Example #1
0
void AArch64AsmPrinter::EmitInstruction(const MachineInstr *MI) {
  // Do any auto-generated pseudo lowerings.
  if (emitPseudoExpansionLowering(*OutStreamer, MI))
    return;

  if (AArch64FI->getLOHRelated().count(MI)) {
    // Generate a label for LOH related instruction
    MCSymbol *LOHLabel = createTempSymbol("loh");
    // Associate the instruction with the label
    LOHInstToLabel[MI] = LOHLabel;
    OutStreamer->EmitLabel(LOHLabel);
  }

  // Do any manual lowerings.
  switch (MI->getOpcode()) {
  default:
    break;
  case AArch64::DBG_VALUE: {
    if (isVerbose() && OutStreamer->hasRawTextSupport()) {
      SmallString<128> TmpStr;
      raw_svector_ostream OS(TmpStr);
      PrintDebugValueComment(MI, OS);
      OutStreamer->EmitRawText(StringRef(OS.str()));
    }
    return;
  }

  // Tail calls use pseudo instructions so they have the proper code-gen
  // attributes (isCall, isReturn, etc.). We lower them to the real
  // instruction here.
  case AArch64::TCRETURNri: {
    MCInst TmpInst;
    TmpInst.setOpcode(AArch64::BR);
    TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
    EmitToStreamer(*OutStreamer, TmpInst);
    return;
  }
  case AArch64::TCRETURNdi: {
    MCOperand Dest;
    MCInstLowering.lowerOperand(MI->getOperand(0), Dest);
    MCInst TmpInst;
    TmpInst.setOpcode(AArch64::B);
    TmpInst.addOperand(Dest);
    EmitToStreamer(*OutStreamer, TmpInst);
    return;
  }
  case AArch64::TLSDESC_CALLSEQ: {
    /// lower this to:
    ///    adrp  x0, :tlsdesc:var
    ///    ldr   x1, [x0, #:tlsdesc_lo12:var]
    ///    add   x0, x0, #:tlsdesc_lo12:var
    ///    .tlsdesccall var
    ///    blr   x1
    ///    (TPIDR_EL0 offset now in x0)
    const MachineOperand &MO_Sym = MI->getOperand(0);
    MachineOperand MO_TLSDESC_LO12(MO_Sym), MO_TLSDESC(MO_Sym);
    MCOperand Sym, SymTLSDescLo12, SymTLSDesc;
    MO_TLSDESC_LO12.setTargetFlags(AArch64II::MO_TLS | AArch64II::MO_PAGEOFF |
                                   AArch64II::MO_NC);
    MO_TLSDESC.setTargetFlags(AArch64II::MO_TLS | AArch64II::MO_PAGE);
    MCInstLowering.lowerOperand(MO_Sym, Sym);
    MCInstLowering.lowerOperand(MO_TLSDESC_LO12, SymTLSDescLo12);
    MCInstLowering.lowerOperand(MO_TLSDESC, SymTLSDesc);

    MCInst Adrp;
    Adrp.setOpcode(AArch64::ADRP);
    Adrp.addOperand(MCOperand::createReg(AArch64::X0));
    Adrp.addOperand(SymTLSDesc);
    EmitToStreamer(*OutStreamer, Adrp);

    MCInst Ldr;
    Ldr.setOpcode(AArch64::LDRXui);
    Ldr.addOperand(MCOperand::createReg(AArch64::X1));
    Ldr.addOperand(MCOperand::createReg(AArch64::X0));
    Ldr.addOperand(SymTLSDescLo12);
    Ldr.addOperand(MCOperand::createImm(0));
    EmitToStreamer(*OutStreamer, Ldr);

    MCInst Add;
    Add.setOpcode(AArch64::ADDXri);
    Add.addOperand(MCOperand::createReg(AArch64::X0));
    Add.addOperand(MCOperand::createReg(AArch64::X0));
    Add.addOperand(SymTLSDescLo12);
    Add.addOperand(MCOperand::createImm(AArch64_AM::getShiftValue(0)));
    EmitToStreamer(*OutStreamer, Add);

    // Emit a relocation-annotation. This expands to no code, but requests
    // the following instruction gets an R_AARCH64_TLSDESC_CALL.
    MCInst TLSDescCall;
    TLSDescCall.setOpcode(AArch64::TLSDESCCALL);
    TLSDescCall.addOperand(Sym);
    EmitToStreamer(*OutStreamer, TLSDescCall);

    MCInst Blr;
    Blr.setOpcode(AArch64::BLR);
    Blr.addOperand(MCOperand::createReg(AArch64::X1));
    EmitToStreamer(*OutStreamer, Blr);

    return;
  }

  case TargetOpcode::STACKMAP:
    return LowerSTACKMAP(*OutStreamer, SM, *MI);

  case TargetOpcode::PATCHPOINT:
    return LowerPATCHPOINT(*OutStreamer, SM, *MI);
  }

  // Finally, do the automated lowerings for everything else.
  MCInst TmpInst;
  MCInstLowering.Lower(MI, TmpInst);
  EmitToStreamer(*OutStreamer, TmpInst);
}
Example #2
0
/// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to
/// the current output stream.
///
void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
  MCInst TmpInst;
  
  // Lower multi-instruction pseudo operations.
  switch (MI->getOpcode()) {
  default: break;
  case TargetOpcode::DBG_VALUE:
    llvm_unreachable("Should be handled target independently");
  case PPC::MovePCtoLR:
  case PPC::MovePCtoLR8: {
    // Transform %LR = MovePCtoLR
    // Into this, where the label is the PIC base: 
    //     bl L1$pb
    // L1$pb:
    MCSymbol *PICBase = MF->getPICBaseSymbol();
    
    // Emit the 'bl'.
    OutStreamer.EmitInstruction(MCInstBuilder(PPC::BL)
      // FIXME: We would like an efficient form for this, so we don't have to do
      // a lot of extra uniquing.
      .addExpr(MCSymbolRefExpr::Create(PICBase, OutContext)));
    
    // Emit the label.
    OutStreamer.EmitLabel(PICBase);
    return;
  }
  case PPC::LDtocJTI:
  case PPC::LDtocCPT:
  case PPC::LDtoc: {
    // Transform %X3 = LDtoc <ga:@min1>, %X2
    LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());

    // Change the opcode to LD, and the global address operand to be a
    // reference to the TOC entry we will synthesize later.
    TmpInst.setOpcode(PPC::LD);
    const MachineOperand &MO = MI->getOperand(1);

    // Map symbol -> label of TOC entry
    assert(MO.isGlobal() || MO.isCPI() || MO.isJTI());
    MCSymbol *MOSymbol = 0;
    if (MO.isGlobal())
      MOSymbol = getSymbol(MO.getGlobal());
    else if (MO.isCPI())
      MOSymbol = GetCPISymbol(MO.getIndex());
    else if (MO.isJTI())
      MOSymbol = GetJTISymbol(MO.getIndex());

    MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol);

    const MCExpr *Exp =
      MCSymbolRefExpr::Create(TOCEntry, MCSymbolRefExpr::VK_PPC_TOC,
                              OutContext);
    TmpInst.getOperand(1) = MCOperand::CreateExpr(Exp);
    OutStreamer.EmitInstruction(TmpInst);
    return;
  }
      
  case PPC::ADDIStocHA: {
    // Transform %Xd = ADDIStocHA %X2, <ga:@sym>
    LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());

    // Change the opcode to ADDIS8.  If the global address is external,
    // has common linkage, is a function address, or is a jump table
    // address, then generate a TOC entry and reference that.  Otherwise
    // reference the symbol directly.
    TmpInst.setOpcode(PPC::ADDIS8);
    const MachineOperand &MO = MI->getOperand(2);
    assert((MO.isGlobal() || MO.isCPI() || MO.isJTI()) &&
           "Invalid operand for ADDIStocHA!");
    MCSymbol *MOSymbol = 0;
    bool IsExternal = false;
    bool IsFunction = false;
    bool IsCommon = false;
    bool IsAvailExt = false;

    if (MO.isGlobal()) {
      const GlobalValue *GValue = MO.getGlobal();
      const GlobalAlias *GAlias = dyn_cast<GlobalAlias>(GValue);
      const GlobalValue *RealGValue = GAlias ?
        GAlias->resolveAliasedGlobal(false) : GValue;
      MOSymbol = getSymbol(RealGValue);
      const GlobalVariable *GVar = dyn_cast<GlobalVariable>(RealGValue);
      IsExternal = GVar && !GVar->hasInitializer();
      IsCommon = GVar && RealGValue->hasCommonLinkage();
      IsFunction = !GVar;
      IsAvailExt = GVar && RealGValue->hasAvailableExternallyLinkage();
    } else if (MO.isCPI())
      MOSymbol = GetCPISymbol(MO.getIndex());
    else if (MO.isJTI())
      MOSymbol = GetJTISymbol(MO.getIndex());

    if (IsExternal || IsFunction || IsCommon || IsAvailExt || MO.isJTI() ||
        TM.getCodeModel() == CodeModel::Large)
      MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);

    const MCExpr *Exp =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_TOC_HA,
                              OutContext);
    TmpInst.getOperand(2) = MCOperand::CreateExpr(Exp);
    OutStreamer.EmitInstruction(TmpInst);
    return;
  }
  case PPC::LDtocL: {
    // Transform %Xd = LDtocL <ga:@sym>, %Xs
    LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());

    // Change the opcode to LD.  If the global address is external, has
    // common linkage, or is a jump table address, then reference the
    // associated TOC entry.  Otherwise reference the symbol directly.
    TmpInst.setOpcode(PPC::LD);
    const MachineOperand &MO = MI->getOperand(1);
    assert((MO.isGlobal() || MO.isJTI() || MO.isCPI()) &&
           "Invalid operand for LDtocL!");
    MCSymbol *MOSymbol = 0;

    if (MO.isJTI())
      MOSymbol = lookUpOrCreateTOCEntry(GetJTISymbol(MO.getIndex()));
    else if (MO.isCPI()) {
      MOSymbol = GetCPISymbol(MO.getIndex());
      if (TM.getCodeModel() == CodeModel::Large)
        MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);
    }
    else if (MO.isGlobal()) {
      const GlobalValue *GValue = MO.getGlobal();
      const GlobalAlias *GAlias = dyn_cast<GlobalAlias>(GValue);
      const GlobalValue *RealGValue = GAlias ?
        GAlias->resolveAliasedGlobal(false) : GValue;
      MOSymbol = getSymbol(RealGValue);
      const GlobalVariable *GVar = dyn_cast<GlobalVariable>(RealGValue);
    
      if (!GVar || !GVar->hasInitializer() || RealGValue->hasCommonLinkage() ||
          RealGValue->hasAvailableExternallyLinkage() ||
          TM.getCodeModel() == CodeModel::Large)
        MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);
    }

    const MCExpr *Exp =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_TOC_LO,
                              OutContext);
    TmpInst.getOperand(1) = MCOperand::CreateExpr(Exp);
    OutStreamer.EmitInstruction(TmpInst);
    return;
  }
  case PPC::ADDItocL: {
    // Transform %Xd = ADDItocL %Xs, <ga:@sym>
    LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());

    // Change the opcode to ADDI8.  If the global address is external, then
    // generate a TOC entry and reference that.  Otherwise reference the
    // symbol directly.
    TmpInst.setOpcode(PPC::ADDI8);
    const MachineOperand &MO = MI->getOperand(2);
    assert((MO.isGlobal() || MO.isCPI()) && "Invalid operand for ADDItocL");
    MCSymbol *MOSymbol = 0;
    bool IsExternal = false;
    bool IsFunction = false;

    if (MO.isGlobal()) {
      const GlobalValue *GValue = MO.getGlobal();
      const GlobalAlias *GAlias = dyn_cast<GlobalAlias>(GValue);
      const GlobalValue *RealGValue = GAlias ?
        GAlias->resolveAliasedGlobal(false) : GValue;
      MOSymbol = getSymbol(RealGValue);
      const GlobalVariable *GVar = dyn_cast<GlobalVariable>(RealGValue);
      IsExternal = GVar && !GVar->hasInitializer();
      IsFunction = !GVar;
    } else if (MO.isCPI())
      MOSymbol = GetCPISymbol(MO.getIndex());

    if (IsFunction || IsExternal || TM.getCodeModel() == CodeModel::Large)
      MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);

    const MCExpr *Exp =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_TOC_LO,
                              OutContext);
    TmpInst.getOperand(2) = MCOperand::CreateExpr(Exp);
    OutStreamer.EmitInstruction(TmpInst);
    return;
  }
  case PPC::ADDISgotTprelHA: {
    // Transform: %Xd = ADDISgotTprelHA %X2, <ga:@sym>
    // Into:      %Xd = ADDIS8 %X2, sym@got@tlsgd@ha
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = getSymbol(GValue);
    const MCExpr *SymGotTprel =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA,
                              OutContext);
    OutStreamer.EmitInstruction(MCInstBuilder(PPC::ADDIS8)
                                .addReg(MI->getOperand(0).getReg())
                                .addReg(PPC::X2)
                                .addExpr(SymGotTprel));
    return;
  }
  case PPC::LDgotTprelL: {
    // Transform %Xd = LDgotTprelL <ga:@sym>, %Xs
    LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());

    // Change the opcode to LD.
    TmpInst.setOpcode(PPC::LD);
    const MachineOperand &MO = MI->getOperand(1);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = getSymbol(GValue);
    const MCExpr *Exp =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO,
                              OutContext);
    TmpInst.getOperand(1) = MCOperand::CreateExpr(Exp);
    OutStreamer.EmitInstruction(TmpInst);
    return;
  }
  case PPC::ADDIStlsgdHA: {
    // Transform: %Xd = ADDIStlsgdHA %X2, <ga:@sym>
    // Into:      %Xd = ADDIS8 %X2, sym@got@tlsgd@ha
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = getSymbol(GValue);
    const MCExpr *SymGotTlsGD =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA,
                              OutContext);
    OutStreamer.EmitInstruction(MCInstBuilder(PPC::ADDIS8)
                                .addReg(MI->getOperand(0).getReg())
                                .addReg(PPC::X2)
                                .addExpr(SymGotTlsGD));
    return;
  }
  case PPC::ADDItlsgdL: {
    // Transform: %Xd = ADDItlsgdL %Xs, <ga:@sym>
    // Into:      %Xd = ADDI8 %Xs, sym@got@tlsgd@l
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = getSymbol(GValue);
    const MCExpr *SymGotTlsGD =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO,
                              OutContext);
    OutStreamer.EmitInstruction(MCInstBuilder(PPC::ADDI8)
                                .addReg(MI->getOperand(0).getReg())
                                .addReg(MI->getOperand(1).getReg())
                                .addExpr(SymGotTlsGD));
    return;
  }
  case PPC::GETtlsADDR: {
    // Transform: %X3 = GETtlsADDR %X3, <ga:@sym>
    // Into:      BL8_NOP_TLS __tls_get_addr(sym@tlsgd)
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");

    StringRef Name = "__tls_get_addr";
    MCSymbol *TlsGetAddr = OutContext.GetOrCreateSymbol(Name);
    const MCSymbolRefExpr *TlsRef = 
      MCSymbolRefExpr::Create(TlsGetAddr, MCSymbolRefExpr::VK_None, OutContext);
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = getSymbol(GValue);
    const MCExpr *SymVar =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_TLSGD,
                              OutContext);
    OutStreamer.EmitInstruction(MCInstBuilder(PPC::BL8_NOP_TLS)
                                .addExpr(TlsRef)
                                .addExpr(SymVar));
    return;
  }
  case PPC::ADDIStlsldHA: {
    // Transform: %Xd = ADDIStlsldHA %X2, <ga:@sym>
    // Into:      %Xd = ADDIS8 %X2, sym@got@tlsld@ha
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = getSymbol(GValue);
    const MCExpr *SymGotTlsLD =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA,
                              OutContext);
    OutStreamer.EmitInstruction(MCInstBuilder(PPC::ADDIS8)
                                .addReg(MI->getOperand(0).getReg())
                                .addReg(PPC::X2)
                                .addExpr(SymGotTlsLD));
    return;
  }
  case PPC::ADDItlsldL: {
    // Transform: %Xd = ADDItlsldL %Xs, <ga:@sym>
    // Into:      %Xd = ADDI8 %Xs, sym@got@tlsld@l
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = getSymbol(GValue);
    const MCExpr *SymGotTlsLD =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO,
                              OutContext);
    OutStreamer.EmitInstruction(MCInstBuilder(PPC::ADDI8)
                                .addReg(MI->getOperand(0).getReg())
                                .addReg(MI->getOperand(1).getReg())
                                .addExpr(SymGotTlsLD));
    return;
  }
  case PPC::GETtlsldADDR: {
    // Transform: %X3 = GETtlsldADDR %X3, <ga:@sym>
    // Into:      BL8_NOP_TLS __tls_get_addr(sym@tlsld)
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");

    StringRef Name = "__tls_get_addr";
    MCSymbol *TlsGetAddr = OutContext.GetOrCreateSymbol(Name);
    const MCSymbolRefExpr *TlsRef = 
      MCSymbolRefExpr::Create(TlsGetAddr, MCSymbolRefExpr::VK_None, OutContext);
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = getSymbol(GValue);
    const MCExpr *SymVar =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_TLSLD,
                              OutContext);
    OutStreamer.EmitInstruction(MCInstBuilder(PPC::BL8_NOP_TLS)
                                .addExpr(TlsRef)
                                .addExpr(SymVar));
    return;
  }
  case PPC::ADDISdtprelHA: {
    // Transform: %Xd = ADDISdtprelHA %X3, <ga:@sym>
    // Into:      %Xd = ADDIS8 %X3, sym@dtprel@ha
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = getSymbol(GValue);
    const MCExpr *SymDtprel =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_HA,
                              OutContext);
    OutStreamer.EmitInstruction(MCInstBuilder(PPC::ADDIS8)
                                .addReg(MI->getOperand(0).getReg())
                                .addReg(PPC::X3)
                                .addExpr(SymDtprel));
    return;
  }
  case PPC::ADDIdtprelL: {
    // Transform: %Xd = ADDIdtprelL %Xs, <ga:@sym>
    // Into:      %Xd = ADDI8 %Xs, sym@dtprel@l
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = getSymbol(GValue);
    const MCExpr *SymDtprel =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_LO,
                              OutContext);
    OutStreamer.EmitInstruction(MCInstBuilder(PPC::ADDI8)
                                .addReg(MI->getOperand(0).getReg())
                                .addReg(MI->getOperand(1).getReg())
                                .addExpr(SymDtprel));
    return;
  }
  case PPC::MFOCRF:
  case PPC::MFOCRF8:
    if (!Subtarget.hasMFOCRF()) {
      // Transform: %R3 = MFOCRF %CR7
      // Into:      %R3 = MFCR   ;; cr7
      unsigned NewOpcode =
        MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8;
      OutStreamer.AddComment(PPCInstPrinter::
                             getRegisterName(MI->getOperand(1).getReg()));
      OutStreamer.EmitInstruction(MCInstBuilder(NewOpcode)
                                  .addReg(MI->getOperand(0).getReg()));
      return;
    }
    break;
  case PPC::MTOCRF:
  case PPC::MTOCRF8:
    if (!Subtarget.hasMFOCRF()) {
      // Transform: %CR7 = MTOCRF %R3
      // Into:      MTCRF mask, %R3 ;; cr7
      unsigned NewOpcode =
        MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8;
      unsigned Mask = 0x80 >> OutContext.getRegisterInfo()
                              ->getEncodingValue(MI->getOperand(0).getReg());
      OutStreamer.AddComment(PPCInstPrinter::
                             getRegisterName(MI->getOperand(0).getReg()));
      OutStreamer.EmitInstruction(MCInstBuilder(NewOpcode)
                                  .addImm(Mask)
                                  .addReg(MI->getOperand(1).getReg()));
      return;
    }
    break;
  case PPC::SYNC:
    // In Book E sync is called msync, handle this special case here...
    if (Subtarget.isBookE()) {
      OutStreamer.EmitRawText(StringRef("\tmsync"));
      return;
    }
    break;
  case PPC::LD:
  case PPC::STD:
  case PPC::LWA_32:
  case PPC::LWA: {
    // Verify alignment is legal, so we don't create relocations
    // that can't be supported.
    // FIXME:  This test is currently disabled for Darwin.  The test
    // suite shows a handful of test cases that fail this check for
    // Darwin.  Those need to be investigated before this sanity test
    // can be enabled for those subtargets.
    if (!Subtarget.isDarwin()) {
      unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1;
      const MachineOperand &MO = MI->getOperand(OpNum);
      if (MO.isGlobal() && MO.getGlobal()->getAlignment() < 4)
        llvm_unreachable("Global must be word-aligned for LD, STD, LWA!");
    }
    // Now process the instruction normally.
    break;
  }
  }
Example #3
0
MCInst HexagonMCInstrInfo::createBundle() {
  MCInst Result;
  Result.setOpcode(Hexagon::BUNDLE);
  Result.addOperand(MCOperand::createImm(0));
  return Result;
}
Example #4
0
void ARMInstPrinter::printInst(const MCInst *MI, raw_ostream &O,
                               StringRef Annot) {
  unsigned Opcode = MI->getOpcode();

  // Check for HINT instructions w/ canonical names.
  if (Opcode == ARM::HINT || Opcode == ARM::t2HINT) {
    switch (MI->getOperand(0).getImm()) {
    case 0: O << "\tnop"; break;
    case 1: O << "\tyield"; break;
    case 2: O << "\twfe"; break;
    case 3: O << "\twfi"; break;
    case 4: O << "\tsev"; break;
    default:
      // Anything else should just print normally.
      printInstruction(MI, O);
      printAnnotation(O, Annot);
      return;
    }
    printPredicateOperand(MI, 1, O);
    if (Opcode == ARM::t2HINT)
      O << ".w";
    printAnnotation(O, Annot);
    return;
  }

  // Check for MOVs and print canonical forms, instead.
  if (Opcode == ARM::MOVsr) {
    // FIXME: Thumb variants?
    const MCOperand &Dst = MI->getOperand(0);
    const MCOperand &MO1 = MI->getOperand(1);
    const MCOperand &MO2 = MI->getOperand(2);
    const MCOperand &MO3 = MI->getOperand(3);

    O << '\t' << ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(MO3.getImm()));
    printSBitModifierOperand(MI, 6, O);
    printPredicateOperand(MI, 4, O);

    O << '\t';
    printRegName(O, Dst.getReg());
    O << ", ";
    printRegName(O, MO1.getReg());

