Example #1
0
void Turboprop::updateVisuals(RoR::GfxActor* gfx_actor)
{
    RoR::GfxActor::NodeData* node_buf = gfx_actor->GetSimNodeBuffer();

    //smoke
    if (smokeNode)
    {
        smokeNode->setPosition(node_buf[nodeback].AbsPosition);
        ParticleEmitter* emit = smokePS->getEmitter(0);
        Vector3 dir = node_buf[nodeback].AbsPosition - node_buf[noderef].AbsPosition;
        emit->setDirection(dir);
        emit->setParticleVelocity(propwash - propwash / 10, propwash + propwash / 10);
        if (!failed)
        {
            if (ignition)
            {
                emit->setEnabled(true);
                emit->setColour(ColourValue(0.0, 0.0, 0.0, 0.03 + throtle * 0.05));
                emit->setTimeToLive((0.03 + throtle * 0.05) / 0.1);
            }
            else
            {
                emit->setEnabled(false);
            }
        }
        else
        {
            emit->setDirection(Vector3(0, 1, 0));
            emit->setParticleVelocity(5, 9);
            emit->setEnabled(true);
            emit->setColour(ColourValue(0.0, 0.0, 0.0, 0.1));
            emit->setTimeToLive(0.1 / 0.1);
        }
    }

#ifdef USE_ANGELSCRIPT
    if (failed != failedold)
    {
        TRIGGER_EVENT(SE_TRUCK_ENGINE_FIRE, trucknum);
        failedold = failed;
    }
#endif
}
//-------------------------------------------------------------------------------------------------------
//  Update
//-------------------------------------------------------------------------------------------------------
void CarModel::Update(PosInfo& posInfo, PosInfo& posInfoCam, float time)
{	
	pReflect->camPosition = pMainNode->getPosition();
	int w,i;
	
	//  upd chk mtr
	if (bChkUpd && entNextChk)
	{
		MaterialPtr mtr = MaterialManager::getSingleton().getByName(sChkMtr);
		if (!mtr.isNull())
			entNextChk->setMaterial(mtr);
	}

	//  stop/resume par sys
	float fa = pGame->pause ? 0.f : 1.f;
	for (w=0; w < numWheels; ++w)
	{
		for (i=0; i < PAR_ALL; ++i)
			if (par[i][w])  par[i][w]->setSpeedFactor(fa);
		if (w < PAR_BOOST && parBoost[w])  parBoost[w]->setSpeedFactor(fa);
		if (parHit)  parHit->setSpeedFactor(fa);
	}
	for (w=0; w < PAR_THRUST*2; ++w)
		if (parThrust[w])  parThrust[w]->setSpeedFactor(fa);


	if (!posInfo.bNew)  return;  // new only ?
	posInfo.bNew = false;
	/// dont get anything from pCar or car.dynamics here
	/// all must be read from posInfo (it is filled from vdrift car or from replay)
	
	if (!pMainNode)  return;

	//  set car pos and rot
	pMainNode->setPosition(posInfo.pos);
	if (vtype == V_Sphere)
		pMainNode->setOrientation(Quaternion(Quaternion(Degree(-posInfo.hov_roll),Vector3::UNIT_Y)));
	else
	if (vtype == V_Spaceship)  // roll  vis only
		pMainNode->setOrientation(posInfo.rot * Quaternion(Degree(posInfo.hov_roll),Vector3::UNIT_X));
	else
		pMainNode->setOrientation(posInfo.rot);
	
	///()  grass sphere pos
	Vector3 vx(1,0,0);  // car x dir
	vx = posInfo.rot * vx * 1.1;  //par
	posSph[0] = posInfo.pos + vx;  posSph[0].y += 0.5f;
	posSph[1] = posInfo.pos - vx;  posSph[1].y += 0.5f;
	if (ndSph)  // sph test
	{	ndSph->setPosition(posSph[0]);
		ndSph->setScale(Vector3::UNIT_SCALE * 1.7 *2/0.6f);  //par
	}

	//  set camera view
	if (fCam)
	{	fCam->Apply(posInfoCam);
		
		///~~  camera in fluid fog, detect and compute
		iCamFluid = -1;  fCamFl = 0.f;  // none
		const size_t sf = sc->fluids.size();
		if (sf > 0  && pSet->game.local_players == 1)
		{
			const Vector3& p = posInfo.camPos;
			const float r = 0.2f;  //par, near cam?
			
