void PSMarkSweep::allocate_stacks() {
  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

  PSYoungGen* young_gen = heap->young_gen();

  MutableSpace* to_space = young_gen->to_space();
  _preserved_marks = (PreservedMark*)to_space->top();
  _preserved_count = 0;

  // We want to calculate the size in bytes first.
  _preserved_count_max  = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
  // Now divide by the size of a PreservedMark
  _preserved_count_max /= sizeof(PreservedMark);

  _preserved_mark_stack = NULL;
  _preserved_oop_stack = NULL;

  _marking_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(4000, true);

  int size = SystemDictionary::number_of_classes() * 2;
  _revisit_klass_stack = new (ResourceObj::C_HEAP) GrowableArray<Klass*>(size, true);
  // (#klass/k)^2, for k ~ 10 appears a better setting, but this will have to do for
  // now until we investigate a more optimal setting.
  _revisit_mdo_stack   = new (ResourceObj::C_HEAP) GrowableArray<DataLayout*>(size*2, true);
}
Example #2
0
// This method contains all heap specific policy for invoking mark sweep.
// PSMarkSweep::invoke_no_policy() will only attempt to mark-sweep-compact
// the heap. It will do nothing further. If we need to bail out for policy
// reasons, scavenge before full gc, or any other specialized behavior, it
// needs to be added here.
//
// Note that this method should only be called from the vm_thread while
// at a safepoint!
void PSMarkSweep::invoke(bool maximum_heap_compaction) {
  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
  assert(!Universe::heap()->is_gc_active(), "not reentrant");

  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  GCCause::Cause gc_cause = heap->gc_cause();
  PSAdaptiveSizePolicy* policy = heap->size_policy();

  // Before each allocation/collection attempt, find out from the
  // policy object if GCs are, on the whole, taking too long. If so,
  // bail out without attempting a collection.  The exceptions are
  // for explicitly requested GC's.
  if (!policy->gc_time_limit_exceeded() ||
      GCCause::is_user_requested_gc(gc_cause) ||
      GCCause::is_serviceability_requested_gc(gc_cause)) {
    IsGCActiveMark mark;

    if (ScavengeBeforeFullGC) {
      PSScavenge::invoke_no_policy();
    }

    int count = (maximum_heap_compaction)?1:MarkSweepAlwaysCompactCount;
    IntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
    PSMarkSweep::invoke_no_policy(maximum_heap_compaction);
  }
}
void VM_GC_RegularScavenge::doit() {
  HandleMark hm;
  ParallelScavengeHeap* psh = (ParallelScavengeHeap*)Universe::heap();
  psh->ensure_parsability(false); // must happen, even if collection does
                                 // not happen (e.g. due to GC_locker)
  psh->young_collect_as_vm_thread(GCCause::_regular_scavenge);
}
Example #4
0
 CheckForUnmarkedObjects() {
   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
   _young_gen = heap->young_gen();
   _card_table = barrier_set_cast<CardTableExtension>(heap->barrier_set());
   // No point in asserting barrier set type here. Need to make CardTableExtension
   // a unique barrier set type.
 }
Example #5
0
void PSMarkSweep::mark_sweep_phase2() {
  EventMark m("2 compute new addresses");
  TraceTime tm("phase 2", PrintGCDetails && Verbose, true, gclog_or_tty);
  trace("2");

  // Now all live objects are marked, compute the new object addresses.

  // It is imperative that we traverse perm_gen LAST. If dead space is
  // allowed a range of dead object may get overwritten by a dead int
  // array. If perm_gen is not traversed last a klassOop may get
  // overwritten. This is fine since it is dead, but if the class has dead
  // instances we have to skip them, and in order to find their size we
  // need the klassOop!
  //
  // It is not required that we traverse spaces in the same order in
  // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
  // tracking expects us to do so. See comment under phase4.