    O << ", ";
    printRegName(O, MO2.getReg());
    assert(ARM_AM::getSORegOffset(MO3.getImm()) == 0);
    printAnnotation(O, Annot);
    return;
  }

  if (Opcode == ARM::MOVsi) {
    // FIXME: Thumb variants?
    const MCOperand &Dst = MI->getOperand(0);
    const MCOperand &MO1 = MI->getOperand(1);
    const MCOperand &MO2 = MI->getOperand(2);

    O << '\t' << ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(MO2.getImm()));
    printSBitModifierOperand(MI, 5, O);
    printPredicateOperand(MI, 3, O);

    O << '\t';
    printRegName(O, Dst.getReg());
    O << ", ";
    printRegName(O, MO1.getReg());

    if (ARM_AM::getSORegShOp(MO2.getImm()) == ARM_AM::rrx) {
      printAnnotation(O, Annot);
      return;
    }

    O << ", "
      << markup("<imm:")
      << "#" << translateShiftImm(ARM_AM::getSORegOffset(MO2.getImm()))
      << markup(">");
    printAnnotation(O, Annot);
    return;
  }


  // A8.6.123 PUSH
  if ((Opcode == ARM::STMDB_UPD || Opcode == ARM::t2STMDB_UPD) &&
      MI->getOperand(0).getReg() == ARM::SP &&
      MI->getNumOperands() > 5) {
    // Should only print PUSH if there are at least two registers in the list.
    O << '\t' << "push";
    printPredicateOperand(MI, 2, O);
    if (Opcode == ARM::t2STMDB_UPD)
      O << ".w";
    O << '\t';
    printRegisterList(MI, 4, O);
    printAnnotation(O, Annot);
    return;
  }
  if (Opcode == ARM::STR_PRE_IMM && MI->getOperand(2).getReg() == ARM::SP &&
      MI->getOperand(3).getImm() == -4) {
    O << '\t' << "push";
    printPredicateOperand(MI, 4, O);
    O << "\t{";
    printRegName(O, MI->getOperand(1).getReg());
    O << "}";
    printAnnotation(O, Annot);
    return;
  }

  // A8.6.122 POP
  if ((Opcode == ARM::LDMIA_UPD || Opcode == ARM::t2LDMIA_UPD) &&
      MI->getOperand(0).getReg() == ARM::SP &&
      MI->getNumOperands() > 5) {
    // Should only print POP if there are at least two registers in the list.
    O << '\t' << "pop";
    printPredicateOperand(MI, 2, O);
    if (Opcode == ARM::t2LDMIA_UPD)
      O << ".w";
    O << '\t';
    printRegisterList(MI, 4, O);
    printAnnotation(O, Annot);
    return;
  }
  if (Opcode == ARM::LDR_POST_IMM && MI->getOperand(2).getReg() == ARM::SP &&
      MI->getOperand(4).getImm() == 4) {
    O << '\t' << "pop";
    printPredicateOperand(MI, 5, O);
    O << "\t{";
    printRegName(O, MI->getOperand(0).getReg());
    O << "}";
    printAnnotation(O, Annot);
    return;
  }


  // A8.6.355 VPUSH
  if ((Opcode == ARM::VSTMSDB_UPD || Opcode == ARM::VSTMDDB_UPD) &&
      MI->getOperand(0).getReg() == ARM::SP) {
    O << '\t' << "vpush";
    printPredicateOperand(MI, 2, O);
    O << '\t';
    printRegisterList(MI, 4, O);
    printAnnotation(O, Annot);
    return;
  }

  // A8.6.354 VPOP
  if ((Opcode == ARM::VLDMSIA_UPD || Opcode == ARM::VLDMDIA_UPD) &&
      MI->getOperand(0).getReg() == ARM::SP) {
    O << '\t' << "vpop";
    printPredicateOperand(MI, 2, O);
    O << '\t';
    printRegisterList(MI, 4, O);
    printAnnotation(O, Annot);
    return;
  }

  if (Opcode == ARM::tLDMIA) {
    bool Writeback = true;
    unsigned BaseReg = MI->getOperand(0).getReg();
    for (unsigned i = 3; i < MI->getNumOperands(); ++i) {
      if (MI->getOperand(i).getReg() == BaseReg)
        Writeback = false;
    }

    O << "\tldm";

    printPredicateOperand(MI, 1, O);
    O << '\t';
    printRegName(O, BaseReg);
    if (Writeback) O << "!";
    O << ", ";
    printRegisterList(MI, 3, O);
    printAnnotation(O, Annot);
    return;
  }

  // Thumb1 NOP
  if (Opcode == ARM::tMOVr && MI->getOperand(0).getReg() == ARM::R8 &&
      MI->getOperand(1).getReg() == ARM::R8) {
    O << "\tnop";
    printPredicateOperand(MI, 2, O);
    printAnnotation(O, Annot);
    return;
  }

  // Combine 2 GPRs from disassember into a GPRPair to match with instr def.
  // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
  // a single GPRPair reg operand is used in the .td file to replace the two
  // GPRs. However, when decoding them, the two GRPs cannot be automatically
  // expressed as a GPRPair, so we have to manually merge them.
  // FIXME: We would really like to be able to tablegen'erate this.
  if (Opcode == ARM::LDREXD || Opcode == ARM::STREXD) {
    const MCRegisterClass& MRC = MRI.getRegClass(ARM::GPRRegClassID);
    bool isStore = Opcode == ARM::STREXD;
    unsigned Reg = MI->getOperand(isStore ? 1 : 0).getReg();
    if (MRC.contains(Reg)) {
      MCInst NewMI;
      MCOperand NewReg;
      NewMI.setOpcode(Opcode);

      if (isStore)
        NewMI.addOperand(MI->getOperand(0));
      NewReg = MCOperand::CreateReg(MRI.getMatchingSuperReg(Reg, ARM::gsub_0,
        &MRI.getRegClass(ARM::GPRPairRegClassID)));
      NewMI.addOperand(NewReg);

      // Copy the rest operands into NewMI.
      for(unsigned i= isStore ? 3 : 2; i < MI->getNumOperands(); ++i)
        NewMI.addOperand(MI->getOperand(i));
      printInstruction(&NewMI, O);
      return;
    }
  }

  printInstruction(MI, O);
  printAnnotation(O, Annot);
}
void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
  OutMI.setOpcode(MI->getOpcode());

  for (const MachineOperand &MO : MI->operands())
    if (auto MaybeMCOp = LowerMachineOperand(MI, MO))
      OutMI.addOperand(MaybeMCOp.getValue());

  // Handle a few special cases to eliminate operand modifiers.
ReSimplify:
  switch (OutMI.getOpcode()) {
  case X86::LEA64_32r:
  case X86::LEA64r:
  case X86::LEA16r:
  case X86::LEA32r:
    // LEA should have a segment register, but it must be empty.
    assert(OutMI.getNumOperands() == 1+X86::AddrNumOperands &&
           "Unexpected # of LEA operands");
    assert(OutMI.getOperand(1+X86::AddrSegmentReg).getReg() == 0 &&
           "LEA has segment specified!");
    break;

  case X86::MOV32ri64:
    OutMI.setOpcode(X86::MOV32ri);
    break;

  // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B
  // if one of the registers is extended, but other isn't.
  case X86::VMOVAPDrr:
  case X86::VMOVAPDYrr:
  case X86::VMOVAPSrr:
  case X86::VMOVAPSYrr:
  case X86::VMOVDQArr:
  case X86::VMOVDQAYrr:
  case X86::VMOVDQUrr:
  case X86::VMOVDQUYrr:
  case X86::VMOVUPDrr:
  case X86::VMOVUPDYrr:
  case X86::VMOVUPSrr:
  case X86::VMOVUPSYrr: {
    if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
        X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) {
      unsigned NewOpc;
      switch (OutMI.getOpcode()) {
      default: llvm_unreachable("Invalid opcode");
      case X86::VMOVAPDrr:  NewOpc = X86::VMOVAPDrr_REV;  break;
      case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
      case X86::VMOVAPSrr:  NewOpc = X86::VMOVAPSrr_REV;  break;
      case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
      case X86::VMOVDQArr:  NewOpc = X86::VMOVDQArr_REV;  break;
      case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
      case X86::VMOVDQUrr:  NewOpc = X86::VMOVDQUrr_REV;  break;
      case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
      case X86::VMOVUPDrr:  NewOpc = X86::VMOVUPDrr_REV;  break;
      case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
      case X86::VMOVUPSrr:  NewOpc = X86::VMOVUPSrr_REV;  break;
      case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
      }
      OutMI.setOpcode(NewOpc);
    }
    break;
  }
  case X86::VMOVSDrr:
  case X86::VMOVSSrr: {
    if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
        X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) {
      unsigned NewOpc;
      switch (OutMI.getOpcode()) {
      default: llvm_unreachable("Invalid opcode");
      case X86::VMOVSDrr:   NewOpc = X86::VMOVSDrr_REV;   break;
      case X86::VMOVSSrr:   NewOpc = X86::VMOVSSrr_REV;   break;
      }
      OutMI.setOpcode(NewOpc);
    }
    break;
  }

  // TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have register
  // inputs modeled as normal uses instead of implicit uses.  As such, truncate
  // off all but the first operand (the callee).  FIXME: Change isel.
  case X86::TAILJMPr64:
  case X86::TAILJMPr64_REX:
  case X86::CALL64r:
  case X86::CALL64pcrel32: {
    unsigned Opcode = OutMI.getOpcode();
    MCOperand Saved = OutMI.getOperand(0);
    OutMI = MCInst();
    OutMI.setOpcode(Opcode);
    OutMI.addOperand(Saved);
    break;
  }

  case X86::EH_RETURN:
  case X86::EH_RETURN64: {
    OutMI = MCInst();
    OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
    break;
  }

  // TAILJMPd, TAILJMPd64 - Lower to the correct jump instructions.
  case X86::TAILJMPr:
  case X86::TAILJMPd:
  case X86::TAILJMPd64: {
    unsigned Opcode;
    switch (OutMI.getOpcode()) {
    default: llvm_unreachable("Invalid opcode");
    case X86::TAILJMPr: Opcode = X86::JMP32r; break;
    case X86::TAILJMPd:
    case X86::TAILJMPd64: Opcode = X86::JMP_1; break;
    }

    MCOperand Saved = OutMI.getOperand(0);
    OutMI = MCInst();
    OutMI.setOpcode(Opcode);
    OutMI.addOperand(Saved);
    break;
  }

  case X86::DEC16r:
  case X86::DEC32r:
  case X86::INC16r:
  case X86::INC32r:
    // If we aren't in 64-bit mode we can use the 1-byte inc/dec instructions.
    if (!AsmPrinter.getSubtarget().is64Bit()) {
      unsigned Opcode;
      switch (OutMI.getOpcode()) {
      default: llvm_unreachable("Invalid opcode");
      case X86::DEC16r: Opcode = X86::DEC16r_alt; break;
      case X86::DEC32r: Opcode = X86::DEC32r_alt; break;
      case X86::INC16r: Opcode = X86::INC16r_alt; break;
      case X86::INC32r: Opcode = X86::INC32r_alt; break;
      }
      OutMI.setOpcode(Opcode);
    }
    break;

  // These are pseudo-ops for OR to help with the OR->ADD transformation.  We do
  // this with an ugly goto in case the resultant OR uses EAX and needs the
  // short form.
  case X86::ADD16rr_DB:   OutMI.setOpcode(X86::OR16rr); goto ReSimplify;
  case X86::ADD32rr_DB:   OutMI.setOpcode(X86::OR32rr); goto ReSimplify;
  case X86::ADD64rr_DB:   OutMI.setOpcode(X86::OR64rr); goto ReSimplify;
  case X86::ADD16ri_DB:   OutMI.setOpcode(X86::OR16ri); goto ReSimplify;
  case X86::ADD32ri_DB:   OutMI.setOpcode(X86::OR32ri); goto ReSimplify;
  case X86::ADD64ri32_DB: OutMI.setOpcode(X86::OR64ri32); goto ReSimplify;
  case X86::ADD16ri8_DB:  OutMI.setOpcode(X86::OR16ri8); goto ReSimplify;
  case X86::ADD32ri8_DB:  OutMI.setOpcode(X86::OR32ri8); goto ReSimplify;
  case X86::ADD64ri8_DB:  OutMI.setOpcode(X86::OR64ri8); goto ReSimplify;

  // Atomic load and store require a separate pseudo-inst because Acquire
  // implies mayStore and Release implies mayLoad; fix these to regular MOV
  // instructions here
  case X86::ACQUIRE_MOV8rm:    OutMI.setOpcode(X86::MOV8rm); goto ReSimplify;
  case X86::ACQUIRE_MOV16rm:   OutMI.setOpcode(X86::MOV16rm); goto ReSimplify;
  case X86::ACQUIRE_MOV32rm:   OutMI.setOpcode(X86::MOV32rm); goto ReSimplify;
  case X86::ACQUIRE_MOV64rm:   OutMI.setOpcode(X86::MOV64rm); goto ReSimplify;
  case X86::RELEASE_MOV8mr:    OutMI.setOpcode(X86::MOV8mr); goto ReSimplify;
  case X86::RELEASE_MOV16mr:   OutMI.setOpcode(X86::MOV16mr); goto ReSimplify;
  case X86::RELEASE_MOV32mr:   OutMI.setOpcode(X86::MOV32mr); goto ReSimplify;
  case X86::RELEASE_MOV64mr:   OutMI.setOpcode(X86::MOV64mr); goto ReSimplify;
  case X86::RELEASE_MOV8mi:    OutMI.setOpcode(X86::MOV8mi); goto ReSimplify;
  case X86::RELEASE_MOV16mi:   OutMI.setOpcode(X86::MOV16mi); goto ReSimplify;
  case X86::RELEASE_MOV32mi:   OutMI.setOpcode(X86::MOV32mi); goto ReSimplify;
  case X86::RELEASE_MOV64mi32: OutMI.setOpcode(X86::MOV64mi32); goto ReSimplify;
  case X86::RELEASE_ADD8mi:    OutMI.setOpcode(X86::ADD8mi); goto ReSimplify;
  case X86::RELEASE_ADD32mi:   OutMI.setOpcode(X86::ADD32mi); goto ReSimplify;
  case X86::RELEASE_ADD64mi32: OutMI.setOpcode(X86::ADD64mi32); goto ReSimplify;
  case X86::RELEASE_AND8mi:    OutMI.setOpcode(X86::AND8mi); goto ReSimplify;
  case X86::RELEASE_AND32mi:   OutMI.setOpcode(X86::AND32mi); goto ReSimplify;
  case X86::RELEASE_AND64mi32: OutMI.setOpcode(X86::AND64mi32); goto ReSimplify;
  case X86::RELEASE_OR8mi:     OutMI.setOpcode(X86::OR8mi); goto ReSimplify;
  case X86::RELEASE_OR32mi:    OutMI.setOpcode(X86::OR32mi); goto ReSimplify;
  case X86::RELEASE_OR64mi32:  OutMI.setOpcode(X86::OR64mi32); goto ReSimplify;
  case X86::RELEASE_XOR8mi:    OutMI.setOpcode(X86::XOR8mi); goto ReSimplify;
  case X86::RELEASE_XOR32mi:   OutMI.setOpcode(X86::XOR32mi); goto ReSimplify;
  case X86::RELEASE_XOR64mi32: OutMI.setOpcode(X86::XOR64mi32); goto ReSimplify;
  case X86::RELEASE_INC8m:     OutMI.setOpcode(X86::INC8m); goto ReSimplify;
  case X86::RELEASE_INC16m:    OutMI.setOpcode(X86::INC16m); goto ReSimplify;
  case X86::RELEASE_INC32m:    OutMI.setOpcode(X86::INC32m); goto ReSimplify;
  case X86::RELEASE_INC64m:    OutMI.setOpcode(X86::INC64m); goto ReSimplify;
  case X86::RELEASE_DEC8m:     OutMI.setOpcode(X86::DEC8m); goto ReSimplify;
  case X86::RELEASE_DEC16m:    OutMI.setOpcode(X86::DEC16m); goto ReSimplify;
  case X86::RELEASE_DEC32m:    OutMI.setOpcode(X86::DEC32m); goto ReSimplify;
  case X86::RELEASE_DEC64m:    OutMI.setOpcode(X86::DEC64m); goto ReSimplify;

  // We don't currently select the correct instruction form for instructions
  // which have a short %eax, etc. form. Handle this by custom lowering, for
  // now.
  //
  // Note, we are currently not handling the following instructions:
  // MOV64ao8, MOV64o8a
  // XCHG16ar, XCHG32ar, XCHG64ar
  case X86::MOV8mr_NOREX:
  case X86::MOV8mr:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8o32a); break;
  case X86::MOV8rm_NOREX:
  case X86::MOV8rm:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8ao32); break;
  case X86::MOV16mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16o32a); break;
  case X86::MOV16rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16ao32); break;
  case X86::MOV32mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32o32a); break;
  case X86::MOV32rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32ao32); break;

  case X86::ADC8ri:     SimplifyShortImmForm(OutMI, X86::ADC8i8);    break;
  case X86::ADC16ri:    SimplifyShortImmForm(OutMI, X86::ADC16i16);  break;
  case X86::ADC32ri:    SimplifyShortImmForm(OutMI, X86::ADC32i32);  break;
  case X86::ADC64ri32:  SimplifyShortImmForm(OutMI, X86::ADC64i32);  break;
  case X86::ADD8ri:     SimplifyShortImmForm(OutMI, X86::ADD8i8);    break;
  case X86::ADD16ri:    SimplifyShortImmForm(OutMI, X86::ADD16i16);  break;
  case X86::ADD32ri:    SimplifyShortImmForm(OutMI, X86::ADD32i32);  break;
  case X86::ADD64ri32:  SimplifyShortImmForm(OutMI, X86::ADD64i32);  break;
  case X86::AND8ri:     SimplifyShortImmForm(OutMI, X86::AND8i8);    break;
  case X86::AND16ri:    SimplifyShortImmForm(OutMI, X86::AND16i16);  break;
  case X86::AND32ri:    SimplifyShortImmForm(OutMI, X86::AND32i32);  break;
  case X86::AND64ri32:  SimplifyShortImmForm(OutMI, X86::AND64i32);  break;
  case X86::CMP8ri:     SimplifyShortImmForm(OutMI, X86::CMP8i8);    break;
  case X86::CMP16ri:    SimplifyShortImmForm(OutMI, X86::CMP16i16);  break;
  case X86::CMP32ri:    SimplifyShortImmForm(OutMI, X86::CMP32i32);  break;
  case X86::CMP64ri32:  SimplifyShortImmForm(OutMI, X86::CMP64i32);  break;
  case X86::OR8ri:      SimplifyShortImmForm(OutMI, X86::OR8i8);     break;
  case X86::OR16ri:     SimplifyShortImmForm(OutMI, X86::OR16i16);   break;
  case X86::OR32ri:     SimplifyShortImmForm(OutMI, X86::OR32i32);   break;
  case X86::OR64ri32:   SimplifyShortImmForm(OutMI, X86::OR64i32);   break;
  case X86::SBB8ri:     SimplifyShortImmForm(OutMI, X86::SBB8i8);    break;
  case X86::SBB16ri:    SimplifyShortImmForm(OutMI, X86::SBB16i16);  break;
  case X86::SBB32ri:    SimplifyShortImmForm(OutMI, X86::SBB32i32);  break;
  case X86::SBB64ri32:  SimplifyShortImmForm(OutMI, X86::SBB64i32);  break;
  case X86::SUB8ri:     SimplifyShortImmForm(OutMI, X86::SUB8i8);    break;
  case X86::SUB16ri:    SimplifyShortImmForm(OutMI, X86::SUB16i16);  break;
  case X86::SUB32ri:    SimplifyShortImmForm(OutMI, X86::SUB32i32);  break;
  case X86::SUB64ri32:  SimplifyShortImmForm(OutMI, X86::SUB64i32);  break;
  case X86::TEST8ri:    SimplifyShortImmForm(OutMI, X86::TEST8i8);   break;
  case X86::TEST16ri:   SimplifyShortImmForm(OutMI, X86::TEST16i16); break;
  case X86::TEST32ri:   SimplifyShortImmForm(OutMI, X86::TEST32i32); break;
  case X86::TEST64ri32: SimplifyShortImmForm(OutMI, X86::TEST64i32); break;
  case X86::XOR8ri:     SimplifyShortImmForm(OutMI, X86::XOR8i8);    break;
  case X86::XOR16ri:    SimplifyShortImmForm(OutMI, X86::XOR16i16);  break;
  case X86::XOR32ri:    SimplifyShortImmForm(OutMI, X86::XOR32i32);  break;
  case X86::XOR64ri32:  SimplifyShortImmForm(OutMI, X86::XOR64i32);  break;

  // Try to shrink some forms of movsx.
  case X86::MOVSX16rr8:
  case X86::MOVSX32rr16:
  case X86::MOVSX64rr32:
    SimplifyMOVSX(OutMI);
    break;
  }
}
Example #6
0
/// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to
/// the current output stream.
///
void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
  MCInst TmpInst;
  
  // Lower multi-instruction pseudo operations.
  switch (MI->getOpcode()) {
  default: break;
  case TargetOpcode::DBG_VALUE: {
    if (!isVerbose() || !OutStreamer.hasRawTextSupport()) return;
      
    SmallString<32> Str;
    raw_svector_ostream O(Str);
    unsigned NOps = MI->getNumOperands();
    assert(NOps==4);
    O << '\t' << MAI->getCommentString() << "DEBUG_VALUE: ";
    // cast away const; DIetc do not take const operands for some reason.
    DIVariable V(const_cast<MDNode *>(MI->getOperand(NOps-1).getMetadata()));
    O << V.getName();
    O << " <- ";
    // Frame address.  Currently handles register +- offset only.
    assert(MI->getOperand(0).isReg() && MI->getOperand(1).isImm());
    O << '['; printOperand(MI, 0, O); O << '+'; printOperand(MI, 1, O);
    O << ']';
    O << "+";
    printOperand(MI, NOps-2, O);
    OutStreamer.EmitRawText(O.str());
    return;
  }
      
  case PPC::MovePCtoLR:
  case PPC::MovePCtoLR8: {
    // Transform %LR = MovePCtoLR
    // Into this, where the label is the PIC base: 
    //     bl L1$pb
    // L1$pb:
    MCSymbol *PICBase = MF->getPICBaseSymbol();
    
    // Emit the 'bl'.
    OutStreamer.EmitInstruction(MCInstBuilder(PPC::BL_Darwin) // Darwin vs SVR4 doesn't matter here.
      // FIXME: We would like an efficient form for this, so we don't have to do
      // a lot of extra uniquing.
      .addExpr(MCSymbolRefExpr::Create(PICBase, OutContext)));
    
