
    // this operand and we are left to use the SymbolLookUp() call back to guess
    // if the Value is the address of a symbol.  In the case this is a branch
    // that always makes sense to guess.  But in the case of an immediate it is
    // a bit more questionable if it is an address of a symbol or some other
    // reference.  So if the immediate Value comes from a width of 1 byte,
    // InstSize, we will not guess it is an address of a symbol.  Because in
    // object files assembled starting at address 0 this usually leads to
    // incorrect symbolication.
    if (!SymbolLookUp || (InstSize == 1 && !IsBranch))
      return false;

    uint64_t ReferenceType;
    if (IsBranch)
       ReferenceType = LLVMDisassembler_ReferenceType_In_Branch;
    else
       ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
    const char *ReferenceName;
    const char *Name = SymbolLookUp(DisInfo, Value, &ReferenceType, Address,
                                    &ReferenceName);
    if (Name) {
      SymbolicOp.AddSymbol.Name = Name;
      SymbolicOp.AddSymbol.Present = true;
      // If Name is a C++ symbol name put the human readable name in a comment.
      if(ReferenceType == LLVMDisassembler_ReferenceType_DeMangled_Name)
        cStream << ReferenceName;
    }
    // For branches always create an MCExpr so it gets printed as hex address.
    else if (IsBranch) {
      SymbolicOp.Value = Value;
    }
    if(ReferenceType == LLVMDisassembler_ReferenceType_Out_SymbolStub)
      cStream << "symbol stub for: " << ReferenceName;
    else if(ReferenceType == LLVMDisassembler_ReferenceType_Out_Objc_Message)
      cStream << "Objc message: " << ReferenceName;
    if (!Name && !IsBranch)
      return false;
  }

  const MCExpr *Add = nullptr;
  if (SymbolicOp.AddSymbol.Present) {
    if (SymbolicOp.AddSymbol.Name) {
      StringRef Name(SymbolicOp.AddSymbol.Name);
      MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name);
      Add = MCSymbolRefExpr::Create(Sym, Ctx);
    } else {
      Add = MCConstantExpr::Create((int)SymbolicOp.AddSymbol.Value, Ctx);
    }
  }

  const MCExpr *Sub = nullptr;
  if (SymbolicOp.SubtractSymbol.Present) {
      if (SymbolicOp.SubtractSymbol.Name) {
      StringRef Name(SymbolicOp.SubtractSymbol.Name);
      MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name);
      Sub = MCSymbolRefExpr::Create(Sym, Ctx);
    } else {
      Sub = MCConstantExpr::Create((int)SymbolicOp.SubtractSymbol.Value, Ctx);
    }
  }

  const MCExpr *Off = nullptr;
  if (SymbolicOp.Value != 0)
    Off = MCConstantExpr::Create(SymbolicOp.Value, Ctx);

  const MCExpr *Expr;
  if (Sub) {
    const MCExpr *LHS;
    if (Add)
      LHS = MCBinaryExpr::CreateSub(Add, Sub, Ctx);
    else
      LHS = MCUnaryExpr::CreateMinus(Sub, Ctx);
    if (Off)
      Expr = MCBinaryExpr::CreateAdd(LHS, Off, Ctx);
    else
      Expr = LHS;
  } else if (Add) {
    if (Off)
      Expr = MCBinaryExpr::CreateAdd(Add, Off, Ctx);
    else
      Expr = Add;
  } else {
    if (Off)
      Expr = Off;
    else
      Expr = MCConstantExpr::Create(0, Ctx);
  }

  Expr = RelInfo->createExprForCAPIVariantKind(Expr, SymbolicOp.VariantKind);
  if (!Expr)
    return false;

  MI.addOperand(MCOperand::CreateExpr(Expr));
  return true;
}
Example #14
0
void MipsAsmPrinter::EmitInstrReg(unsigned Opcode, unsigned Reg) {
  MCInst I;
  I.setOpcode(Opcode);
  I.addOperand(MCOperand::CreateReg(Reg));
  OutStreamer.EmitInstruction(I, getSubtargetInfo());
}
Example #15
0
void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
  OutMI.setOpcode(MI->getOpcode());

  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);

    MCOperand MCOp;
    switch (MO.getType()) {
    default:
      MI->dump();
      llvm_unreachable("unknown operand type");
    case MachineOperand::MO_Register:
      // Ignore all implicit register operands.
      if (MO.isImplicit()) continue;
      MCOp = MCOperand::CreateReg(MO.getReg());
      break;
    case MachineOperand::MO_Immediate:
      MCOp = MCOperand::CreateImm(MO.getImm());
      break;
    case MachineOperand::MO_MachineBasicBlock:
      MCOp = MCOperand::CreateExpr(MCSymbolRefExpr::Create(
                       MO.getMBB()->getSymbol(), Ctx));
      break;
    case MachineOperand::MO_GlobalAddress:
    case MachineOperand::MO_ExternalSymbol:
      MCOp = LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
      break;
    case MachineOperand::MO_JumpTableIndex:
      MCOp = LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
      break;
    case MachineOperand::MO_ConstantPoolIndex:
      MCOp = LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
      break;
    case MachineOperand::MO_BlockAddress:
      MCOp = LowerSymbolOperand(MO,
                     AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
      break;
    case MachineOperand::MO_RegisterMask:
      // Ignore call clobbers.
      continue;
    }

    OutMI.addOperand(MCOp);
  }

  // Handle a few special cases to eliminate operand modifiers.
ReSimplify:
  switch (OutMI.getOpcode()) {
  case X86::LEA64_32r: // Handle 'subreg rewriting' for the lea64_32mem operand.
    lower_lea64_32mem(&OutMI, 1);
    // FALL THROUGH.
  case X86::LEA64r:
  case X86::LEA16r:
  case X86::LEA32r:
    // LEA should have a segment register, but it must be empty.
    assert(OutMI.getNumOperands() == 1+X86::AddrNumOperands &&
           "Unexpected # of LEA operands");
    assert(OutMI.getOperand(1+X86::AddrSegmentReg).getReg() == 0 &&
           "LEA has segment specified!");
    break;
  case X86::MOVZX64rr32:  LowerSubReg32_Op0(OutMI, X86::MOV32rr); break;
  case X86::MOVZX64rm32:  LowerSubReg32_Op0(OutMI, X86::MOV32rm); break;
  case X86::MOV64ri64i32: LowerSubReg32_Op0(OutMI, X86::MOV32ri); break;
  case X86::MOVZX64rr8:   LowerSubReg32_Op0(OutMI, X86::MOVZX32rr8); break;
  case X86::MOVZX64rm8:   LowerSubReg32_Op0(OutMI, X86::MOVZX32rm8); break;
  case X86::MOVZX64rr16:  LowerSubReg32_Op0(OutMI, X86::MOVZX32rr16); break;
  case X86::MOVZX64rm16:  LowerSubReg32_Op0(OutMI, X86::MOVZX32rm16); break;
  case X86::SETB_C8r:     LowerUnaryToTwoAddr(OutMI, X86::SBB8rr); break;
  case X86::SETB_C16r:    LowerUnaryToTwoAddr(OutMI, X86::SBB16rr); break;
  case X86::SETB_C32r:    LowerUnaryToTwoAddr(OutMI, X86::SBB32rr); break;
  case X86::SETB_C64r:    LowerUnaryToTwoAddr(OutMI, X86::SBB64rr); break;
  case X86::MOV8r0:       LowerUnaryToTwoAddr(OutMI, X86::XOR8rr); break;
  case X86::MOV32r0:      LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); break;

  case X86::MOV16r0:
    LowerSubReg32_Op0(OutMI, X86::MOV32r0);   // MOV16r0 -> MOV32r0
    LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); // MOV32r0 -> XOR32rr
    break;
  case X86::MOV64r0:
    LowerSubReg32_Op0(OutMI, X86::MOV32r0);   // MOV64r0 -> MOV32r0
    LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); // MOV32r0 -> XOR32rr
    break;

  // TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have register
  // inputs modeled as normal uses instead of implicit uses.  As such, truncate
  // off all but the first operand (the callee).  FIXME: Change isel.
  case X86::TAILJMPr64:
  case X86::CALL64r:
  case X86::CALL64pcrel32: {
    unsigned Opcode = OutMI.getOpcode();
    MCOperand Saved = OutMI.getOperand(0);
    OutMI = MCInst();
    OutMI.setOpcode(Opcode);
    OutMI.addOperand(Saved);
    break;
  }

  case X86::EH_RETURN:
  case X86::EH_RETURN64: {
    OutMI = MCInst();
    OutMI.setOpcode(X86::RET);
    break;
  }

  // TAILJMPd, TAILJMPd64 - Lower to the correct jump instructions.
  case X86::TAILJMPr:
  case X86::TAILJMPd:
  case X86::TAILJMPd64: {
    unsigned Opcode;
    switch (OutMI.getOpcode()) {
    default: llvm_unreachable("Invalid opcode");
    case X86::TAILJMPr: Opcode = X86::JMP32r; break;
    case X86::TAILJMPd:
    case X86::TAILJMPd64: Opcode = X86::JMP_1; break;
    }

    MCOperand Saved = OutMI.getOperand(0);
    OutMI = MCInst();
    OutMI.setOpcode(Opcode);
    OutMI.addOperand(Saved);
    break;
  }