  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

  PSOldGen* old_gen = heap->old_gen();
  PSPermGen* perm_gen = heap->perm_gen();

  // Begin compacting into the old gen
  PSMarkSweepDecorator::set_destination_decorator_tenured();

  // This will also compact the young gen spaces.
  old_gen->precompact();

  // Compact the perm gen into the perm gen
  PSMarkSweepDecorator::set_destination_decorator_perm_gen();

  perm_gen->precompact();
}
// This method iterates over all objects in the young generation,
// unforwarding markOops. It then restores any preserved mark oops,
// and clears the _preserved_mark_stack.
void PSScavenge::clean_up_failed_promotion() {
  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

  PSYoungGen* young_gen = heap->young_gen();

  {
    ResourceMark rm;

    // Unforward all pointers in the young gen.
    PSPromotionFailedClosure unforward_closure;
    young_gen->object_iterate(&unforward_closure);

    if (PrintGC && Verbose) {
      gclog_or_tty->print_cr("Restoring %d marks", _preserved_oop_stack.size());
    }

    // Restore any saved marks.
    while (!_preserved_oop_stack.is_empty()) {
      oop obj      = _preserved_oop_stack.pop();
      markOop mark = _preserved_mark_stack.pop();
      obj->set_mark(mark);
    }

    // Clear the preserved mark and oop stack caches.
    _preserved_mark_stack.clear(true);
    _preserved_oop_stack.clear(true);
  }

  // Reset the PromotionFailureALot counters.
  NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
}
 PSKeepAliveClosure(PSPromotionManager* pm) : _promotion_manager(pm) {
   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   _to_space = heap->young_gen()->to_space();
   
   assert(_promotion_manager != NULL, "Sanity");
 }
// This method assumes that from-space has live data and that
// any shrinkage of the young gen is limited by location of
// from-space.
size_t PSYoungGen::available_to_live() {
  size_t delta_in_survivor = 0;
  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  const size_t space_alignment = heap->intra_heap_alignment();
  const size_t gen_alignment = heap->young_gen_alignment();

  MutableSpace* space_shrinking = NULL;
  if (from_space()->end() > to_space()->end()) {
    space_shrinking = from_space();
  } else {
    space_shrinking = to_space();
  }

  // Include any space that is committed but not included in
  // the survivor spaces.
  assert(((HeapWord*)virtual_space()->high()) >= space_shrinking->end(),
    "Survivor space beyond high end");
  size_t unused_committed = pointer_delta(virtual_space()->high(),
    space_shrinking->end(), sizeof(char));

  if (space_shrinking->is_empty()) {
    // Don't let the space shrink to 0
    assert(space_shrinking->capacity_in_bytes() >= space_alignment,
      "Space is too small");
    delta_in_survivor = space_shrinking->capacity_in_bytes() - space_alignment;
  } else {
    delta_in_survivor = pointer_delta(space_shrinking->end(),
                                      space_shrinking->top(),
                                      sizeof(char));
  }

  size_t delta_in_bytes = unused_committed + delta_in_survivor;
  delta_in_bytes = align_size_down(delta_in_bytes, gen_alignment);
  return delta_in_bytes;
}
Example #9
0
void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
  // Recursively traverse all live objects and mark them
  GCTraceTime tm("phase 1", PrintGCDetails && Verbose, true, _gc_timer);
  trace(" 1");

  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

  // General strong roots.
  {
    ParallelScavengeHeap::ParStrongRootsScope psrs;
    Universe::oops_do(mark_and_push_closure());
    JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
    CodeBlobToOopClosure each_active_code_blob(mark_and_push_closure(), /*do_marking=*/ true);
    Threads::oops_do(mark_and_push_closure(), &each_active_code_blob);
    ObjectSynchronizer::oops_do(mark_and_push_closure());
    FlatProfiler::oops_do(mark_and_push_closure());
    Management::oops_do(mark_and_push_closure());
    JvmtiExport::oops_do(mark_and_push_closure());
    SystemDictionary::always_strong_oops_do(mark_and_push_closure());
    // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
    //CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure(mark_and_push_closure()));
  }

  // Flush marking stack.
  follow_stack();

  // Process reference objects found during marking
  {
    ref_processor()->setup_policy(clear_all_softrefs);
    const ReferenceProcessorStats& stats =
      ref_processor()->process_discovered_references(
        is_alive_closure(), mark_and_push_closure(), follow_stack_closure(), NULL, _gc_timer);
    gc_tracer()->report_gc_reference_stats(stats);
  }

