void MoleculePiSystemsMatcher::_calcConnectivity (Molecule &mol, Array<int> &conn)
{
   conn.clear_resize(mol.vertexEnd());
   conn.zerofill();
   for (int e = mol.edgeBegin(); e != mol.edgeEnd(); e = mol.edgeNext(e))
   {
      int bond_order = mol.getBondOrder(e);

      const Edge &edge = mol.getEdge(e);
      conn[edge.beg] += bond_order;
      conn[edge.end] += bond_order;
   }
   for (int v = mol.vertexBegin(); v != mol.vertexEnd(); v = mol.vertexNext(v))
      if (!mol.isPseudoAtom(v) && !mol.isRSite(v))
         conn[v] += mol.getImplicitH(v);
}
Example #2
0
void CmfSaver::_encodeAtom (Molecule &mol, int idx, const int *mapping)
{
   int number = 0;

   if (mol.isPseudoAtom(idx))
   {
      const char *str = mol.getPseudoAtom(idx);
      size_t len = strlen(str);

      if (len < 1)
         throw Error("empty pseudo-atom");
      if (len > 255)
         throw Error("pseudo-atom labels %d characters long are not supported (255 is the limit)", len);

      _encode(CMF_PSEUDOATOM);
      _encode((byte)len);
      
      do
      {
         _encode(*str);
      } while (*(++str) != 0);
   }
   else if (mol.isRSite(idx))
   {
      int bits = mol.getRSiteBits(idx);
      if (bits > 255)
      {
         _encode(CMF_RSITE_EXT);
         _output->writePackedUInt((unsigned int)bits);
      }
      else
      {
         _encode(CMF_RSITE);
         _encode(bits);
      }
   }
   else
   {
      number = mol.getAtomNumber(idx);

      if (number <= 0 || number >= ELEM_MAX)
         throw Error("unexpected atom label");

      _encode(number);
   }

   int charge = mol.getAtomCharge(idx);

   if (charge != 0)
   {
      int charge2 = charge - CMF_MIN_CHARGE;
         
      if (charge2 < 0 || charge2 >= CMF_NUM_OF_CHARGES)
      {
         _encode(CMF_CHARGE_EXT);
         int charge3 = charge + 128;
         if (charge3 < 0 || charge >= 256)
            throw Error("unexpected atom charge: %d", charge);
         _encode(charge3);
      }
      else
         _encode(charge2 + CMF_CHARGES);
   }

   int isotope = mol.getAtomIsotope(idx);

   if (isotope > 0)
   {
      int deviation = isotope - Element::getDefaultIsotope(number);

      if (deviation == 0)
         _encode(CMF_ISOTOPE_ZERO);
      else if (deviation == 1)
         _encode(CMF_ISOTOPE_PLUS1);
      else if (deviation == 2)
         _encode(CMF_ISOTOPE_PLUS2);
      else if (deviation == -1)
         _encode(CMF_ISOTOPE_MINUS1);
      else if (deviation == -2)
         _encode(CMF_ISOTOPE_MINUS2);
      else
      {
         deviation += 100;
         if (deviation < 0 || deviation > 255)
            throw Error("unexpected %s isotope: %d", Element::toString(number), isotope);
         _encode(CMF_ISOTOPE_OTHER);
         _encode(deviation);
      }
   }

   int radical = 0;

   if (!mol.isPseudoAtom(idx) && !mol.isRSite(idx))
   {
      try
      {
         radical = mol.getAtomRadical(idx);
      }
      catch (Element::Error)
      {
      }
   }

   if (radical > 0)
   {
      if (radical == RADICAL_SINGLET)
         _encode(CMF_RADICAL_SINGLET);
      else if (radical == RADICAL_DOUBLET)
         _encode(CMF_RADICAL_DOUBLET);
      else if (radical == RADICAL_TRIPLET)
         _encode(CMF_RADICAL_TRIPLET);
      else
         throw Error("bad radical value: %d", radical);
   }
   
   MoleculeStereocenters &stereo = mol.stereocenters;
   
   int stereo_type = stereo.getType(idx);
   
   if (stereo_type == MoleculeStereocenters::ATOM_ANY)
      _encode(CMF_STEREO_ANY);
   else if (stereo_type != 0)
   {
      bool rigid;
      int code;
      const int *pyramid = stereo.getPyramid(idx);
      
      if (pyramid[3] == -1)
         rigid = MoleculeStereocenters::isPyramidMappingRigid(pyramid, 3, mapping);
      else
         rigid = MoleculeStereocenters::isPyramidMappingRigid(pyramid, 4, mapping);
      
      if (stereo_type == MoleculeStereocenters::ATOM_ABS)
         code = CMF_STEREO_ABS_0;
      else 
      {
         int group = stereo.getGroup(idx);

         if (group < 1 || group > CMF_MAX_STEREOGROUPS)
            throw Error("stereogroup number %d out of range", group);

         if (stereo_type == MoleculeStereocenters::ATOM_AND)
            code = CMF_STEREO_AND_0 + group - 1;
         else // stereo_type == MoleculeStereocenters::ATOM_OR
            code = CMF_STEREO_OR_0 + group - 1;
      }
      
      if (!rigid)
         // CMF_STEREO_*_0 -> CMF_STEREO_*_1
         code += CMF_MAX_STEREOGROUPS * 2 + 1;
      