  // These are pseudo-ops for OR to help with the OR->ADD transformation.  We do
  // this with an ugly goto in case the resultant OR uses EAX and needs the
  // short form.
  case X86::ADD16rr_DB:   OutMI.setOpcode(X86::OR16rr); goto ReSimplify;
  case X86::ADD32rr_DB:   OutMI.setOpcode(X86::OR32rr); goto ReSimplify;
  case X86::ADD64rr_DB:   OutMI.setOpcode(X86::OR64rr); goto ReSimplify;
  case X86::ADD16ri_DB:   OutMI.setOpcode(X86::OR16ri); goto ReSimplify;
  case X86::ADD32ri_DB:   OutMI.setOpcode(X86::OR32ri); goto ReSimplify;
  case X86::ADD64ri32_DB: OutMI.setOpcode(X86::OR64ri32); goto ReSimplify;
  case X86::ADD16ri8_DB:  OutMI.setOpcode(X86::OR16ri8); goto ReSimplify;
  case X86::ADD32ri8_DB:  OutMI.setOpcode(X86::OR32ri8); goto ReSimplify;
  case X86::ADD64ri8_DB:  OutMI.setOpcode(X86::OR64ri8); goto ReSimplify;

  // The assembler backend wants to see branches in their small form and relax
  // them to their large form.  The JIT can only handle the large form because
  // it does not do relaxation.  For now, translate the large form to the
  // small one here.
  case X86::JMP_4: OutMI.setOpcode(X86::JMP_1); break;
  case X86::JO_4:  OutMI.setOpcode(X86::JO_1); break;
  case X86::JNO_4: OutMI.setOpcode(X86::JNO_1); break;
  case X86::JB_4:  OutMI.setOpcode(X86::JB_1); break;
  case X86::JAE_4: OutMI.setOpcode(X86::JAE_1); break;
  case X86::JE_4:  OutMI.setOpcode(X86::JE_1); break;
  case X86::JNE_4: OutMI.setOpcode(X86::JNE_1); break;
  case X86::JBE_4: OutMI.setOpcode(X86::JBE_1); break;
  case X86::JA_4:  OutMI.setOpcode(X86::JA_1); break;
  case X86::JS_4:  OutMI.setOpcode(X86::JS_1); break;
  case X86::JNS_4: OutMI.setOpcode(X86::JNS_1); break;
  case X86::JP_4:  OutMI.setOpcode(X86::JP_1); break;
  case X86::JNP_4: OutMI.setOpcode(X86::JNP_1); break;
  case X86::JL_4:  OutMI.setOpcode(X86::JL_1); break;
  case X86::JGE_4: OutMI.setOpcode(X86::JGE_1); break;
  case X86::JLE_4: OutMI.setOpcode(X86::JLE_1); break;
  case X86::JG_4:  OutMI.setOpcode(X86::JG_1); break;

  // Atomic load and store require a separate pseudo-inst because Acquire
  // implies mayStore and Release implies mayLoad; fix these to regular MOV
  // instructions here
  case X86::ACQUIRE_MOV8rm:  OutMI.setOpcode(X86::MOV8rm); goto ReSimplify;
  case X86::ACQUIRE_MOV16rm: OutMI.setOpcode(X86::MOV16rm); goto ReSimplify;
  case X86::ACQUIRE_MOV32rm: OutMI.setOpcode(X86::MOV32rm); goto ReSimplify;
  case X86::ACQUIRE_MOV64rm: OutMI.setOpcode(X86::MOV64rm); goto ReSimplify;
  case X86::RELEASE_MOV8mr:  OutMI.setOpcode(X86::MOV8mr); goto ReSimplify;
  case X86::RELEASE_MOV16mr: OutMI.setOpcode(X86::MOV16mr); goto ReSimplify;
  case X86::RELEASE_MOV32mr: OutMI.setOpcode(X86::MOV32mr); goto ReSimplify;
  case X86::RELEASE_MOV64mr: OutMI.setOpcode(X86::MOV64mr); goto ReSimplify;

  // We don't currently select the correct instruction form for instructions
  // which have a short %eax, etc. form. Handle this by custom lowering, for
  // now.
  //
  // Note, we are currently not handling the following instructions:
  // MOV64ao8, MOV64o8a
  // XCHG16ar, XCHG32ar, XCHG64ar
  case X86::MOV8mr_NOREX:
  case X86::MOV8mr:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8ao8); break;
  case X86::MOV8rm_NOREX:
  case X86::MOV8rm:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8o8a); break;
  case X86::MOV16mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16ao16); break;
  case X86::MOV16rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16o16a); break;
  case X86::MOV32mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32ao32); break;
  case X86::MOV32rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32o32a); break;

  case X86::ADC8ri:     SimplifyShortImmForm(OutMI, X86::ADC8i8);    break;
  case X86::ADC16ri:    SimplifyShortImmForm(OutMI, X86::ADC16i16);  break;
  case X86::ADC32ri:    SimplifyShortImmForm(OutMI, X86::ADC32i32);  break;
  case X86::ADC64ri32:  SimplifyShortImmForm(OutMI, X86::ADC64i32);  break;
  case X86::ADD8ri:     SimplifyShortImmForm(OutMI, X86::ADD8i8);    break;
  case X86::ADD16ri:    SimplifyShortImmForm(OutMI, X86::ADD16i16);  break;
  case X86::ADD32ri:    SimplifyShortImmForm(OutMI, X86::ADD32i32);  break;
  case X86::ADD64ri32:  SimplifyShortImmForm(OutMI, X86::ADD64i32);  break;
  case X86::AND8ri:     SimplifyShortImmForm(OutMI, X86::AND8i8);    break;
  case X86::AND16ri:    SimplifyShortImmForm(OutMI, X86::AND16i16);  break;
  case X86::AND32ri:    SimplifyShortImmForm(OutMI, X86::AND32i32);  break;
  case X86::AND64ri32:  SimplifyShortImmForm(OutMI, X86::AND64i32);  break;
  case X86::CMP8ri:     SimplifyShortImmForm(OutMI, X86::CMP8i8);    break;
  case X86::CMP16ri:    SimplifyShortImmForm(OutMI, X86::CMP16i16);  break;
  case X86::CMP32ri:    SimplifyShortImmForm(OutMI, X86::CMP32i32);  break;
  case X86::CMP64ri32:  SimplifyShortImmForm(OutMI, X86::CMP64i32);  break;
  case X86::OR8ri:      SimplifyShortImmForm(OutMI, X86::OR8i8);     break;
  case X86::OR16ri:     SimplifyShortImmForm(OutMI, X86::OR16i16);   break;
  case X86::OR32ri:     SimplifyShortImmForm(OutMI, X86::OR32i32);   break;
  case X86::OR64ri32:   SimplifyShortImmForm(OutMI, X86::OR64i32);   break;
  case X86::SBB8ri:     SimplifyShortImmForm(OutMI, X86::SBB8i8);    break;
  case X86::SBB16ri:    SimplifyShortImmForm(OutMI, X86::SBB16i16);  break;
  case X86::SBB32ri:    SimplifyShortImmForm(OutMI, X86::SBB32i32);  break;
  case X86::SBB64ri32:  SimplifyShortImmForm(OutMI, X86::SBB64i32);  break;
  case X86::SUB8ri:     SimplifyShortImmForm(OutMI, X86::SUB8i8);    break;
  case X86::SUB16ri:    SimplifyShortImmForm(OutMI, X86::SUB16i16);  break;
  case X86::SUB32ri:    SimplifyShortImmForm(OutMI, X86::SUB32i32);  break;
  case X86::SUB64ri32:  SimplifyShortImmForm(OutMI, X86::SUB64i32);  break;
  case X86::TEST8ri:    SimplifyShortImmForm(OutMI, X86::TEST8i8);   break;
  case X86::TEST16ri:   SimplifyShortImmForm(OutMI, X86::TEST16i16); break;
  case X86::TEST32ri:   SimplifyShortImmForm(OutMI, X86::TEST32i32); break;
  case X86::TEST64ri32: SimplifyShortImmForm(OutMI, X86::TEST64i32); break;
  case X86::XOR8ri:     SimplifyShortImmForm(OutMI, X86::XOR8i8);    break;
  case X86::XOR16ri:    SimplifyShortImmForm(OutMI, X86::XOR16i16);  break;
  case X86::XOR32ri:    SimplifyShortImmForm(OutMI, X86::XOR32i32);  break;
  case X86::XOR64ri32:  SimplifyShortImmForm(OutMI, X86::XOR64i32);  break;

  case X86::MORESTACK_RET:
    OutMI.setOpcode(X86::RET);
    break;

  case X86::MORESTACK_RET_RESTORE_R10: {
    MCInst retInst;

    OutMI.setOpcode(X86::MOV64rr);
    OutMI.addOperand(MCOperand::CreateReg(X86::R10));
    OutMI.addOperand(MCOperand::CreateReg(X86::RAX));

    retInst.setOpcode(X86::RET);
    AsmPrinter.OutStreamer.EmitInstruction(retInst);
    break;
  }
  }
}
static DecodeStatus DecodeNegImmOperand(MCInst &Inst, unsigned Val,
                                        uint64_t Address, const void *Decoder) {
  Inst.addOperand(MCOperand::createImm(-(int64_t)Val));
  return MCDisassembler::Success;
}
Example #17
0
static DecodeStatus decodeSimm8Value(MCInst &Inst, unsigned Insn,
                                     uint64_t Address, const void *Decoder) {

