void COceanRenderObject::RenderHeightmapAnimations( float fAnimSpeed, IEffect *pEffect )
{
	float fAnimTime = m_fCurrentTime*fAnimSpeed;
	float fTimeFloor = floor(fAnimTime);
	float fAnimLerp = fAnimTime - fTimeFloor;
	int iFrame0 = (int)fAnimTime % OCEAN_HEIGHTMAPTEXTURE_COUNT;
	int iFrame1 = (iFrame0+1) % OCEAN_HEIGHTMAPTEXTURE_COUNT;

	Matrix4x4 worldTransform;
	m_IRenderer->SetMatrix( WORLD_MATRIX, worldTransform.GetMatrix() );

	m_IRenderer->SetMaterial( 0, NULL );
	m_IRenderer->SetAlphaTest( false );
	m_IRenderer->SetDepthTest( false );
	m_IRenderer->SetDepthWrite( false );
	m_IRenderer->SetRenderState( RENDERSTATE_ALPHABLENDENABLE, RENDERSTATEPARAM_FALSE );
	m_IRenderer->SetRenderState( RENDERSTATE_CULLMODE, RENDERSTATEPARAM_CULLNONE );

	pEffect->Apply( 0, NULL, NULL );
	pEffect->SetPixelConstant( 21, fAnimLerp, 0.0f, 0.0f, 0.0f );

	m_IRenderer->SetTexture( 0, m_pHeightmapTextures[iFrame0] );
	m_IRenderer->SetTexture( 1, m_pHeightmapTextures[iFrame1] );
	m_IRenderer->SetColorMask( true, true, true, true );

	m_IRenderer->RenderVertexBuffer( m_TextureGenerationVBI, m_TextureGenerationVB.m_Offset, m_TextureGenerationVB.m_Size/3 );

	m_IRenderer->SetDepthTest( true );
	m_IRenderer->SetDepthWrite( true );
}
void CCoordinateToolPhysicsObject::GetParentTransform( NxMat34& transform )
{
	Matrix4x4 parentTrans;
	static DWORD msgHash_GetGlobalTransform = CHashString(_T("GetGlobalTransform")).GetUniqueID();
	m_ToolBox->SendMessage( msgHash_GetGlobalTransform, sizeof(parentTrans), &parentTrans, GetParentName(), &m_hsParentType );
	
	// remove scale and rotation
	parentTrans.SetRotation( EulerAngle() );

	transform.setColumnMajor44( parentTrans.GetMatrix() );
}
void LightMapGenerator::IntersectWithWorld( Ray &vRay, POTENTIAL_INTERSECTION_SORT &sortedIntersections )
{
	float rayTmin, rayTMax;
	Vec3 LightOrigin;	
	double t, u, v;
	Ray rRay;
	static CHashString meshType(_T("MeshParameterization") );
	for( int j = 0; j < (int)m_MeshObjects.size(); j++ )
	{
		//now check each mesh's triangles
		CHashString &meshName= m_MeshObjects[ j ];
		Matrix4x4 meshTransform;
		Matrix4x4 meshInverseTransform;
		static DWORD msgHash_GetMeshTransform = CHashString(_T("GetMeshTransform")).GetUniqueID();
		m_ToolBox->SendMessage(msgHash_GetMeshTransform, sizeof( Matrix4x4 ), &meshTransform, &meshName, &meshType );
		static DWORD msgHash_GetMeshInverseTransform = CHashString(_T("GetMeshInverseTransform")).GetUniqueID();
		m_ToolBox->SendMessage(msgHash_GetMeshInverseTransform, sizeof( Matrix4x4 ), &meshInverseTransform, &meshName, &meshType );
		
		AABB meshBounds;
		static DWORD msgHash_GetAABB = CHashString(_T("GetAABB")).GetUniqueID();
		m_ToolBox->SendMessage(msgHash_GetAABB, sizeof( AABB ), &meshBounds, &meshName, &meshType );
		