  // Follow system dictionary roots and unload classes
  bool purged_class = SystemDictionary::do_unloading(is_alive_closure());

  // Follow code cache roots
  CodeCache::do_unloading(is_alive_closure(), mark_and_push_closure(),
                          purged_class);
  follow_stack(); // Flush marking stack

  // Update subklass/sibling/implementor links of live klasses
  follow_weak_klass_links();
  assert(_marking_stack.is_empty(), "just drained");

  // Visit memoized mdo's and clear unmarked weak refs
  follow_mdo_weak_refs();
  assert(_marking_stack.is_empty(), "just drained");

  // Visit interned string tables and delete unmarked oops
  StringTable::unlink(is_alive_closure());
  // Clean up unreferenced symbols in symbol table.
  SymbolTable::unlink();

  assert(_marking_stack.is_empty(), "stack should be empty by now");
  _gc_tracer->report_object_count_after_gc(is_alive_closure());
}
void PSMarkSweep::mark_sweep_phase1( bool& marked_for_unloading, bool clear_all_softrefs) {
    // Recursively traverse all live objects and mark them
    EventMark m("1 mark object");
    TraceTime tm("phase 1", PrintGC && Verbose, true, gclog_or_tty);
    trace(" 1");

    ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

    // General strong roots.
    Universe::oops_do(mark_and_push_closure());
    JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
    Threads::oops_do(mark_and_push_closure());
    ObjectSynchronizer::oops_do(mark_and_push_closure());
    FlatProfiler::oops_do(mark_and_push_closure());
    SystemDictionary::always_strong_oops_do(mark_and_push_closure());

    guarantee(!jvmdi::enabled(), "Should not be used with jvmdi");
    vmSymbols::oops_do(mark_and_push_closure());

    // Flush marking stack.
    follow_stack();

    // Process reference objects found during marking
    ReferencePolicy *soft_ref_policy;
    if (clear_all_softrefs) {
        soft_ref_policy = new AlwaysClearPolicy();
    } else {
        NOT_COMPILER2(soft_ref_policy = new LRUCurrentHeapPolicy();)
        COMPILER2_ONLY(soft_ref_policy = new LRUMaxHeapPolicy();)
    }
inline bool PSScavenge::should_scavenge(T* p, bool check_to_space) {
  if (check_to_space) {
    ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    return should_scavenge(p, heap->young_gen()->to_space());
  }
  return should_scavenge(p);
}
void PSPromotionManager::initialize() {
  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

  _old_gen = heap->old_gen();
  _young_space = heap->young_gen()->to_space();

  assert(_manager_array == NULL, "Attempt to initialize twice");
  _manager_array = NEW_C_HEAP_ARRAY(PSPromotionManager*, ParallelGCThreads+1, mtGC);
  guarantee(_manager_array != NULL, "Could not initialize promotion manager");

  _stack_array_depth = new OopStarTaskQueueSet(ParallelGCThreads);
  guarantee(_stack_array_depth != NULL, "Cound not initialize promotion manager");

  // Create and register the PSPromotionManager(s) for the worker threads.
  for(uint i=0; i<ParallelGCThreads; i++) {
    _manager_array[i] = new PSPromotionManager();
    guarantee(_manager_array[i] != NULL, "Could not create PSPromotionManager");
    stack_array_depth()->register_queue(i, _manager_array[i]->claimed_stack_depth());
  }

  // The VMThread gets its own PSPromotionManager, which is not available
  // for work stealing.
  _manager_array[ParallelGCThreads] = new PSPromotionManager();
  guarantee(_manager_array[ParallelGCThreads] != NULL, "Could not create PSPromotionManager");
}
void PSYoungGen::compute_initial_space_boundaries() {
  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

  // Compute sizes
  size_t alignment = heap->intra_heap_alignment();
  size_t size = virtual_space()->committed_size();

  size_t survivor_size = size / InitialSurvivorRatio;
  survivor_size = align_size_down(survivor_size, alignment);
  // ... but never less than an alignment
  survivor_size = MAX2(survivor_size, alignment);

  // Young generation is eden + 2 survivor spaces
  size_t eden_size = size - (2 * survivor_size);