  Inst.addOperand(MCOperand::createImm(SignExtend32<8>(Insn)));
  return MCDisassembler::Success;
}
Example #18
0
static DecodeStatus decodeSImmOperand(MCInst &Inst, uint64_t Imm,
                                      int64_t Address, const void *Decoder) {
  assert(isUInt<N>(Imm) && "Invalid immediate");
  Inst.addOperand(MCOperand::createImm(SignExtend64<N>(Imm)));
  return MCDisassembler::Success;
}
Example #19
0
void ARMInstPrinter::printInst(const MCInst *MI, raw_ostream &O,
                               StringRef Annot) {
  unsigned Opcode = MI->getOpcode();

  // Check for HINT instructions w/ canonical names.
  if (Opcode == ARM::HINT || Opcode == ARM::t2HINT) {
    switch (MI->getOperand(0).getImm()) {
    case 0: O << "\tnop"; break;
    case 1: O << "\tyield"; break;
    case 2: O << "\twfe"; break;
    case 3: O << "\twfi"; break;
    case 4: O << "\tsev"; break;
    default:
      // Anything else should just print normally.
      printInstruction(MI, O);
      printAnnotation(O, Annot);
      return;
    }
    printPredicateOperand(MI, 1, O);
    if (Opcode == ARM::t2HINT)
      O << ".w";
    printAnnotation(O, Annot);
    return;
  }

  // Check for MOVs and print canonical forms, instead.
  if (Opcode == ARM::MOVsr) {
    // FIXME: Thumb variants?
    const MCOperand &Dst = MI->getOperand(0);
    const MCOperand &MO1 = MI->getOperand(1);
    const MCOperand &MO2 = MI->getOperand(2);
    const MCOperand &MO3 = MI->getOperand(3);

    O << '\t' << ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(MO3.getImm()));
    printSBitModifierOperand(MI, 6, O);
    printPredicateOperand(MI, 4, O);

    O << '\t';
    printRegName(O, Dst.getReg());
    O << ", ";
    printRegName(O, MO1.getReg());

    O << ", ";
    printRegName(O, MO2.getReg());
    assert(ARM_AM::getSORegOffset(MO3.getImm()) == 0);
    printAnnotation(O, Annot);
    return;
  }

  if (Opcode == ARM::MOVsi) {
    // FIXME: Thumb variants?
    const MCOperand &Dst = MI->getOperand(0);
    const MCOperand &MO1 = MI->getOperand(1);
    const MCOperand &MO2 = MI->getOperand(2);

    O << '\t' << ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(MO2.getImm()));
    printSBitModifierOperand(MI, 5, O);
    printPredicateOperand(MI, 3, O);

    O << '\t';
    printRegName(O, Dst.getReg());
    O << ", ";
    printRegName(O, MO1.getReg());

    if (ARM_AM::getSORegShOp(MO2.getImm()) == ARM_AM::rrx) {
      printAnnotation(O, Annot);
      return;
    }

    O << ", "
      << markup("<imm:")
      << "#" << translateShiftImm(ARM_AM::getSORegOffset(MO2.getImm()))
      << markup(">");
    printAnnotation(O, Annot);
    return;
  }


  // A8.6.123 PUSH
  if ((Opcode == ARM::STMDB_UPD || Opcode == ARM::t2STMDB_UPD) &&
      MI->getOperand(0).getReg() == ARM::SP &&
      MI->getNumOperands() > 5) {
    // Should only print PUSH if there are at least two registers in the list.
    O << '\t' << "push";
    printPredicateOperand(MI, 2, O);
    if (Opcode == ARM::t2STMDB_UPD)
      O << ".w";
    O << '\t';
    printRegisterList(MI, 4, O);
    printAnnotation(O, Annot);
    return;
  }
  if (Opcode == ARM::STR_PRE_IMM && MI->getOperand(2).getReg() == ARM::SP &&
      MI->getOperand(3).getImm() == -4) {
    O << '\t' << "push";
    printPredicateOperand(MI, 4, O);
    O << "\t{";
    printRegName(O, MI->getOperand(1).getReg());
    O << "}";
    printAnnotation(O, Annot);
    return;
  }

  // A8.6.122 POP
  if ((Opcode == ARM::LDMIA_UPD || Opcode == ARM::t2LDMIA_UPD) &&
      MI->getOperand(0).getReg() == ARM::SP &&
      MI->getNumOperands() > 5) {
    // Should only print POP if there are at least two registers in the list.
    O << '\t' << "pop";
    printPredicateOperand(MI, 2, O);
    if (Opcode == ARM::t2LDMIA_UPD)
      O << ".w";
    O << '\t';
    printRegisterList(MI, 4, O);
    printAnnotation(O, Annot);
    return;
  }
  if (Opcode == ARM::LDR_POST_IMM && MI->getOperand(2).getReg() == ARM::SP &&
      MI->getOperand(4).getImm() == 4) {
    O << '\t' << "pop";
    printPredicateOperand(MI, 5, O);
    O << "\t{";
    printRegName(O, MI->getOperand(0).getReg());
    O << "}";
    printAnnotation(O, Annot);
    return;
  }


  // A8.6.355 VPUSH
  if ((Opcode == ARM::VSTMSDB_UPD || Opcode == ARM::VSTMDDB_UPD) &&
      MI->getOperand(0).getReg() == ARM::SP) {
    O << '\t' << "vpush";
    printPredicateOperand(MI, 2, O);
    O << '\t';
    printRegisterList(MI, 4, O);
    printAnnotation(O, Annot);
    return;
  }

  // A8.6.354 VPOP
  if ((Opcode == ARM::VLDMSIA_UPD || Opcode == ARM::VLDMDIA_UPD) &&
      MI->getOperand(0).getReg() == ARM::SP) {
    O << '\t' << "vpop";
    printPredicateOperand(MI, 2, O);
    O << '\t';
    printRegisterList(MI, 4, O);
    printAnnotation(O, Annot);
    return;
  }

  if (Opcode == ARM::tLDMIA) {
    bool Writeback = true;
    unsigned BaseReg = MI->getOperand(0).getReg();
    for (unsigned i = 3; i < MI->getNumOperands(); ++i) {
      if (MI->getOperand(i).getReg() == BaseReg)
        Writeback = false;
    }

    O << "\tldm";

    printPredicateOperand(MI, 1, O);
    O << '\t';
    printRegName(O, BaseReg);
    if (Writeback) O << "!";
    O << ", ";
    printRegisterList(MI, 3, O);
    printAnnotation(O, Annot);
    return;
  }

  // Combine 2 GPRs from disassember into a GPRPair to match with instr def.
  // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
  // a single GPRPair reg operand is used in the .td file to replace the two
  // GPRs. However, when decoding them, the two GRPs cannot be automatically
  // expressed as a GPRPair, so we have to manually merge them.
  // FIXME: We would really like to be able to tablegen'erate this.
  if (Opcode == ARM::LDREXD || Opcode == ARM::STREXD) {
    const MCRegisterClass& MRC = MRI.getRegClass(ARM::GPRRegClassID);
    bool isStore = Opcode == ARM::STREXD;
    unsigned Reg = MI->getOperand(isStore ? 1 : 0).getReg();
    if (MRC.contains(Reg)) {
      MCInst NewMI;
      MCOperand NewReg;
      NewMI.setOpcode(Opcode);

      if (isStore)
        NewMI.addOperand(MI->getOperand(0));
      NewReg = MCOperand::CreateReg(MRI.getMatchingSuperReg(Reg, ARM::gsub_0,
        &MRI.getRegClass(ARM::GPRPairRegClassID)));
      NewMI.addOperand(NewReg);

      // Copy the rest operands into NewMI.
      for(unsigned i= isStore ? 3 : 2; i < MI->getNumOperands(); ++i)
        NewMI.addOperand(MI->getOperand(i));
      printInstruction(&NewMI, O);
      return;
    }
  }

  printInstruction(MI, O);
  printAnnotation(O, Annot);
}
void AArch64AsmPrinter::EmitInstruction(const MachineInstr *MI) {
  // Do any auto-generated pseudo lowerings.
  if (emitPseudoExpansionLowering(OutStreamer, MI))
    return;

  if (AArch64FI->getLOHRelated().count(MI)) {
    // Generate a label for LOH related instruction
    MCSymbol *LOHLabel = GetTempSymbol("loh", LOHLabelCounter++);
    // Associate the instruction with the label
    LOHInstToLabel[MI] = LOHLabel;
    OutStreamer.EmitLabel(LOHLabel);
  }

  // Do any manual lowerings.
  switch (MI->getOpcode()) {
  default:
    break;
  case AArch64::DBG_VALUE: {
    if (isVerbose() && OutStreamer.hasRawTextSupport()) {
      SmallString<128> TmpStr;
      raw_svector_ostream OS(TmpStr);
      PrintDebugValueComment(MI, OS);
      OutStreamer.EmitRawText(StringRef(OS.str()));
    }
    return;
  }

  // Tail calls use pseudo instructions so they have the proper code-gen
  // attributes (isCall, isReturn, etc.). We lower them to the real
  // instruction here.
  case AArch64::TCRETURNri: {
    MCInst TmpInst;
    TmpInst.setOpcode(AArch64::BR);
    TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
    EmitToStreamer(OutStreamer, TmpInst);
    return;
  }
  case AArch64::TCRETURNdi: {
    MCOperand Dest;
    MCInstLowering.lowerOperand(MI->getOperand(0), Dest);
    MCInst TmpInst;
    TmpInst.setOpcode(AArch64::B);
    TmpInst.addOperand(Dest);
    EmitToStreamer(OutStreamer, TmpInst);
    return;
  }
  case AArch64::TLSDESC_BLR: {
    MCOperand Callee, Sym;
    MCInstLowering.lowerOperand(MI->getOperand(0), Callee);
    MCInstLowering.lowerOperand(MI->getOperand(1), Sym);