		//transform this by inverse matrix
		LightOrigin = meshInverseTransform*vRay.m_Origin;
		Matrix3x3 matRotate;
		matRotate.SetFrom4x4( meshInverseTransform.GetMatrix() );
		Vec3 transformedDir = matRotate*vRay.m_Direction;
		transformedDir.Normalize();
		rRay = Ray( LightOrigin, transformedDir );
		
		if( meshBounds.IntersectRay( rRay, rayTmin, rayTMax ) )
		{
			//cull mesh away that need not be tested
			int face = 0;
			//test intersection
			MESHPARAMINTERSECTRAYTRIANGLEMSG intersectMsg;
			intersectMsg.inRay = &rRay;
			static DWORD msgHash_IntersectRayTriangle = CHashString(_T("IntersectRayTriangle")).GetUniqueID();
			m_ToolBox->SendMessage(msgHash_IntersectRayTriangle, sizeof( MESHPARAMINTERSECTRAYTRIANGLEMSG ), &intersectMsg, &meshName, &meshType );
		
			if( intersectMsg.outCollided == true)
			{
				face = intersectMsg.outFaceIndex;
				t = intersectMsg.outIntersectionDistance;
				u = intersectMsg.outULength;
				v = intersectMsg.outVLength;
				if( t < 0 )
				{
					continue;
				}
				PotentialIntersection pIntersection;
				pIntersection.faceIndex = face;
				pIntersection.t = t;
				pIntersection.u = u;
				pIntersection.v = v;
				pIntersection.mesh = meshName;
				pIntersection.transformedRay = rRay;
				sortedIntersections.insert( POTENTIAL_INTERSECTION_SORT_PAIR( (float)t, pIntersection ) );
			}
		}
		
	}
}
bool LightMapGenerator::ComputeRay( Ray &vRay, ILightObject * l, int bounces, float energy, int curbounce,
								   floatColor &color)
{
	POTENTIAL_INTERSECTION_SORT sortedIntersections;
	if( curbounce < 0 )return false;
	if( energy <= ENERGY_CUTOFF )return false;

	Vec3 triVerts[3];
	Vec3 Normals[ 3 ];
	float meshU[ 3 ];
	float meshV[ 3 ];
	double t, u, v;
	Ray rRay;
	Vec3 LightOrigin;
	float attenuationDistance = l->GetAttenuationDistance();
	//add to lightposition
	//check meshes
	IntersectWithWorld( vRay, sortedIntersections );

	if( sortedIntersections.size() > 0 )
	{
		POTENTIAL_INTERSECTION_SORT::iterator iter = sortedIntersections.begin();
		PotentialIntersection &firstIntersection = iter->second;
		u = firstIntersection.u;
		v = firstIntersection.v;
		t = firstIntersection.t;
		int face = firstIntersection.faceIndex;
		rRay = firstIntersection.transformedRay;

		static CHashString meshType(_T("MeshParameterization") );
		CHashString &meshName = firstIntersection.mesh;
		GETPARAMETERIZEDTRIANGLESMSG meshFaces;
		GETPARAMETERIZEDVERTICESMSG meshVertices;
		static DWORD msgHash_GetTriangleFaces = CHashString(_T("GetTriangleFaces")).GetUniqueID();
		m_ToolBox->SendMessage(msgHash_GetTriangleFaces, sizeof( GETPARAMETERIZEDTRIANGLESMSG), &meshFaces, &meshName, &meshType );
		static DWORD msgHash_GetCollapsedMesh = CHashString(_T("GetCollapsedMesh")).GetUniqueID();
		m_ToolBox->SendMessage(msgHash_GetCollapsedMesh, sizeof( GETPARAMETERIZEDVERTICESMSG), &meshVertices, &meshName, &meshType );
		if( meshFaces.outList == NULL ||
			meshVertices.outList == NULL )
		{
			return false;
		}