      _encode(code);
   }

   if (mol.allene_stereo.isCenter(idx))
   {
      int left, right, parity, subst[4];

      mol.allene_stereo.getByAtomIdx(idx, left, right, subst, parity);
      if (subst[1] != -1 && mapping[subst[1]] != -1 && mapping[subst[1]] < mapping[subst[0]])
         parity = 3 - parity;
      if (subst[3] != -1 && mapping[subst[3]] != -1 && mapping[subst[3]] < mapping[subst[2]])
         parity = 3 - parity;
      if (parity == 1)
         _encode(CMF_STEREO_ALLENE_0);
      else
         _encode(CMF_STEREO_ALLENE_1);
   }


   int impl_h = 0;

   if (!mol.isPseudoAtom(idx) && !mol.isRSite(idx) && Molecule::shouldWriteHCount(mol, idx))
   {
      try
      {
         impl_h = mol.getImplicitH(idx);

         if (impl_h < 0 || impl_h > CMF_MAX_IMPLICIT_H)
            throw Error("implicit hydrogen count %d out of range", impl_h);

         _encode(CMF_IMPLICIT_H + impl_h);
      }
      catch (Element::Error)
      {
      }
   }

   if (!mol.isRSite(idx) && !mol.isPseudoAtom(idx))
   {
      if (mol.getAtomAromaticity(idx) == ATOM_AROMATIC && (charge != 0 || (number != ELEM_C && number != ELEM_O)))
      {
         try
         {
            int valence = mol.getAtomValence(idx);
            if (valence < 0 || valence > CMF_MAX_VALENCE)
            {
               _encode(CMF_VALENCE_EXT);
               _output->writePackedUInt(valence);
            }
            else
               _encode(CMF_VALENCE + valence);
         }
         catch (Element::Error)
         {
         }
      }
   }

   int i;

   for (i = 1; i <= mol.attachmentPointCount(); i++)
   {
      int j, aidx;

      for (j = 0; (aidx = mol.getAttachmentPoint(i, j)) != -1; j++)
         if (aidx == idx)
         {
            _encode(CMF_ATTACHPT);
            _encode(i);
         }
   }

   if (atom_flags != 0)
   {
      int i, flags = atom_flags[idx];

      for (i = 0; i < CMF_NUM_OF_ATOM_FLAGS; i++)
         if (flags & (1 << i))
            _encode(CMF_ATOM_FLAGS + i);
   }

   if (save_highlighting)
      if (mol.isAtomHighlighted(idx))
         _encode(CMF_HIGHLIGHTED);
}
void MoleculeAutomorphismSearch::_calculateHydrogensAndDegree (Molecule &mol)
{
   _hcount.clear_resize(mol.vertexEnd());
   _degree.clear_resize(mol.vertexEnd());
   _degree.zerofill();

   for (int i = mol.vertexBegin(); i != mol.vertexEnd(); i = mol.vertexNext(i))
   {
      if (mol.isRSite(i) || mol.isPseudoAtom(i) || mol.isTemplateAtom(i))
         _hcount[i] = 0;
      else
         _hcount[i] = mol.getImplicitH_NoThrow(i, -1);

      if (_hcount[i] < 0)
      {
         if (mol.getAtomAromaticity(i) == ATOM_AROMATIC)
         {
            if (mol.getAtomNumber(i) == ELEM_C && mol.getAtomCharge(i) == 0)
            {
               if (mol.getVertex(i).degree() == 3)
                  _hcount[i] = 0;
               else if (mol.getVertex(i).degree() == 2)
                  _hcount[i] = 1;
            }
            else if (mol.getAtomNumber(i) == ELEM_O && mol.getAtomCharge(i) == 0)
               _hcount[i] = 0;
            else
            {
               if (!allow_undefined)
                  // This code will throw an error with a good explanation
                  _hcount[i] = mol.getImplicitH(i);
               else
                  // Make number of hydrogens unique in order to make such atoms unique
                  _hcount[i] = 101 + i; 
            }
         }
         else
         {
            // Number of atoms are underfined, but all the properties like 
            // connectivity, charge, and etc., and this mean that such 
            // atoms are comparable even. 
            // For example, this cis-trans bond is invalid even if the number
            // of hydrogens are undefined: CC=C(N(C)=O)N(C)=O
            _hcount[i] = 100; // Any big number.
            // Later this number can be increased including neighbour hydrogens, 
            // and this is correct, because nitrogens in these molecules are different:
            // C[N](C)=O and [H][N]([H])(C)(C)=O
         }
      }

      const Vertex &vertex = mol.getVertex(i);

      _degree[i] = 0;
      if (ignored_vertices != 0 && ignored_vertices[i])
         continue;

      for (int j = vertex.neiBegin(); j != vertex.neiEnd(); j = vertex.neiNext(j))
      {
         if (mol.getAtomNumber(vertex.neiVertex(j)) == ELEM_H &&
             mol.getAtomIsotope(vertex.neiVertex(j)) == 0)
            _hcount[i]++;

         if (ignored_vertices == 0 || ignored_vertices[vertex.neiVertex(j)] == 0)
            _degree[i]++;
      }
   }

   // Compute independent components if the canonical ordering is not required
   _independent_component_index.clear_resize(mol.vertexEnd());
   if (!find_canonical_ordering)
   {
      // We can mark different connected components as independent
      GraphDecomposer decomposer(mol);
      decomposer.decompose();
      _independent_component_index.copy(decomposer.getDecomposition());
   }
   else
      _independent_component_index.fffill();
}