    // Emit the label.
    OutStreamer.EmitLabel(PICBase);
    return;
  }
  case PPC::LDtocJTI:
  case PPC::LDtocCPT:
  case PPC::LDtoc: {
    // Transform %X3 = LDtoc <ga:@min1>, %X2
    LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());

    // Change the opcode to LD, and the global address operand to be a
    // reference to the TOC entry we will synthesize later.
    TmpInst.setOpcode(PPC::LD);
    const MachineOperand &MO = MI->getOperand(1);

    // Map symbol -> label of TOC entry
    assert(MO.isGlobal() || MO.isCPI() || MO.isJTI());
    MCSymbol *MOSymbol = 0;
    if (MO.isGlobal())
      MOSymbol = Mang->getSymbol(MO.getGlobal());
    else if (MO.isCPI())
      MOSymbol = GetCPISymbol(MO.getIndex());
    else if (MO.isJTI())
      MOSymbol = GetJTISymbol(MO.getIndex());

    MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol);

    const MCExpr *Exp =
      MCSymbolRefExpr::Create(TOCEntry, MCSymbolRefExpr::VK_PPC_TOC_ENTRY,
                              OutContext);
    TmpInst.getOperand(1) = MCOperand::CreateExpr(Exp);
    OutStreamer.EmitInstruction(TmpInst);
    return;
  }
      
  case PPC::ADDIStocHA: {
    // Transform %Xd = ADDIStocHA %X2, <ga:@sym>
    LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());

    // Change the opcode to ADDIS8.  If the global address is external,
    // has common linkage, is a function address, or is a jump table
    // address, then generate a TOC entry and reference that.  Otherwise
    // reference the symbol directly.
    TmpInst.setOpcode(PPC::ADDIS8);
    const MachineOperand &MO = MI->getOperand(2);
    assert((MO.isGlobal() || MO.isCPI() || MO.isJTI()) &&
           "Invalid operand for ADDIStocHA!");
    MCSymbol *MOSymbol = 0;
    bool IsExternal = false;
    bool IsFunction = false;
    bool IsCommon = false;

    if (MO.isGlobal()) {
      const GlobalValue *GValue = MO.getGlobal();
      MOSymbol = Mang->getSymbol(GValue);
      const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GValue);
      IsExternal = GVar && !GVar->hasInitializer();
      IsCommon = GVar && GValue->hasCommonLinkage();
      IsFunction = !GVar;
    } else if (MO.isCPI())
      MOSymbol = GetCPISymbol(MO.getIndex());
    else if (MO.isJTI())
      MOSymbol = GetJTISymbol(MO.getIndex());

    if (IsExternal || IsFunction || IsCommon || MO.isJTI())
      MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);

    const MCExpr *Exp =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_TOC16_HA,
                              OutContext);
    TmpInst.getOperand(2) = MCOperand::CreateExpr(Exp);
    OutStreamer.EmitInstruction(TmpInst);
    return;
  }
  case PPC::LDtocL: {
    // Transform %Xd = LDtocL <ga:@sym>, %Xs
    LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());

    // Change the opcode to LDrs, which is a form of LD with the offset
    // specified by a SymbolLo.  If the global address is external, has
    // common linkage, or is a jump table address, then reference the
    // associated TOC entry.  Otherwise reference the symbol directly.
    TmpInst.setOpcode(PPC::LDrs);
    const MachineOperand &MO = MI->getOperand(1);
    assert((MO.isGlobal() || MO.isJTI()) && "Invalid operand for LDtocL!");
    MCSymbol *MOSymbol = 0;

    if (MO.isJTI())
      MOSymbol = lookUpOrCreateTOCEntry(GetJTISymbol(MO.getIndex()));
    else {
      const GlobalValue *GValue = MO.getGlobal();
      MOSymbol = Mang->getSymbol(GValue);
      const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GValue);
    
      if (!GVar || !GVar->hasInitializer() || GValue->hasCommonLinkage())
        MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);
    }

    const MCExpr *Exp =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_TOC16_LO,
                              OutContext);
    TmpInst.getOperand(1) = MCOperand::CreateExpr(Exp);
    OutStreamer.EmitInstruction(TmpInst);
    return;
  }
  case PPC::ADDItocL: {
    // Transform %Xd = ADDItocL %Xs, <ga:@sym>
    LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());

    // Change the opcode to ADDI8L.  If the global address is external, then
    // generate a TOC entry and reference that.  Otherwise reference the
    // symbol directly.
    TmpInst.setOpcode(PPC::ADDI8L);
    const MachineOperand &MO = MI->getOperand(2);
    assert((MO.isGlobal() || MO.isCPI()) && "Invalid operand for ADDItocL");
    MCSymbol *MOSymbol = 0;
    bool IsExternal = false;
    bool IsFunction = false;

    if (MO.isGlobal()) {
      const GlobalValue *GValue = MO.getGlobal();
      MOSymbol = Mang->getSymbol(GValue);
      const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GValue);
      IsExternal = GVar && !GVar->hasInitializer();
      IsFunction = !GVar;
    } else if (MO.isCPI())
      MOSymbol = GetCPISymbol(MO.getIndex());

    if (IsFunction || IsExternal)
      MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);

    const MCExpr *Exp =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_TOC16_LO,
                              OutContext);
    TmpInst.getOperand(2) = MCOperand::CreateExpr(Exp);
    OutStreamer.EmitInstruction(TmpInst);
    return;
  }
  case PPC::ADDISgotTprelHA: {
    // Transform: %Xd = ADDISgotTprelHA %X2, <ga:@sym>
    // Into:      %Xd = ADDIS8 %X2, sym@got@tlsgd@ha
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = Mang->getSymbol(GValue);
    const MCExpr *SymGotTprel =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL16_HA,
                              OutContext);
    OutStreamer.EmitInstruction(MCInstBuilder(PPC::ADDIS8)
                                .addReg(MI->getOperand(0).getReg())
                                .addReg(PPC::X2)
                                .addExpr(SymGotTprel));
    return;
  }
  case PPC::LDgotTprelL: {
    // Transform %Xd = LDgotTprelL <ga:@sym>, %Xs
    LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());

    // Change the opcode to LDrs, which is a form of LD with the offset
    // specified by a SymbolLo.
    TmpInst.setOpcode(PPC::LDrs);
    const MachineOperand &MO = MI->getOperand(1);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = Mang->getSymbol(GValue);
    const MCExpr *Exp =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL16_LO,
                              OutContext);
    TmpInst.getOperand(1) = MCOperand::CreateExpr(Exp);
    OutStreamer.EmitInstruction(TmpInst);
    return;
  }
  case PPC::ADDIStlsgdHA: {
    // Transform: %Xd = ADDIStlsgdHA %X2, <ga:@sym>
    // Into:      %Xd = ADDIS8 %X2, sym@got@tlsgd@ha
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = Mang->getSymbol(GValue);
    const MCExpr *SymGotTlsGD =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD16_HA,
                              OutContext);
    OutStreamer.EmitInstruction(MCInstBuilder(PPC::ADDIS8)
                                .addReg(MI->getOperand(0).getReg())
                                .addReg(PPC::X2)
                                .addExpr(SymGotTlsGD));
    return;
  }
  case PPC::ADDItlsgdL: {
    // Transform: %Xd = ADDItlsgdL %Xs, <ga:@sym>
    // Into:      %Xd = ADDI8L %Xs, sym@got@tlsgd@l
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = Mang->getSymbol(GValue);
    const MCExpr *SymGotTlsGD =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD16_LO,
                              OutContext);
    OutStreamer.EmitInstruction(MCInstBuilder(PPC::ADDI8L)
                                .addReg(MI->getOperand(0).getReg())
                                .addReg(MI->getOperand(1).getReg())
                                .addExpr(SymGotTlsGD));
    return;
  }
  case PPC::GETtlsADDR: {
    // Transform: %X3 = GETtlsADDR %X3, <ga:@sym>
    // Into:      BL8_NOP_ELF_TLSGD __tls_get_addr(sym@tlsgd)
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");

    StringRef Name = "__tls_get_addr";
    MCSymbol *TlsGetAddr = OutContext.GetOrCreateSymbol(Name);
    const MCSymbolRefExpr *TlsRef = 
      MCSymbolRefExpr::Create(TlsGetAddr, MCSymbolRefExpr::VK_None, OutContext);
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = Mang->getSymbol(GValue);
    const MCExpr *SymVar =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_TLSGD,
                              OutContext);
    OutStreamer.EmitInstruction(MCInstBuilder(PPC::BL8_NOP_ELF_TLSGD)
                                .addExpr(TlsRef)
                                .addExpr(SymVar));
    return;
  }
  case PPC::ADDIStlsldHA: {
    // Transform: %Xd = ADDIStlsldHA %X2, <ga:@sym>
    // Into:      %Xd = ADDIS8 %X2, sym@got@tlsld@ha
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = Mang->getSymbol(GValue);
    const MCExpr *SymGotTlsLD =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD16_HA,
                              OutContext);
    OutStreamer.EmitInstruction(MCInstBuilder(PPC::ADDIS8)
                                .addReg(MI->getOperand(0).getReg())
                                .addReg(PPC::X2)
                                .addExpr(SymGotTlsLD));
    return;
  }
  case PPC::ADDItlsldL: {
    // Transform: %Xd = ADDItlsldL %Xs, <ga:@sym>
    // Into:      %Xd = ADDI8L %Xs, sym@got@tlsld@l
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = Mang->getSymbol(GValue);
    const MCExpr *SymGotTlsLD =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD16_LO,
                              OutContext);
    OutStreamer.EmitInstruction(MCInstBuilder(PPC::ADDI8L)
                                .addReg(MI->getOperand(0).getReg())
                                .addReg(MI->getOperand(1).getReg())
                                .addExpr(SymGotTlsLD));
    return;
  }
  case PPC::GETtlsldADDR: {
    // Transform: %X3 = GETtlsldADDR %X3, <ga:@sym>
    // Into:      BL8_NOP_ELF_TLSLD __tls_get_addr(sym@tlsld)
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");

    StringRef Name = "__tls_get_addr";
    MCSymbol *TlsGetAddr = OutContext.GetOrCreateSymbol(Name);
    const MCSymbolRefExpr *TlsRef = 
      MCSymbolRefExpr::Create(TlsGetAddr, MCSymbolRefExpr::VK_None, OutContext);
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = Mang->getSymbol(GValue);
    const MCExpr *SymVar =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_TLSLD,
                              OutContext);
    OutStreamer.EmitInstruction(MCInstBuilder(PPC::BL8_NOP_ELF_TLSLD)
                                .addExpr(TlsRef)
                                .addExpr(SymVar));
    return;
  }
  case PPC::ADDISdtprelHA: {
    // Transform: %Xd = ADDISdtprelHA %X3, <ga:@sym>
    // Into:      %Xd = ADDIS8 %X3, sym@dtprel@ha
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = Mang->getSymbol(GValue);
    const MCExpr *SymDtprel =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL16_HA,
                              OutContext);
    OutStreamer.EmitInstruction(MCInstBuilder(PPC::ADDIS8)
                                .addReg(MI->getOperand(0).getReg())
                                .addReg(PPC::X3)
                                .addExpr(SymDtprel));
    return;
  }
  case PPC::ADDIdtprelL: {
    // Transform: %Xd = ADDIdtprelL %Xs, <ga:@sym>
    // Into:      %Xd = ADDI8L %Xs, sym@dtprel@l
    assert(Subtarget.isPPC64() && "Not supported for 32-bit PowerPC");
    const MachineOperand &MO = MI->getOperand(2);
    const GlobalValue *GValue = MO.getGlobal();
    MCSymbol *MOSymbol = Mang->getSymbol(GValue);
    const MCExpr *SymDtprel =
      MCSymbolRefExpr::Create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL16_LO,
                              OutContext);
    OutStreamer.EmitInstruction(MCInstBuilder(PPC::ADDI8L)
                                .addReg(MI->getOperand(0).getReg())
                                .addReg(MI->getOperand(1).getReg())
                                .addExpr(SymDtprel));
    return;
  }
  case PPC::MFCRpseud:
  case PPC::MFCR8pseud:
    // Transform: %R3 = MFCRpseud %CR7
    // Into:      %R3 = MFCR      ;; cr7
    OutStreamer.AddComment(PPCInstPrinter::
                           getRegisterName(MI->getOperand(1).getReg()));
    OutStreamer.EmitInstruction(MCInstBuilder(Subtarget.isPPC64() ? PPC::MFCR8 : PPC::MFCR)
      .addReg(MI->getOperand(0).getReg()));
    return;
  case PPC::SYNC:
    // In Book E sync is called msync, handle this special case here...
    if (Subtarget.isBookE()) {
      OutStreamer.EmitRawText(StringRef("\tmsync"));
      return;
    }
  }

  LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());
  OutStreamer.EmitInstruction(TmpInst);
}
Example #7
0
static DecodeStatus
DecodeL2OpInstructionFail(MCInst &Inst, unsigned Insn, uint64_t Address,
                          const void *Decoder) {
  // Try and decode as a L3R / L2RUS instruction.
  unsigned Opcode = fieldFromInstruction(Insn, 16, 4) |
                    fieldFromInstruction(Insn, 27, 5) << 4;
  switch (Opcode) {
  case 0x0c:
    Inst.setOpcode(XCore::STW_l3r);
    return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
  case 0x1c:
    Inst.setOpcode(XCore::XOR_l3r);
    return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
  case 0x2c:
    Inst.setOpcode(XCore::ASHR_l3r);
    return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
  case 0x3c:
    Inst.setOpcode(XCore::LDAWF_l3r);
    return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
  case 0x4c:
    Inst.setOpcode(XCore::LDAWB_l3r);
    return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
  case 0x5c:
    Inst.setOpcode(XCore::LDA16F_l3r);
    return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
  case 0x6c:
    Inst.setOpcode(XCore::LDA16B_l3r);
    return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
  case 0x7c:
    Inst.setOpcode(XCore::MUL_l3r);
    return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
  case 0x8c:
    Inst.setOpcode(XCore::DIVS_l3r);
    return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
  case 0x9c:
    Inst.setOpcode(XCore::DIVU_l3r);
    return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
  case 0x10c:
    Inst.setOpcode(XCore::ST16_l3r);
    return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
  case 0x11c:
    Inst.setOpcode(XCore::ST8_l3r);
    return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
  case 0x12c:
    Inst.setOpcode(XCore::ASHR_l2rus);
    return DecodeL2RUSBitpInstruction(Inst, Insn, Address, Decoder);
  case 0x12d:
    Inst.setOpcode(XCore::OUTPW_l2rus);
    return DecodeL2RUSBitpInstruction(Inst, Insn, Address, Decoder);
  case 0x12e:
    Inst.setOpcode(XCore::INPW_l2rus);
    return DecodeL2RUSBitpInstruction(Inst, Insn, Address, Decoder);
  case 0x13c:
    Inst.setOpcode(XCore::LDAWF_l2rus);
    return DecodeL2RUSInstruction(Inst, Insn, Address, Decoder);
  case 0x14c:
    Inst.setOpcode(XCore::LDAWB_l2rus);
    return DecodeL2RUSInstruction(Inst, Insn, Address, Decoder);
  case 0x15c:
    Inst.setOpcode(XCore::CRC_l3r);
    return DecodeL3RSrcDstInstruction(Inst, Insn, Address, Decoder);
  case 0x18c:
    Inst.setOpcode(XCore::REMS_l3r);
    return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
  case 0x19c:
    Inst.setOpcode(XCore::REMU_l3r);
    return DecodeL3RInstruction(Inst, Insn, Address, Decoder);
  }
  return MCDisassembler::Fail;
}
Example #8
0
bool MBlazeDisassembler::getInstruction(MCInst &instr,
                                        uint64_t &size,
                                        const MemoryObject &region,
                                        uint64_t address,
                                        raw_ostream &vStream) const {
    // The machine instruction.
    uint32_t insn;
    uint8_t bytes[4];

    // We always consume 4 bytes of data
    size = 4;

    // We want to read exactly 4 bytes of data.
    if (region.readBytes(address, 4, (uint8_t*)bytes, NULL) == -1)
        return false;

    // Encoded as a big-endian 32-bit word in the stream.
    insn = (bytes[0]<<24) | (bytes[1]<<16) | (bytes[2]<< 8) | (bytes[3]<<0);

    // Get the MCInst opcode from the binary instruction and make sure
    // that it is a valid instruction.
    unsigned opcode = getOPCODE(insn);
    if (opcode == UNSUPPORTED)
        return false;

    instr.setOpcode(opcode);

    uint64_t tsFlags = MBlazeInsts[opcode].TSFlags;
    switch ((tsFlags & MBlazeII::FormMask)) {
    default:
        llvm_unreachable("unknown instruction encoding");

    case MBlazeII::FRRRR:
        instr.addOperand(MCOperand::CreateReg(getRD(insn)));
        instr.addOperand(MCOperand::CreateReg(getRB(insn)));
        instr.addOperand(MCOperand::CreateReg(getRA(insn)));
        break;

    case MBlazeII::FRRR:
        instr.addOperand(MCOperand::CreateReg(getRD(insn)));
        instr.addOperand(MCOperand::CreateReg(getRA(insn)));
        instr.addOperand(MCOperand::CreateReg(getRB(insn)));
        break;

    case MBlazeII::FRI:
        switch (opcode) {
        default:
            llvm_unreachable("unknown instruction encoding");
        case MBlaze::MFS:
            instr.addOperand(MCOperand::CreateReg(getRD(insn)));
            instr.addOperand(MCOperand::CreateImm(insn&0x3FFF));
            break;
        case MBlaze::MTS:
            instr.addOperand(MCOperand::CreateImm(insn&0x3FFF));
            instr.addOperand(MCOperand::CreateReg(getRA(insn)));
            break;
        case MBlaze::MSRSET:
        case MBlaze::MSRCLR:
            instr.addOperand(MCOperand::CreateReg(getRD(insn)));
            instr.addOperand(MCOperand::CreateImm(insn&0x7FFF));
            break;
        }
        break;

    case MBlazeII::FRRI:
        instr.addOperand(MCOperand::CreateReg(getRD(insn)));
        instr.addOperand(MCOperand::CreateReg(getRA(insn)));
        switch (opcode) {
        default:
            instr.addOperand(MCOperand::CreateImm(getIMM(insn)));
            break;
        case MBlaze::BSRLI:
        case MBlaze::BSRAI:
        case MBlaze::BSLLI:
            instr.addOperand(MCOperand::CreateImm(insn&0x1F));
            break;
        }
        break;

    case MBlazeII::FCRR:
        instr.addOperand(MCOperand::CreateReg(getRA(insn)));
        instr.addOperand(MCOperand::CreateReg(getRB(insn)));
        break;

    case MBlazeII::FCRI:
        instr.addOperand(MCOperand::CreateReg(getRA(insn)));
        instr.addOperand(MCOperand::CreateImm(getIMM(insn)));
        break;

    case MBlazeII::FRCR:
        instr.addOperand(MCOperand::CreateReg(getRD(insn)));
        instr.addOperand(MCOperand::CreateReg(getRB(insn)));
        break;

    case MBlazeII::FRCI:
        instr.addOperand(MCOperand::CreateReg(getRD(insn)));
        instr.addOperand(MCOperand::CreateImm(getIMM(insn)));
        break;

    case MBlazeII::FCCR:
        instr.addOperand(MCOperand::CreateReg(getRB(insn)));
        break;

    case MBlazeII::FCCI:
        instr.addOperand(MCOperand::CreateImm(getIMM(insn)));
        break;

    case MBlazeII::FRRCI:
        instr.addOperand(MCOperand::CreateReg(getRD(insn)));
        instr.addOperand(MCOperand::CreateReg(getRA(insn)));
        instr.addOperand(MCOperand::CreateImm(getSHT(insn)));
        break;

    case MBlazeII::FRRC:
        instr.addOperand(MCOperand::CreateReg(getRD(insn)));
        instr.addOperand(MCOperand::CreateReg(getRA(insn)));
        break;

    case MBlazeII::FRCX:
        instr.addOperand(MCOperand::CreateReg(getRD(insn)));
        instr.addOperand(MCOperand::CreateImm(getFSL(insn)));
        break;

    case MBlazeII::FRCS:
        instr.addOperand(MCOperand::CreateReg(getRD(insn)));
        instr.addOperand(MCOperand::CreateImm(getRS(insn)));
        break;

    case MBlazeII::FCRCS:
        instr.addOperand(MCOperand::CreateReg(getRA(insn)));
        instr.addOperand(MCOperand::CreateImm(getRS(insn)));
        break;

    case MBlazeII::FCRCX:
        instr.addOperand(MCOperand::CreateReg(getRA(insn)));
        instr.addOperand(MCOperand::CreateImm(getFSL(insn)));
        break;

    case MBlazeII::FCX:
        instr.addOperand(MCOperand::CreateImm(getFSL(insn)));
        break;

    case MBlazeII::FCR:
        instr.addOperand(MCOperand::CreateReg(getRB(insn)));
        break;

    case MBlazeII::FRIR:
        instr.addOperand(MCOperand::CreateReg(getRD(insn)));
        instr.addOperand(MCOperand::CreateImm(getIMM(insn)));
        instr.addOperand(MCOperand::CreateReg(getRA(insn)));
        break;
    }

    return true;
}
Example #9
0
void HexagonAsmPrinter::HexagonProcessInstruction(MCInst &Inst,
                                                  const MachineInstr &MI) {
  MCInst &MappedInst = static_cast <MCInst &>(Inst);
  const MCRegisterInfo *RI = OutStreamer->getContext().getRegisterInfo();

  switch (Inst.getOpcode()) {
  default: return;

  case Hexagon::A2_iconst: {
    Inst.setOpcode(Hexagon::A2_addi);
    MCOperand Reg = Inst.getOperand(0);
    MCOperand S16 = Inst.getOperand(1);
    HexagonMCInstrInfo::setMustNotExtend(*S16.getExpr());
    HexagonMCInstrInfo::setS23_2_reloc(*S16.getExpr());
    Inst.clear();
    Inst.addOperand(Reg);
    Inst.addOperand(MCOperand::createReg(Hexagon::R0));
    Inst.addOperand(S16);
    break;
  }

  // "$dst = CONST64(#$src1)",
  case Hexagon::CONST64:
    if (!OutStreamer->hasRawTextSupport()) {
      const MCOperand &Imm = MappedInst.getOperand(1);
      MCSectionSubPair Current = OutStreamer->getCurrentSection();