		TriangleFace &tri = (*meshFaces.outList)[ face ];
		for( int a = 0; a < 3; a++ )
		{
			Vec3 &v = (* meshVertices.outList)[ tri.index [ a ] ].originalPosition;
			triVerts[ a ].x = v.x;
   			triVerts[ a ].y = v.y;
   			triVerts[ a ].z = v.z;
		}
		//we intersected, find point of intersection, find texel it maps to, color
		for( int a = 0; a < 3; a++ )
		{	
			meshU[ a ] = (* meshVertices.outList)[ tri.index [ a ] ].generatedU;
			meshV[ a ] = (* meshVertices.outList)[ tri.index [ a ] ].generatedV;
			Normals[ a ] = (* meshVertices.outList)[ tri.index [ a ] ].normal;
		}
		Vec3 intersect;
		intersect.x = (float)(rRay.m_Origin.x + rRay.m_Direction.x*t);
		intersect.y = (float)(rRay.m_Origin.y + rRay.m_Direction.y*t);
		intersect.z = (float)(rRay.m_Origin.z + rRay.m_Direction.z*t);
		//calculate average normal
		Normals[ 0 ] = 
			Normals[ 0 ]*(1 -  (float)u)
			+ Normals[ 0 ]*(1 -  (float)v) 
			+ Normals[1]* (float)u 
			+ Normals[2]* (float)v;
		Normals[ 0 ].Normalize();
		//now take the dot with light ray
		float value = Normals[ 0 ].Dot( -rRay.m_Direction );

		//write to KD Tree
		//attenuate value based on distance
		if( curbounce < bounces  )
		{
			attenuationDistance = 4000; //hack attenuate to prevent artifacts for now
		}
		float intensity = 1.f - ((float)t / attenuationDistance);
		if( intensity > 1.f )
		{
			intensity = 1.f;
		}
		else
			if( intensity < 0 )
		{
			intensity = 0;
		}
		value *= intensity*energy;
		if( value <= 0.f )
		{
			value = 0.f;
			return false;
		}

		//linearly interpolate the color based on distance
		floatColor OutColor;
		float fogFactor = ( (float)t - m_FogStart ) / ( m_FogEnd - m_FogStart );
		if( fogFactor < 0 ) 
		{
			fogFactor = 0.f;
		}
		else
			if( fogFactor > 1.f )
		{
			fogFactor = 1.f;
		}
		OutColor.r = m_FogColor.r*fogFactor + color.r*(1.f - fogFactor );
		OutColor.g = m_FogColor.g*fogFactor + color.g*(1.f - fogFactor );
		OutColor.b = m_FogColor.b*fogFactor + color.b*(1.f - fogFactor );
		
		Matrix4x4 meshTransform;
		static DWORD msgHash_GetMeshTransform = CHashString(_T("GetMeshTransform")).GetUniqueID();
		m_ToolBox->SendMessage(msgHash_GetMeshTransform, sizeof( Matrix4x4 ), &meshTransform, &meshName, &meshType );
		
		intersect = meshTransform*intersect;		
		//Only need rotation component for normal
		Matrix3x3 matRotate;
		matRotate.SetFrom4x4( meshTransform.GetMatrix() );
			
		Vec3 vWorldSpaceNormals = matRotate*Normals[ 0 ];
		vWorldSpaceNormals.Normalize();

