vector<Point> Solver::BFSolve(Maze::Ptr const& maze)
{
  queue<vector<Point> > paths;
  Point current = maze->GetStart();
  vector<Point> path;

  path.push_back(current);
  paths.push(path);

  vector<vector<bool> > marked(maze->Columns(), vector<bool>(maze->Rows(), false));

  while (!paths.empty())
  {
    path = paths.front();
    paths.pop();

    current = path.back();

    if (maze->GetFinish() == current)
      return path;

    if (maze->RightOpen(current) && !marked[current.Right().x()][current.Right().y()])
    {
      path.push_back(current.Right());
      paths.push(path);
      path.pop_back();
      marked[current.Right().x()][current.Right().y()] = true;
    }
    if (maze->DownOpen(current) && !marked[current.Down().x()][current.Down().y()])
    {
      path.push_back(current.Down());
      paths.push(path);
      path.pop_back();
      marked[current.Down().x()][current.Down().y()] = true;
    }
    if (maze->LeftOpen(current) && !marked[current.Left().x()][current.Left().y()])
    {
      path.push_back(current.Left());
      paths.push(path);
      path.pop_back();
      marked[current.Left().x()][current.Left().y()] = true;
    }
    if (maze->UpOpen(current) && !marked[current.Up().x()][current.Up().y()])
    {
      path.push_back(current.Up());
      paths.push(path);
      path.pop_back();
      marked[current.Up().x()][current.Up().y()] = true;
    }
  }

  return path;
}
vector<Point> Solver::DFSolve(Maze::Ptr maze)
{
  vector<Point> path;
  Point current = maze->GetStart();

  vector<vector<bool> > marked(maze->Columns(), vector<bool>(maze->Rows(), false));

  path.push_back(current);
  marked[current.x()][current.y()] = true;

  while (!path.empty())
  {
    current = path.back();

    if (maze->GetFinish() == current)
      return path;

    if (maze->RightOpen(current) && !marked[current.Right().x()][current.Right().y()])
    {
      // Add?
      path.push_back(current.Right());
      marked[current.Right().x()][current.Right().y()] = true;
    }
    else if (maze->DownOpen(current) && !marked[current.Down().x()][current.Down().y()])
    {
      path.push_back(current.Down());
      marked[current.Down().x()][current.Down().y()] = true;
    }
    else if (maze->LeftOpen(current) && !marked[current.Left().x()][current.Left().y()])
    {
      path.push_back(current.Left());
      marked[current.Left().x()][current.Left().y()] = true;
    }
    else if (maze->UpOpen(current) && !marked[current.Up().x()][current.Up().y()])
    {
      path.push_back(current.Up());
      marked[current.Up().x()][current.Up().y()] = true;
    }
    else
    {
      path.pop_back();
    }
  }

  return path;
}
Cell::Direction PrimsMaze::GetOppositeParentsDirection(Point& current)
{
    Cell cell = Get(current);

    if (cell.GetParent() == &Get(current.Right()))
        return Cell::Direction::LEFT;
    else if (cell.GetParent() == &Get(current.Down()))
        return Cell::Direction::UP;
    else if (cell.GetParent() == &Get(current.Left()))
        return Cell::Direction::RIGHT;
    else
        return Cell::Direction::DOWN;
}