      MCSymbol *Sym = smallData(*this, MI, *OutStreamer, Imm, 8);

      OutStreamer->SwitchSection(Current.first, Current.second);
      MCInst TmpInst;
      MCOperand &Reg = MappedInst.getOperand(0);
      TmpInst.setOpcode(Hexagon::L2_loadrdgp);
      TmpInst.addOperand(Reg);
      TmpInst.addOperand(MCOperand::createExpr(
                         MCSymbolRefExpr::create(Sym, OutContext)));
      MappedInst = TmpInst;

    }
    break;
  case Hexagon::CONST32:
    if (!OutStreamer->hasRawTextSupport()) {
      MCOperand &Imm = MappedInst.getOperand(1);
      MCSectionSubPair Current = OutStreamer->getCurrentSection();
      MCSymbol *Sym = smallData(*this, MI, *OutStreamer, Imm, 4);
      OutStreamer->SwitchSection(Current.first, Current.second);
      MCInst TmpInst;
      MCOperand &Reg = MappedInst.getOperand(0);
      TmpInst.setOpcode(Hexagon::L2_loadrigp);
      TmpInst.addOperand(Reg);
      TmpInst.addOperand(MCOperand::createExpr(HexagonMCExpr::create(
          MCSymbolRefExpr::create(Sym, OutContext), OutContext)));
      MappedInst = TmpInst;
    }
    break;

  // C2_pxfer_map maps to C2_or instruction. Though, it's possible to use
  // C2_or during instruction selection itself but it results
  // into suboptimal code.
  case Hexagon::C2_pxfer_map: {
    MCOperand &Ps = Inst.getOperand(1);
    MappedInst.setOpcode(Hexagon::C2_or);
    MappedInst.addOperand(Ps);
    return;
  }

  // Vector reduce complex multiply by scalar, Rt & 1 map to :hi else :lo
  // The insn is mapped from the 4 operand to the 3 operand raw form taking
  // 3 register pairs.
  case Hexagon::M2_vrcmpys_acc_s1: {
    MCOperand &Rt = Inst.getOperand(3);
    assert (Rt.isReg() && "Expected register and none was found");
    unsigned Reg = RI->getEncodingValue(Rt.getReg());
    if (Reg & 1)
      MappedInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_h);
    else
      MappedInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_l);
    Rt.setReg(getHexagonRegisterPair(Rt.getReg(), RI));
    return;
  }
  case Hexagon::M2_vrcmpys_s1: {
    MCOperand &Rt = Inst.getOperand(2);
    assert (Rt.isReg() && "Expected register and none was found");
    unsigned Reg = RI->getEncodingValue(Rt.getReg());
    if (Reg & 1)
      MappedInst.setOpcode(Hexagon::M2_vrcmpys_s1_h);
    else
      MappedInst.setOpcode(Hexagon::M2_vrcmpys_s1_l);
    Rt.setReg(getHexagonRegisterPair(Rt.getReg(), RI));
    return;
  }

  case Hexagon::M2_vrcmpys_s1rp: {
    MCOperand &Rt = Inst.getOperand(2);
    assert (Rt.isReg() && "Expected register and none was found");
    unsigned Reg = RI->getEncodingValue(Rt.getReg());
    if (Reg & 1)
      MappedInst.setOpcode(Hexagon::M2_vrcmpys_s1rp_h);
    else
      MappedInst.setOpcode(Hexagon::M2_vrcmpys_s1rp_l);
    Rt.setReg(getHexagonRegisterPair(Rt.getReg(), RI));
    return;
  }

  case Hexagon::A4_boundscheck: {
    MCOperand &Rs = Inst.getOperand(1);
    assert (Rs.isReg() && "Expected register and none was found");
    unsigned Reg = RI->getEncodingValue(Rs.getReg());
    if (Reg & 1) // Odd mapped to raw:hi, regpair is rodd:odd-1, like r3:2
      MappedInst.setOpcode(Hexagon::A4_boundscheck_hi);
    else         // raw:lo
      MappedInst.setOpcode(Hexagon::A4_boundscheck_lo);
    Rs.setReg(getHexagonRegisterPair(Rs.getReg(), RI));
    return;
  }
  case Hexagon::S5_asrhub_rnd_sat_goodsyntax: {
    MCOperand &MO = MappedInst.getOperand(2);
    int64_t Imm;
    MCExpr const *Expr = MO.getExpr();
    bool Success = Expr->evaluateAsAbsolute(Imm);
    assert (Success && "Expected immediate and none was found");
    (void)Success;
    MCInst TmpInst;
    if (Imm == 0) {
      TmpInst.setOpcode(Hexagon::S2_vsathub);
      TmpInst.addOperand(MappedInst.getOperand(0));
      TmpInst.addOperand(MappedInst.getOperand(1));
      MappedInst = TmpInst;
      return;
    }
    TmpInst.setOpcode(Hexagon::S5_asrhub_rnd_sat);
    TmpInst.addOperand(MappedInst.getOperand(0));
    TmpInst.addOperand(MappedInst.getOperand(1));
    const MCExpr *One = MCConstantExpr::create(1, OutContext);
    const MCExpr *Sub = MCBinaryExpr::createSub(Expr, One, OutContext);
    TmpInst.addOperand(
        MCOperand::createExpr(HexagonMCExpr::create(Sub, OutContext)));
    MappedInst = TmpInst;
    return;
  }
  case Hexagon::S5_vasrhrnd_goodsyntax:
  case Hexagon::S2_asr_i_p_rnd_goodsyntax: {
    MCOperand &MO2 = MappedInst.getOperand(2);
    MCExpr const *Expr = MO2.getExpr();
    int64_t Imm;
    bool Success = Expr->evaluateAsAbsolute(Imm);
    assert (Success && "Expected immediate and none was found");
    (void)Success;
    MCInst TmpInst;
    if (Imm == 0) {
      TmpInst.setOpcode(Hexagon::A2_combinew);
      TmpInst.addOperand(MappedInst.getOperand(0));
      MCOperand &MO1 = MappedInst.getOperand(1);
      unsigned High = RI->getSubReg(MO1.getReg(), Hexagon::subreg_hireg);
      unsigned Low = RI->getSubReg(MO1.getReg(), Hexagon::subreg_loreg);
      // Add a new operand for the second register in the pair.
      TmpInst.addOperand(MCOperand::createReg(High));
      TmpInst.addOperand(MCOperand::createReg(Low));
      MappedInst = TmpInst;
      return;
    }

    if (Inst.getOpcode() == Hexagon::S2_asr_i_p_rnd_goodsyntax)
      TmpInst.setOpcode(Hexagon::S2_asr_i_p_rnd);
    else
      TmpInst.setOpcode(Hexagon::S5_vasrhrnd);
    TmpInst.addOperand(MappedInst.getOperand(0));
    TmpInst.addOperand(MappedInst.getOperand(1));
    const MCExpr *One = MCConstantExpr::create(1, OutContext);
    const MCExpr *Sub = MCBinaryExpr::createSub(Expr, One, OutContext);
    TmpInst.addOperand(
        MCOperand::createExpr(HexagonMCExpr::create(Sub, OutContext)));
    MappedInst = TmpInst;
    return;
  }
  // if ("#u5==0") Assembler mapped to: "Rd=Rs"; else Rd=asr(Rs,#u5-1):rnd
  case Hexagon::S2_asr_i_r_rnd_goodsyntax: {
    MCOperand &MO = Inst.getOperand(2);
    MCExpr const *Expr = MO.getExpr();
    int64_t Imm;
    bool Success = Expr->evaluateAsAbsolute(Imm);
    assert (Success && "Expected immediate and none was found");
    (void)Success;
    MCInst TmpInst;
    if (Imm == 0) {
      TmpInst.setOpcode(Hexagon::A2_tfr);
      TmpInst.addOperand(MappedInst.getOperand(0));
      TmpInst.addOperand(MappedInst.getOperand(1));
      MappedInst = TmpInst;
      return;
    }
    TmpInst.setOpcode(Hexagon::S2_asr_i_r_rnd);
    TmpInst.addOperand(MappedInst.getOperand(0));
    TmpInst.addOperand(MappedInst.getOperand(1));
    const MCExpr *One = MCConstantExpr::create(1, OutContext);
    const MCExpr *Sub = MCBinaryExpr::createSub(Expr, One, OutContext);
    TmpInst.addOperand(
        MCOperand::createExpr(HexagonMCExpr::create(Sub, OutContext)));
    MappedInst = TmpInst;
    return;
  }

  // Translate a "$Rdd = #imm" to "$Rdd = combine(#[-1,0], #imm)"
  case Hexagon::A2_tfrpi: {
    MCInst TmpInst;
    MCOperand &Rdd = MappedInst.getOperand(0);
    MCOperand &MO = MappedInst.getOperand(1);

    TmpInst.setOpcode(Hexagon::A2_combineii);
    TmpInst.addOperand(Rdd);
    int64_t Imm;
    bool Success = MO.getExpr()->evaluateAsAbsolute(Imm);
    if (Success && Imm < 0) {
      const MCExpr *MOne = MCConstantExpr::create(-1, OutContext);
      TmpInst.addOperand(MCOperand::createExpr(HexagonMCExpr::create(MOne, OutContext)));
    } else {
      const MCExpr *Zero = MCConstantExpr::create(0, OutContext);
      TmpInst.addOperand(MCOperand::createExpr(HexagonMCExpr::create(Zero, OutContext)));
    }
    TmpInst.addOperand(MO);
    MappedInst = TmpInst;
    return;
  }
  // Translate a "$Rdd = $Rss" to "$Rdd = combine($Rs, $Rt)"
  case Hexagon::A2_tfrp: {
    MCOperand &MO = MappedInst.getOperand(1);
    unsigned High = RI->getSubReg(MO.getReg(), Hexagon::subreg_hireg);
    unsigned Low = RI->getSubReg(MO.getReg(), Hexagon::subreg_loreg);
    MO.setReg(High);
    // Add a new operand for the second register in the pair.
    MappedInst.addOperand(MCOperand::createReg(Low));
    MappedInst.setOpcode(Hexagon::A2_combinew);
    return;
  }

  case Hexagon::A2_tfrpt:
  case Hexagon::A2_tfrpf: {
    MCOperand &MO = MappedInst.getOperand(2);
    unsigned High = RI->getSubReg(MO.getReg(), Hexagon::subreg_hireg);
    unsigned Low = RI->getSubReg(MO.getReg(), Hexagon::subreg_loreg);
    MO.setReg(High);
    // Add a new operand for the second register in the pair.
    MappedInst.addOperand(MCOperand::createReg(Low));
    MappedInst.setOpcode((Inst.getOpcode() == Hexagon::A2_tfrpt)
                          ? Hexagon::C2_ccombinewt
                          : Hexagon::C2_ccombinewf);
    return;
  }
  case Hexagon::A2_tfrptnew:
  case Hexagon::A2_tfrpfnew: {
    MCOperand &MO = MappedInst.getOperand(2);
    unsigned High = RI->getSubReg(MO.getReg(), Hexagon::subreg_hireg);
    unsigned Low = RI->getSubReg(MO.getReg(), Hexagon::subreg_loreg);
    MO.setReg(High);
    // Add a new operand for the second register in the pair.
    MappedInst.addOperand(MCOperand::createReg(Low));
    MappedInst.setOpcode((Inst.getOpcode() == Hexagon::A2_tfrptnew)
                          ? Hexagon::C2_ccombinewnewt
                          : Hexagon::C2_ccombinewnewf);
    return;
  }

  case Hexagon::M2_mpysmi: {
    MCOperand &Imm = MappedInst.getOperand(2);
    MCExpr const *Expr = Imm.getExpr();
    int64_t Value;
    bool Success = Expr->evaluateAsAbsolute(Value);
    assert(Success);
    (void)Success;
    if (Value < 0 && Value > -256) {
      MappedInst.setOpcode(Hexagon::M2_mpysin);
      Imm.setExpr(HexagonMCExpr::create(
          MCUnaryExpr::createMinus(Expr, OutContext), OutContext));
    } else
      MappedInst.setOpcode(Hexagon::M2_mpysip);
    return;
  }

  case Hexagon::A2_addsp: {
    MCOperand &Rt = Inst.getOperand(1);
    assert (Rt.isReg() && "Expected register and none was found");
    unsigned Reg = RI->getEncodingValue(Rt.getReg());
    if (Reg & 1)
      MappedInst.setOpcode(Hexagon::A2_addsph);
    else
      MappedInst.setOpcode(Hexagon::A2_addspl);
    Rt.setReg(getHexagonRegisterPair(Rt.getReg(), RI));
    return;
  }
  case Hexagon::V6_vd0:
  case Hexagon::V6_vd0_128B: {
    MCInst TmpInst;
    assert (Inst.getOperand(0).isReg() &&
            "Expected register and none was found");

    TmpInst.setOpcode(Hexagon::V6_vxor);
    TmpInst.addOperand(Inst.getOperand(0));
    TmpInst.addOperand(Inst.getOperand(0));
    TmpInst.addOperand(Inst.getOperand(0));
    MappedInst = TmpInst;
    return;
  }

  }
}
Example #10
0
void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
  OutMI.setOpcode(MI->getOpcode());

  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);

    MCOperand MCOp;
    switch (MO.getType()) {
    default:
      MI->dump();
      llvm_unreachable("unknown operand type");
    case MachineOperand::MO_Register:
      // Ignore all implicit register operands.
      if (MO.isImplicit()) continue;
      MCOp = MCOperand::CreateReg(MO.getReg());
      break;
    case MachineOperand::MO_Immediate:
      MCOp = MCOperand::CreateImm(MO.getImm());
      break;
    case MachineOperand::MO_MachineBasicBlock:
    case MachineOperand::MO_GlobalAddress:
    case MachineOperand::MO_ExternalSymbol:
      MCOp = LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
      break;
    case MachineOperand::MO_JumpTableIndex:
      MCOp = LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
      break;
    case MachineOperand::MO_ConstantPoolIndex:
      MCOp = LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
      break;
    case MachineOperand::MO_BlockAddress:
      MCOp = LowerSymbolOperand(MO,
                     AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
      break;
    case MachineOperand::MO_RegisterMask:
      // Ignore call clobbers.
      continue;
    }

    OutMI.addOperand(MCOp);
  }

  // Handle a few special cases to eliminate operand modifiers.
ReSimplify:
  switch (OutMI.getOpcode()) {
  case X86::LEA64_32r:
  case X86::LEA64r:
  case X86::LEA16r:
  case X86::LEA32r:
    // LEA should have a segment register, but it must be empty.
    assert(OutMI.getNumOperands() == 1+X86::AddrNumOperands &&
           "Unexpected # of LEA operands");
    assert(OutMI.getOperand(1+X86::AddrSegmentReg).getReg() == 0 &&
           "LEA has segment specified!");
    break;
  case X86::MOV32r0:      LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); break;

  case X86::MOV32ri64:
    OutMI.setOpcode(X86::MOV32ri);
    break;

  // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B
  // if one of the registers is extended, but other isn't.
  case X86::VMOVAPDrr:
  case X86::VMOVAPDYrr:
  case X86::VMOVAPSrr:
  case X86::VMOVAPSYrr:
  case X86::VMOVDQArr:
  case X86::VMOVDQAYrr:
  case X86::VMOVDQUrr:
  case X86::VMOVDQUYrr:
  case X86::VMOVUPDrr:
  case X86::VMOVUPDYrr:
  case X86::VMOVUPSrr:
  case X86::VMOVUPSYrr: {
    if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
        X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) {
      unsigned NewOpc;
      switch (OutMI.getOpcode()) {
      default: llvm_unreachable("Invalid opcode");
      case X86::VMOVAPDrr:  NewOpc = X86::VMOVAPDrr_REV;  break;
      case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
      case X86::VMOVAPSrr:  NewOpc = X86::VMOVAPSrr_REV;  break;
      case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
      case X86::VMOVDQArr:  NewOpc = X86::VMOVDQArr_REV;  break;
      case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
      case X86::VMOVDQUrr:  NewOpc = X86::VMOVDQUrr_REV;  break;
      case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
      case X86::VMOVUPDrr:  NewOpc = X86::VMOVUPDrr_REV;  break;
      case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
      case X86::VMOVUPSrr:  NewOpc = X86::VMOVUPSrr_REV;  break;
      case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
      }
      OutMI.setOpcode(NewOpc);
    }
    break;
  }
  case X86::VMOVSDrr:
  case X86::VMOVSSrr: {
    if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
        X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) {
      unsigned NewOpc;
      switch (OutMI.getOpcode()) {
      default: llvm_unreachable("Invalid opcode");
      case X86::VMOVSDrr:   NewOpc = X86::VMOVSDrr_REV;   break;
      case X86::VMOVSSrr:   NewOpc = X86::VMOVSSrr_REV;   break;
      }
      OutMI.setOpcode(NewOpc);
    }
    break;
  }

  // TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have register
  // inputs modeled as normal uses instead of implicit uses.  As such, truncate
  // off all but the first operand (the callee).  FIXME: Change isel.
  case X86::TAILJMPr64:
  case X86::CALL64r:
  case X86::CALL64pcrel32: {
    unsigned Opcode = OutMI.getOpcode();
    MCOperand Saved = OutMI.getOperand(0);
    OutMI = MCInst();
    OutMI.setOpcode(Opcode);
    OutMI.addOperand(Saved);
    break;
  }

  case X86::EH_RETURN:
  case X86::EH_RETURN64: {
    OutMI = MCInst();
    OutMI.setOpcode(X86::RET);
    break;
  }

  // TAILJMPd, TAILJMPd64 - Lower to the correct jump instructions.
  case X86::TAILJMPr:
  case X86::TAILJMPd:
  case X86::TAILJMPd64: {
    unsigned Opcode;
    switch (OutMI.getOpcode()) {
    default: llvm_unreachable("Invalid opcode");
    case X86::TAILJMPr: Opcode = X86::JMP32r; break;
    case X86::TAILJMPd:
    case X86::TAILJMPd64: Opcode = X86::JMP_1; break;
    }

    MCOperand Saved = OutMI.getOperand(0);
    OutMI = MCInst();
    OutMI.setOpcode(Opcode);
    OutMI.addOperand(Saved);
    break;
  }

  // These are pseudo-ops for OR to help with the OR->ADD transformation.  We do
  // this with an ugly goto in case the resultant OR uses EAX and needs the
  // short form.
  case X86::ADD16rr_DB:   OutMI.setOpcode(X86::OR16rr); goto ReSimplify;
  case X86::ADD32rr_DB:   OutMI.setOpcode(X86::OR32rr); goto ReSimplify;
  case X86::ADD64rr_DB:   OutMI.setOpcode(X86::OR64rr); goto ReSimplify;
  case X86::ADD16ri_DB:   OutMI.setOpcode(X86::OR16ri); goto ReSimplify;
  case X86::ADD32ri_DB:   OutMI.setOpcode(X86::OR32ri); goto ReSimplify;
  case X86::ADD64ri32_DB: OutMI.setOpcode(X86::OR64ri32); goto ReSimplify;
  case X86::ADD16ri8_DB:  OutMI.setOpcode(X86::OR16ri8); goto ReSimplify;
  case X86::ADD32ri8_DB:  OutMI.setOpcode(X86::OR32ri8); goto ReSimplify;
  case X86::ADD64ri8_DB:  OutMI.setOpcode(X86::OR64ri8); goto ReSimplify;

  // The assembler backend wants to see branches in their small form and relax
  // them to their large form.  The JIT can only handle the large form because
  // it does not do relaxation.  For now, translate the large form to the
  // small one here.
  case X86::JMP_4: OutMI.setOpcode(X86::JMP_1); break;
  case X86::JO_4:  OutMI.setOpcode(X86::JO_1); break;
  case X86::JNO_4: OutMI.setOpcode(X86::JNO_1); break;
  case X86::JB_4:  OutMI.setOpcode(X86::JB_1); break;
  case X86::JAE_4: OutMI.setOpcode(X86::JAE_1); break;
  case X86::JE_4:  OutMI.setOpcode(X86::JE_1); break;
  case X86::JNE_4: OutMI.setOpcode(X86::JNE_1); break;
  case X86::JBE_4: OutMI.setOpcode(X86::JBE_1); break;
  case X86::JA_4:  OutMI.setOpcode(X86::JA_1); break;
  case X86::JS_4:  OutMI.setOpcode(X86::JS_1); break;
  case X86::JNS_4: OutMI.setOpcode(X86::JNS_1); break;
  case X86::JP_4:  OutMI.setOpcode(X86::JP_1); break;
  case X86::JNP_4: OutMI.setOpcode(X86::JNP_1); break;
  case X86::JL_4:  OutMI.setOpcode(X86::JL_1); break;
  case X86::JGE_4: OutMI.setOpcode(X86::JGE_1); break;
  case X86::JLE_4: OutMI.setOpcode(X86::JLE_1); break;
  case X86::JG_4:  OutMI.setOpcode(X86::JG_1); break;

  // Atomic load and store require a separate pseudo-inst because Acquire
  // implies mayStore and Release implies mayLoad; fix these to regular MOV
  // instructions here
  case X86::ACQUIRE_MOV8rm:  OutMI.setOpcode(X86::MOV8rm); goto ReSimplify;
  case X86::ACQUIRE_MOV16rm: OutMI.setOpcode(X86::MOV16rm); goto ReSimplify;
  case X86::ACQUIRE_MOV32rm: OutMI.setOpcode(X86::MOV32rm); goto ReSimplify;
  case X86::ACQUIRE_MOV64rm: OutMI.setOpcode(X86::MOV64rm); goto ReSimplify;
  case X86::RELEASE_MOV8mr:  OutMI.setOpcode(X86::MOV8mr); goto ReSimplify;
  case X86::RELEASE_MOV16mr: OutMI.setOpcode(X86::MOV16mr); goto ReSimplify;
  case X86::RELEASE_MOV32mr: OutMI.setOpcode(X86::MOV32mr); goto ReSimplify;
  case X86::RELEASE_MOV64mr: OutMI.setOpcode(X86::MOV64mr); goto ReSimplify;