		if( curbounce < bounces  )
		{
			Vec3 color( value*OutColor.r, value*OutColor.g, value*OutColor.b );
			m_PhotonMap->store( intersect, vWorldSpaceNormals, vRay.m_Direction, color ); 
			//incoming direction must be stored as well
			m_KDCounter++;
		}
#if 0
		//DEBUG code to output bounce rays
		static int num2 = 0;
		num2++;
		if( curbounce < bounces  )
		{
			static CHashString h(_T("linename"));
			ADDLINEPARAMS LineParam;
			LineParam.name = &h;
			LineParam.start = vRay.m_Origin;
			LineParam.end = vRay.m_Origin + vRay.m_Direction*50;//intersect;
			LineParam.green = 255;
			LineParam.blue = 0;
			LineParam.red = 0;
			static DWORD msgHash_AddLine = CHashString(_T("AddLine")).GetUniqueID();
			m_ToolBox->SendMessage(msgHash_AddLine,sizeof(LineParam), &LineParam );
			LineParam.start = intersect;
			LineParam.end = intersect - vRay.m_Direction*50;//intersect;
			LineParam.blue = 0;
			LineParam.green = 0;
			LineParam.red = 255;
			static DWORD msgHash_AddLine = CHashString(_T("AddLine")).GetUniqueID();
			m_ToolBox->SendMessage(msgHash_AddLine,sizeof(LineParam), &LineParam );
		}
#endif
		//Get bounce color		
		float finalU = (float)( meshU[0]*( 1 - u - v ) + meshU[1]*u + meshU[2]*v);
 		float finalV = (float)( meshV[0]*( 1 - u - v ) + meshV[1]*u + meshV[2]*v);
		floatColor bounceColor;
		MESHPARAMGETBASECOLORATTRIANGLEINTERSECTIONMSG getColorMsg;
		getColorMsg.inFace = face;
		getColorMsg.inUBaryCentric = finalU;
		getColorMsg.inVBaryCentric = finalV;
		static DWORD msgHash_GetBaseColorAtTriangleIntersection = CHashString(_T("GetBaseColorAtTriangleIntersection")).GetUniqueID();
		m_ToolBox->SendMessage(msgHash_GetBaseColorAtTriangleIntersection, sizeof( MESHPARAMGETBASECOLORATTRIANGLEINTERSECTIONMSG), &getColorMsg, &meshName, &meshType );
		bounceColor = getColorMsg.outColor;
		bounceColor.a *= OutColor.a;
		bounceColor.r *= OutColor.r;
		bounceColor.g *= OutColor.g;
		bounceColor.b *= OutColor.b;		
		//bounceColor = OutColor;
		//if( bounceColor.a >= 0)x
		{
			//Calculate bounces
			Ray rNewRay;
			rNewRay.m_Origin = intersect;
			float currentIntensity = value*energy_loss;
			if(	value > ENERGY_CUTOFF &&
				curbounce > 0 &&
				rand()%SPECULAR_CHANCE == 0)
			{
				CastSpecularRay( rNewRay, vWorldSpaceNormals );
				ComputeRay( rNewRay, l, bounces, currentIntensity, curbounce - 1, bounceColor);
			}
			bool diffuseFound = false;
			int bounceTests = 0;
			while(	currentIntensity > ENERGY_CUTOFF &&
				curbounce > 0 &&
				!diffuseFound &&
				bounceTests < MAX_BOUNCE_TEST )
			{
				bounceTests++;
				CastDiffuseRay( rNewRay, vWorldSpaceNormals );		
				diffuseFound = ComputeRay( rNewRay, l, bounces, currentIntensity, curbounce - 1, bounceColor);				
			}
		}
		return true;
	}
	return false;
}
void LightMapGenerator::WriteTextureDataFromPhotonMap()
{	
	// Set pointers for the array of ranges
	static Matrix3x3 matRot;
	