    // First emit a relocation-annotation. This expands to no code, but requests
    // the following instruction gets an R_AARCH64_TLSDESC_CALL.
    MCInst TLSDescCall;
    TLSDescCall.setOpcode(AArch64::TLSDESCCALL);
    TLSDescCall.addOperand(Sym);
    EmitToStreamer(OutStreamer, TLSDescCall);

    // Other than that it's just a normal indirect call to the function loaded
    // from the descriptor.
    MCInst BLR;
    BLR.setOpcode(AArch64::BLR);
    BLR.addOperand(Callee);
    EmitToStreamer(OutStreamer, BLR);

    return;
  }

  case TargetOpcode::STACKMAP:
    return LowerSTACKMAP(OutStreamer, SM, *MI);

  case TargetOpcode::PATCHPOINT:
    return LowerPATCHPOINT(OutStreamer, SM, *MI);
  }

  // Finally, do the automated lowerings for everything else.
  MCInst TmpInst;
  MCInstLowering.Lower(MI, TmpInst);
  EmitToStreamer(OutStreamer, TmpInst);
}
void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
  OutMI.setOpcode(MI->getOpcode());

  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);

    MCOperand MCOp;
    switch (MO.getType()) {
    default:
      MI->dump();
      llvm_unreachable("unknown operand type");
    case MachineOperand::MO_Register:
      // Ignore all implicit register operands.
      if (MO.isImplicit()) continue;
      MCOp = MCOperand::CreateReg(MO.getReg());
      break;
    case MachineOperand::MO_Immediate:
      MCOp = MCOperand::CreateImm(MO.getImm());
      break;
    case MachineOperand::MO_MachineBasicBlock:
    case MachineOperand::MO_GlobalAddress:
    case MachineOperand::MO_ExternalSymbol:
      MCOp = LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
      break;
    case MachineOperand::MO_JumpTableIndex:
      MCOp = LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
      break;
    case MachineOperand::MO_ConstantPoolIndex:
      MCOp = LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
      break;
    case MachineOperand::MO_BlockAddress:
      MCOp = LowerSymbolOperand(MO,
                     AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
      break;
    case MachineOperand::MO_RegisterMask:
      // Ignore call clobbers.
      continue;
    }

    OutMI.addOperand(MCOp);
  }

  // Handle a few special cases to eliminate operand modifiers.
ReSimplify:
  switch (OutMI.getOpcode()) {
  case X86::LEA64_32r:
  case X86::LEA64r:
  case X86::LEA16r:
  case X86::LEA32r:
    // LEA should have a segment register, but it must be empty.
    assert(OutMI.getNumOperands() == 1+X86::AddrNumOperands &&
           "Unexpected # of LEA operands");
    assert(OutMI.getOperand(1+X86::AddrSegmentReg).getReg() == 0 &&
           "LEA has segment specified!");
    break;

  case X86::MOV32ri64:
    OutMI.setOpcode(X86::MOV32ri);
    break;

  // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B
  // if one of the registers is extended, but other isn't.
  case X86::VMOVAPDrr:
  case X86::VMOVAPDYrr:
  case X86::VMOVAPSrr:
  case X86::VMOVAPSYrr:
  case X86::VMOVDQArr:
  case X86::VMOVDQAYrr:
  case X86::VMOVDQUrr:
  case X86::VMOVDQUYrr:
  case X86::VMOVUPDrr:
  case X86::VMOVUPDYrr:
  case X86::VMOVUPSrr:
  case X86::VMOVUPSYrr: {
    if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
        X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) {
      unsigned NewOpc;
      switch (OutMI.getOpcode()) {
      default: llvm_unreachable("Invalid opcode");
      case X86::VMOVAPDrr:  NewOpc = X86::VMOVAPDrr_REV;  break;
      case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
      case X86::VMOVAPSrr:  NewOpc = X86::VMOVAPSrr_REV;  break;
      case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
      case X86::VMOVDQArr:  NewOpc = X86::VMOVDQArr_REV;  break;
      case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
      case X86::VMOVDQUrr:  NewOpc = X86::VMOVDQUrr_REV;  break;
      case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
      case X86::VMOVUPDrr:  NewOpc = X86::VMOVUPDrr_REV;  break;
      case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
      case X86::VMOVUPSrr:  NewOpc = X86::VMOVUPSrr_REV;  break;
      case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
      }
      OutMI.setOpcode(NewOpc);
    }
    break;
  }
  case X86::VMOVSDrr:
  case X86::VMOVSSrr: {
    if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
        X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) {
      unsigned NewOpc;
      switch (OutMI.getOpcode()) {
      default: llvm_unreachable("Invalid opcode");
      case X86::VMOVSDrr:   NewOpc = X86::VMOVSDrr_REV;   break;
      case X86::VMOVSSrr:   NewOpc = X86::VMOVSSrr_REV;   break;
      }
      OutMI.setOpcode(NewOpc);
    }
    break;
  }

  // TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have register
  // inputs modeled as normal uses instead of implicit uses.  As such, truncate
  // off all but the first operand (the callee).  FIXME: Change isel.
  case X86::TAILJMPr64:
  case X86::CALL64r:
  case X86::CALL64pcrel32: {
    unsigned Opcode = OutMI.getOpcode();
    MCOperand Saved = OutMI.getOperand(0);
    OutMI = MCInst();
    OutMI.setOpcode(Opcode);
    OutMI.addOperand(Saved);
    break;
  }

  case X86::EH_RETURN:
  case X86::EH_RETURN64: {
    OutMI = MCInst();
    OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
    break;
  }

  // TAILJMPd, TAILJMPd64 - Lower to the correct jump instructions.
  case X86::TAILJMPr:
  case X86::TAILJMPd:
  case X86::TAILJMPd64: {
    unsigned Opcode;
    switch (OutMI.getOpcode()) {
    default: llvm_unreachable("Invalid opcode");
    case X86::TAILJMPr: Opcode = X86::JMP32r; break;
    case X86::TAILJMPd:
    case X86::TAILJMPd64: Opcode = X86::JMP_1; break;
    }

    MCOperand Saved = OutMI.getOperand(0);
    OutMI = MCInst();
    OutMI.setOpcode(Opcode);
    OutMI.addOperand(Saved);
    break;
  }

  // These are pseudo-ops for OR to help with the OR->ADD transformation.  We do
  // this with an ugly goto in case the resultant OR uses EAX and needs the
  // short form.
  case X86::ADD16rr_DB:   OutMI.setOpcode(X86::OR16rr); goto ReSimplify;
  case X86::ADD32rr_DB:   OutMI.setOpcode(X86::OR32rr); goto ReSimplify;
  case X86::ADD64rr_DB:   OutMI.setOpcode(X86::OR64rr); goto ReSimplify;
  case X86::ADD16ri_DB:   OutMI.setOpcode(X86::OR16ri); goto ReSimplify;
  case X86::ADD32ri_DB:   OutMI.setOpcode(X86::OR32ri); goto ReSimplify;
  case X86::ADD64ri32_DB: OutMI.setOpcode(X86::OR64ri32); goto ReSimplify;
  case X86::ADD16ri8_DB:  OutMI.setOpcode(X86::OR16ri8); goto ReSimplify;
  case X86::ADD32ri8_DB:  OutMI.setOpcode(X86::OR32ri8); goto ReSimplify;
  case X86::ADD64ri8_DB:  OutMI.setOpcode(X86::OR64ri8); goto ReSimplify;

  // The assembler backend wants to see branches in their small form and relax
  // them to their large form.  The JIT can only handle the large form because
  // it does not do relaxation.  For now, translate the large form to the
  // small one here.
  case X86::JMP_4: OutMI.setOpcode(X86::JMP_1); break;
  case X86::JO_4:  OutMI.setOpcode(X86::JO_1); break;
  case X86::JNO_4: OutMI.setOpcode(X86::JNO_1); break;
  case X86::JB_4:  OutMI.setOpcode(X86::JB_1); break;
  case X86::JAE_4: OutMI.setOpcode(X86::JAE_1); break;
  case X86::JE_4:  OutMI.setOpcode(X86::JE_1); break;
  case X86::JNE_4: OutMI.setOpcode(X86::JNE_1); break;
  case X86::JBE_4: OutMI.setOpcode(X86::JBE_1); break;
  case X86::JA_4:  OutMI.setOpcode(X86::JA_1); break;
  case X86::JS_4:  OutMI.setOpcode(X86::JS_1); break;
  case X86::JNS_4: OutMI.setOpcode(X86::JNS_1); break;
  case X86::JP_4:  OutMI.setOpcode(X86::JP_1); break;
  case X86::JNP_4: OutMI.setOpcode(X86::JNP_1); break;
  case X86::JL_4:  OutMI.setOpcode(X86::JL_1); break;
  case X86::JGE_4: OutMI.setOpcode(X86::JGE_1); break;
  case X86::JLE_4: OutMI.setOpcode(X86::JLE_1); break;
  case X86::JG_4:  OutMI.setOpcode(X86::JG_1); break;