  // Now go ahead and set 'em.
  set_space_boundaries(eden_size, survivor_size);
  space_invariants();

  if (UsePerfData) {
    _eden_counters->update_capacity();
    _from_counters->update_capacity();
    _to_counters->update_capacity();
  }
}
void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
  // Recursively traverse all live objects and mark them
  GCTraceTime tm("phase 1", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());
  trace(" 1");

  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

  // Need to clear claim bits before the tracing starts.
  ClassLoaderDataGraph::clear_claimed_marks();

  // General strong roots.
  {
    ParallelScavengeHeap::ParStrongRootsScope psrs;
    Universe::oops_do(mark_and_push_closure());
    JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
    CLDToOopClosure mark_and_push_from_cld(mark_and_push_closure());
    MarkingCodeBlobClosure each_active_code_blob(mark_and_push_closure(), !CodeBlobToOopClosure::FixRelocations);
    Threads::oops_do(mark_and_push_closure(), &mark_and_push_from_cld, &each_active_code_blob);
    ObjectSynchronizer::oops_do(mark_and_push_closure());
    FlatProfiler::oops_do(mark_and_push_closure());
    Management::oops_do(mark_and_push_closure());
    JvmtiExport::oops_do(mark_and_push_closure());
    SystemDictionary::always_strong_oops_do(mark_and_push_closure());
    ClassLoaderDataGraph::always_strong_cld_do(follow_cld_closure());
    // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
    //CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure(mark_and_push_closure()));
  }

  // Flush marking stack.
  follow_stack();

  // Process reference objects found during marking
  {
    ref_processor()->setup_policy(clear_all_softrefs);
    const ReferenceProcessorStats& stats =
      ref_processor()->process_discovered_references(
        is_alive_closure(), mark_and_push_closure(), follow_stack_closure(), NULL, _gc_timer, _gc_tracer->gc_id());
    gc_tracer()->report_gc_reference_stats(stats);
  }

  // This is the point where the entire marking should have completed.
  assert(_marking_stack.is_empty(), "Marking should have completed");

  // Unload classes and purge the SystemDictionary.
  bool purged_class = SystemDictionary::do_unloading(is_alive_closure());

  // Unload nmethods.
  CodeCache::do_unloading(is_alive_closure(), purged_class);

  // Prune dead klasses from subklass/sibling/implementor lists.
  Klass::clean_weak_klass_links(is_alive_closure());

  // Delete entries for dead interned strings.
  StringTable::unlink(is_alive_closure());

  // Clean up unreferenced symbols in symbol table.
  SymbolTable::unlink();
  _gc_tracer->report_object_count_after_gc(is_alive_closure());
}
Example #15
0
size_t ASPSOldGen::available_for_expansion() {
  assert(virtual_space()->is_aligned(gen_size_limit()), "not aligned");
  assert(gen_size_limit() >= virtual_space()->committed_size(), "bad gen size");

  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  size_t result =  gen_size_limit() - virtual_space()->committed_size();
  size_t result_aligned = align_size_down(result, heap->old_gen_alignment());
  return result_aligned;
}
Example #16
0
  CheckForUnmarkedObjects() {
    ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

    _young_gen = heap->young_gen();
    _card_table = (CardTableExtension*)heap->barrier_set();
    // No point in asserting barrier set type here. Need to make CardTableExtension
    // a unique barrier set type.
  }
Example #17
0
size_t ASPSYoungGen::available_for_expansion() {
  size_t current_committed_size = virtual_space()->committed_size();
  assert((gen_size_limit() >= current_committed_size),
    "generation size limit is wrong");
  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
  size_t result =  gen_size_limit() - current_committed_size;
  size_t result_aligned = align_size_down(result, heap->generation_alignment());
  return result_aligned;
}
void PSPromotionManager::pre_scavenge() {
  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