	CHashString meshType(_T("MeshParameterization") );
	char buf[1024];
	static int num = 0;
	static CHashString h(_T("none"));
	static Vec3 last(0,0,0);
	int imin = 33;
	int imax = 36;//m_MeshObjects.size();
	for( int i = imin; i < imax; i++ )
	{
		CHashString &meshName = m_MeshObjects[ i ];		
		GETPARAMETERIZEDTRIANGLESMSG meshFaces;
		GETPARAMETERIZEDVERTICESMSG meshVertices;
		Matrix4x4 meshTransform;
		Matrix4x4 meshInverseTransform;
		static DWORD msgHash_GetMeshTransform = CHashString(_T("GetMeshTransform")).GetUniqueID();
		m_ToolBox->SendMessage(msgHash_GetMeshTransform, sizeof( Matrix4x4 ), &meshTransform, &meshName, &meshType );
		static DWORD msgHash_GetMeshInverseTransform = CHashString(_T("GetMeshInverseTransform")).GetUniqueID();
		m_ToolBox->SendMessage(msgHash_GetMeshInverseTransform, sizeof( Matrix4x4 ), &meshInverseTransform, &meshName, &meshType );
		matRot.SetFrom4x4( meshTransform.GetMatrix() );
		DWORD meshTextureSize;
		static DWORD msgHash_OnGetTextureSize = CHashString(_T("OnGetTextureSize")).GetUniqueID();
		m_ToolBox->SendMessage(msgHash_OnGetTextureSize, sizeof( meshTextureSize ), &meshTextureSize, &meshName, &meshType );
		static DWORD msgHash_GetTriangleFaces = CHashString(_T("GetTriangleFaces")).GetUniqueID();
		m_ToolBox->SendMessage(msgHash_GetTriangleFaces, sizeof( GETPARAMETERIZEDTRIANGLESMSG), &meshFaces, &meshName, &meshType );
		if( meshFaces.outList == NULL ||
			meshVertices.outList == NULL )
		{
			continue;
		}
		int sizeTexture = meshTextureSize*meshTextureSize;
		for( int j = 0; j < (int)meshFaces.outList->size(); j++ )
		{
			if( j%100 == 0 )
			{					
				sprintf( buf, "Gathering data for mesh#%d triangles %d-%d\n", i, j/100, j/100+100 );
				OutputDebugString( buf );
			}
			//TODO:
			/*triMapping = &((*meshFaces.outList)[ j ].m_Pixels);
			floatColor * buffer = m->GetTextureBuffer();
			floatColor * indirectLightBuffer = m->GetIndirectLightBuffer();
			for( int k = 0; k < (int)triMapping->size(); k++ )
			{
				TriangleTextureMapping &triMap = (*triMapping)[ k ];
				int index = triMap.v*m->GetTextureSize() + triMap.u;
				if( index >= 0 && 
					index < sizeTexture  )
				{
					int indexOut = -1;
					float usedRange = PHOTON_WEIGHT_RANGE;
					//check if a closest point is within range, if not, we have to extend range
					Vec3 transformed = (*m->m_Transform)*triMap.localSpaceCoord;
					//Vec3 transformed = triMap.localSpaceCoord;
					num++;
					Vec3 transformedNormal = matRot*triMap.localNormal;
					transformedNormal.Normalize();

					float accumMaxLightIntensity = 0;
					static int skiptest = 0;
					skiptest++;
					//Direct pass
					if( buffer[ index ].a < 0 
					//	&& skiptest%100==0
						)
					{
						for( int a = 0; a< (int)m_Lights.size(); a++ )
						{
							static floatColor lightColor;
							static float fcolor[4];
							ILightObject * light = m_Lights[ a ];
							if( light )
							{
								light->GetColorIntensity(fcolor);
								lightColor.a = fcolor[3];
								lightColor.r = 1.f;//fcolor[0];
								lightColor.g = 1.f;//fcolor[1];
								lightColor.b = 1.f;//fcolor[2];
								if( ComputeDirectLightAtPoint( transformed,  transformedNormal, 
											buffer[ index ], light , lightColor ) )
								{
									accumMaxLightIntensity += lightColor.a;
								}
							}
						}
					}
					if( accumMaxLightIntensity <= 0 )
					{
						accumMaxLightIntensity = 1;
					}

					ComputeIrradianceAtPoint2( transformed, transformedNormal, accumMaxLightIntensity,
						indirectLightBuffer[ index ] );
#if 0
					
					if( (num % 40) == 0 )
					{
						ADDLINEPARAMS LineParam;
						LineParam.name = &h;
						//LineParam.start = last;
						//LineParam.end = transformed;
						LineParam.start = transformed + transformedNormal*40;
						LineParam.end = transformed;
						LineParam.blue = 0;
						LineParam.green = 0;
						last = transformed;
						static DWORD msgHash_AddLine = CHashString(_T("AddLine")).GetUniqueID();
						m_ToolBox->SendMessage(msgHash_AddLine,sizeof(LineParam), &LineParam );
					}
#endif
				}						
			}*/
		}
	}	
}