			//  check if any fluid box overlaps camera pos sphere
			bool srch = true;  size_t f = 0;
			while (srch && f < sf)
			{
				const FluidBox& fb = sc->fluids[f];
				const Vector3& fp = fb.pos;
				Vector3 fs = fb.size;  fs.x *= 0.5f;  fs.z *= 0.5f;
				
				bool inFl =  //  p +r   -fs fp +fs  -r p
					p.y +r > fp.y - fs.y && p.y -r < fp.y &&
					p.x +r > fp.x - fs.x && p.x -r < fp.x + fs.x &&
					p.z +r > fp.z - fs.z && p.z -r < fp.z + fs.z;
				
				if (inFl)  // 1st only
				{	iCamFluid = f;  fCamFl = std::min(1.f, std::max(0.f, fp.y - p.y)) * 3.f;
					srch = false;  }
				++f;
			}
	}	}

	//  upd rotY for minimap
	if (vtype == V_Sphere)
		angCarY = posInfo.hov_roll * 180.f / PI_d + 180.f;
	else
	{	Quaternion q = posInfo.rot * Quaternion(Degree(90),Vector3(0,1,0));
		angCarY = q.getYaw().valueDegrees() + 90.f;
	}
	
	//  brake state
	#ifndef CAR_PRV
	bool braking = posInfo.braking > 0;
	if (bBraking != braking)
	{
		bBraking = braking;
		UpdateBraking();
	}
	#endif
	
	//  terrain lightmap enable/disable (depending on distance to terrain)
	#define MAX_TERRAIN_DIST 2.0  // meters
	bool changed = false;
	if (terrain)
	{
		Vector3 carPos = pMainNode->getPosition();
		float terrainHeight = terrain->getHeightAtWorldPosition(carPos);
		float diff = std::abs(carPos.y - terrainHeight);
		if (diff > MAX_TERRAIN_DIST)
		{
			if (bLightMapEnabled)
			{	changed = true;  bLightMapEnabled = false;	}
		}
		else if (!bLightMapEnabled)
		{	changed = true;  bLightMapEnabled = true;	}
	}
	//  if no terrain, disable
	else if (bLightMapEnabled)
	{	changed = true;  bLightMapEnabled = false;	}
	
	if (changed)
		UpdateLightMap();
		

	//  update particle emitters
	if (pSet->particles && pCar)
	{
		//  boost
		for (i=0; i < PAR_BOOST; ++i)  if (parBoost[i])
		{
			/// <><> damage reduce
			float dmg = pCar->dynamics.fDamage >= 80.f ? 0.f : std::max(0.f, 1.4f - pCar->dynamics.fDamage*0.01f);
			float emitB = posInfo.fboost * 40.f * dmg;  // par
			ParticleEmitter* pe = parBoost[i]->getEmitter(0);
			pe->setEmissionRate(emitB);
		}
		//  spaceship thrusters
		for (i=0; i < PAR_THRUST*2; ++i)  if (parThrust[i])
		{
			float dmg = 1.f - 0.5f * pCar->dynamics.fDamage*0.01f;
			float emitT = posInfo.hov_throttle * 60.f * dmg;  // par
			ParticleEmitter* pe = parThrust[i]->getEmitter(0);
			pe->setEmissionRate(emitT);
		}
	}

	//  world hit
	if (parHit)
	{	ParticleEmitter* pe = parHit->getEmitter(0);
		if (posInfo.fHitTime > 0.f && pSet->particles)
		{
			pe->setPosition(posInfo.vHitPos);
			pe->setDirection(posInfo.vHitNorm);

			pe->setEmissionRate(pSet->particles_len * std::min(160.f, posInfo.fParIntens) * posInfo.fHitTime);
			pe->setParticleVelocity(posInfo.fParVel);
		}else
			pe->setEmissionRate(0.f);
	}

	//  wheels  ------------------------------------------------------------------------
	const float trlH = sc->ter ? 0.90f : 0.76f;  // vdr needs up (ter bumps), no ter  ..get from wheel contact ?rpl

	for (w=0; w < numWheels; ++w)
	{
		float wR = whRadius[w];
		#ifdef CAM_TILT_DBG  // cam debug test only
			if (fCam)
				ndWh[w]->setPosition(fCam->posHit[w]);
			ndWh[w]->setScale(0.5f*Vector3::UNIT_SCALE);
		#else
		ndWh[w]->setPosition(posInfo.whPos[w]);
		#endif
		ndWh[w]->setOrientation(posInfo.whRot[w]);

