Example #1
0
void GCMemoryManager::gc_end() {
  _accumulated_timer.stop();
  _last_gc_stat->set_end_time(Management::timestamp());

  int i;
  // keep the last gc statistics for all memory pools
  for (i = 0; i < MemoryService::num_memory_pools(); i++) {
    MemoryPool* pool = MemoryService::get_memory_pool(i);
    MemoryUsage usage = pool->get_memory_usage();

    HS_DTRACE_PROBE8(hotspot, mem__pool__gc__end,
      name(), strlen(name()),
      pool->name(), strlen(pool->name()),
      usage.init_size(), usage.used(),
      usage.committed(), usage.max_size());

    _last_gc_stat->set_after_gc_usage(i, usage);
  }

  // Set last collection usage of the memory pools managed by this collector
  for (i = 0; i < num_memory_pools(); i++) {
    MemoryPool* pool = get_memory_pool(i);
    MemoryUsage usage = pool->get_memory_usage();

    // Compare with GC usage threshold
    pool->set_last_collection_usage(usage);
    LowMemoryDetector::detect_after_gc_memory(pool);
  }
}
void GCMemoryManager::gc_begin(bool recordGCBeginTime, bool recordPreGCUsage,
                               bool recordAccumulatedGCTime) {
  assert(_last_gc_stat != NULL && _current_gc_stat != NULL, "Just checking");
  if (recordAccumulatedGCTime) {
    _accumulated_timer.start();
  }
  // _num_collections now increases in gc_end, to count completed collections
  if (recordGCBeginTime) {
    _current_gc_stat->set_index(_num_collections+1);
    _current_gc_stat->set_start_time(Management::timestamp());
  }

  if (recordPreGCUsage) {
    // Keep memory usage of all memory pools
    for (int i = 0; i < MemoryService::num_memory_pools(); i++) {
      MemoryPool* pool = MemoryService::get_memory_pool(i);
      MemoryUsage usage = pool->get_memory_usage();
      _current_gc_stat->set_before_gc_usage(i, usage);
      HS_DTRACE_PROBE8(hotspot, mem__pool__gc__begin,
        name(), strlen(name()),
        pool->name(), strlen(pool->name()),
        usage.init_size(), usage.used(),
        usage.committed(), usage.max_size());
    }
  }
}
Example #3
0
void MemoryPool::record_peak_memory_usage() {
  // Caller in JDK is responsible for synchronization -
  // acquire the lock for this memory pool before calling VM
  MemoryUsage usage = get_memory_usage();
  size_t peak_used = get_max_value(usage.used(), _peak_usage.used());
  size_t peak_committed = get_max_value(usage.committed(), _peak_usage.committed());
  size_t peak_max_size = get_max_value(usage.max_size(), _peak_usage.max_size());

  _peak_usage = MemoryUsage(initial_size(), peak_used, peak_committed, peak_max_size);
}
Example #4
0
MemoryUsage PredicateIndex::getMemoryUsage() const {
    // TODO Include bit vector cache memory usage
    MemoryUsage combined;
    combined.merge(_interval_index.getMemoryUsage());
    combined.merge(_bounds_index.getMemoryUsage());
    combined.merge(_zero_constraint_docs.getMemoryUsage());
    combined.merge(_interval_store.getMemoryUsage());
    combined.merge(_features_store.getMemoryUsage());
    return combined;
}
// A collector MUST, even if it does not complete for some reason,
// make a TraceMemoryManagerStats object where countCollection is true,
// to ensure the current gc stat is placed in _last_gc_stat.
void GCMemoryManager::gc_end(bool recordPostGCUsage,
                             bool recordAccumulatedGCTime,
                             bool recordGCEndTime, bool countCollection,
                             GCCause::Cause cause) {
  if (recordAccumulatedGCTime) {
    _accumulated_timer.stop();
  }
  if (recordGCEndTime) {
    _current_gc_stat->set_end_time(Management::timestamp());
  }

  if (recordPostGCUsage) {
    int i;
    // keep the last gc statistics for all memory pools
    for (i = 0; i < MemoryService::num_memory_pools(); i++) {
      MemoryPool* pool = MemoryService::get_memory_pool(i);
      MemoryUsage usage = pool->get_memory_usage();

      HS_DTRACE_PROBE8(hotspot, mem__pool__gc__end,
        name(), strlen(name()),
        pool->name(), strlen(pool->name()),
        usage.init_size(), usage.used(),
        usage.committed(), usage.max_size());