  // We don't currently select the correct instruction form for instructions
  // which have a short %eax, etc. form. Handle this by custom lowering, for
  // now.
  //
  // Note, we are currently not handling the following instructions:
  // MOV64ao8, MOV64o8a
  // XCHG16ar, XCHG32ar, XCHG64ar
  case X86::MOV8mr_NOREX:
  case X86::MOV8mr:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8ao8); break;
  case X86::MOV8rm_NOREX:
  case X86::MOV8rm:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8o8a); break;
  case X86::MOV16mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16ao16); break;
  case X86::MOV16rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16o16a); break;
  case X86::MOV32mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32ao32); break;
  case X86::MOV32rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32o32a); break;

  case X86::ADC8ri:     SimplifyShortImmForm(OutMI, X86::ADC8i8);    break;
  case X86::ADC16ri:    SimplifyShortImmForm(OutMI, X86::ADC16i16);  break;
  case X86::ADC32ri:    SimplifyShortImmForm(OutMI, X86::ADC32i32);  break;
  case X86::ADC64ri32:  SimplifyShortImmForm(OutMI, X86::ADC64i32);  break;
  case X86::ADD8ri:     SimplifyShortImmForm(OutMI, X86::ADD8i8);    break;
  case X86::ADD16ri:    SimplifyShortImmForm(OutMI, X86::ADD16i16);  break;
  case X86::ADD32ri:    SimplifyShortImmForm(OutMI, X86::ADD32i32);  break;
  case X86::ADD64ri32:  SimplifyShortImmForm(OutMI, X86::ADD64i32);  break;
  case X86::AND8ri:     SimplifyShortImmForm(OutMI, X86::AND8i8);    break;
  case X86::AND16ri:    SimplifyShortImmForm(OutMI, X86::AND16i16);  break;
  case X86::AND32ri:    SimplifyShortImmForm(OutMI, X86::AND32i32);  break;
  case X86::AND64ri32:  SimplifyShortImmForm(OutMI, X86::AND64i32);  break;
  case X86::CMP8ri:     SimplifyShortImmForm(OutMI, X86::CMP8i8);    break;
  case X86::CMP16ri:    SimplifyShortImmForm(OutMI, X86::CMP16i16);  break;
  case X86::CMP32ri:    SimplifyShortImmForm(OutMI, X86::CMP32i32);  break;
  case X86::CMP64ri32:  SimplifyShortImmForm(OutMI, X86::CMP64i32);  break;
  case X86::OR8ri:      SimplifyShortImmForm(OutMI, X86::OR8i8);     break;
  case X86::OR16ri:     SimplifyShortImmForm(OutMI, X86::OR16i16);   break;
  case X86::OR32ri:     SimplifyShortImmForm(OutMI, X86::OR32i32);   break;
  case X86::OR64ri32:   SimplifyShortImmForm(OutMI, X86::OR64i32);   break;
  case X86::SBB8ri:     SimplifyShortImmForm(OutMI, X86::SBB8i8);    break;
  case X86::SBB16ri:    SimplifyShortImmForm(OutMI, X86::SBB16i16);  break;
  case X86::SBB32ri:    SimplifyShortImmForm(OutMI, X86::SBB32i32);  break;
  case X86::SBB64ri32:  SimplifyShortImmForm(OutMI, X86::SBB64i32);  break;
  case X86::SUB8ri:     SimplifyShortImmForm(OutMI, X86::SUB8i8);    break;
  case X86::SUB16ri:    SimplifyShortImmForm(OutMI, X86::SUB16i16);  break;
  case X86::SUB32ri:    SimplifyShortImmForm(OutMI, X86::SUB32i32);  break;
  case X86::SUB64ri32:  SimplifyShortImmForm(OutMI, X86::SUB64i32);  break;
  case X86::TEST8ri:    SimplifyShortImmForm(OutMI, X86::TEST8i8);   break;
  case X86::TEST16ri:   SimplifyShortImmForm(OutMI, X86::TEST16i16); break;
  case X86::TEST32ri:   SimplifyShortImmForm(OutMI, X86::TEST32i32); break;
  case X86::TEST64ri32: SimplifyShortImmForm(OutMI, X86::TEST64i32); break;
  case X86::XOR8ri:     SimplifyShortImmForm(OutMI, X86::XOR8i8);    break;
  case X86::XOR16ri:    SimplifyShortImmForm(OutMI, X86::XOR16i16);  break;
  case X86::XOR32ri:    SimplifyShortImmForm(OutMI, X86::XOR32i32);  break;
  case X86::XOR64ri32:  SimplifyShortImmForm(OutMI, X86::XOR64i32);  break;

  case X86::MORESTACK_RET:
    OutMI.setOpcode(X86::RET);
    break;

  case X86::MORESTACK_RET_RESTORE_R10:
    OutMI.setOpcode(X86::MOV64rr);
    OutMI.addOperand(MCOperand::CreateReg(X86::R10));
    OutMI.addOperand(MCOperand::CreateReg(X86::RAX));

    AsmPrinter.OutStreamer.EmitInstruction(MCInstBuilder(X86::RET));
    break;
  }
}
void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
  OutMI.setOpcode(MI->getOpcode());
  
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    
    MCOperand MCOp;
    switch (MO.getType()) {
    default:
      MI->dump();
      llvm_unreachable("unknown operand type");
    case MachineOperand::MO_Register:
      // Ignore all implicit register operands.
      if (MO.isImplicit()) continue;
      MCOp = MCOperand::CreateReg(MO.getReg());
      break;
    case MachineOperand::MO_Immediate:
      MCOp = MCOperand::CreateImm(MO.getImm());
      break;
    case MachineOperand::MO_MachineBasicBlock:
      MCOp = MCOperand::CreateExpr(MCSymbolRefExpr::Create(
                       MO.getMBB()->getSymbol(), Ctx));
      break;
    case MachineOperand::MO_GlobalAddress:
    case MachineOperand::MO_ExternalSymbol:
      MCOp = LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
      break;
    case MachineOperand::MO_JumpTableIndex:
      MCOp = LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
      break;
    case MachineOperand::MO_ConstantPoolIndex:
      MCOp = LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
      break;
    case MachineOperand::MO_BlockAddress:
      MCOp = LowerSymbolOperand(MO,
                     AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
      break;
    }
    
    OutMI.addOperand(MCOp);
  }
  
  // Handle a few special cases to eliminate operand modifiers.
ReSimplify:
  switch (OutMI.getOpcode()) {
  case X86::LEA64_32r: // Handle 'subreg rewriting' for the lea64_32mem operand.
    lower_lea64_32mem(&OutMI, 1);
    // FALL THROUGH.
  case X86::LEA64r:
  case X86::LEA16r:
  case X86::LEA32r:
    // LEA should have a segment register, but it must be empty.
    assert(OutMI.getNumOperands() == 1+X86::AddrNumOperands &&
           "Unexpected # of LEA operands");
    assert(OutMI.getOperand(1+X86::AddrSegmentReg).getReg() == 0 &&
           "LEA has segment specified!");
    break;
  case X86::MOVZX64rr32:  LowerSubReg32_Op0(OutMI, X86::MOV32rr); break;
  case X86::MOVZX64rm32:  LowerSubReg32_Op0(OutMI, X86::MOV32rm); break;
  case X86::MOV64ri64i32: LowerSubReg32_Op0(OutMI, X86::MOV32ri); break;
  case X86::MOVZX64rr8:   LowerSubReg32_Op0(OutMI, X86::MOVZX32rr8); break;
  case X86::MOVZX64rm8:   LowerSubReg32_Op0(OutMI, X86::MOVZX32rm8); break;
  case X86::MOVZX64rr16:  LowerSubReg32_Op0(OutMI, X86::MOVZX32rr16); break;
  case X86::MOVZX64rm16:  LowerSubReg32_Op0(OutMI, X86::MOVZX32rm16); break;
  case X86::SETB_C8r:     LowerUnaryToTwoAddr(OutMI, X86::SBB8rr); break;
  case X86::SETB_C16r:    LowerUnaryToTwoAddr(OutMI, X86::SBB16rr); break;
  case X86::SETB_C32r:    LowerUnaryToTwoAddr(OutMI, X86::SBB32rr); break;
  case X86::SETB_C64r:    LowerUnaryToTwoAddr(OutMI, X86::SBB64rr); break;
  case X86::MOV8r0:       LowerUnaryToTwoAddr(OutMI, X86::XOR8rr); break;
  case X86::MOV32r0:      LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); break;
  case X86::FsFLD0SS:      LowerUnaryToTwoAddr(OutMI, X86::PXORrr); break;
  case X86::FsFLD0SD:      LowerUnaryToTwoAddr(OutMI, X86::PXORrr); break;
  case X86::VFsFLD0SS:     LowerUnaryToTwoAddr(OutMI, X86::VPXORrr); break;
  case X86::VFsFLD0SD:     LowerUnaryToTwoAddr(OutMI, X86::VPXORrr); break;
  case X86::V_SET0PS:      LowerUnaryToTwoAddr(OutMI, X86::XORPSrr); break;
  case X86::V_SET0PD:      LowerUnaryToTwoAddr(OutMI, X86::XORPDrr); break;
  case X86::V_SET0PI:      LowerUnaryToTwoAddr(OutMI, X86::PXORrr); break;
  case X86::V_SETALLONES:  LowerUnaryToTwoAddr(OutMI, X86::PCMPEQDrr); break;
  case X86::AVX_SET0PS:    LowerUnaryToTwoAddr(OutMI, X86::VXORPSrr); break;
  case X86::AVX_SET0PSY:   LowerUnaryToTwoAddr(OutMI, X86::VXORPSYrr); break;
  case X86::AVX_SET0PD:    LowerUnaryToTwoAddr(OutMI, X86::VXORPDrr); break;
  case X86::AVX_SET0PDY:   LowerUnaryToTwoAddr(OutMI, X86::VXORPDYrr); break;
  case X86::AVX_SET0PI:    LowerUnaryToTwoAddr(OutMI, X86::VPXORrr); break;
  case X86::AVX_SETALLONES:  LowerUnaryToTwoAddr(OutMI, X86::VPCMPEQDrr); break;

  case X86::MOV16r0:
    LowerSubReg32_Op0(OutMI, X86::MOV32r0);   // MOV16r0 -> MOV32r0
    LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); // MOV32r0 -> XOR32rr
    break;
  case X86::MOV64r0:
    LowerSubReg32_Op0(OutMI, X86::MOV32r0);   // MOV64r0 -> MOV32r0
    LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); // MOV32r0 -> XOR32rr
    break;

  // TAILJMPr64, [WIN]CALL64r, [WIN]CALL64pcrel32 - These instructions have
  // register inputs modeled as normal uses instead of implicit uses.  As such,
  // truncate off all but the first operand (the callee).  FIXME: Change isel.
  case X86::TAILJMPr64:
  case X86::CALL64r:
  case X86::CALL64pcrel32:
  case X86::WINCALL64r:
  case X86::WINCALL64pcrel32: {
    unsigned Opcode = OutMI.getOpcode();
    MCOperand Saved = OutMI.getOperand(0);
    OutMI = MCInst();
    OutMI.setOpcode(Opcode);
    OutMI.addOperand(Saved);
    break;
  }

  case X86::EH_RETURN:
  case X86::EH_RETURN64: {
    OutMI = MCInst();
    OutMI.setOpcode(X86::RET);
    break;
  }

  // TAILJMPd, TAILJMPd64 - Lower to the correct jump instructions.
  case X86::TAILJMPr:
  case X86::TAILJMPd:
  case X86::TAILJMPd64: {
    unsigned Opcode;
    switch (OutMI.getOpcode()) {
    default: assert(0 && "Invalid opcode");
    case X86::TAILJMPr: Opcode = X86::JMP32r; break;
    case X86::TAILJMPd:
    case X86::TAILJMPd64: Opcode = X86::JMP_1; break;
    }
    
    MCOperand Saved = OutMI.getOperand(0);
    OutMI = MCInst();
    OutMI.setOpcode(Opcode);
    OutMI.addOperand(Saved);
    break;
  }

  // These are pseudo-ops for OR to help with the OR->ADD transformation.  We do
  // this with an ugly goto in case the resultant OR uses EAX and needs the
  // short form.
  case X86::ADD16rr_DB:   OutMI.setOpcode(X86::OR16rr); goto ReSimplify;
  case X86::ADD32rr_DB:   OutMI.setOpcode(X86::OR32rr); goto ReSimplify;
  case X86::ADD64rr_DB:   OutMI.setOpcode(X86::OR64rr); goto ReSimplify;
  case X86::ADD16ri_DB:   OutMI.setOpcode(X86::OR16ri); goto ReSimplify;
  case X86::ADD32ri_DB:   OutMI.setOpcode(X86::OR32ri); goto ReSimplify;
  case X86::ADD64ri32_DB: OutMI.setOpcode(X86::OR64ri32); goto ReSimplify;
  case X86::ADD16ri8_DB:  OutMI.setOpcode(X86::OR16ri8); goto ReSimplify;
  case X86::ADD32ri8_DB:  OutMI.setOpcode(X86::OR32ri8); goto ReSimplify;
  case X86::ADD64ri8_DB:  OutMI.setOpcode(X86::OR64ri8); goto ReSimplify;
      
  // The assembler backend wants to see branches in their small form and relax
  // them to their large form.  The JIT can only handle the large form because
  // it does not do relaxation.  For now, translate the large form to the
  // small one here.
  case X86::JMP_4: OutMI.setOpcode(X86::JMP_1); break;
  case X86::JO_4:  OutMI.setOpcode(X86::JO_1); break;
  case X86::JNO_4: OutMI.setOpcode(X86::JNO_1); break;
  case X86::JB_4:  OutMI.setOpcode(X86::JB_1); break;
  case X86::JAE_4: OutMI.setOpcode(X86::JAE_1); break;
  case X86::JE_4:  OutMI.setOpcode(X86::JE_1); break;
  case X86::JNE_4: OutMI.setOpcode(X86::JNE_1); break;
  case X86::JBE_4: OutMI.setOpcode(X86::JBE_1); break;
  case X86::JA_4:  OutMI.setOpcode(X86::JA_1); break;
  case X86::JS_4:  OutMI.setOpcode(X86::JS_1); break;
  case X86::JNS_4: OutMI.setOpcode(X86::JNS_1); break;
  case X86::JP_4:  OutMI.setOpcode(X86::JP_1); break;
  case X86::JNP_4: OutMI.setOpcode(X86::JNP_1); break;
  case X86::JL_4:  OutMI.setOpcode(X86::JL_1); break;
  case X86::JGE_4: OutMI.setOpcode(X86::JGE_1); break;
  case X86::JLE_4: OutMI.setOpcode(X86::JLE_1); break;
  case X86::JG_4:  OutMI.setOpcode(X86::JG_1); break;

  // Atomic load and store require a separate pseudo-inst because Acquire
  // implies mayStore and Release implies mayLoad; fix these to regular MOV
  // instructions here
  case X86::ACQUIRE_MOV8rm:  OutMI.setOpcode(X86::MOV8rm); goto ReSimplify;
  case X86::ACQUIRE_MOV16rm: OutMI.setOpcode(X86::MOV16rm); goto ReSimplify;
  case X86::ACQUIRE_MOV32rm: OutMI.setOpcode(X86::MOV32rm); goto ReSimplify;
  case X86::ACQUIRE_MOV64rm: OutMI.setOpcode(X86::MOV64rm); goto ReSimplify;
  case X86::RELEASE_MOV8mr:  OutMI.setOpcode(X86::MOV8mr); goto ReSimplify;
  case X86::RELEASE_MOV16mr: OutMI.setOpcode(X86::MOV16mr); goto ReSimplify;
  case X86::RELEASE_MOV32mr: OutMI.setOpcode(X86::MOV32mr); goto ReSimplify;
  case X86::RELEASE_MOV64mr: OutMI.setOpcode(X86::MOV64mr); goto ReSimplify;

  // We don't currently select the correct instruction form for instructions
  // which have a short %eax, etc. form. Handle this by custom lowering, for
  // now.
  //
  // Note, we are currently not handling the following instructions:
  // MOV64ao8, MOV64o8a
  // XCHG16ar, XCHG32ar, XCHG64ar
  case X86::MOV8mr_NOREX:
  case X86::MOV8mr:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8ao8); break;
  case X86::MOV8rm_NOREX:
  case X86::MOV8rm:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8o8a); break;
  case X86::MOV16mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16ao16); break;
  case X86::MOV16rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16o16a); break;
  case X86::MOV32mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32ao32); break;
  case X86::MOV32rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32o32a); break;

  case X86::ADC8ri:     SimplifyShortImmForm(OutMI, X86::ADC8i8);    break;
  case X86::ADC16ri:    SimplifyShortImmForm(OutMI, X86::ADC16i16);  break;
  case X86::ADC32ri:    SimplifyShortImmForm(OutMI, X86::ADC32i32);  break;
  case X86::ADC64ri32:  SimplifyShortImmForm(OutMI, X86::ADC64i32);  break;
  case X86::ADD8ri:     SimplifyShortImmForm(OutMI, X86::ADD8i8);    break;
  case X86::ADD16ri:    SimplifyShortImmForm(OutMI, X86::ADD16i16);  break;
  case X86::ADD32ri:    SimplifyShortImmForm(OutMI, X86::ADD32i32);  break;
  case X86::ADD64ri32:  SimplifyShortImmForm(OutMI, X86::ADD64i32);  break;
  case X86::AND8ri:     SimplifyShortImmForm(OutMI, X86::AND8i8);    break;
  case X86::AND16ri:    SimplifyShortImmForm(OutMI, X86::AND16i16);  break;
  case X86::AND32ri:    SimplifyShortImmForm(OutMI, X86::AND32i32);  break;
  case X86::AND64ri32:  SimplifyShortImmForm(OutMI, X86::AND64i32);  break;
  case X86::CMP8ri:     SimplifyShortImmForm(OutMI, X86::CMP8i8);    break;
  case X86::CMP16ri:    SimplifyShortImmForm(OutMI, X86::CMP16i16);  break;
  case X86::CMP32ri:    SimplifyShortImmForm(OutMI, X86::CMP32i32);  break;
  case X86::CMP64ri32:  SimplifyShortImmForm(OutMI, X86::CMP64i32);  break;
  case X86::OR8ri:      SimplifyShortImmForm(OutMI, X86::OR8i8);     break;
  case X86::OR16ri:     SimplifyShortImmForm(OutMI, X86::OR16i16);   break;
  case X86::OR32ri:     SimplifyShortImmForm(OutMI, X86::OR32i32);   break;
  case X86::OR64ri32:   SimplifyShortImmForm(OutMI, X86::OR64i32);   break;
  case X86::SBB8ri:     SimplifyShortImmForm(OutMI, X86::SBB8i8);    break;
  case X86::SBB16ri:    SimplifyShortImmForm(OutMI, X86::SBB16i16);  break;
  case X86::SBB32ri:    SimplifyShortImmForm(OutMI, X86::SBB32i32);  break;
  case X86::SBB64ri32:  SimplifyShortImmForm(OutMI, X86::SBB64i32);  break;
  case X86::SUB8ri:     SimplifyShortImmForm(OutMI, X86::SUB8i8);    break;
  case X86::SUB16ri:    SimplifyShortImmForm(OutMI, X86::SUB16i16);  break;
  case X86::SUB32ri:    SimplifyShortImmForm(OutMI, X86::SUB32i32);  break;
  case X86::SUB64ri32:  SimplifyShortImmForm(OutMI, X86::SUB64i32);  break;
  case X86::TEST8ri:    SimplifyShortImmForm(OutMI, X86::TEST8i8);   break;
  case X86::TEST16ri:   SimplifyShortImmForm(OutMI, X86::TEST16i16); break;
  case X86::TEST32ri:   SimplifyShortImmForm(OutMI, X86::TEST32i32); break;
  case X86::TEST64ri32: SimplifyShortImmForm(OutMI, X86::TEST64i32); break;
  case X86::XOR8ri:     SimplifyShortImmForm(OutMI, X86::XOR8i8);    break;
  case X86::XOR16ri:    SimplifyShortImmForm(OutMI, X86::XOR16i16);  break;
  case X86::XOR32ri:    SimplifyShortImmForm(OutMI, X86::XOR32i32);  break;
  case X86::XOR64ri32:  SimplifyShortImmForm(OutMI, X86::XOR64i32);  break;
  }
}
// Create an MCInst from a MachineInstr
void llvm::HexagonLowerToMC(MachineInstr const* MI, MCInst& MCB,
                            HexagonAsmPrinter& AP) {
  if(MI->getOpcode() == Hexagon::ENDLOOP0){
    HexagonMCInstrInfo::setInnerLoop(MCB);
    return;
  }
  if(MI->getOpcode() == Hexagon::ENDLOOP1){
    HexagonMCInstrInfo::setOuterLoop(MCB);
    return;
  }
  MCInst* MCI = new (AP.OutContext) MCInst;
  MCI->setOpcode(MI->getOpcode());
  assert(MCI->getOpcode() == static_cast<unsigned>(MI->getOpcode()) &&
         "MCI opcode should have been set on construction");

  for (unsigned i = 0, e = MI->getNumOperands(); i < e; i++) {
    const MachineOperand &MO = MI->getOperand(i);
    MCOperand MCO;

    switch (MO.getType()) {
    default:
      MI->dump();
      llvm_unreachable("unknown operand type");
    case MachineOperand::MO_Register:
      // Ignore all implicit register operands.
      if (MO.isImplicit()) continue;
      MCO = MCOperand::createReg(MO.getReg());
      break;
    case MachineOperand::MO_FPImmediate: {
      APFloat Val = MO.getFPImm()->getValueAPF();
      // FP immediates are used only when setting GPRs, so they may be dealt
      // with like regular immediates from this point on.
      MCO = MCOperand::createImm(*Val.bitcastToAPInt().getRawData());
      break;
    }
    case MachineOperand::MO_Immediate:
      MCO = MCOperand::createImm(MO.getImm());
      break;
    case MachineOperand::MO_MachineBasicBlock:
      MCO = MCOperand::createExpr
              (MCSymbolRefExpr::create(MO.getMBB()->getSymbol(),
               AP.OutContext));
      break;
    case MachineOperand::MO_GlobalAddress:
      MCO = GetSymbolRef(MO, AP.getSymbol(MO.getGlobal()), AP);
      break;
    case MachineOperand::MO_ExternalSymbol:
      MCO = GetSymbolRef(MO, AP.GetExternalSymbolSymbol(MO.getSymbolName()),
                         AP);
      break;
    case MachineOperand::MO_JumpTableIndex:
      MCO = GetSymbolRef(MO, AP.GetJTISymbol(MO.getIndex()), AP);
      break;
    case MachineOperand::MO_ConstantPoolIndex:
      MCO = GetSymbolRef(MO, AP.GetCPISymbol(MO.getIndex()), AP);
      break;
    case MachineOperand::MO_BlockAddress:
      MCO = GetSymbolRef(MO, AP.GetBlockAddressSymbol(MO.getBlockAddress()),AP);
      break;
    }