		///  Update particles and trails
		if (isGhostTrk())
			continue;  // doesnt have any
		
		int whMtr = posInfo.whTerMtr[w];
		int whRd = posInfo.whRoadMtr[w];
		
		bool pipe = whRd >= 30 && whRd < 60;  //old: whRd == 2;
		//todo: road,pipe 4mtr [whRd] layer params..
		float whVel = posInfo.whVel[w] * 3.6f;  //kmh
		float slide = posInfo.whSlide[w], squeal = posInfo.whSqueal[w];
			//LogO(" slide:"+fToStr(slide,3,5)+" squeal:"+fToStr(squeal,3,5));
		float onGr = slide < 0.f ? 0.f : 1.f;

		//  wheel temp
		whTemp[w] += std::min(12.f, std::max(0.f, squeal*8 - slide*2 + squeal*slide*2)*time);
		whTemp[w] = std::min(1.5f, whTemp[w]);  ///*
		whTemp[w] -= time*7.f;  if (whTemp[w] < 0.f)  whTemp[w] = 0.f;
			//LogO(toStr(w)+" wht "+fToStr(wht[w],3,5));

		///  emit rates +
		Real sq = squeal* std::min(1.f, whTemp[w]), l = pSet->particles_len * onGr;
		Real emitS = sq * (whVel * 30) * l * 0.45f;  ///*
		Real emitM = slide < 1.4f ? 0.f :  (8.f * sq * std::min(5.f, slide) * l);
		Real emitD = (std::min(140.f, whVel) / 3.5f + slide * 1.f ) * l;  
		Real sizeD = (0.8f + 0.6f * std::min(140.f, whVel) / 140.f) * (w < 2 ? 0.7f : 1.1f);

		//  ter mtr factors
		int mtr = std::max(0, std::min(whMtr-1, (int)(sc->td.layers.size()-1)));
		int rd  = sc->td.road1mtr ? 0 : std::max(0, std::min(3, whRd));

		TerLayer& lay = whMtr==0 ? sc->td.layerRoad[rd] : sc->td.layersAll[sc->td.layers[mtr]];
		emitD *= lay.dust;  emitM *= lay.mud;  sizeD *= lay.dustS;  emitS *= lay.smoke;

		if (pipe)  emitD = 0;  // no dust in pipes
		if (posInfo.whH[w] > 0.1f)  emitD = 0;  // no dust in fluids

		bool ghost = isGhost();  // opt dis for ghost
		bool ghPar = !(ghost && !pSet->rpl_ghostpar);
		if (!ghPar)
		{	emitD = 0.f;  emitM = 0.f;  emitS = 0.f;  }

		///  emit particles
		Vector3 vpos = posInfo.whPos[w];
		if (pSet->particles)
		{
			ParticleSystem* ps = par[PAR_Smoke][w];
			if (ps)  //  smoke
			{	ParticleEmitter* pe = ps->getEmitter(0);
				pe->setPosition(vpos + posInfo.carY * wR*0.7f);  ///*
				ps->getAffector(0)->setParameter("alpha", toStr(-0.2f - 0.023f * whVel));  // fade out speed
				pe->setTimeToLive( std::max(0.12f, 2.f - whVel * 0.06f) );  // live time
				pe->setDirection(-posInfo.carY);	pe->setEmissionRate(emitS);
			}
			ps = par[PAR_Mud][w];
			if (ps)	 //  mud
			{	ParticleEmitter* pe = ps->getEmitter(0);
				//pe->setDimensions(sizeM,sizeM);
				pe->setPosition(vpos + posInfo.carY * wR*0.7f);
				pe->setDirection(-posInfo.carY);	pe->setEmissionRate(emitM);
			}
			ps = par[PAR_Dust][w];
			if (ps)	 //  dust
			{	ps->setDefaultDimensions(sizeD,sizeD);
				ParticleEmitter* pe = ps->getEmitter(0);
				pe->setPosition(vpos + posInfo.carY * wR*0.31f);
				pe->setDirection(-posInfo.carY);	pe->setEmissionRate(emitD);
			}

			//  fluids .::.
			ps = par[PAR_Water][w];
			int idPar = posInfo.whP[w];
			if (ps)  //  Water ~
			{
				float vel = posInfo.speed;  // depth.. only on surface?
				bool e = idPar == 0 && ghPar &&  vel > 10.f && posInfo.whH[w] < 1.f;
				float emitW = e ?  std::min(80.f, 5.0f * vel)  : 0.f;