      _current_gc_stat->set_after_gc_usage(i, usage);
    }

    // Set last collection usage of the memory pools managed by this collector
    for (i = 0; i < num_memory_pools(); i++) {
      MemoryPool* pool = get_memory_pool(i);
      MemoryUsage usage = pool->get_memory_usage();

      // Compare with GC usage threshold
      pool->set_last_collection_usage(usage);
      LowMemoryDetector::detect_after_gc_memory(pool);
    }
    if(is_notification_enabled()) {
      bool isMajorGC = this == MemoryService::get_major_gc_manager();
      GCNotifier::pushNotification(this, isMajorGC ? "end of major GC" : "end of minor GC",
                                   GCCause::to_string(cause));
    }
  }
  if (countCollection) {
    _num_collections++;
    // alternately update two objects making one public when complete
    {
      MutexLockerEx ml(_last_gc_lock, Mutex::_no_safepoint_check_flag);
      GCStatInfo *tmp = _last_gc_stat;
      _last_gc_stat = _current_gc_stat;
      _current_gc_stat = tmp;
      // reset the current stat for diagnosability purposes
      _current_gc_stat->clear();
    }
  }
}
Example #6
0
MemoryUsage
DataStoreBase::getMemoryUsage() const
{
    MemStats stats = getMemStats();
    MemoryUsage usage;
    usage.setAllocatedBytes(stats._allocBytes);
    usage.setUsedBytes(stats._usedBytes);
    usage.setDeadBytes(stats._deadBytes);
    usage.setAllocatedBytesOnHold(stats._holdBytes);
    return usage;
}
Example #7
0
void GCMemoryManager::gc_begin() {
  assert(_last_gc_stat != NULL, "Just checking");
  _accumulated_timer.start();
  _num_collections++;
  _last_gc_stat->set_index(_num_collections);
  _last_gc_stat->set_start_time(Management::timestamp());

  // Keep memory usage of all memory pools
  for (int i = 0; i < MemoryService::num_memory_pools(); i++) {
    MemoryPool* pool = MemoryService::get_memory_pool(i);
    MemoryUsage usage = pool->get_memory_usage();
    _last_gc_stat->set_before_gc_usage(i, usage);
    HS_DTRACE_PROBE8(hotspot, mem__pool__gc__begin,
      name(), strlen(name()),
      pool->name(), strlen(pool->name()),
      usage.init_size(), usage.used(),
      usage.committed(), usage.max_size());
  }
}
Example #8
0
Handle MemoryService::create_MemoryUsage_obj(MemoryUsage usage, TRAPS) {
  Klass* k = Management::java_lang_management_MemoryUsage_klass(CHECK_NH);
  instanceKlassHandle ik(THREAD, k);

  instanceHandle obj = ik->allocate_instance_handle(CHECK_NH);

  JavaValue result(T_VOID);
  JavaCallArguments args(10);
  args.push_oop(obj);                         // receiver
  args.push_long(usage.init_size_as_jlong()); // Argument 1
  args.push_long(usage.used_as_jlong());      // Argument 2
  args.push_long(usage.committed_as_jlong()); // Argument 3
  args.push_long(usage.max_size_as_jlong());  // Argument 4

  JavaCalls::call_special(&result,
                          ik,
                          vmSymbols::object_initializer_name(),
                          vmSymbols::long_long_long_long_void_signature(),
                          &args,
                          CHECK_NH);
  return obj;
}
Example #9
0
void PairwiseGenerator<FD>::report_size(ReportType type, MemoryUsage& res)
{
    multipliers[0]->report_size(type, res);
    res.add("shares",
            a.report_size(type) + b.report_size(type) + c.report_size(type));
    res.add("producer", producer.report_size(type));
    res.add("my ciphertexts", C.report_size(CAPACITY));
    res.add("serialized ciphertexts", ciphertexts.get_max_length());
    res.add("serialized cleartexts", cleartexts.get_max_length());
    res.add("generator volatile", volatile_memory);
    res.add("b mod p", b_mod_q.report_size(type));
    res += EC.memory_usage;
}
Example #10
0
 void assertMemoryUsage(const MemStats expStats) const {
     MemoryUsage act = store.getMemoryUsage();
     EXPECT_EQUAL(expStats._used, act.usedBytes());
     EXPECT_EQUAL(expStats._hold, act.allocatedBytesOnHold());
     EXPECT_EQUAL(expStats._dead, act.deadBytes());
 }
Example #11
0
static Handle createGcInfo(GCMemoryManager *gcManager, GCStatInfo *gcStatInfo,TRAPS) {