  // Atomic load and store require a separate pseudo-inst because Acquire
  // implies mayStore and Release implies mayLoad; fix these to regular MOV
  // instructions here
  case X86::ACQUIRE_MOV8rm:  OutMI.setOpcode(X86::MOV8rm); goto ReSimplify;
  case X86::ACQUIRE_MOV16rm: OutMI.setOpcode(X86::MOV16rm); goto ReSimplify;
  case X86::ACQUIRE_MOV32rm: OutMI.setOpcode(X86::MOV32rm); goto ReSimplify;
  case X86::ACQUIRE_MOV64rm: OutMI.setOpcode(X86::MOV64rm); goto ReSimplify;
  case X86::RELEASE_MOV8mr:  OutMI.setOpcode(X86::MOV8mr); goto ReSimplify;
  case X86::RELEASE_MOV16mr: OutMI.setOpcode(X86::MOV16mr); goto ReSimplify;
  case X86::RELEASE_MOV32mr: OutMI.setOpcode(X86::MOV32mr); goto ReSimplify;
  case X86::RELEASE_MOV64mr: OutMI.setOpcode(X86::MOV64mr); goto ReSimplify;

  // We don't currently select the correct instruction form for instructions
  // which have a short %eax, etc. form. Handle this by custom lowering, for
  // now.
  //
  // Note, we are currently not handling the following instructions:
  // MOV64ao8, MOV64o8a
  // XCHG16ar, XCHG32ar, XCHG64ar
  case X86::MOV8mr_NOREX:
  case X86::MOV8mr:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8ao8); break;
  case X86::MOV8rm_NOREX:
  case X86::MOV8rm:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8o8a); break;
  case X86::MOV16mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16ao16); break;
  case X86::MOV16rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16o16a); break;
  case X86::MOV32mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32ao32); break;
  case X86::MOV32rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32o32a); break;

  case X86::ADC8ri:     SimplifyShortImmForm(OutMI, X86::ADC8i8);    break;
  case X86::ADC16ri:    SimplifyShortImmForm(OutMI, X86::ADC16i16);  break;
  case X86::ADC32ri:    SimplifyShortImmForm(OutMI, X86::ADC32i32);  break;
  case X86::ADC64ri32:  SimplifyShortImmForm(OutMI, X86::ADC64i32);  break;
  case X86::ADD8ri:     SimplifyShortImmForm(OutMI, X86::ADD8i8);    break;
  case X86::ADD16ri:    SimplifyShortImmForm(OutMI, X86::ADD16i16);  break;
  case X86::ADD32ri:    SimplifyShortImmForm(OutMI, X86::ADD32i32);  break;
  case X86::ADD64ri32:  SimplifyShortImmForm(OutMI, X86::ADD64i32);  break;
  case X86::AND8ri:     SimplifyShortImmForm(OutMI, X86::AND8i8);    break;
  case X86::AND16ri:    SimplifyShortImmForm(OutMI, X86::AND16i16);  break;
  case X86::AND32ri:    SimplifyShortImmForm(OutMI, X86::AND32i32);  break;
  case X86::AND64ri32:  SimplifyShortImmForm(OutMI, X86::AND64i32);  break;
  case X86::CMP8ri:     SimplifyShortImmForm(OutMI, X86::CMP8i8);    break;
  case X86::CMP16ri:    SimplifyShortImmForm(OutMI, X86::CMP16i16);  break;
  case X86::CMP32ri:    SimplifyShortImmForm(OutMI, X86::CMP32i32);  break;
  case X86::CMP64ri32:  SimplifyShortImmForm(OutMI, X86::CMP64i32);  break;
  case X86::OR8ri:      SimplifyShortImmForm(OutMI, X86::OR8i8);     break;
  case X86::OR16ri:     SimplifyShortImmForm(OutMI, X86::OR16i16);   break;
  case X86::OR32ri:     SimplifyShortImmForm(OutMI, X86::OR32i32);   break;
  case X86::OR64ri32:   SimplifyShortImmForm(OutMI, X86::OR64i32);   break;
  case X86::SBB8ri:     SimplifyShortImmForm(OutMI, X86::SBB8i8);    break;
  case X86::SBB16ri:    SimplifyShortImmForm(OutMI, X86::SBB16i16);  break;
  case X86::SBB32ri:    SimplifyShortImmForm(OutMI, X86::SBB32i32);  break;
  case X86::SBB64ri32:  SimplifyShortImmForm(OutMI, X86::SBB64i32);  break;
  case X86::SUB8ri:     SimplifyShortImmForm(OutMI, X86::SUB8i8);    break;
  case X86::SUB16ri:    SimplifyShortImmForm(OutMI, X86::SUB16i16);  break;
  case X86::SUB32ri:    SimplifyShortImmForm(OutMI, X86::SUB32i32);  break;
  case X86::SUB64ri32:  SimplifyShortImmForm(OutMI, X86::SUB64i32);  break;
  case X86::TEST8ri:    SimplifyShortImmForm(OutMI, X86::TEST8i8);   break;
  case X86::TEST16ri:   SimplifyShortImmForm(OutMI, X86::TEST16i16); break;
  case X86::TEST32ri:   SimplifyShortImmForm(OutMI, X86::TEST32i32); break;
  case X86::TEST64ri32: SimplifyShortImmForm(OutMI, X86::TEST64i32); break;
  case X86::XOR8ri:     SimplifyShortImmForm(OutMI, X86::XOR8i8);    break;
  case X86::XOR16ri:    SimplifyShortImmForm(OutMI, X86::XOR16i16);  break;
  case X86::XOR32ri:    SimplifyShortImmForm(OutMI, X86::XOR32i32);  break;
  case X86::XOR64ri32:  SimplifyShortImmForm(OutMI, X86::XOR64i32);  break;

  // Try to shrink some forms of movsx.
  case X86::MOVSX16rr8:
  case X86::MOVSX32rr16:
  case X86::MOVSX64rr32:
    SimplifyMOVSX(OutMI);
    break;
  }
}
Example #22
0
void ARM64AsmPrinter::EmitInstruction(const MachineInstr *MI) {
  // Do any auto-generated pseudo lowerings.
  if (emitPseudoExpansionLowering(OutStreamer, MI))
    return;

  if (ARM64FI->getLOHRelated().count(MI)) {
    // Generate a label for LOH related instruction
    MCSymbol *LOHLabel = GetTempSymbol("loh", LOHLabelCounter++);
    // Associate the instruction with the label
    LOHInstToLabel[MI] = LOHLabel;
    OutStreamer.EmitLabel(LOHLabel);
  }

  // Do any manual lowerings.
  switch (MI->getOpcode()) {
  default:
    break;
  case ARM64::DBG_VALUE: {
    if (isVerbose() && OutStreamer.hasRawTextSupport()) {
      SmallString<128> TmpStr;
      raw_svector_ostream OS(TmpStr);
      PrintDebugValueComment(MI, OS);
      OutStreamer.EmitRawText(StringRef(OS.str()));
    }
    return;
  }
  // Indexed loads and stores use a pseudo to handle complex operand
  // tricks and writeback to the base register. We strip off the writeback
  // operand and switch the opcode here. Post-indexed stores were handled by the
  // tablegen'erated pseudos above. (The complex operand <--> simple
  // operand isel is beyond tablegen's ability, so we do these manually).
  case ARM64::LDRHHpre_isel:
  case ARM64::LDRBBpre_isel:
  case ARM64::LDRXpre_isel:
  case ARM64::LDRWpre_isel:
  case ARM64::LDRDpre_isel:
  case ARM64::LDRSpre_isel:
  case ARM64::LDRSBWpre_isel:
  case ARM64::LDRSBXpre_isel:
  case ARM64::LDRSHWpre_isel:
  case ARM64::LDRSHXpre_isel:
  case ARM64::LDRSWpre_isel:
  case ARM64::LDRDpost_isel:
  case ARM64::LDRSpost_isel:
  case ARM64::LDRXpost_isel:
  case ARM64::LDRWpost_isel:
  case ARM64::LDRHHpost_isel:
  case ARM64::LDRBBpost_isel:
  case ARM64::LDRSWpost_isel:
  case ARM64::LDRSHWpost_isel:
  case ARM64::LDRSHXpost_isel:
  case ARM64::LDRSBWpost_isel:
  case ARM64::LDRSBXpost_isel: {
    MCInst TmpInst;
    // For loads, the writeback operand to be skipped is the second.
    TmpInst.setOpcode(getRealIndexedOpcode(MI->getOpcode()));
    TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
    TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(2).getReg()));
    TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(3).getImm()));
    EmitToStreamer(OutStreamer, TmpInst);
    return;
  }
  case ARM64::STRXpre_isel:
  case ARM64::STRWpre_isel:
  case ARM64::STRHHpre_isel:
  case ARM64::STRBBpre_isel:
  case ARM64::STRDpre_isel:
  case ARM64::STRSpre_isel: {
    MCInst TmpInst;
    // For loads, the writeback operand to be skipped is the first.
    TmpInst.setOpcode(getRealIndexedOpcode(MI->getOpcode()));
    TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
    TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(2).getReg()));
    TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(3).getImm()));
    EmitToStreamer(OutStreamer, TmpInst);
    return;
  }

  // Tail calls use pseudo instructions so they have the proper code-gen
  // attributes (isCall, isReturn, etc.). We lower them to the real
  // instruction here.
  case ARM64::TCRETURNri: {
    MCInst TmpInst;
    TmpInst.setOpcode(ARM64::BR);
    TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
    EmitToStreamer(OutStreamer, TmpInst);
    return;
  }
  case ARM64::TCRETURNdi: {
    MCOperand Dest;
    MCInstLowering.lowerOperand(MI->getOperand(0), Dest);
    MCInst TmpInst;
    TmpInst.setOpcode(ARM64::B);
    TmpInst.addOperand(Dest);
    EmitToStreamer(OutStreamer, TmpInst);
    return;
  }
  case ARM64::TLSDESC_BLR: {
    MCOperand Callee, Sym;
    MCInstLowering.lowerOperand(MI->getOperand(0), Callee);
    MCInstLowering.lowerOperand(MI->getOperand(1), Sym);