  _young_space = heap->young_gen()->to_space();

  for(uint i=0; i<ParallelGCThreads+1; i++) {
    manager_array(i)->reset();
  }
}
void RefProcTaskExecutor::execute(EnqueueTask& task)
{
  ParallelScavengeHeap* heap = PSParallelCompact::gc_heap();
  uint parallel_gc_threads = heap->gc_task_manager()->workers();
  GCTaskQueue* q = GCTaskQueue::create();
  for(uint i=0; i<parallel_gc_threads; i++) {
    q->enqueue(new RefEnqueueTaskProxy(task, i));
  }
  PSParallelCompact::gc_task_manager()->execute_and_wait(q);
}
Example #20
0
bool PSYoungPromotionLAB::lab_is_valid(MemRegion lab) {
  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
  MutableSpace* to_space = heap->young_gen()->to_space();
  MemRegion used = to_space->used_region();
  if (used.contains(lab)) {
    return true;
  }

  return false;
}
bool PSYoungPromotionLAB::lab_is_valid(MemRegion lab) {
  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

  MutableSpace* to_space = heap->young_gen()->to_space();
  MemRegion used = to_space->used_region();
  if (used.contains(lab)) {
    return true;
  }

  return false;
}
Example #22
0
void PSOldGen::precompact() {
  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

  // Reset start array first.
  _start_array.reset();

  object_mark_sweep()->precompact();

  // Now compact the young gen
  heap->young_gen()->precompact();
}
Example #23
0
size_t ASPSOldGen::available_for_contraction() {
  size_t uncommitted_bytes = virtual_space()->uncommitted_size();
  if (uncommitted_bytes != 0) {
    return uncommitted_bytes;
  }

  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  const size_t gen_alignment = heap->old_gen_alignment();
  PSAdaptiveSizePolicy* policy = heap->size_policy();
  const size_t working_size =
    used_in_bytes() + (size_t) policy->avg_promoted()->padded_average();
  const size_t working_aligned = align_size_up(working_size, gen_alignment);
  const size_t working_or_min = MAX2(working_aligned, min_gen_size());
  if (working_or_min > reserved().byte_size()) {
    // If the used or minimum gen size (aligned up) is greater
    // than the total reserved size, then the space available
    // for contraction should (after proper alignment) be 0
    return 0;
  }
  const size_t max_contraction =
    reserved().byte_size() - working_or_min;

  // Use the "increment" fraction instead of the "decrement" fraction
  // to allow the other gen to expand more aggressively.  The
  // "decrement" fraction is conservative because its intent is to
  // only reduce the footprint.

  size_t result = policy->promo_increment_aligned_down(max_contraction);
  // Also adjust for inter-generational alignment
  size_t result_aligned = align_size_down(result, gen_alignment);
  if (PrintAdaptiveSizePolicy && Verbose) {
    gclog_or_tty->print_cr("\nASPSOldGen::available_for_contraction:"
      " %d K / 0x%x", result_aligned/K, result_aligned);
    gclog_or_tty->print_cr(" reserved().byte_size() %d K / 0x%x ",
      reserved().byte_size()/K, reserved().byte_size());
    size_t working_promoted = (size_t) policy->avg_promoted()->padded_average();
    gclog_or_tty->print_cr(" padded promoted %d K / 0x%x",
      working_promoted/K, working_promoted);
    gclog_or_tty->print_cr(" used %d K / 0x%x",
      used_in_bytes()/K, used_in_bytes());
    gclog_or_tty->print_cr(" min_gen_size() %d K / 0x%x",
      min_gen_size()/K, min_gen_size());
    gclog_or_tty->print_cr(" max_contraction %d K / 0x%x",
      max_contraction/K, max_contraction);
    gclog_or_tty->print_cr("    without alignment %d K / 0x%x",
      policy->promo_increment(max_contraction)/K,
      policy->promo_increment(max_contraction));
    gclog_or_tty->print_cr(" alignment 0x%x", gen_alignment);
  }
  assert(result_aligned <= max_contraction, "arithmetic is wrong");
  return result_aligned;
}
// Static method
bool ParallelScavengeHeap::is_in_young(oop* p) {
  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, 
                                            "Must be ParallelScavengeHeap");