    MCI->addOperand(MCO);
  }
  MCB.addOperand(MCOperand::createInst(MCI));
}
void WebAssemblyMCInstLower::Lower(const MachineInstr *MI,
                                   MCInst &OutMI) const {
  OutMI.setOpcode(MI->getOpcode());

  const MCInstrDesc &Desc = MI->getDesc();
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);

    MCOperand MCOp;
    switch (MO.getType()) {
    default:
      MI->print(errs());
      llvm_unreachable("unknown operand type");
    case MachineOperand::MO_MachineBasicBlock:
      MI->print(errs());
      llvm_unreachable("MachineBasicBlock operand should have been rewritten");
    case MachineOperand::MO_Register: {
      // Ignore all implicit register operands.
      if (MO.isImplicit())
        continue;
      const WebAssemblyFunctionInfo &MFI =
          *MI->getParent()->getParent()->getInfo<WebAssemblyFunctionInfo>();
      unsigned WAReg = MFI.getWAReg(MO.getReg());
      MCOp = MCOperand::createReg(WAReg);
      break;
    }
    case MachineOperand::MO_Immediate:
      if (i < Desc.NumOperands) {
        const MCOperandInfo &Info = Desc.OpInfo[i];
        if (Info.OperandType == WebAssembly::OPERAND_TYPEINDEX) {
          MCSymbol *Sym = Printer.createTempSymbol("typeindex");

          SmallVector<wasm::ValType, 4> Returns;
          SmallVector<wasm::ValType, 4> Params;

          const MachineRegisterInfo &MRI =
              MI->getParent()->getParent()->getRegInfo();
          for (const MachineOperand &MO : MI->defs())
            Returns.push_back(getType(MRI.getRegClass(MO.getReg())));
          for (const MachineOperand &MO : MI->explicit_uses())
            if (MO.isReg())
              Params.push_back(getType(MRI.getRegClass(MO.getReg())));

          // call_indirect instructions have a callee operand at the end which
          // doesn't count as a param.
          if (WebAssembly::isCallIndirect(*MI))
            Params.pop_back();

          MCSymbolWasm *WasmSym = cast<MCSymbolWasm>(Sym);
          auto Signature = make_unique<wasm::WasmSignature>(std::move(Returns),
                                                            std::move(Params));
          WasmSym->setSignature(Signature.get());
          Printer.addSignature(std::move(Signature));
          WasmSym->setType(wasm::WASM_SYMBOL_TYPE_FUNCTION);

          const MCExpr *Expr = MCSymbolRefExpr::create(
              WasmSym, MCSymbolRefExpr::VK_WebAssembly_TYPEINDEX, Ctx);
          MCOp = MCOperand::createExpr(Expr);
          break;
        }
      }
      MCOp = MCOperand::createImm(MO.getImm());
      break;
    case MachineOperand::MO_FPImmediate: {
      // TODO: MC converts all floating point immediate operands to double.
      // This is fine for numeric values, but may cause NaNs to change bits.
      const ConstantFP *Imm = MO.getFPImm();
      if (Imm->getType()->isFloatTy())
        MCOp = MCOperand::createFPImm(Imm->getValueAPF().convertToFloat());
      else if (Imm->getType()->isDoubleTy())
        MCOp = MCOperand::createFPImm(Imm->getValueAPF().convertToDouble());
      else
        llvm_unreachable("unknown floating point immediate type");
      break;
    }
    case MachineOperand::MO_GlobalAddress:
      assert(MO.getTargetFlags() == WebAssemblyII::MO_NO_FLAG &&
             "WebAssembly does not use target flags on GlobalAddresses");
      MCOp = LowerSymbolOperand(GetGlobalAddressSymbol(MO), MO.getOffset(),
                                MO.getGlobal()->getValueType()->isFunctionTy(),
                                false, false);
      break;
    case MachineOperand::MO_ExternalSymbol:
      // The target flag indicates whether this is a symbol for a
      // variable or a function.
      assert((MO.getTargetFlags() & ~WebAssemblyII::MO_SYMBOL_MASK) == 0 &&
             "WebAssembly uses only symbol flags on ExternalSymbols");
      MCOp = LowerSymbolOperand(
          GetExternalSymbolSymbol(MO), /*Offset=*/0,
          (MO.getTargetFlags() & WebAssemblyII::MO_SYMBOL_FUNCTION) != 0,
          (MO.getTargetFlags() & WebAssemblyII::MO_SYMBOL_GLOBAL) != 0,
          (MO.getTargetFlags() & WebAssemblyII::MO_SYMBOL_EVENT) != 0);
      break;
    case MachineOperand::MO_MCSymbol:
      // This is currently used only for LSDA symbols (GCC_except_table),
      // because global addresses or other external symbols are handled above.
      assert(MO.getTargetFlags() == 0 &&
             "WebAssembly does not use target flags on MCSymbol");
      MCOp = LowerSymbolOperand(MO.getMCSymbol(), /*Offset=*/0, false, false,
                                false);
      break;
    }

    OutMI.addOperand(MCOp);
  }

  if (!WasmKeepRegisters)
    removeRegisterOperands(MI, OutMI);
}
Example #14
0
void WebAssemblyMCInstLower::Lower(const MachineInstr *MI,
                                   MCInst &OutMI) const {
  OutMI.setOpcode(MI->getOpcode());

  const MCInstrDesc &Desc = MI->getDesc();
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);

    MCOperand MCOp;
    switch (MO.getType()) {
    default:
      MI->print(errs());
      llvm_unreachable("unknown operand type");
    case MachineOperand::MO_MachineBasicBlock:
      MI->print(errs());
      llvm_unreachable("MachineBasicBlock operand should have been rewritten");
    case MachineOperand::MO_Register: {
      // Ignore all implicit register operands.
      if (MO.isImplicit())
        continue;
      const WebAssemblyFunctionInfo &MFI =
          *MI->getParent()->getParent()->getInfo<WebAssemblyFunctionInfo>();
      unsigned WAReg = MFI.getWAReg(MO.getReg());
      MCOp = MCOperand::createReg(WAReg);
      break;
    }
    case MachineOperand::MO_Immediate:
      if (i < Desc.NumOperands) {
        const MCOperandInfo &Info = Desc.OpInfo[i];
        if (Info.OperandType == WebAssembly::OPERAND_TYPEINDEX) {
          MCSymbol *Sym = Printer.createTempSymbol("typeindex");
          if (!isa<MCSymbolELF>(Sym)) {
            SmallVector<unsigned, 4> Returns;
            SmallVector<unsigned, 4> Params;

            const MachineRegisterInfo &MRI =
                MI->getParent()->getParent()->getRegInfo();
            for (const MachineOperand &MO : MI->defs())
              Returns.push_back(getType(MRI.getRegClass(MO.getReg())));
            for (const MachineOperand &MO : MI->explicit_uses())
              if (MO.isReg())
                Params.push_back(getType(MRI.getRegClass(MO.getReg())));

            // call_indirect instructions have a callee operand at the end which
            // doesn't count as a param.
            if (WebAssembly::isCallIndirect(*MI))
              Params.pop_back();

            MCSymbolWasm *WasmSym = cast<MCSymbolWasm>(Sym);
            WasmSym->setReturns(std::move(Returns));
            WasmSym->setParams(std::move(Params));
            WasmSym->setIsFunction(true);

            const MCExpr *Expr =
                MCSymbolRefExpr::create(WasmSym,
                                        MCSymbolRefExpr::VK_WebAssembly_TYPEINDEX,
                                        Ctx);
            MCOp = MCOperand::createExpr(Expr);
            break;
          }
        }
      }
      MCOp = MCOperand::createImm(MO.getImm());
      break;
    case MachineOperand::MO_FPImmediate: {
      // TODO: MC converts all floating point immediate operands to double.
      // This is fine for numeric values, but may cause NaNs to change bits.
      const ConstantFP *Imm = MO.getFPImm();
      if (Imm->getType()->isFloatTy())
        MCOp = MCOperand::createFPImm(Imm->getValueAPF().convertToFloat());
      else if (Imm->getType()->isDoubleTy())
        MCOp = MCOperand::createFPImm(Imm->getValueAPF().convertToDouble());
      else
        llvm_unreachable("unknown floating point immediate type");
      break;
    }
    case MachineOperand::MO_GlobalAddress:
      assert(MO.getTargetFlags() == 0 &&
             "WebAssembly does not use target flags on GlobalAddresses");
      MCOp = LowerSymbolOperand(GetGlobalAddressSymbol(MO), MO.getOffset(),
                                MO.getGlobal()->getValueType()->isFunctionTy());
      break;
    case MachineOperand::MO_ExternalSymbol:
      // The target flag indicates whether this is a symbol for a
      // variable or a function.
      assert((MO.getTargetFlags() & -2) == 0 &&
             "WebAssembly uses only one target flag bit on ExternalSymbols");
      MCOp = LowerSymbolOperand(GetExternalSymbolSymbol(MO), /*Offset=*/0,
                                MO.getTargetFlags() & 1);
      break;
    }

    OutMI.addOperand(MCOp);
  }
}
Example #15
0
bool SparcAsmParser::expandSET(MCInst &Inst, SMLoc IDLoc,
                               SmallVectorImpl<MCInst> &Instructions) {
  MCOperand MCRegOp = Inst.getOperand(0);
  MCOperand MCValOp = Inst.getOperand(1);
  assert(MCRegOp.isReg());
  assert(MCValOp.isImm() || MCValOp.isExpr());

  // the imm operand can be either an expression or an immediate.
  bool IsImm = Inst.getOperand(1).isImm();
  int64_t RawImmValue = IsImm ? MCValOp.getImm() : 0;

  // Allow either a signed or unsigned 32-bit immediate.
  if (RawImmValue < -2147483648LL || RawImmValue > 4294967295LL) {
    return Error(IDLoc,
                 "set: argument must be between -2147483648 and 4294967295");
  }

  // If the value was expressed as a large unsigned number, that's ok.
  // We want to see if it "looks like" a small signed number.
  int32_t ImmValue = RawImmValue;
  // For 'set' you can't use 'or' with a negative operand on V9 because
  // that would splat the sign bit across the upper half of the destination
  // register, whereas 'set' is defined to zero the high 32 bits.
  bool IsEffectivelyImm13 =
      IsImm && ((is64Bit() ? 0 : -4096) <= ImmValue && ImmValue < 4096);
  const MCExpr *ValExpr;
  if (IsImm)
    ValExpr = MCConstantExpr::create(ImmValue, getContext());
  else
    ValExpr = MCValOp.getExpr();

  MCOperand PrevReg = MCOperand::createReg(Sparc::G0);

  // If not just a signed imm13 value, then either we use a 'sethi' with a
  // following 'or', or a 'sethi' by itself if there are no more 1 bits.
  // In either case, start with the 'sethi'.
  if (!IsEffectivelyImm13) {
    MCInst TmpInst;
    const MCExpr *Expr = adjustPICRelocation(SparcMCExpr::VK_Sparc_HI, ValExpr);
    TmpInst.setLoc(IDLoc);
    TmpInst.setOpcode(SP::SETHIi);
    TmpInst.addOperand(MCRegOp);
    TmpInst.addOperand(MCOperand::createExpr(Expr));
    Instructions.push_back(TmpInst);
    PrevReg = MCRegOp;
  }

  // The low bits require touching in 3 cases:
  // * A non-immediate value will always require both instructions.
  // * An effectively imm13 value needs only an 'or' instruction.
  // * Otherwise, an immediate that is not effectively imm13 requires the
  //   'or' only if bits remain after clearing the 22 bits that 'sethi' set.
  // If the low bits are known zeros, there's nothing to do.
  // In the second case, and only in that case, must we NOT clear
  // bits of the immediate value via the %lo() assembler function.
  // Note also, the 'or' instruction doesn't mind a large value in the case
  // where the operand to 'set' was 0xFFFFFzzz - it does exactly what you mean.
  if (!IsImm || IsEffectivelyImm13 || (ImmValue & 0x3ff)) {
    MCInst TmpInst;
    const MCExpr *Expr;
    if (IsEffectivelyImm13)
      Expr = ValExpr;
    else
      Expr = adjustPICRelocation(SparcMCExpr::VK_Sparc_LO, ValExpr);
    TmpInst.setLoc(IDLoc);
    TmpInst.setOpcode(SP::ORri);
    TmpInst.addOperand(MCRegOp);
    TmpInst.addOperand(PrevReg);
    TmpInst.addOperand(MCOperand::createExpr(Expr));
    Instructions.push_back(TmpInst);
  }
  return false;
}
Example #16
0
/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
void Thumb2InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
  NopInst.setOpcode(ARM::tHINT);
  NopInst.addOperand(MCOperand::createImm(0));
  NopInst.addOperand(MCOperand::createImm(ARMCC::AL));
  NopInst.addOperand(MCOperand::createReg(0));
}
Example #17
0
bool X86ATTAsmParser::
MatchAndEmitInstruction(SMLoc IDLoc,
                        SmallVectorImpl<MCParsedAsmOperand*> &Operands,
                        MCStreamer &Out) {
  assert(!Operands.empty() && "Unexpect empty operand list!");
  X86Operand *Op = static_cast<X86Operand*>(Operands[0]);
  assert(Op->isToken() && "Leading operand should always be a mnemonic!");

  // First, handle aliases that expand to multiple instructions.
  // FIXME: This should be replaced with a real .td file alias mechanism.
  // Also, MatchInstructionImpl should do actually *do* the EmitInstruction
  // call.
  if (Op->getToken() == "fstsw" || Op->getToken() == "fstcw" ||
      Op->getToken() == "fstsww" || Op->getToken() == "fstcww" ||
      Op->getToken() == "finit" || Op->getToken() == "fsave" ||
      Op->getToken() == "fstenv" || Op->getToken() == "fclex") {
    MCInst Inst;
    Inst.setOpcode(X86::WAIT);
    Out.EmitInstruction(Inst);

    const char *Repl =
      StringSwitch<const char*>(Op->getToken())
        .Case("finit",  "fninit")
        .Case("fsave",  "fnsave")
        .Case("fstcw",  "fnstcw")
        .Case("fstcww",  "fnstcw")
        .Case("fstenv", "fnstenv")
        .Case("fstsw",  "fnstsw")
        .Case("fstsww", "fnstsw")
        .Case("fclex",  "fnclex")
        .Default(0);
    assert(Repl && "Unknown wait-prefixed instruction");
    delete Operands[0];
    Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
  }

  bool WasOriginallyInvalidOperand = false;
  unsigned OrigErrorInfo;
  MCInst Inst;

  // First, try a direct match.
  switch (MatchInstructionImpl(Operands, Inst, OrigErrorInfo)) {
  case Match_Success:
    Out.EmitInstruction(Inst);
    return false;
  case Match_MissingFeature:
    Error(IDLoc, "instruction requires a CPU feature not currently enabled");
    return true;
  case Match_ConversionFail:
    return Error(IDLoc, "unable to convert operands to instruction");
  case Match_InvalidOperand:
    WasOriginallyInvalidOperand = true;
    break;
  case Match_MnemonicFail:
    break;
  }

  // FIXME: Ideally, we would only attempt suffix matches for things which are
  // valid prefixes, and we could just infer the right unambiguous
  // type. However, that requires substantially more matcher support than the
  // following hack.

  // Change the operand to point to a temporary token.
  StringRef Base = Op->getToken();
  SmallString<16> Tmp;
  Tmp += Base;
  Tmp += ' ';
  Op->setTokenValue(Tmp.str());

  // If this instruction starts with an 'f', then it is a floating point stack
  // instruction.  These come in up to three forms for 32-bit, 64-bit, and
  // 80-bit floating point, which use the suffixes s,l,t respectively.
  //
  // Otherwise, we assume that this may be an integer instruction, which comes
  // in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively.
  const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";
  
  // Check for the various suffix matches.
  Tmp[Base.size()] = Suffixes[0];
  unsigned ErrorInfoIgnore;
  MatchResultTy Match1, Match2, Match3, Match4;
  
  Match1 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore);
  Tmp[Base.size()] = Suffixes[1];
  Match2 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore);
  Tmp[Base.size()] = Suffixes[2];
  Match3 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore);
  Tmp[Base.size()] = Suffixes[3];
  Match4 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore);

  // Restore the old token.
  Op->setTokenValue(Base);

  // If exactly one matched, then we treat that as a successful match (and the
  // instruction will already have been filled in correctly, since the failing
  // matches won't have modified it).
  unsigned NumSuccessfulMatches =
    (Match1 == Match_Success) + (Match2 == Match_Success) +
    (Match3 == Match_Success) + (Match4 == Match_Success);
  if (NumSuccessfulMatches == 1) {
    Out.EmitInstruction(Inst);
    return false;
  }

  // Otherwise, the match failed, try to produce a decent error message.

  // If we had multiple suffix matches, then identify this as an ambiguous
  // match.
  if (NumSuccessfulMatches > 1) {
    char MatchChars[4];
    unsigned NumMatches = 0;
    if (Match1 == Match_Success) MatchChars[NumMatches++] = Suffixes[0];
    if (Match2 == Match_Success) MatchChars[NumMatches++] = Suffixes[1];
    if (Match3 == Match_Success) MatchChars[NumMatches++] = Suffixes[2];
    if (Match4 == Match_Success) MatchChars[NumMatches++] = Suffixes[3];

    SmallString<126> Msg;
    raw_svector_ostream OS(Msg);
    OS << "ambiguous instructions require an explicit suffix (could be ";
    for (unsigned i = 0; i != NumMatches; ++i) {
      if (i != 0)
        OS << ", ";
      if (i + 1 == NumMatches)
        OS << "or ";
      OS << "'" << Base << MatchChars[i] << "'";
    }
    OS << ")";
    Error(IDLoc, OS.str());
    return true;
  }

  // Okay, we know that none of the variants matched successfully.

  // If all of the instructions reported an invalid mnemonic, then the original
  // mnemonic was invalid.
  if ((Match1 == Match_MnemonicFail) && (Match2 == Match_MnemonicFail) &&
      (Match3 == Match_MnemonicFail) && (Match4 == Match_MnemonicFail)) {
    if (!WasOriginallyInvalidOperand) {
      Error(IDLoc, "invalid instruction mnemonic '" + Base + "'");
      return true;
    }

    // Recover location info for the operand if we know which was the problem.
    SMLoc ErrorLoc = IDLoc;
    if (OrigErrorInfo != ~0U) {
      if (OrigErrorInfo >= Operands.size())
        return Error(IDLoc, "too few operands for instruction");

      ErrorLoc = ((X86Operand*)Operands[OrigErrorInfo])->getStartLoc();
      if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
    }

    return Error(ErrorLoc, "invalid operand for instruction");
  }

  // If one instruction matched with a missing feature, report this as a
  // missing feature.
  if ((Match1 == Match_MissingFeature) + (Match2 == Match_MissingFeature) +
      (Match3 == Match_MissingFeature) + (Match4 == Match_MissingFeature) == 1){
    Error(IDLoc, "instruction requires a CPU feature not currently enabled");
    return true;
  }

  // If one instruction matched with an invalid operand, report this as an
  // operand failure.
  if ((Match1 == Match_InvalidOperand) + (Match2 == Match_InvalidOperand) +
      (Match3 == Match_InvalidOperand) + (Match4 == Match_InvalidOperand) == 1){
    Error(IDLoc, "invalid operand for instruction");
    return true;
  }

  // If all of these were an outright failure, report it in a useless way.
  // FIXME: We should give nicer diagnostics about the exact failure.
  Error(IDLoc, "unknown use of instruction mnemonic without a size suffix");
  return true;
}
Example #18
0
/// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to
/// the current output stream.
///
void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
  MCInst TmpInst;
  
  // Lower multi-instruction pseudo operations.
  switch (MI->getOpcode()) {
  default: break;
  case TargetOpcode::DBG_VALUE: {
    if (!isVerbose() || !OutStreamer.hasRawTextSupport()) return;
      
    SmallString<32> Str;
    raw_svector_ostream O(Str);
    unsigned NOps = MI->getNumOperands();
    assert(NOps==4);
    O << '\t' << MAI->getCommentString() << "DEBUG_VALUE: ";
    // cast away const; DIetc do not take const operands for some reason.
    DIVariable V(const_cast<MDNode *>(MI->getOperand(NOps-1).getMetadata()));
    O << V.getName();
    O << " <- ";
    // Frame address.  Currently handles register +- offset only.
    assert(MI->getOperand(0).isReg() && MI->getOperand(1).isImm());
    O << '['; printOperand(MI, 0, O); O << '+'; printOperand(MI, 1, O);
    O << ']';
    O << "+";
    printOperand(MI, NOps-2, O);
    OutStreamer.EmitRawText(O.str());
    return;
  }
      
  case PPC::MovePCtoLR:
  case PPC::MovePCtoLR8: {
    // Transform %LR = MovePCtoLR
    // Into this, where the label is the PIC base: 
    //     bl L1$pb
    // L1$pb:
    MCSymbol *PICBase = MF->getPICBaseSymbol();
    
    // Emit the 'bl'.
    TmpInst.setOpcode(PPC::BL_Darwin); // Darwin vs SVR4 doesn't matter here.
    