    // First emit a relocation-annotation. This expands to no code, but requests
    // the following instruction gets an R_AARCH64_TLSDESC_CALL.
    MCInst TLSDescCall;
    TLSDescCall.setOpcode(ARM64::TLSDESCCALL);
    TLSDescCall.addOperand(Sym);
    EmitToStreamer(OutStreamer, TLSDescCall);

    // Other than that it's just a normal indirect call to the function loaded
    // from the descriptor.
    MCInst BLR;
    BLR.setOpcode(ARM64::BLR);
    BLR.addOperand(Callee);
    EmitToStreamer(OutStreamer, BLR);

    return;
  }

  case TargetOpcode::STACKMAP:
    return LowerSTACKMAP(OutStreamer, SM, *MI);

  case TargetOpcode::PATCHPOINT:
    return LowerPATCHPOINT(OutStreamer, SM, *MI);
  }

  // Finally, do the automated lowerings for everything else.
  MCInst TmpInst;
  MCInstLowering.Lower(MI, TmpInst);
  EmitToStreamer(OutStreamer, TmpInst);
}
Example #23
0
void WebAssemblyMCInstLower::lower(const MachineInstr *MI,
                                   MCInst &OutMI) const {
  OutMI.setOpcode(MI->getOpcode());

  const MCInstrDesc &Desc = MI->getDesc();
  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
    const MachineOperand &MO = MI->getOperand(I);

    MCOperand MCOp;
    switch (MO.getType()) {
    default:
      MI->print(errs());
      llvm_unreachable("unknown operand type");
    case MachineOperand::MO_MachineBasicBlock:
      MI->print(errs());
      llvm_unreachable("MachineBasicBlock operand should have been rewritten");
    case MachineOperand::MO_Register: {
      // Ignore all implicit register operands.
      if (MO.isImplicit())
        continue;
      const WebAssemblyFunctionInfo &MFI =
          *MI->getParent()->getParent()->getInfo<WebAssemblyFunctionInfo>();
      unsigned WAReg = MFI.getWAReg(MO.getReg());
      MCOp = MCOperand::createReg(WAReg);
      break;
    }
    case MachineOperand::MO_Immediate:
      if (I < Desc.NumOperands) {
        const MCOperandInfo &Info = Desc.OpInfo[I];
        if (Info.OperandType == WebAssembly::OPERAND_TYPEINDEX) {
          MCSymbol *Sym = Printer.createTempSymbol("typeindex");

          SmallVector<wasm::ValType, 4> Returns;
          SmallVector<wasm::ValType, 4> Params;

          const MachineRegisterInfo &MRI =
              MI->getParent()->getParent()->getRegInfo();
          for (const MachineOperand &MO : MI->defs())
            Returns.push_back(getType(MRI.getRegClass(MO.getReg())));
          for (const MachineOperand &MO : MI->explicit_uses())
            if (MO.isReg())
              Params.push_back(getType(MRI.getRegClass(MO.getReg())));

          // call_indirect instructions have a callee operand at the end which
          // doesn't count as a param.
          if (WebAssembly::isCallIndirect(*MI))
            Params.pop_back();

          auto *WasmSym = cast<MCSymbolWasm>(Sym);
          auto Signature = make_unique<wasm::WasmSignature>(std::move(Returns),
                                                            std::move(Params));
          WasmSym->setSignature(Signature.get());
          Printer.addSignature(std::move(Signature));
          WasmSym->setType(wasm::WASM_SYMBOL_TYPE_FUNCTION);

          const MCExpr *Expr = MCSymbolRefExpr::create(
              WasmSym, MCSymbolRefExpr::VK_WASM_TYPEINDEX, Ctx);
          MCOp = MCOperand::createExpr(Expr);
          break;
        }
      }
      MCOp = MCOperand::createImm(MO.getImm());
      break;
    case MachineOperand::MO_FPImmediate: {
      // TODO: MC converts all floating point immediate operands to double.
      // This is fine for numeric values, but may cause NaNs to change bits.
      const ConstantFP *Imm = MO.getFPImm();
      if (Imm->getType()->isFloatTy())
        MCOp = MCOperand::createFPImm(Imm->getValueAPF().convertToFloat());
      else if (Imm->getType()->isDoubleTy())
        MCOp = MCOperand::createFPImm(Imm->getValueAPF().convertToDouble());
      else
        llvm_unreachable("unknown floating point immediate type");
      break;
    }
    case MachineOperand::MO_GlobalAddress:
      MCOp = lowerSymbolOperand(MO, GetGlobalAddressSymbol(MO));
      break;
    case MachineOperand::MO_ExternalSymbol:
      // The target flag indicates whether this is a symbol for a
      // variable or a function.
      assert(MO.getTargetFlags() == 0 &&
             "WebAssembly uses only symbol flags on ExternalSymbols");
      MCOp = lowerSymbolOperand(MO, GetExternalSymbolSymbol(MO));
      break;
    case MachineOperand::MO_MCSymbol:
      // This is currently used only for LSDA symbols (GCC_except_table),
      // because global addresses or other external symbols are handled above.
      assert(MO.getTargetFlags() == 0 &&
             "WebAssembly does not use target flags on MCSymbol");
      MCOp = lowerSymbolOperand(MO, MO.getMCSymbol());
      break;
    }

    OutMI.addOperand(MCOp);
  }

  if (!WasmKeepRegisters)
    removeRegisterOperands(MI, OutMI);
}
Example #24
0
//===----------------------------------------------------------------------===//
void OR1KAsmPrinter::customEmitInstruction(const MachineInstr *MI) {
  OR1KMCInstLower MCInstLowering(OutContext, *Mang, *this);
  unsigned Opcode = MI->getOpcode();
  MCSubtargetInfo STI = getSubtargetInfo();

  switch (Opcode) {
  default: break;
  case OR1K::MOVHI:
  case OR1K::ORI: {
    MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
    if (Opcode == OR1K::MOVHI &&
        MI->getOperand(1).getTargetFlags() == OR1KII::MO_GOTPCHI)
      Kind = MCSymbolRefExpr::VK_OR1K_GOTPCHI;
    else if (Opcode == OR1K::ORI &&
             MI->getOperand(2).getTargetFlags() == OR1KII::MO_GOTPCLO)
      Kind = MCSymbolRefExpr::VK_OR1K_GOTPCLO;
    else
      break;

    // We want to print something like:
    //   MYGLOBAL + (. - PICBASE)
    // However, we can't generate a ".", so just emit a new label here and refer
    // to it.
    MCSymbol *DotSym = OutContext.CreateTempSymbol();
    const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext);
    const MCExpr *PICBase =
      MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), OutContext);

    OutStreamer.EmitLabel(DotSym);

    // Now that we have emitted the label, lower the complex operand expression.
    MachineOperand MO = (MI->getOpcode() == OR1K::MOVHI) ?
      MI->getOperand(1) : MI->getOperand(2);
    MCSymbol *OpSym = MCInstLowering.GetExternalSymbolSymbol(MO);

    DotExpr = MCBinaryExpr::CreateSub(DotExpr, PICBase, OutContext);

    DotExpr = MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(OpSym, Kind,
                                                              OutContext),
                                      DotExpr, OutContext);

    MCInst TmpInst;
    TmpInst.setOpcode(MI->getOpcode());
    TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
    if (MI->getOpcode() == OR1K::ORI)
      TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
    TmpInst.addOperand(MCOperand::CreateExpr(DotExpr));
    OutStreamer.EmitInstruction(TmpInst, STI);
    return;
  }

  case OR1K::GETPC: {
    MCInst TmpInst;
    // This is a pseudo op for a two instruction sequence with a label, which
    // looks like:
    //     l.jal .L1$pb
    //     l.nop
    // .L1$pb:

    // Emit the call.
    MCSymbol *PICBase = MF->getPICBaseSymbol();
    TmpInst.setOpcode(OR1K::JAL);
    // FIXME: We would like an efficient form for this, so we don't have to do a
    // lot of extra uniquing.
    TmpInst.addOperand(MCOperand::CreateExpr(
                         MCSymbolRefExpr::Create(PICBase,OutContext)));
    OutStreamer.EmitInstruction(TmpInst, STI);

    // Emit delay-slot nop
    // FIXME: omit on no-delay-slot targets
    TmpInst.setOpcode(OR1K::NOP);
    TmpInst.getOperand(0) = MCOperand::CreateImm(0);
    OutStreamer.EmitInstruction(TmpInst, STI);

    // Emit the label.
    OutStreamer.EmitLabel(PICBase);

    return;
  }
  }

  MCInst TmpInst;
  MCInstLowering.Lower(MI, TmpInst);
  OutStreamer.EmitInstruction(TmpInst, STI);
}
Example #25
0
void AArch64AsmPrinter::EmitInstruction(const MachineInstr *MI) {
  // Do any auto-generated pseudo lowerings.
  if (emitPseudoExpansionLowering(*OutStreamer, MI))
    return;

  if (AArch64FI->getLOHRelated().count(MI)) {
    // Generate a label for LOH related instruction
    MCSymbol *LOHLabel = createTempSymbol("loh");
    // Associate the instruction with the label
    LOHInstToLabel[MI] = LOHLabel;
    OutStreamer->EmitLabel(LOHLabel);
  }