  PSYoungGen* young_gen = heap->young_gen();

  if (young_gen->is_in(p)) {
    return true;
  }

  return false;
}
HeapWord* HeapInspection::start_of_perm_gen() {
  if (is_shared_heap()) {
    SharedHeap* sh = SharedHeap::heap();
    return sh->perm_gen()->used_region().start();
  }
#ifndef SERIALGC
  ParallelScavengeHeap* psh = (ParallelScavengeHeap*)Universe::heap();
  return psh->perm_gen()->object_space()->used_region().start();
#else
  ShouldNotReachHere();
  return NULL;
#endif // SERIALGC
}
Example #26
0
bool PSOldPromotionLAB::lab_is_valid(MemRegion lab) {
  assert(_start_array->covered_region().contains(lab), "Sanity");

  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
  PSOldGen* old_gen = heap->old_gen();
  MemRegion used = old_gen->object_space()->used_region();

  if (used.contains(lab)) {
    return true;
  }

  return false;
}
Example #27
0
ParCompactionManager::ParCompactionManager() :
    _action(CopyAndUpdate),
    _region_stack(NULL),
    _region_stack_index((uint)max_uintx) {

  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();

  _old_gen = heap->old_gen();
  _start_array = old_gen()->start_array();

  marking_stack()->initialize();
  _objarray_stack.initialize();
}
Example #28
0
void PSMarkSweep::allocate_stacks() {
  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
  PSYoungGen* young_gen = heap->young_gen();

  MutableSpace* to_space = young_gen->to_space();
  _preserved_marks = (PreservedMark*)to_space->top();
  _preserved_count = 0;

  // We want to calculate the size in bytes first.
  _preserved_count_max  = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
  // Now divide by the size of a PreservedMark
  _preserved_count_max /= sizeof(PreservedMark);
}
Example #29
0
void PSMarkSweep::mark_sweep_phase4() {
  EventMark m("4 compact heap");
  GCTraceTime tm("phase 4", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());

  // All pointers are now adjusted, move objects accordingly

  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
  PSYoungGen* young_gen = heap->young_gen();
  PSOldGen* old_gen = heap->old_gen();

  old_gen->compact();
  young_gen->compact();
}
void PSYoungGen::space_invariants() {
  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  const size_t alignment = heap->intra_heap_alignment();

  // Currently, our eden size cannot shrink to zero
  guarantee(eden_space()->capacity_in_bytes() >= alignment, "eden too small");
  guarantee(from_space()->capacity_in_bytes() >= alignment, "from too small");
  guarantee(to_space()->capacity_in_bytes() >= alignment, "to too small");

  // Relationship of spaces to each other
  char* eden_start = (char*)eden_space()->bottom();
  char* eden_end   = (char*)eden_space()->end();
  char* from_start = (char*)from_space()->bottom();
  char* from_end   = (char*)from_space()->end();
  char* to_start   = (char*)to_space()->bottom();
  char* to_end     = (char*)to_space()->end();

  guarantee(eden_start >= virtual_space()->low(), "eden bottom");
  guarantee(eden_start < eden_end, "eden space consistency");
  guarantee(from_start < from_end, "from space consistency");
  guarantee(to_start < to_end, "to space consistency");

  // Check whether from space is below to space
  if (from_start < to_start) {
    // Eden, from, to
    guarantee(eden_end <= from_start, "eden/from boundary");
    guarantee(from_end <= to_start,   "from/to boundary");
    guarantee(to_end <= virtual_space()->high(), "to end");
  } else {
    // Eden, to, from
    guarantee(eden_end <= to_start, "eden/to boundary");
    guarantee(to_end <= from_start, "to/from boundary");
    guarantee(from_end <= virtual_space()->high(), "from end");
  }

  // More checks that the virtual space is consistent with the spaces
  assert(virtual_space()->committed_size() >=
    (eden_space()->capacity_in_bytes() +
     to_space()->capacity_in_bytes() +
     from_space()->capacity_in_bytes()), "Committed size is inconsistent");
  assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(),
    "Space invariant");
  char* eden_top = (char*)eden_space()->top();
  char* from_top = (char*)from_space()->top();
  char* to_top = (char*)to_space()->top();
  assert(eden_top <= virtual_space()->high(), "eden top");
  assert(from_top <= virtual_space()->high(), "from top");
  assert(to_top <= virtual_space()->high(), "to top");

  virtual_space()->verify();
}