    
    // FIXME: We would like an efficient form for this, so we don't have to do
    // a lot of extra uniquing.
    TmpInst.addOperand(MCOperand::CreateExpr(MCSymbolRefExpr::
                                             Create(PICBase, OutContext)));
    OutStreamer.EmitInstruction(TmpInst);
    
    // Emit the label.
    OutStreamer.EmitLabel(PICBase);
    return;
  }
  case PPC::LDtoc: {
    // Transform %X3 = LDtoc <ga:@min1>, %X2
    LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());
      
    // Change the opcode to LD, and the global address operand to be a
    // reference to the TOC entry we will synthesize later.
    TmpInst.setOpcode(PPC::LD);
    const MachineOperand &MO = MI->getOperand(1);
    assert(MO.isGlobal());
      
    // Map symbol -> label of TOC entry.
    MCSymbol *&TOCEntry = TOC[Mang->getSymbol(MO.getGlobal())];
    if (TOCEntry == 0)
      TOCEntry = GetTempSymbol("C", TOCLabelID++);
      
    const MCExpr *Exp =
      MCSymbolRefExpr::Create(TOCEntry, MCSymbolRefExpr::VK_PPC_TOC,
                              OutContext);
    TmpInst.getOperand(1) = MCOperand::CreateExpr(Exp);
    OutStreamer.EmitInstruction(TmpInst);
    return;
  }
      
  case PPC::MFCRpseud:
    // Transform: %R3 = MFCRpseud %CR7
    // Into:      %R3 = MFCR      ;; cr7
    OutStreamer.AddComment(PPCInstPrinter::
                           getRegisterName(MI->getOperand(1).getReg()));
    TmpInst.setOpcode(PPC::MFCR);
    TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
    OutStreamer.EmitInstruction(TmpInst);
    return;
  }

  LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, Subtarget.isDarwin());
  OutStreamer.EmitInstruction(TmpInst);
}
Example #19
0
MCInst HexagonMCInstrInfo::deriveSubInst(MCInst const &Inst) {
  MCInst Result;
  bool Absolute;
  int64_t Value;
  switch (Inst.getOpcode()) {
  default:
    // dbgs() << "opcode: "<< Inst->getOpcode() << "\n";
    llvm_unreachable("Unimplemented subinstruction \n");
    break;
  case Hexagon::A2_addi:
    Absolute = Inst.getOperand(2).getExpr()->evaluateAsAbsolute(Value);
    if (Absolute) {
      if (Value == 1) {
        Result.setOpcode(Hexagon::SA1_inc);
        addOps(Result, Inst, 0);
        addOps(Result, Inst, 1);
        break;
      } //  1,2 SUBInst $Rd = add($Rs, #1)
      if (Value == -1) {
        Result.setOpcode(Hexagon::SA1_dec);
        addOps(Result, Inst, 0);
        addOps(Result, Inst, 1);
        addOps(Result, Inst, 2);
        break;
      } //  1,2 SUBInst $Rd = add($Rs,#-1)
      if (Inst.getOperand(1).getReg() == Hexagon::R29) {
        Result.setOpcode(Hexagon::SA1_addsp);
        addOps(Result, Inst, 0);
        addOps(Result, Inst, 2);
        break;
      } //  1,3 SUBInst $Rd = add(r29, #$u6_2)
    }
    Result.setOpcode(Hexagon::SA1_addi);
    addOps(Result, Inst, 0);
    addOps(Result, Inst, 1);
    addOps(Result, Inst, 2);
    break; //    1,2,3 SUBInst $Rx = add($Rx, #$s7)
  case Hexagon::A2_add:
    Result.setOpcode(Hexagon::SA1_addrx);
    addOps(Result, Inst, 0);
    addOps(Result, Inst, 1);
    addOps(Result, Inst, 2);
    break; //    1,2,3 SUBInst $Rx = add($_src_, $Rs)
  case Hexagon::S2_allocframe:
    Result.setOpcode(Hexagon::SS2_allocframe);
    addOps(Result, Inst, 0);
    break; //    1 SUBInst allocframe(#$u5_3)
  case Hexagon::A2_andir:
    if (minConstant(Inst, 2) == 255) {
      Result.setOpcode(Hexagon::SA1_zxtb);
      addOps(Result, Inst, 0);
      addOps(Result, Inst, 1);
      break; //    1,2    $Rd = and($Rs, #255)
    } else {
      Result.setOpcode(Hexagon::SA1_and1);
      addOps(Result, Inst, 0);
      addOps(Result, Inst, 1);
      break; //    1,2 SUBInst $Rd = and($Rs, #1)
    }
  case Hexagon::C2_cmpeqi:
    Result.setOpcode(Hexagon::SA1_cmpeqi);
    addOps(Result, Inst, 1);
    addOps(Result, Inst, 2);
    break; //    2,3 SUBInst p0 = cmp.eq($Rs, #$u2)
  case Hexagon::A4_combineii:
  case Hexagon::A2_combineii:
    Absolute = Inst.getOperand(1).getExpr()->evaluateAsAbsolute(Value);
    assert(Absolute);(void)Absolute;
    if (Value == 1) {
      Result.setOpcode(Hexagon::SA1_combine1i);
      addOps(Result, Inst, 0);
      addOps(Result, Inst, 2);
      break; //  1,3 SUBInst $Rdd = combine(#1, #$u2)
    }
    if (Value == 3) {
      Result.setOpcode(Hexagon::SA1_combine3i);
      addOps(Result, Inst, 0);
      addOps(Result, Inst, 2);
      break; //  1,3 SUBInst $Rdd = combine(#3, #$u2)
    }
    if (Value == 0) {
      Result.setOpcode(Hexagon::SA1_combine0i);
      addOps(Result, Inst, 0);
      addOps(Result, Inst, 2);
      break; //  1,3 SUBInst $Rdd = combine(#0, #$u2)
    }
    if (Value == 2) {
      Result.setOpcode(Hexagon::SA1_combine2i);
      addOps(Result, Inst, 0);
      addOps(Result, Inst, 2);
      break; //  1,3 SUBInst $Rdd = combine(#2, #$u2)
    }
  case Hexagon::A4_combineir:
    Result.setOpcode(Hexagon::SA1_combinezr);
    addOps(Result, Inst, 0);
    addOps(Result, Inst, 2);
    break; //    1,3 SUBInst $Rdd = combine(#0, $Rs)

  case Hexagon::A4_combineri:
    Result.setOpcode(Hexagon::SA1_combinerz);
    addOps(Result, Inst, 0);
    addOps(Result, Inst, 1);
    break; //    1,2 SUBInst $Rdd = combine($Rs, #0)
  case Hexagon::L4_return_tnew_pnt:
  case Hexagon::L4_return_tnew_pt:
    Result.setOpcode(Hexagon::SL2_return_tnew);
    break; //    none  SUBInst if (p0.new) dealloc_return:nt
  case Hexagon::L4_return_fnew_pnt:
  case Hexagon::L4_return_fnew_pt:
    Result.setOpcode(Hexagon::SL2_return_fnew);
    break; //    none  SUBInst if (!p0.new) dealloc_return:nt
  case Hexagon::L4_return_f:
    Result.setOpcode(Hexagon::SL2_return_f);
    break; //    none  SUBInst if (!p0) dealloc_return
  case Hexagon::L4_return_t:
    Result.setOpcode(Hexagon::SL2_return_t);
    break; //    none  SUBInst if (p0) dealloc_return
  case Hexagon::L4_return:
    Result.setOpcode(Hexagon::SL2_return);
    break; //    none  SUBInst dealloc_return
  case Hexagon::L2_deallocframe:
    Result.setOpcode(Hexagon::SL2_deallocframe);
    break; //    none  SUBInst deallocframe
  case Hexagon::EH_RETURN_JMPR:
  case Hexagon::J2_jumpr:
  case Hexagon::PS_jmpret:
    Result.setOpcode(Hexagon::SL2_jumpr31);
    break; //    none  SUBInst jumpr r31
  case Hexagon::J2_jumprf:
  case Hexagon::PS_jmpretf:
    Result.setOpcode(Hexagon::SL2_jumpr31_f);
    break; //    none  SUBInst if (!p0) jumpr r31
  case Hexagon::J2_jumprfnew:
  case Hexagon::J2_jumprfnewpt:
  case Hexagon::PS_jmpretfnewpt:
  case Hexagon::PS_jmpretfnew:
    Result.setOpcode(Hexagon::SL2_jumpr31_fnew);
    break; //    none  SUBInst if (!p0.new) jumpr:nt r31
  case Hexagon::J2_jumprt:
  case Hexagon::PS_jmprett:
    Result.setOpcode(Hexagon::SL2_jumpr31_t);
    break; //    none  SUBInst if (p0) jumpr r31
  case Hexagon::J2_jumprtnew:
  case Hexagon::J2_jumprtnewpt:
  case Hexagon::PS_jmprettnewpt:
  case Hexagon::PS_jmprettnew:
    Result.setOpcode(Hexagon::SL2_jumpr31_tnew);
    break; //    none  SUBInst if (p0.new) jumpr:nt r31
  case Hexagon::L2_loadrb_io:
    Result.setOpcode(Hexagon::SL2_loadrb_io);
    addOps(Result, Inst, 0);
    addOps(Result, Inst, 1);
    addOps(Result, Inst, 2);
    break; //    1,2,3 SUBInst $Rd = memb($Rs + #$u3_0)
  case Hexagon::L2_loadrd_io:
    Result.setOpcode(Hexagon::SL2_loadrd_sp);
    addOps(Result, Inst, 0);
    addOps(Result, Inst, 2);
    break; //    1,3 SUBInst $Rdd = memd(r29 + #$u5_3)
  case Hexagon::L2_loadrh_io:
    Result.setOpcode(Hexagon::SL2_loadrh_io);
    addOps(Result, Inst, 0);
    addOps(Result, Inst, 1);
    addOps(Result, Inst, 2);
    break; //    1,2,3 SUBInst $Rd = memh($Rs + #$u3_1)
  case Hexagon::L2_loadrub_io:
    Result.setOpcode(Hexagon::SL1_loadrub_io);
    addOps(Result, Inst, 0);
    addOps(Result, Inst, 1);
    addOps(Result, Inst, 2);
    break; //    1,2,3 SUBInst $Rd = memub($Rs + #$u4_0)
  case Hexagon::L2_loadruh_io:
    Result.setOpcode(Hexagon::SL2_loadruh_io);
    addOps(Result, Inst, 0);
    addOps(Result, Inst, 1);
    addOps(Result, Inst, 2);
    break; //    1,2,3 SUBInst $Rd = memuh($Rs + #$u3_1)
  case Hexagon::L2_loadri_io:
    if (Inst.getOperand(1).getReg() == Hexagon::R29) {
      Result.setOpcode(Hexagon::SL2_loadri_sp);
      addOps(Result, Inst, 0);
      addOps(Result, Inst, 2);
      break; //  2 1,3 SUBInst $Rd = memw(r29 + #$u5_2)
    } else {
      Result.setOpcode(Hexagon::SL1_loadri_io);
      addOps(Result, Inst, 0);
      addOps(Result, Inst, 1);
      addOps(Result, Inst, 2);
      break; //    1,2,3 SUBInst $Rd = memw($Rs + #$u4_2)
    }
  case Hexagon::S4_storeirb_io:
    Absolute = Inst.getOperand(2).getExpr()->evaluateAsAbsolute(Value);
    assert(Absolute);(void)Absolute;
    if (Value == 0) {
      Result.setOpcode(Hexagon::SS2_storebi0);
      addOps(Result, Inst, 0);
      addOps(Result, Inst, 1);
      break; //    1,2 SUBInst memb($Rs + #$u4_0)=#0
    } else if (Value == 1) {
      Result.setOpcode(Hexagon::SS2_storebi1);
      addOps(Result, Inst, 0);
      addOps(Result, Inst, 1);
      break; //  2 1,2 SUBInst memb($Rs + #$u4_0)=#1
    }
  case Hexagon::S2_storerb_io:
    Result.setOpcode(Hexagon::SS1_storeb_io);
    addOps(Result, Inst, 0);
    addOps(Result, Inst, 1);
    addOps(Result, Inst, 2);
    break; //    1,2,3 SUBInst memb($Rs + #$u4_0) = $Rt
  case Hexagon::S2_storerd_io:
    Result.setOpcode(Hexagon::SS2_stored_sp);
    addOps(Result, Inst, 1);
    addOps(Result, Inst, 2);
    break; //    2,3 SUBInst memd(r29 + #$s6_3) = $Rtt
  case Hexagon::S2_storerh_io:
    Result.setOpcode(Hexagon::SS2_storeh_io);
    addOps(Result, Inst, 0);
    addOps(Result, Inst, 1);
    addOps(Result, Inst, 2);
    break; //    1,2,3 SUBInst memb($Rs + #$u4_0) = $Rt
  case Hexagon::S4_storeiri_io:
    Absolute = Inst.getOperand(2).getExpr()->evaluateAsAbsolute(Value);
    assert(Absolute);(void)Absolute;
    if (Value == 0) {
      Result.setOpcode(Hexagon::SS2_storewi0);
      addOps(Result, Inst, 0);
      addOps(Result, Inst, 1);
      break; //  3 1,2 SUBInst memw($Rs + #$u4_2)=#0
    } else if (Value == 1) {
      Result.setOpcode(Hexagon::SS2_storewi1);
      addOps(Result, Inst, 0);
      addOps(Result, Inst, 1);
      break; //  3 1,2 SUBInst memw($Rs + #$u4_2)=#1
    } else if (Inst.getOperand(0).getReg() == Hexagon::R29) {
      Result.setOpcode(Hexagon::SS2_storew_sp);
      addOps(Result, Inst, 1);
      addOps(Result, Inst, 2);
      break; //  1 2,3 SUBInst memw(r29 + #$u5_2) = $Rt
    }
  case Hexagon::S2_storeri_io:
    if (Inst.getOperand(0).getReg() == Hexagon::R29) {
      Result.setOpcode(Hexagon::SS2_storew_sp);
      addOps(Result, Inst, 1);
      addOps(Result, Inst, 2); //  1,2,3 SUBInst memw(sp + #$u5_2) = $Rt
    } else {
      Result.setOpcode(Hexagon::SS1_storew_io);
      addOps(Result, Inst, 0);
      addOps(Result, Inst, 1);
      addOps(Result, Inst, 2); //  1,2,3 SUBInst memw($Rs + #$u4_2) = $Rt
    }
    break;
  case Hexagon::A2_sxtb:
    Result.setOpcode(Hexagon::SA1_sxtb);
    addOps(Result, Inst, 0);
    addOps(Result, Inst, 1);
    break; //  1,2 SUBInst $Rd = sxtb($Rs)
  case Hexagon::A2_sxth:
    Result.setOpcode(Hexagon::SA1_sxth);
    addOps(Result, Inst, 0);
    addOps(Result, Inst, 1);
    break; //  1,2 SUBInst $Rd = sxth($Rs)
  case Hexagon::A2_tfr:
    Result.setOpcode(Hexagon::SA1_tfr);
    addOps(Result, Inst, 0);
    addOps(Result, Inst, 1);
    break; //  1,2 SUBInst $Rd = $Rs
  case Hexagon::C2_cmovenewif:
    Result.setOpcode(Hexagon::SA1_clrfnew);
    addOps(Result, Inst, 0);
    addOps(Result, Inst, 1);
    break; //  2 SUBInst if (!p0.new) $Rd = #0
  case Hexagon::C2_cmovenewit:
    Result.setOpcode(Hexagon::SA1_clrtnew);
    addOps(Result, Inst, 0);
    addOps(Result, Inst, 1);
    break; //  2 SUBInst if (p0.new) $Rd = #0
  case Hexagon::C2_cmoveif:
    Result.setOpcode(Hexagon::SA1_clrf);
    addOps(Result, Inst, 0);
    addOps(Result, Inst, 1);
    break; //  2 SUBInst if (!p0) $Rd = #0
  case Hexagon::C2_cmoveit:
    Result.setOpcode(Hexagon::SA1_clrt);
    addOps(Result, Inst, 0);
    addOps(Result, Inst, 1);
    break; //  2 SUBInst if (p0) $Rd = #0
  case Hexagon::A2_tfrsi:
    Absolute = Inst.getOperand(1).getExpr()->evaluateAsAbsolute(Value);
    if (Absolute && Value == -1) {
      Result.setOpcode(Hexagon::SA1_setin1);
      addOps(Result, Inst, 0);
      addOps(Result, Inst, 1);
      break; //  2 1 SUBInst $Rd = #-1
    } else {
      Result.setOpcode(Hexagon::SA1_seti);
      addOps(Result, Inst, 0);
      addOps(Result, Inst, 1);
      break; //    1,2 SUBInst $Rd = #$u6
    }
  case Hexagon::A2_zxtb:
    Result.setOpcode(Hexagon::SA1_zxtb);
    addOps(Result, Inst, 0);
    addOps(Result, Inst, 1);
    break; //    1,2    $Rd = and($Rs, #255)

  case Hexagon::A2_zxth:
    Result.setOpcode(Hexagon::SA1_zxth);
    addOps(Result, Inst, 0);
    addOps(Result, Inst, 1);
    break; //    1,2 SUBInst $Rd = zxth($Rs)
  }
  return Result;
}
/// LowerSubReg32_Op0 - Things like MOVZX16rr8 -> MOVZX32rr8.
static void LowerSubReg32_Op0(MCInst &OutMI, unsigned NewOpc) {
  OutMI.setOpcode(NewOpc);
  lower_subreg32(&OutMI, 0);
}
Example #21
0
void MipsAsmPrinter::EmitInstrReg(unsigned Opcode, unsigned Reg) {
  MCInst I;
  I.setOpcode(Opcode);
  I.addOperand(MCOperand::CreateReg(Reg));
  OutStreamer.EmitInstruction(I, getSubtargetInfo());
}
/// LowerUnaryToTwoAddr - R = setb   -> R = sbb R, R
static void LowerUnaryToTwoAddr(MCInst &OutMI, unsigned NewOpc) {
  OutMI.setOpcode(NewOpc);
  OutMI.addOperand(OutMI.getOperand(0));
  OutMI.addOperand(OutMI.getOperand(0));
}
Example #23
0
void AArch64AsmPrinter::EmitInstruction(const MachineInstr *MI) {
  // Do any auto-generated pseudo lowerings.
  if (emitPseudoExpansionLowering(OutStreamer, MI))
    return;

  if (AArch64FI->getLOHRelated().count(MI)) {
    // Generate a label for LOH related instruction
    MCSymbol *LOHLabel = GetTempSymbol("loh", LOHLabelCounter++);
    // Associate the instruction with the label
    LOHInstToLabel[MI] = LOHLabel;
    OutStreamer.EmitLabel(LOHLabel);
  }

  // Do any manual lowerings.
  switch (MI->getOpcode()) {
  default:
    break;
  case AArch64::DBG_VALUE: {
    if (isVerbose() && OutStreamer.hasRawTextSupport()) {
      SmallString<128> TmpStr;
      raw_svector_ostream OS(TmpStr);
      PrintDebugValueComment(MI, OS);
      OutStreamer.EmitRawText(StringRef(OS.str()));
    }
    return;
  }

  // Tail calls use pseudo instructions so they have the proper code-gen
  // attributes (isCall, isReturn, etc.). We lower them to the real
  // instruction here.
  case AArch64::TCRETURNri: {
    MCInst TmpInst;
    TmpInst.setOpcode(AArch64::BR);
    TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
    EmitToStreamer(OutStreamer, TmpInst);
    return;
  }
  case AArch64::TCRETURNdi: {
    MCOperand Dest;
    MCInstLowering.lowerOperand(MI->getOperand(0), Dest);
    MCInst TmpInst;
    TmpInst.setOpcode(AArch64::B);
    TmpInst.addOperand(Dest);
    EmitToStreamer(OutStreamer, TmpInst);
    return;
  }
  case AArch64::TLSDESC_BLR: {
    MCOperand Callee, Sym;
    MCInstLowering.lowerOperand(MI->getOperand(0), Callee);
    MCInstLowering.lowerOperand(MI->getOperand(1), Sym);

    // First emit a relocation-annotation. This expands to no code, but requests
    // the following instruction gets an R_AARCH64_TLSDESC_CALL.
    MCInst TLSDescCall;
    TLSDescCall.setOpcode(AArch64::TLSDESCCALL);
    TLSDescCall.addOperand(Sym);
    EmitToStreamer(OutStreamer, TLSDescCall);

    // Other than that it's just a normal indirect call to the function loaded
    // from the descriptor.
    MCInst BLR;
    BLR.setOpcode(AArch64::BLR);
    BLR.addOperand(Callee);
    EmitToStreamer(OutStreamer, BLR);

    return;
  }

  case TargetOpcode::STACKMAP:
    return LowerSTACKMAP(OutStreamer, SM, *MI);

  case TargetOpcode::PATCHPOINT:
    return LowerPATCHPOINT(OutStreamer, SM, *MI);
  }

  // Finally, do the automated lowerings for everything else.
  MCInst TmpInst;
  MCInstLowering.Lower(MI, TmpInst);
  EmitToStreamer(OutStreamer, TmpInst);
}
void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
  OutMI.setOpcode(MI->getOpcode());
  
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    
    MCOperand MCOp;
    switch (MO.getType()) {
    default:
      MI->dump();
      llvm_unreachable("unknown operand type");
    case MachineOperand::MO_Register:
      // Ignore all implicit register operands.
      if (MO.isImplicit()) continue;
      MCOp = MCOperand::CreateReg(MO.getReg());
      break;
    case MachineOperand::MO_Immediate:
      MCOp = MCOperand::CreateImm(MO.getImm());
      break;
    case MachineOperand::MO_MachineBasicBlock:
      MCOp = MCOperand::CreateExpr(MCSymbolRefExpr::Create(
                       MO.getMBB()->getSymbol(), Ctx));
      break;
    case MachineOperand::MO_GlobalAddress:
      MCOp = LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
      break;
    case MachineOperand::MO_ExternalSymbol:
      MCOp = LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
      break;
    case MachineOperand::MO_JumpTableIndex:
      MCOp = LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
      break;
    case MachineOperand::MO_ConstantPoolIndex:
      MCOp = LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
      break;
    case MachineOperand::MO_BlockAddress:
      MCOp = LowerSymbolOperand(MO,
                        AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
      break;
    }
    