  // Do any manual lowerings.
  switch (MI->getOpcode()) {
  default:
    break;
  case AArch64::DBG_VALUE: {
    if (isVerbose() && OutStreamer->hasRawTextSupport()) {
      SmallString<128> TmpStr;
      raw_svector_ostream OS(TmpStr);
      PrintDebugValueComment(MI, OS);
      OutStreamer->EmitRawText(StringRef(OS.str()));
    }
    return;
  }

  // Tail calls use pseudo instructions so they have the proper code-gen
  // attributes (isCall, isReturn, etc.). We lower them to the real
  // instruction here.
  case AArch64::TCRETURNri: {
    MCInst TmpInst;
    TmpInst.setOpcode(AArch64::BR);
    TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
    EmitToStreamer(*OutStreamer, TmpInst);
    return;
  }
  case AArch64::TCRETURNdi: {
    MCOperand Dest;
    MCInstLowering.lowerOperand(MI->getOperand(0), Dest);
    MCInst TmpInst;
    TmpInst.setOpcode(AArch64::B);
    TmpInst.addOperand(Dest);
    EmitToStreamer(*OutStreamer, TmpInst);
    return;
  }
  case AArch64::TLSDESC_CALLSEQ: {
    /// lower this to:
    ///    adrp  x0, :tlsdesc:var
    ///    ldr   x1, [x0, #:tlsdesc_lo12:var]
    ///    add   x0, x0, #:tlsdesc_lo12:var
    ///    .tlsdesccall var
    ///    blr   x1
    ///    (TPIDR_EL0 offset now in x0)
    const MachineOperand &MO_Sym = MI->getOperand(0);
    MachineOperand MO_TLSDESC_LO12(MO_Sym), MO_TLSDESC(MO_Sym);
    MCOperand Sym, SymTLSDescLo12, SymTLSDesc;
    MO_TLSDESC_LO12.setTargetFlags(AArch64II::MO_TLS | AArch64II::MO_PAGEOFF |
                                   AArch64II::MO_NC);
    MO_TLSDESC.setTargetFlags(AArch64II::MO_TLS | AArch64II::MO_PAGE);
    MCInstLowering.lowerOperand(MO_Sym, Sym);
    MCInstLowering.lowerOperand(MO_TLSDESC_LO12, SymTLSDescLo12);
    MCInstLowering.lowerOperand(MO_TLSDESC, SymTLSDesc);

    MCInst Adrp;
    Adrp.setOpcode(AArch64::ADRP);
    Adrp.addOperand(MCOperand::createReg(AArch64::X0));
    Adrp.addOperand(SymTLSDesc);
    EmitToStreamer(*OutStreamer, Adrp);

    MCInst Ldr;
    Ldr.setOpcode(AArch64::LDRXui);
    Ldr.addOperand(MCOperand::createReg(AArch64::X1));
    Ldr.addOperand(MCOperand::createReg(AArch64::X0));
    Ldr.addOperand(SymTLSDescLo12);
    Ldr.addOperand(MCOperand::createImm(0));
    EmitToStreamer(*OutStreamer, Ldr);

    MCInst Add;
    Add.setOpcode(AArch64::ADDXri);
    Add.addOperand(MCOperand::createReg(AArch64::X0));
    Add.addOperand(MCOperand::createReg(AArch64::X0));
    Add.addOperand(SymTLSDescLo12);
    Add.addOperand(MCOperand::createImm(AArch64_AM::getShiftValue(0)));
    EmitToStreamer(*OutStreamer, Add);

    // Emit a relocation-annotation. This expands to no code, but requests
    // the following instruction gets an R_AARCH64_TLSDESC_CALL.
    MCInst TLSDescCall;
    TLSDescCall.setOpcode(AArch64::TLSDESCCALL);
    TLSDescCall.addOperand(Sym);
    EmitToStreamer(*OutStreamer, TLSDescCall);

    MCInst Blr;
    Blr.setOpcode(AArch64::BLR);
    Blr.addOperand(MCOperand::createReg(AArch64::X1));
    EmitToStreamer(*OutStreamer, Blr);

    return;
  }

  case TargetOpcode::STACKMAP:
    return LowerSTACKMAP(*OutStreamer, SM, *MI);

  case TargetOpcode::PATCHPOINT:
    return LowerPATCHPOINT(*OutStreamer, SM, *MI);
  }

  // Finally, do the automated lowerings for everything else.
  MCInst TmpInst;
  MCInstLowering.Lower(MI, TmpInst);
  EmitToStreamer(*OutStreamer, TmpInst);
}
Example #26
0
void WebAssemblyMCInstLower::Lower(const MachineInstr *MI,
                                   MCInst &OutMI) const {
  OutMI.setOpcode(MI->getOpcode());

  const MCInstrDesc &Desc = MI->getDesc();
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);

    MCOperand MCOp;
    switch (MO.getType()) {
    default:
      MI->print(errs());
      llvm_unreachable("unknown operand type");
    case MachineOperand::MO_MachineBasicBlock:
      MI->print(errs());
      llvm_unreachable("MachineBasicBlock operand should have been rewritten");
    case MachineOperand::MO_Register: {
      // Ignore all implicit register operands.
      if (MO.isImplicit())
        continue;
      const WebAssemblyFunctionInfo &MFI =
          *MI->getParent()->getParent()->getInfo<WebAssemblyFunctionInfo>();
      unsigned WAReg = MFI.getWAReg(MO.getReg());
      MCOp = MCOperand::createReg(WAReg);
      break;
    }
    case MachineOperand::MO_Immediate:
      if (i < Desc.NumOperands) {
        const MCOperandInfo &Info = Desc.OpInfo[i];
        if (Info.OperandType == WebAssembly::OPERAND_TYPEINDEX) {
          MCSymbol *Sym = Printer.createTempSymbol("typeindex");
          if (!isa<MCSymbolELF>(Sym)) {
            SmallVector<wasm::ValType, 4> Returns;
            SmallVector<wasm::ValType, 4> Params;

            const MachineRegisterInfo &MRI =
                MI->getParent()->getParent()->getRegInfo();
            for (const MachineOperand &MO : MI->defs())
              Returns.push_back(getType(MRI.getRegClass(MO.getReg())));
            for (const MachineOperand &MO : MI->explicit_uses())
              if (MO.isReg())
                Params.push_back(getType(MRI.getRegClass(MO.getReg())));

            // call_indirect instructions have a callee operand at the end which
            // doesn't count as a param.
            if (WebAssembly::isCallIndirect(*MI))
              Params.pop_back();

            MCSymbolWasm *WasmSym = cast<MCSymbolWasm>(Sym);
            WasmSym->setReturns(std::move(Returns));
            WasmSym->setParams(std::move(Params));
            WasmSym->setIsFunction(true);

            const MCExpr *Expr =
                MCSymbolRefExpr::create(WasmSym,
                                        MCSymbolRefExpr::VK_WebAssembly_TYPEINDEX,
                                        Ctx);
            MCOp = MCOperand::createExpr(Expr);
            break;
          }
        }
      }
      MCOp = MCOperand::createImm(MO.getImm());
      break;
    case MachineOperand::MO_FPImmediate: {
      // TODO: MC converts all floating point immediate operands to double.
      // This is fine for numeric values, but may cause NaNs to change bits.
      const ConstantFP *Imm = MO.getFPImm();
      if (Imm->getType()->isFloatTy())
        MCOp = MCOperand::createFPImm(Imm->getValueAPF().convertToFloat());
      else if (Imm->getType()->isDoubleTy())
        MCOp = MCOperand::createFPImm(Imm->getValueAPF().convertToDouble());
      else
        llvm_unreachable("unknown floating point immediate type");
      break;
    }
    case MachineOperand::MO_GlobalAddress:
      assert(MO.getTargetFlags() == 0 &&
             "WebAssembly does not use target flags on GlobalAddresses");
      MCOp = LowerSymbolOperand(GetGlobalAddressSymbol(MO), MO.getOffset(),
                                MO.getGlobal()->getValueType()->isFunctionTy());
      break;
    case MachineOperand::MO_ExternalSymbol:
      // The target flag indicates whether this is a symbol for a
      // variable or a function.
      assert((MO.getTargetFlags() & -2) == 0 &&
             "WebAssembly uses only one target flag bit on ExternalSymbols");
      MCOp = LowerSymbolOperand(GetExternalSymbolSymbol(MO), /*Offset=*/0,
                                MO.getTargetFlags() & 1);
      break;
    }

    OutMI.addOperand(MCOp);
  }
}
Example #27
0
static DecodeStatus DecodeSimm18Lsl3(MCInst &Inst, unsigned Insn,
                                     uint64_t Address, const void *Decoder) {
  Inst.addOperand(MCOperand::CreateImm(SignExtend32<18>(Insn) << 3));
  return MCDisassembler::Success;
}
Example #28
0
/// translateImmediate  - Appends an immediate operand to an MCInst.
///
/// @param mcInst       - The MCInst to append to.
/// @param immediate    - The immediate value to append.
/// @param operand      - The operand, as stored in the descriptor table.
/// @param insn         - The internal instruction.
static void translateImmediate(MCInst &mcInst, uint64_t immediate,
                               const OperandSpecifier &operand,
                               InternalInstruction &insn) {
  // Sign-extend the immediate if necessary.