				ParticleEmitter* pe = ps->getEmitter(0);
				pe->setPosition(vpos + posInfo.carY * wR*0.51f);
				pe->setMinParticleVelocity(0.07* vel);
				pe->setMaxParticleVelocity(0.20* vel);
				pe->setDirection(-posInfo.carY);	pe->setEmissionRate(emitW * pSet->particles_len);
			}
			ps = par[PAR_MudHard][w];
			if (ps)  //  Mud ^
			{
				float vel = Math::Abs(posInfo.whAngVel[w]);
				bool e = idPar == 2 && ghPar &&  vel > 30.f;
				float emitM = e ?  posInfo.whH[w] * std::min(80.f, 1.5f * vel)  : 0.f;

				ParticleEmitter* pe = ps->getEmitter(0);
				pe->setPosition(vpos + posInfo.carY * wR*0.51f);
				pe->setDirection(-posInfo.carY);	pe->setEmissionRate(emitM * pSet->particles_len);
			}
			ps = par[PAR_MudSoft][w];
			if (ps)  //  Mud soft ^
			{
				float vel = Math::Abs(posInfo.whAngVel[w]);
				bool e = idPar == 1 && ghPar &&  vel > 30.f;
				float emitM = e ?  posInfo.whH[w] * std::min(160.f, 3.f * vel)  : 0.f;

				ParticleEmitter* pe = ps->getEmitter(0);
				pe->setPosition(vpos + posInfo.carY * wR*0.51f);
				pe->setDirection(-posInfo.carY);	pe->setEmissionRate(emitM * pSet->particles_len);
			}
		}

		//  update trails h+
		if (pSet->trails)
		{	if (ndWhE[w])
			{	Vector3 vp = vpos + posInfo.carY * wR*trlH;
				if (terrain && whMtr > 0)
					vp.y = terrain->getHeightAtWorldPosition(vp) + 0.02f;  // 0.05f
					//if (/*whOnRoad[w]*/whMtr > 0 && road)  // on road, add ofs
					//	vp.y += road->fHeight;	}/**/
				ndWhE[w]->setPosition(vp);
				ndWhE[w]->setOrientation(posInfo.rot);
			}
			//  const trail alpha
			float ac = pipe ? 0.f : /*own par..*/lay.smoke < 0.5f ? 0.14f : 0.f;
			float al = (ac + 0.6f * std::min(1.f, 0.7f * whTemp[w]) ) * onGr;  // par+
			if (whTrail[w])
			{	whTrail[w]->setInitialColour(0,
				lay.tcl.x, lay.tcl.y, lay.tcl.z, lay.tcl.w * al/**/);
				if (iFirst > 10)  //par
					whTrail[w]->setInitialWidth(0, whWidth[w]);
			}
		}
	}
	
	//  blendmap
	UpdWhTerMtr();
	
	//  update brake meshes orientation
	for (w=0; w < numWheels; ++w)
	{
		if (ndBrake[w])
		{
			ndBrake[w]->_setDerivedOrientation( pMainNode->getOrientation() );
			
			// this transformation code is just so the brake mesh can have the same alignment as the wheel mesh
			ndBrake[w]->yaw(Degree(-90), Node::TS_LOCAL);
			if (w%2 == 1)
				ndBrake[w]->setScale(-1, 1, 1);
				
			ndBrake[w]->pitch(Degree(180), Node::TS_LOCAL);
			
			if (w < 2)  // turn only front wheels
				ndBrake[w]->yaw(-Degree(posInfo.whSteerAng[w]));
		}
	}
	