    OutMI.addOperand(MCOp);
  }
  
  // Handle a few special cases to eliminate operand modifiers.
  switch (OutMI.getOpcode()) {
  case X86::LEA64_32r: // Handle 'subreg rewriting' for the lea64_32mem operand.
    lower_lea64_32mem(&OutMI, 1);
    break;
  case X86::MOVZX16rr8:   LowerSubReg32_Op0(OutMI, X86::MOVZX32rr8); break;
  case X86::MOVZX16rm8:   LowerSubReg32_Op0(OutMI, X86::MOVZX32rm8); break;
  case X86::MOVSX16rr8:   LowerSubReg32_Op0(OutMI, X86::MOVSX32rr8); break;
  case X86::MOVSX16rm8:   LowerSubReg32_Op0(OutMI, X86::MOVSX32rm8); break;
  case X86::MOVZX64rr32:  LowerSubReg32_Op0(OutMI, X86::MOV32rr); break;
  case X86::MOVZX64rm32:  LowerSubReg32_Op0(OutMI, X86::MOV32rm); break;
  case X86::MOV64ri64i32: LowerSubReg32_Op0(OutMI, X86::MOV32ri); break;
  case X86::MOVZX64rr8:   LowerSubReg32_Op0(OutMI, X86::MOVZX32rr8); break;
  case X86::MOVZX64rm8:   LowerSubReg32_Op0(OutMI, X86::MOVZX32rm8); break;
  case X86::MOVZX64rr16:  LowerSubReg32_Op0(OutMI, X86::MOVZX32rr16); break;
  case X86::MOVZX64rm16:  LowerSubReg32_Op0(OutMI, X86::MOVZX32rm16); break;
  case X86::SETB_C8r:     LowerUnaryToTwoAddr(OutMI, X86::SBB8rr); break;
  case X86::SETB_C16r:    LowerUnaryToTwoAddr(OutMI, X86::SBB16rr); break;
  case X86::SETB_C32r:    LowerUnaryToTwoAddr(OutMI, X86::SBB32rr); break;
  case X86::SETB_C64r:    LowerUnaryToTwoAddr(OutMI, X86::SBB64rr); break;
  case X86::MOV8r0:       LowerUnaryToTwoAddr(OutMI, X86::XOR8rr); break;
  case X86::MOV32r0:      LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); break;
  case X86::MMX_V_SET0:   LowerUnaryToTwoAddr(OutMI, X86::MMX_PXORrr); break;
  case X86::MMX_V_SETALLONES:
    LowerUnaryToTwoAddr(OutMI, X86::MMX_PCMPEQDrr); break;
  case X86::FsFLD0SS:     LowerUnaryToTwoAddr(OutMI, X86::PXORrr); break;
  case X86::FsFLD0SD:     LowerUnaryToTwoAddr(OutMI, X86::PXORrr); break;
  case X86::V_SET0PS:     LowerUnaryToTwoAddr(OutMI, X86::XORPSrr); break;
  case X86::V_SET0PD:     LowerUnaryToTwoAddr(OutMI, X86::XORPDrr); break;
  case X86::V_SET0PI:     LowerUnaryToTwoAddr(OutMI, X86::PXORrr); break;
  case X86::V_SETALLONES: LowerUnaryToTwoAddr(OutMI, X86::PCMPEQDrr); break;

  case X86::MOV16r0:
    LowerSubReg32_Op0(OutMI, X86::MOV32r0);   // MOV16r0 -> MOV32r0
    LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); // MOV32r0 -> XOR32rr
    break;
  case X86::MOV64r0:
    LowerSubReg32_Op0(OutMI, X86::MOV32r0);   // MOV64r0 -> MOV32r0
    LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); // MOV32r0 -> XOR32rr
    break;

  // TAILJMPr, TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have
  // register inputs modeled as normal uses instead of implicit uses.  As such,
  // truncate off all but the first operand (the callee).  FIXME: Change isel.
  case X86::TAILJMPr:
  case X86::TAILJMPr64:
  case X86::CALL64r:
  case X86::CALL64pcrel32: {
    unsigned Opcode = OutMI.getOpcode();
    MCOperand Saved = OutMI.getOperand(0);
    OutMI = MCInst();
    OutMI.setOpcode(Opcode);
    OutMI.addOperand(Saved);
    break;
  }

  // TAILJMPd, TAILJMPd64 - Lower to the correct jump instructions.
  case X86::TAILJMPd:
  case X86::TAILJMPd64: {
    MCOperand Saved = OutMI.getOperand(0);
    OutMI = MCInst();
    OutMI.setOpcode(X86::TAILJMP_1);
    OutMI.addOperand(Saved);
    break;
  }

  // The assembler backend wants to see branches in their small form and relax
  // them to their large form.  The JIT can only handle the large form because
  // it does not do relaxation.  For now, translate the large form to the
  // small one here.
  case X86::JMP_4: OutMI.setOpcode(X86::JMP_1); break;
  case X86::JO_4:  OutMI.setOpcode(X86::JO_1); break;
  case X86::JNO_4: OutMI.setOpcode(X86::JNO_1); break;
  case X86::JB_4:  OutMI.setOpcode(X86::JB_1); break;
  case X86::JAE_4: OutMI.setOpcode(X86::JAE_1); break;
  case X86::JE_4:  OutMI.setOpcode(X86::JE_1); break;
  case X86::JNE_4: OutMI.setOpcode(X86::JNE_1); break;
  case X86::JBE_4: OutMI.setOpcode(X86::JBE_1); break;
  case X86::JA_4:  OutMI.setOpcode(X86::JA_1); break;
  case X86::JS_4:  OutMI.setOpcode(X86::JS_1); break;
  case X86::JNS_4: OutMI.setOpcode(X86::JNS_1); break;
  case X86::JP_4:  OutMI.setOpcode(X86::JP_1); break;
  case X86::JNP_4: OutMI.setOpcode(X86::JNP_1); break;
  case X86::JL_4:  OutMI.setOpcode(X86::JL_1); break;
  case X86::JGE_4: OutMI.setOpcode(X86::JGE_1); break;
  case X86::JLE_4: OutMI.setOpcode(X86::JLE_1); break;
  case X86::JG_4:  OutMI.setOpcode(X86::JG_1); break;

  // We don't currently select the correct instruction form for instructions
  // which have a short %eax, etc. form. Handle this by custom lowering, for
  // now.
  //
  // Note, we are currently not handling the following instructions:
  // MOV64ao8, MOV64o8a
  // XCHG16ar, XCHG32ar, XCHG64ar
  case X86::MOV8mr_NOREX:
  case X86::MOV8mr:     SimplifyShortMoveForm(OutMI, X86::MOV8ao8); break;
  case X86::MOV8rm_NOREX:
  case X86::MOV8rm:     SimplifyShortMoveForm(OutMI, X86::MOV8o8a); break;
  case X86::MOV16mr:    SimplifyShortMoveForm(OutMI, X86::MOV16ao16); break;
  case X86::MOV16rm:    SimplifyShortMoveForm(OutMI, X86::MOV16o16a); break;
  case X86::MOV32mr:    SimplifyShortMoveForm(OutMI, X86::MOV32ao32); break;
  case X86::MOV32rm:    SimplifyShortMoveForm(OutMI, X86::MOV32o32a); break;
  case X86::MOV64mr:    SimplifyShortMoveForm(OutMI, X86::MOV64ao64); break;
  case X86::MOV64rm:    SimplifyShortMoveForm(OutMI, X86::MOV64o64a); break;

  case X86::ADC8ri:     SimplifyShortImmForm(OutMI, X86::ADC8i8);    break;
  case X86::ADC16ri:    SimplifyShortImmForm(OutMI, X86::ADC16i16);  break;
  case X86::ADC32ri:    SimplifyShortImmForm(OutMI, X86::ADC32i32);  break;
  case X86::ADC64ri32:  SimplifyShortImmForm(OutMI, X86::ADC64i32);  break;
  case X86::ADD8ri:     SimplifyShortImmForm(OutMI, X86::ADD8i8);    break;
  case X86::ADD16ri:    SimplifyShortImmForm(OutMI, X86::ADD16i16);  break;
  case X86::ADD32ri:    SimplifyShortImmForm(OutMI, X86::ADD32i32);  break;
  case X86::ADD64ri32:  SimplifyShortImmForm(OutMI, X86::ADD64i32);  break;
  case X86::AND8ri:     SimplifyShortImmForm(OutMI, X86::AND8i8);    break;
  case X86::AND16ri:    SimplifyShortImmForm(OutMI, X86::AND16i16);  break;
  case X86::AND32ri:    SimplifyShortImmForm(OutMI, X86::AND32i32);  break;
  case X86::AND64ri32:  SimplifyShortImmForm(OutMI, X86::AND64i32);  break;
  case X86::CMP8ri:     SimplifyShortImmForm(OutMI, X86::CMP8i8);    break;
  case X86::CMP16ri:    SimplifyShortImmForm(OutMI, X86::CMP16i16);  break;
  case X86::CMP32ri:    SimplifyShortImmForm(OutMI, X86::CMP32i32);  break;
  case X86::CMP64ri32:  SimplifyShortImmForm(OutMI, X86::CMP64i32);  break;
  case X86::OR8ri:      SimplifyShortImmForm(OutMI, X86::OR8i8);     break;
  case X86::OR16ri:     SimplifyShortImmForm(OutMI, X86::OR16i16);   break;
  case X86::OR32ri:     SimplifyShortImmForm(OutMI, X86::OR32i32);   break;
  case X86::OR64ri32:   SimplifyShortImmForm(OutMI, X86::OR64i32);   break;
  case X86::SBB8ri:     SimplifyShortImmForm(OutMI, X86::SBB8i8);    break;
  case X86::SBB16ri:    SimplifyShortImmForm(OutMI, X86::SBB16i16);  break;
  case X86::SBB32ri:    SimplifyShortImmForm(OutMI, X86::SBB32i32);  break;
  case X86::SBB64ri32:  SimplifyShortImmForm(OutMI, X86::SBB64i32);  break;
  case X86::SUB8ri:     SimplifyShortImmForm(OutMI, X86::SUB8i8);    break;
  case X86::SUB16ri:    SimplifyShortImmForm(OutMI, X86::SUB16i16);  break;
  case X86::SUB32ri:    SimplifyShortImmForm(OutMI, X86::SUB32i32);  break;
  case X86::SUB64ri32:  SimplifyShortImmForm(OutMI, X86::SUB64i32);  break;
  case X86::TEST8ri:    SimplifyShortImmForm(OutMI, X86::TEST8i8);   break;
  case X86::TEST16ri:   SimplifyShortImmForm(OutMI, X86::TEST16i16); break;
  case X86::TEST32ri:   SimplifyShortImmForm(OutMI, X86::TEST32i32); break;
  case X86::TEST64ri32: SimplifyShortImmForm(OutMI, X86::TEST64i32); break;
  case X86::XOR8ri:     SimplifyShortImmForm(OutMI, X86::XOR8i8);    break;
  case X86::XOR16ri:    SimplifyShortImmForm(OutMI, X86::XOR16i16);  break;
  case X86::XOR32ri:    SimplifyShortImmForm(OutMI, X86::XOR32i32);  break;
  case X86::XOR64ri32:  SimplifyShortImmForm(OutMI, X86::XOR64i32);  break;
  }
}
void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering,
                                 const MachineInstr &MI) {

  bool is64Bits = MI.getOpcode() == X86::TLS_addr64 ||
                  MI.getOpcode() == X86::TLS_base_addr64;

  bool needsPadding = MI.getOpcode() == X86::TLS_addr64;

  MCContext &context = OutStreamer->getContext();

  if (needsPadding)
    EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));

  MCSymbolRefExpr::VariantKind SRVK;
  switch (MI.getOpcode()) {
    case X86::TLS_addr32:
    case X86::TLS_addr64:
      SRVK = MCSymbolRefExpr::VK_TLSGD;
      break;
    case X86::TLS_base_addr32:
      SRVK = MCSymbolRefExpr::VK_TLSLDM;
      break;
    case X86::TLS_base_addr64:
      SRVK = MCSymbolRefExpr::VK_TLSLD;
      break;
    default:
      llvm_unreachable("unexpected opcode");
  }

  MCSymbol *sym = MCInstLowering.GetSymbolFromOperand(MI.getOperand(3));
  const MCSymbolRefExpr *symRef = MCSymbolRefExpr::create(sym, SRVK, context);

  MCInst LEA;
  if (is64Bits) {
    LEA.setOpcode(X86::LEA64r);
    LEA.addOperand(MCOperand::createReg(X86::RDI)); // dest
    LEA.addOperand(MCOperand::createReg(X86::RIP)); // base
    LEA.addOperand(MCOperand::createImm(1));        // scale
    LEA.addOperand(MCOperand::createReg(0));        // index
    LEA.addOperand(MCOperand::createExpr(symRef));  // disp
    LEA.addOperand(MCOperand::createReg(0));        // seg
  } else if (SRVK == MCSymbolRefExpr::VK_TLSLDM) {
    LEA.setOpcode(X86::LEA32r);
    LEA.addOperand(MCOperand::createReg(X86::EAX)); // dest
    LEA.addOperand(MCOperand::createReg(X86::EBX)); // base
    LEA.addOperand(MCOperand::createImm(1));        // scale
    LEA.addOperand(MCOperand::createReg(0));        // index
    LEA.addOperand(MCOperand::createExpr(symRef));  // disp
    LEA.addOperand(MCOperand::createReg(0));        // seg
  } else {
    LEA.setOpcode(X86::LEA32r);
    LEA.addOperand(MCOperand::createReg(X86::EAX)); // dest
    LEA.addOperand(MCOperand::createReg(0));        // base
    LEA.addOperand(MCOperand::createImm(1));        // scale
    LEA.addOperand(MCOperand::createReg(X86::EBX)); // index
    LEA.addOperand(MCOperand::createExpr(symRef));  // disp
    LEA.addOperand(MCOperand::createReg(0));        // seg
  }
  EmitAndCountInstruction(LEA);

  if (needsPadding) {
    EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
    EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
    EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX));
  }

  StringRef name = is64Bits ? "__tls_get_addr" : "___tls_get_addr";
  MCSymbol *tlsGetAddr = context.getOrCreateSymbol(name);
  const MCSymbolRefExpr *tlsRef =
    MCSymbolRefExpr::create(tlsGetAddr,
                            MCSymbolRefExpr::VK_PLT,
                            context);

  EmitAndCountInstruction(MCInstBuilder(is64Bits ? X86::CALL64pcrel32
                                                 : X86::CALLpcrel32)
                            .addExpr(tlsRef));
}
void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) {
  X86MCInstLower MCInstLowering(OutContext, Mang, *this);
  switch (MI->getOpcode()) {
  case TargetOpcode::DBG_VALUE:
    if (isVerbose() && OutStreamer.hasRawTextSupport()) {
      std::string TmpStr;
      raw_string_ostream OS(TmpStr);
      PrintDebugValueComment(MI, OS);
      OutStreamer.EmitRawText(StringRef(OS.str()));
    }
    return;

  case X86::MOVPC32r: {
    MCInst TmpInst;
    // This is a pseudo op for a two instruction sequence with a label, which
    // looks like:
    //     call "L1$pb"
    // "L1$pb":
    //     popl %esi
    
    // Emit the call.
    MCSymbol *PICBase = MCInstLowering.GetPICBaseSymbol();
    TmpInst.setOpcode(X86::CALLpcrel32);
    // FIXME: We would like an efficient form for this, so we don't have to do a
    // lot of extra uniquing.
    TmpInst.addOperand(MCOperand::CreateExpr(MCSymbolRefExpr::Create(PICBase,
                                                                 OutContext)));
    OutStreamer.EmitInstruction(TmpInst);
    
    // Emit the label.
    OutStreamer.EmitLabel(PICBase);
    
    // popl $reg
    TmpInst.setOpcode(X86::POP32r);
    TmpInst.getOperand(0) = MCOperand::CreateReg(MI->getOperand(0).getReg());
    OutStreamer.EmitInstruction(TmpInst);
    return;
  }
      
  case X86::ADD32ri: {
    // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
    if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
      break;
    
    // Okay, we have something like:
    //  EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
    
    // For this, we want to print something like:
    //   MYGLOBAL + (. - PICBASE)
    // However, we can't generate a ".", so just emit a new label here and refer
    // to it.
    MCSymbol *DotSym = OutContext.CreateTempSymbol();
    OutStreamer.EmitLabel(DotSym);
    
    // Now that we have emitted the label, lower the complex operand expression.
    MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
    
    const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext);
    const MCExpr *PICBase =
      MCSymbolRefExpr::Create(MCInstLowering.GetPICBaseSymbol(), OutContext);
    DotExpr = MCBinaryExpr::CreateSub(DotExpr, PICBase, OutContext);
    
    DotExpr = MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(OpSym,OutContext), 
                                      DotExpr, OutContext);
    
    MCInst TmpInst;
    TmpInst.setOpcode(X86::ADD32ri);
    TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
    TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
    TmpInst.addOperand(MCOperand::CreateExpr(DotExpr));
    OutStreamer.EmitInstruction(TmpInst);
    return;
  }
  }
  
  MCInst TmpInst;
  MCInstLowering.Lower(MI, TmpInst);
  
  OutStreamer.EmitInstruction(TmpInst);
}
Example #27
0
static DecodeStatus
Decode2OpInstructionFail(MCInst &Inst, unsigned Insn, uint64_t Address,
                         const void *Decoder) {
  // Try and decode as a 3R instruction.
  unsigned Opcode = fieldFromInstruction(Insn, 11, 5);
  switch (Opcode) {
  case 0x0:
    Inst.setOpcode(XCore::STW_2rus);
    return Decode2RUSInstruction(Inst, Insn, Address, Decoder);
  case 0x1:
    Inst.setOpcode(XCore::LDW_2rus);
    return Decode2RUSInstruction(Inst, Insn, Address, Decoder);
  case 0x2:
    Inst.setOpcode(XCore::ADD_3r);
    return Decode3RInstruction(Inst, Insn, Address, Decoder);
  case 0x3:
    Inst.setOpcode(XCore::SUB_3r);
    return Decode3RInstruction(Inst, Insn, Address, Decoder);
  case 0x4:
    Inst.setOpcode(XCore::SHL_3r);
    return Decode3RInstruction(Inst, Insn, Address, Decoder);
  case 0x5:
    Inst.setOpcode(XCore::SHR_3r);
    return Decode3RInstruction(Inst, Insn, Address, Decoder);
  case 0x6:
    Inst.setOpcode(XCore::EQ_3r);
    return Decode3RInstruction(Inst, Insn, Address, Decoder);
  case 0x7:
    Inst.setOpcode(XCore::AND_3r);
    return Decode3RInstruction(Inst, Insn, Address, Decoder);
  case 0x8:
    Inst.setOpcode(XCore::OR_3r);
    return Decode3RInstruction(Inst, Insn, Address, Decoder);
  case 0x9:
    Inst.setOpcode(XCore::LDW_3r);
    return Decode3RInstruction(Inst, Insn, Address, Decoder);
  case 0x10:
    Inst.setOpcode(XCore::LD16S_3r);
    return Decode3RInstruction(Inst, Insn, Address, Decoder);
  case 0x11:
    Inst.setOpcode(XCore::LD8U_3r);
    return Decode3RInstruction(Inst, Insn, Address, Decoder);
  case 0x12:
    Inst.setOpcode(XCore::ADD_2rus);
    return Decode2RUSInstruction(Inst, Insn, Address, Decoder);
  case 0x13:
    Inst.setOpcode(XCore::SUB_2rus);
    return Decode2RUSInstruction(Inst, Insn, Address, Decoder);
  case 0x14:
    Inst.setOpcode(XCore::SHL_2rus);
    return Decode2RUSBitpInstruction(Inst, Insn, Address, Decoder);
  case 0x15:
    Inst.setOpcode(XCore::SHR_2rus);
    return Decode2RUSBitpInstruction(Inst, Insn, Address, Decoder);
  case 0x16:
    Inst.setOpcode(XCore::EQ_2rus);
    return Decode2RUSInstruction(Inst, Insn, Address, Decoder);
  case 0x17:
    Inst.setOpcode(XCore::TSETR_3r);
    return Decode3RImmInstruction(Inst, Insn, Address, Decoder);
  case 0x18:
    Inst.setOpcode(XCore::LSS_3r);
    return Decode3RInstruction(Inst, Insn, Address, Decoder);
  case 0x19:
    Inst.setOpcode(XCore::LSU_3r);
    return Decode3RInstruction(Inst, Insn, Address, Decoder);
  }
  return MCDisassembler::Fail;
}
MCDisassembler::DecodeStatus WebAssemblyDisassembler::getInstruction(
    MCInst &MI, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t /*Address*/,
    raw_ostream &OS, raw_ostream &CS) const {
  Size = 0;
  uint64_t Pos = 0;

  // Read the opcode.
  if (Pos + sizeof(uint64_t) > Bytes.size())
    return MCDisassembler::Fail;
  uint64_t Opcode = support::endian::read64le(Bytes.data() + Pos);
  Pos += sizeof(uint64_t);

  if (Opcode >= WebAssembly::INSTRUCTION_LIST_END)
    return MCDisassembler::Fail;

  MI.setOpcode(Opcode);
  const MCInstrDesc &Desc = MCII->get(Opcode);
  unsigned NumFixedOperands = Desc.NumOperands;

  // If it's variadic, read the number of extra operands.
  unsigned NumExtraOperands = 0;
  if (Desc.isVariadic()) {
    if (Pos + sizeof(uint64_t) > Bytes.size())
      return MCDisassembler::Fail;
    NumExtraOperands = support::endian::read64le(Bytes.data() + Pos);
    Pos += sizeof(uint64_t);
  }

  // Read the fixed operands. These are described by the MCInstrDesc.
  for (unsigned i = 0; i < NumFixedOperands; ++i) {
    const MCOperandInfo &Info = Desc.OpInfo[i];
    switch (Info.OperandType) {
    case MCOI::OPERAND_IMMEDIATE:
    case WebAssembly::OPERAND_P2ALIGN:
    case WebAssembly::OPERAND_BASIC_BLOCK: {
      if (Pos + sizeof(uint64_t) > Bytes.size())
        return MCDisassembler::Fail;
      uint64_t Imm = support::endian::read64le(Bytes.data() + Pos);
      Pos += sizeof(uint64_t);
      MI.addOperand(MCOperand::createImm(Imm));
      break;
    }
    case MCOI::OPERAND_REGISTER: {
      if (Pos + sizeof(uint64_t) > Bytes.size())
        return MCDisassembler::Fail;
      uint64_t Reg = support::endian::read64le(Bytes.data() + Pos);
      Pos += sizeof(uint64_t);
      MI.addOperand(MCOperand::createReg(Reg));
      break;
    }
    case WebAssembly::OPERAND_FPIMM: {
      // TODO: MC converts all floating point immediate operands to double.
      // This is fine for numeric values, but may cause NaNs to change bits.
      if (Pos + sizeof(uint64_t) > Bytes.size())
        return MCDisassembler::Fail;
      uint64_t Bits = support::endian::read64le(Bytes.data() + Pos);
      Pos += sizeof(uint64_t);
      double Imm;
      memcpy(&Imm, &Bits, sizeof(Imm));
      MI.addOperand(MCOperand::createFPImm(Imm));
      break;
    }
    default:
      llvm_unreachable("unimplemented operand kind");
    }
  }

  // Read the extra operands.
  assert(NumExtraOperands == 0 || Desc.isVariadic());
  for (unsigned i = 0; i < NumExtraOperands; ++i) {
    if (Pos + sizeof(uint64_t) > Bytes.size())
      return MCDisassembler::Fail;
    if (Desc.TSFlags & WebAssemblyII::VariableOpIsImmediate) {
      // Decode extra immediate operands.
      uint64_t Imm = support::endian::read64le(Bytes.data() + Pos);
      MI.addOperand(MCOperand::createImm(Imm));
    } else {
      // Decode extra register operands.
      uint64_t Reg = support::endian::read64le(Bytes.data() + Pos);
      MI.addOperand(MCOperand::createReg(Reg));
    }
    Pos += sizeof(uint64_t);
  }

  Size = Pos;
  return MCDisassembler::Success;
}