  OperandType type = operand.type;

  if (type == TYPE_RELv) {
    switch (insn.displacementSize) {
    default:
      break;
    case 1:
      type = TYPE_MOFFS8;
      break;
    case 2:
      type = TYPE_MOFFS16;
      break;
    case 4:
      type = TYPE_MOFFS32;
      break;
    case 8:
      type = TYPE_MOFFS64;
      break;
    }
  }
  // By default sign-extend all X86 immediates based on their encoding.
  else if (type == TYPE_IMM8 || type == TYPE_IMM16 || type == TYPE_IMM32 ||
           type == TYPE_IMM64) {
    uint32_t Opcode = mcInst.getOpcode();
    switch (operand.encoding) {
    default:
      break;
    case ENCODING_IB:
      // Special case those X86 instructions that use the imm8 as a set of
      // bits, bit count, etc. and are not sign-extend.
      if (Opcode != X86::BLENDPSrri && Opcode != X86::BLENDPDrri &&
	  Opcode != X86::PBLENDWrri && Opcode != X86::MPSADBWrri &&
	  Opcode != X86::DPPSrri && Opcode != X86::DPPDrri &&
	  Opcode != X86::INSERTPSrr && Opcode != X86::VBLENDPSYrri &&
	  Opcode != X86::VBLENDPSYrmi && Opcode != X86::VBLENDPDYrri &&
	  Opcode != X86::VBLENDPDYrmi && Opcode != X86::VPBLENDWrri &&
	  Opcode != X86::VMPSADBWrri && Opcode != X86::VDPPSYrri &&
	  Opcode != X86::VDPPSYrmi && Opcode != X86::VDPPDrri &&
	  Opcode != X86::VINSERTPSrr)
	type = TYPE_MOFFS8;
      break;
    case ENCODING_IW:
      type = TYPE_MOFFS16;
      break;
    case ENCODING_ID:
      type = TYPE_MOFFS32;
      break;
    case ENCODING_IO:
      type = TYPE_MOFFS64;
      break;
    }
  }

  switch (type) {
  case TYPE_MOFFS8:
  case TYPE_REL8:
    if(immediate & 0x80)
      immediate |= ~(0xffull);
    break;
  case TYPE_MOFFS16:
    if(immediate & 0x8000)
      immediate |= ~(0xffffull);
    break;
  case TYPE_MOFFS32:
  case TYPE_REL32:
  case TYPE_REL64:
    if(immediate & 0x80000000)
      immediate |= ~(0xffffffffull);
    break;
  case TYPE_MOFFS64:
  default:
    // operand is 64 bits wide.  Do nothing.
    break;
  }
    
  mcInst.addOperand(MCOperand::CreateImm(immediate));
}
Example #29
0
/// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to
/// the current output stream.
///
void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
  MCInst TmpInst;
  
  // Lower multi-instruction pseudo operations.
  switch (MI->getOpcode()) {
  default: break;
  case TargetOpcode::DBG_VALUE: {
    if (!isVerbose() || !OutStreamer.hasRawTextSupport()) return;
      
    SmallString<32> Str;
    raw_svector_ostream O(Str);
    unsigned NOps = MI->getNumOperands();
    assert(NOps==4);
    O << '\t' << MAI->getCommentString() << "DEBUG_VALUE: ";
    // cast away const; DIetc do not take const operands for some reason.
    DIVariable V(const_cast<MDNode *>(MI->getOperand(NOps-1).getMetadata()));
    O << V.getName();
    O << " <- ";
    // Frame address.  Currently handles register +- offset only.
    assert(MI->getOperand(0).isReg() && MI->getOperand(1).isImm());
    O << '['; printOperand(MI, 0, O); O << '+'; printOperand(MI, 1, O);
    O << ']';
    O << "+";
    printOperand(MI, NOps-2, O);
    OutStreamer.EmitRawText(O.str());
    return;
  }
      
  case PPC::MovePCtoLR:
  case PPC::MovePCtoLR8: {
    // Transform %LR = MovePCtoLR
    // Into this, where the label is the PIC base: 
    //     bl L1$pb
    // L1$pb:
    MCSymbol *PICBase = MF->getPICBaseSymbol();
    
    // Emit the 'bl'.
    TmpInst.setOpcode(PPC::BL_Darwin); // Darwin vs SVR4 doesn't matter here.
    
    
    // FIXME: We would like an efficient form for this, so we don't have to do
    // a lot of extra uniquing.
    TmpInst.addOperand(MCOperand::CreateExpr(MCSymbolRefExpr::
                                             Create(PICBase, OutContext)));
    OutStreamer.EmitInstruction(TmpInst);
    
    // Emit the label.
    OutStreamer.EmitLabel(PICBase);
    return;
  }
  case PPC::LDtoc: {
    // Transform %X3 = LDtoc <ga:@min1>, %X2
    LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());
      
    // Change the opcode to LD, and the global address operand to be a
    // reference to the TOC entry we will synthesize later.
    TmpInst.setOpcode(PPC::LD);
    const MachineOperand &MO = MI->getOperand(1);
    assert(MO.isGlobal());
      
    // Map symbol -> label of TOC entry.
    MCSymbol *&TOCEntry = TOC[Mang->getSymbol(MO.getGlobal())];
    if (TOCEntry == 0)
      TOCEntry = GetTempSymbol("C", TOCLabelID++);
      
    const MCExpr *Exp =
      MCSymbolRefExpr::Create(TOCEntry, MCSymbolRefExpr::VK_PPC_TOC,
                              OutContext);
    TmpInst.getOperand(1) = MCOperand::CreateExpr(Exp);
    OutStreamer.EmitInstruction(TmpInst);
    return;
  }
      
  case PPC::MFCRpseud:
    // Transform: %R3 = MFCRpseud %CR7
    // Into:      %R3 = MFCR      ;; cr7
    OutStreamer.AddComment(PPCInstPrinter::
                           getRegisterName(MI->getOperand(1).getReg()));
    TmpInst.setOpcode(PPC::MFCR);
    TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
    OutStreamer.EmitInstruction(TmpInst);
    return;
  }

  LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());
  OutStreamer.EmitInstruction(TmpInst);
}
Example #30
0
void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) {
  X86MCInstLower MCInstLowering(Mang, *MF, *this);
  switch (MI->getOpcode()) {
  case TargetOpcode::DBG_VALUE:
    if (isVerbose() && OutStreamer.hasRawTextSupport()) {
      std::string TmpStr;
      raw_string_ostream OS(TmpStr);
      PrintDebugValueComment(MI, OS);
      OutStreamer.EmitRawText(StringRef(OS.str()));
    }
    return;

  // Emit nothing here but a comment if we can.
  case X86::Int_MemBarrier:
    if (OutStreamer.hasRawTextSupport())
      OutStreamer.EmitRawText(StringRef("\t#MEMBARRIER"));
    return;


  case X86::EH_RETURN:
  case X86::EH_RETURN64: {
    // Lower these as normal, but add some comments.
    unsigned Reg = MI->getOperand(0).getReg();
    OutStreamer.AddComment(StringRef("eh_return, addr: %") +
                           X86ATTInstPrinter::getRegisterName(Reg));
    break;
  }
  case X86::TAILJMPr:
  case X86::TAILJMPd:
  case X86::TAILJMPd64:
    // Lower these as normal, but add some comments.
    OutStreamer.AddComment("TAILCALL");
    break;

  case X86::TLS_addr32:
  case X86::TLS_addr64:
  case X86::TLS_base_addr32:
  case X86::TLS_base_addr64:
    return LowerTlsAddr(OutStreamer, MCInstLowering, *MI);

  case X86::MOVPC32r: {
    MCInst TmpInst;
    // This is a pseudo op for a two instruction sequence with a label, which
    // looks like:
    //     call "L1$pb"
    // "L1$pb":
    //     popl %esi

    // Emit the call.
    MCSymbol *PICBase = MF->getPICBaseSymbol();
    TmpInst.setOpcode(X86::CALLpcrel32);
    // FIXME: We would like an efficient form for this, so we don't have to do a
    // lot of extra uniquing.
    TmpInst.addOperand(MCOperand::CreateExpr(MCSymbolRefExpr::Create(PICBase,
                                                                 OutContext)));
    OutStreamer.EmitInstruction(TmpInst);

    // Emit the label.
    OutStreamer.EmitLabel(PICBase);

    // popl $reg
    TmpInst.setOpcode(X86::POP32r);
    TmpInst.getOperand(0) = MCOperand::CreateReg(MI->getOperand(0).getReg());
    OutStreamer.EmitInstruction(TmpInst);
    return;
  }

  case X86::ADD32ri: {
    // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
    if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
      break;

    // Okay, we have something like:
    //  EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)

    // For this, we want to print something like:
    //   MYGLOBAL + (. - PICBASE)
    // However, we can't generate a ".", so just emit a new label here and refer
    // to it.
    MCSymbol *DotSym = OutContext.CreateTempSymbol();
    OutStreamer.EmitLabel(DotSym);

    // Now that we have emitted the label, lower the complex operand expression.
    MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));

    const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext);
    const MCExpr *PICBase =
      MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), OutContext);
    DotExpr = MCBinaryExpr::CreateSub(DotExpr, PICBase, OutContext);

    DotExpr = MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(OpSym,OutContext),
                                      DotExpr, OutContext);

    MCInst TmpInst;
    TmpInst.setOpcode(X86::ADD32ri);
    TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
    TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
    TmpInst.addOperand(MCOperand::CreateExpr(DotExpr));
    OutStreamer.EmitInstruction(TmpInst);
    return;
  }
  }

  MCInst TmpInst;
  MCInstLowering.Lower(MI, TmpInst);
  OutStreamer.EmitInstruction(TmpInst);
}