	if (iFirst <= 10)  ++iFirst;  //par
	
	UpdateKeys();
}
Example #3
0
void Turbojet::updateVisuals()
{
    //nozzle
    nzsnode->setPosition(nodes[nodeback].AbsPosition);
    //build a local system
    Vector3 laxis = nodes[nodefront].RelPosition - nodes[nodeback].RelPosition;
    laxis.normalise();
    Vector3 paxis = Plane(laxis, 0).projectVector(nodes[noderef].RelPosition - nodes[nodeback].RelPosition);
    paxis.normalise();
    Vector3 taxis = laxis.crossProduct(paxis);
    Quaternion dir = Quaternion(laxis, paxis, taxis);
    nzsnode->setOrientation(dir);
    //afterburner
    if (afterburner)
    {
        absnode->setVisible(true);
        float flamelength = (afterburnthrust / 15.0) * (rpm / 100.0);
        flamelength = flamelength * (1.0 + (((Real)rand() / (Real)RAND_MAX) - 0.5) / 10.0);
        absnode->setScale(flamelength, radius * 2.0, radius * 2.0);
        absnode->setPosition(nodes[nodeback].AbsPosition + dir * Vector3(-0.2, 0.0, 0.0));
        absnode->setOrientation(dir);
    }
    else
        absnode->setVisible(false);
    //smoke
    if (smokeNode)
    {
        smokeNode->setPosition(nodes[nodeback].AbsPosition);
        ParticleEmitter* emit = smokePS->getEmitter(0);
        ParticleEmitter* hemit = 0;
        if (heathazePS)
            hemit = heathazePS->getEmitter(0);
        emit->setDirection(-axis);
        emit->setParticleVelocity(exhaust_velocity);
        if (hemit)
        {
            hemit->setDirection(-axis);
            hemit->setParticleVelocity(exhaust_velocity);
        }
        if (!failed)
        {
            if (ignition)
            {
                emit->setEnabled(true);
                emit->setColour(ColourValue(0.0, 0.0, 0.0, 0.02 + throtle * 0.03));
                emit->setTimeToLive((0.02 + throtle * 0.03) / 0.1);
                if (hemit)
                {
                    hemit->setEnabled(true);
                    hemit->setTimeToLive((0.02 + throtle * 0.03) / 0.1);
                }
            }
            else
            {
                emit->setEnabled(false);
                if (hemit)
                    hemit->setEnabled(false);
            }
        }
        else
        {
            emit->setDirection(Vector3(0, 1, 0));
            emit->setParticleVelocity(7.0);
            emit->setEnabled(true);
            emit->setColour(ColourValue(0.0, 0.0, 0.0, 0.1));
            emit->setTimeToLive(0.1 / 0.1);

            if (hemit)
            {
                hemit->setDirection(Vector3(0, 1, 0));
                hemit->setParticleVelocity(7.0);
                hemit->setEnabled(true);
                hemit->setTimeToLive(0.1 / 0.1);
            }
        }
    }
}
Example #4
0
void DustPool::update(float gspeed)
{
	gspeed=fabs(gspeed);
	for (int i=0; i<allocated; i++)
	{
		ParticleEmitter *emit = pss[i]->getEmitter(0);
		Vector3 ndir = velocities[i];
		Real vel = ndir.length();
		ColourValue col = colours[i];

		if (vel == 0)
			vel += 0.0001;
		ndir = ndir / vel;

		emit->setEnabled(true);

		if (types[i] != DUST_RIPPLE)
		{
			emit->setDirection(ndir);
			emit->setParticleVelocity(vel);
			sns[i]->setPosition(positions[i]);
		}
		

		if (types[i]==DUST_NORMAL)
		{
			ndir.y=0;
			ndir=ndir/2.0;

			col.a=(vel+(gspeed/10.0))*0.05;
			emit->setTimeToLive((vel+(gspeed/10.0))*0.05/0.1);
		}
		else if (types[i]==DUST_CLUMP)
		{
			ndir=ndir/2.0;
			if (ndir.y<0) ndir.y=-ndir.y;

			col.a=1.0;
		} 
		else if (types[i]==DUST_RUBBER)
		{
			ndir.y=0;
			ndir=ndir/4.0;

			col.a = vel*0.05;
			col.b = 0.9;
			col.g = 0.9;
			col.r = 0.9;

			emit->setTimeToLive(vel*0.05/0.1);
		} 
		else if (types[i]==DUST_SPARKS)
		{
			//ugh
		} 
		else if (types[i]==DUST_VAPOUR)
		{
			emit->setParticleVelocity(vel/2.0);

			col.a = rates[i] * 0.03;
			col.b = 0.9;
			col.g = 0.9;
			col.r = 0.9;

			emit->setTimeToLive(rates[i]*0.03/0.1);
		} 
		else if (types[i]==DUST_DRIP)
		{
			emit->setEmissionRate(rates[i]);
		} 
		else if (types[i]==DUST_SPLASH)
		{
			if (ndir.y<0) 
				ndir.y=-ndir.y/2.0;

			emit->setDirection(ndir);

			col.a = vel*0.05;
			col.b = 0.9;
			col.g = 0.9;
			col.r = 0.9;

			emit->setTimeToLive(vel*0.05/0.1);
		} 
		else if (types[i]==DUST_RIPPLE)
		{
			positions[i].y = gEnv->terrainManager->getWater()->getHeight() - 0.02;
			sns[i]->setPosition(positions[i]);

			col.a = vel*0.04;
			col.b = 0.9;
			col.g = 0.9;
			col.r = 0.9;

			emit->setTimeToLive(vel*0.04/0.1);
		}

		emit->setColour(col);
	}
	for (int i=allocated; i<size; i++)
	{
		pss[i]->getEmitter(0)->setEnabled(false);
	}
	allocated=0;
}