Example #1
0
MatrixCSR<T>::MatrixCSR(const MatrixNxN<T> &matrix)
{
  int entries = matrix.m_iN * matrix.m_iN;
  entries     = entries - matrix.NumZeros();
  m_dValues = new T[entries];
  m_iColInd = new int[entries];
  m_iRowPtr = new int[matrix.m_iN+1];
  m_iN = matrix.m_iN;
  m_iNumVal = entries;
  int index = 0;
  m_iRowPtr[0] = 0;


  //for every row
  for(int i=0;i<matrix.m_iN;i++)
  {
    int EntriesInRow = 0;
    //iterate through the columns of the row
    for(int j=0;j<matrix.m_iN;j++)
    {
      if(matrix(i,j)!=0.0)
      {
        m_dValues[index] = matrix(i,j);
        m_iColInd[index] = j;
        index++;
        EntriesInRow++;
      }
    }
    m_iRowPtr[i+1]=m_iRowPtr[i]+EntriesInRow;
  }

}
Example #2
0
void CLinearSolverLU<T>::SolveForwardBackward(MatrixNxN<T>& A, VectorN<T>& b, VectorN<T>& x, int iperm[])
{

	int i,j,k,n;

	n=A.rows();

	for(i=0;i<n;i++)
	{
		j = iperm[i];
		x(i)=b(j);
	}

	for(i=1;i<n;i++)
	{
		T sum=0.0;
		for(k=0;k<i;k++)
			sum+=A(i,k)*x(k);
		x(i)=(x(i)-sum);
	}

	//x(n-1) is already done, because of:
	x(n-1)=x(n-1)/A(n-1,n-1);

	for(i=n-2;i>=0;i--)
	{
		T sum = 0.0;
		for(k=i+1;k<n;k++)
			sum += A(i,k)*x(k);
		x(i)=(x(i)-sum)/A(i,i);
	}

	x.OutputVector();

}
Example #3
0
void CLinearSolverLU<T>::Linsolve(MatrixNxN<T> &A, VectorN<T> &b, VectorN<T> &x)
{

	T sum=0;
	int i,j,k,n,p;

	n=A.rows();

	int *iperm = new int[n];


	for(i=0;i<n;i++)iperm[i]=i;

	for(j=0;j<=n-1;j++)
	{
		//partial pivoting
		p=j;
		//check for largest |a_ij| as pivot
		for(i=j+1;i<n;i++)
		{
			if(fabs(A(i,j)) > fabs(A(j,j)))
			{
				//swap rows if we find a bigger element
				A.SwapRows(j,i);
				T temp = b(j);
				b(j)=b(i);
				b(i)=temp;
			}
		}
		//check if there are only zero pivots
		while((A(p,j)==0.0) && (p<n))
		{
			p++;
		}

		if(p==n)
		{
			std::cout<<"No solution exists..."<<std::endl;
			return;
		}
		else
		{
			if(p !=j )
			{
				A.SwapRows(j,p);
				T temp = b(j);
				b(j)=b(p);
				b(p)=temp;
			}
		}


		//compute the betas : colums of U
		for(i=0;i<=j;i++)
		{
			sum=0.0;
			for(k=0;k<=i-1;k++)
				sum+=A(i,k)*A(k,j);

			//set the beta_ij
			A(i,j) = A(i,j) - sum;
		}//end i

		//compute the alphas colums of L
		for(i=j+1;i<=n-1;i++) 
		{
			sum=0.0;
			for(k=0;k<=j-1;k++)
			{
				//sum up the alphas before the diagonal and the
				//betas above the diagonal
				sum+=A(i,k)*A(k,j);
			}//end k

			//set alpha(i,j)
			A(i,j) = (1.0/A(j,j))*(A(i,j) - sum);
		}//end for i

	}//end for j

	SolveForwardBackward(A,b,x,iperm);
}
Example #4
0
void CLinearSolverGauss<T>::Linsolve(MatrixNxN<T> &A, VectorN<T> &b, VectorN<T> &x)
{
	int n = A.m_iN;
	int k=0;

	int p;
	for(;k<n-1;k++)
	{
		p=k;

		//check for largest |a_ij| as pivot
		for(int i=k+1;i<n;i++)
		{
			if(fabs(A(i,k)) > fabs(A(k,k)))
			{
				//swap rows if we find a bigger element
				A.SwapRows(k,i);
				T temp = b(k);
				b(k)=b(i);
				b(i)=temp;
			}
		}
		//check if there are only zero pivots
		while((A(p,k)==0.0) && (p<n))
		{
			p++;
		}

		if(p==n)
		{
			std::cout<<"No solution exists..."<<std::endl;
			return;
		}
		else
		{
			if(p !=k )
			{
				A.SwapRows(k,p);
				T temp = b(k);
				b(k)=b(p);
				b(p)=temp;
			}
		}
		
		for(int i=k+1;i<n;i++)
		{
			T p = A(i,k);
			T pivot = A(i,k)/A(k,k);

			//reduce the k+1-row
			for(int j=0;j<n;j++)
				A(i,j)=A(i,j) - pivot * A(k,j);

			//reduce the rhs
			b(i) = b(i) - pivot * b(k);
		}//end for i
	}//end for k

	if(A(n-1,n-1) == 0)
	{
		std::cout<<"No solution exists..."<<std::endl;
		return;
	}

	//backwards substitution
	for(int i=n-1;i>=0;i--)
	{
		T Sum = 0;
		x(i)=0;
		for(int j=i; j<=n-1;j++)
		{
			Sum += A(i,j) * x(j);
		}
		x(i)=(b(i)-Sum)/A(i,i);
	}

}