  // Fill the arrays of MemoryUsage objects with before and after GC
  // per pool memory usage

  Klass* mu_klass = Management::java_lang_management_MemoryUsage_klass(CHECK_NH);
  instanceKlassHandle mu_kh(THREAD, mu_klass);

  // The array allocations below should use a handle containing mu_klass
  // as the first allocation could trigger a GC, causing the actual
  // klass oop to move, and leaving mu_klass pointing to the old
  // location.
  objArrayOop bu = oopFactory::new_objArray(mu_kh(), MemoryService::num_memory_pools(), CHECK_NH);
  objArrayHandle usage_before_gc_ah(THREAD, bu);
  objArrayOop au = oopFactory::new_objArray(mu_kh(), MemoryService::num_memory_pools(), CHECK_NH);
  objArrayHandle usage_after_gc_ah(THREAD, au);

  for (int i = 0; i < MemoryService::num_memory_pools(); i++) {
    Handle before_usage = MemoryService::create_MemoryUsage_obj(gcStatInfo->before_gc_usage_for_pool(i), CHECK_NH);
    Handle after_usage;

    MemoryUsage u = gcStatInfo->after_gc_usage_for_pool(i);
    if (u.max_size() == 0 && u.used() > 0) {
      // If max size == 0, this pool is a survivor space.
      // Set max size = -1 since the pools will be swapped after GC.
      MemoryUsage usage(u.init_size(), u.used(), u.committed(), (size_t)-1);
      after_usage = MemoryService::create_MemoryUsage_obj(usage, CHECK_NH);
    } else {
        after_usage = MemoryService::create_MemoryUsage_obj(u, CHECK_NH);
    }
    usage_before_gc_ah->obj_at_put(i, before_usage());
    usage_after_gc_ah->obj_at_put(i, after_usage());
  }

  // Current implementation only has 1 attribute (number of GC threads)
  // The type is 'I'
  objArrayOop extra_args_array = oopFactory::new_objArray(SystemDictionary::Integer_klass(), 1, CHECK_NH);
  objArrayHandle extra_array (THREAD, extra_args_array);
  Klass* itKlass = SystemDictionary::Integer_klass();
  instanceKlassHandle intK(THREAD, itKlass);

  instanceHandle extra_arg_val = intK->allocate_instance_handle(CHECK_NH);

  {
    JavaValue res(T_VOID);
    JavaCallArguments argsInt;
    argsInt.push_oop(extra_arg_val);
    argsInt.push_int(gcManager->num_gc_threads());

    JavaCalls::call_special(&res,
                            intK,
                            vmSymbols::object_initializer_name(),
                            vmSymbols::int_void_signature(),
                            &argsInt,
                            CHECK_NH);
  }
  extra_array->obj_at_put(0,extra_arg_val());

  Klass* gcInfoklass = Management::com_sun_management_GcInfo_klass(CHECK_NH);
  instanceKlassHandle ik(THREAD, gcInfoklass);

  Handle gcInfo_instance = ik->allocate_instance_handle(CHECK_NH);

  JavaValue constructor_result(T_VOID);
  JavaCallArguments constructor_args(16);
  constructor_args.push_oop(gcInfo_instance);
  constructor_args.push_oop(getGcInfoBuilder(gcManager,THREAD));
  constructor_args.push_long(gcStatInfo->gc_index());
  constructor_args.push_long(Management::ticks_to_ms(gcStatInfo->start_time()));
  constructor_args.push_long(Management::ticks_to_ms(gcStatInfo->end_time()));
  constructor_args.push_oop(usage_before_gc_ah);
  constructor_args.push_oop(usage_after_gc_ah);
  constructor_args.push_oop(extra_array);

  JavaCalls::call_special(&constructor_result,
                          ik,
                          vmSymbols::object_initializer_name(),
                          vmSymbols::com_sun_management_GcInfo_constructor_signature(),
                          &constructor_args,
                          CHECK_NH);

  return Handle(gcInfo_instance());
}
Example #12
0
 bool        is_low_threshold_crossed(MemoryUsage usage) {
   if (_support_low_threshold && _low_threshold > 0) {
     return (usage.used() < _low_threshold);
   }
   return false;
 }
Example #13
0
 bool        is_high_threshold_crossed(MemoryUsage usage) {
   if (_support_high_threshold && _high_threshold > 0) {
     return (usage.used() >= _high_threshold);
   }
   return false;
 }