Example #1
0
    bool OME::interpolateResponse(const RealVec &freqs)
    {
        if(freqs.empty())
        {
            LOUDNESS_ERROR("OME: Input vector has no elements.");
            return 0;
        }
        else
        {
            response_.resize(freqs.size(), 0.0);

            //load the data into vectors
            getData();    

            //the spline
            spline s;

            //middle ear
            if(middleEarType_ != NONE)
            {
                s.set_points(middleEarFreqPoints_, middleEardB_);

                for (uint i=0; i < freqs.size(); i++)
                {
                    if((freqs[i]<=75) && (middleEarType_ == ANSIS342007_MIDDLE_EAR_HPF))
                            response_[i] = -14.6; //Post HPF correction
                    else if(freqs[i] >= middleEarFreqPoints_[40])
                        response_[i] = middleEardB_[40];
                    else
                        response_[i] = s(freqs[i]);
                }
            }
            else
            {
                LOUDNESS_WARNING("OME: No middle ear filter used.");
            }

            //outer ear
            if(outerEarType_ != NONE)
            {
                Real lastFreq = outerEarFreqPoints_.back();
                Real lastDataPoint = outerEardB_.back();
                s.set_points(outerEarFreqPoints_, outerEardB_);

                for(uint i = 0; i < freqs.size(); i++)
                {
                    if(freqs[i] >= lastFreq)
                        response_[i] += lastDataPoint;
                    else
                        response_[i] += s(freqs[i]);
                }
            }
            else
            {
                LOUDNESS_WARNING("OME: No outer ear filter used.");
            }

            return 1;
        }
    }
Example #2
0
 //Window functions:
 void Window::hann(RealVec &window, bool periodic)
 {
     unsigned int N = window.size();
     int denom = N-1;//produces zeros on both sides
     if(periodic)//Harris (1978) Eq 27b 
         denom = N;
     for(uint i=0; i<window.size(); i++)
     {
         window[i] = 0.5 - 0.5 * cos(2.0*PI*i/denom);
     }
 }
Example #3
0
// return a vector of the top k indices of a
void topk(RealVec a, vector<size_t> & indtop){
  multimap<real, size_t> m; // mapping from value to its index
  RealVecItr it;
  for (it = a.begin(); it != a.end(); ++it)
    m.insert(make_pair(*it, it - a.begin()));

  multimap<real, size_t>::reverse_iterator itm; // mapping from value to its index
  size_t indx=0;
  for (itm = m.rbegin(); itm != m.rend(); ++itm){
    //cout << itm->first <<" , "<< itm->second << endl;
    indtop[indx]=itm->second;
    indx++;
  } 
}
double ReferenceIntegrateRPMDStepKernel::computeKineticEnergy(ContextImpl& context, const RPMDIntegrator& integrator) {
    const System& system = context.getSystem();
    int numParticles = system.getNumParticles();
    vector<RealVec>& velData = extractVelocities(context);
    double energy = 0.0;
    for (int i = 0; i < numParticles; ++i) {
        double mass = system.getParticleMass(i);
        if (mass > 0) {
            RealVec v = velData[i];
            energy += mass*(v.dot(v));
        }
    }
    return 0.5*energy;
}
Example #5
0
    void Window::normaliseWindow(RealVec &window, const Normalisation& normalisation)
    {
        if (normalisation != NONE)
        {
            double x = 0.0;
            double sum = 0.0, sumSquares = 0.0;
            double normFactor = 1.0;
            uint wSize = window.size();
            for(uint i=0; i < wSize; i++)
            {
                 x = window[i];
                 sum += x;
                 sumSquares += x*x;
            }

            switch (normalisation)
            {
                case (ENERGY):
                    normFactor = sqrt(wSize/sumSquares);
                    LOUDNESS_DEBUG(name_ << ": Normalising for energy.");
                    break;
                case (AMPLITUDE):
                    normFactor = wSize/sum;
                    LOUDNESS_DEBUG(name_ << ": Normalising for amplitude.");
                    break;
                default:
                    normFactor = sqrt(wSize/sumSquares);
            }

            LOUDNESS_DEBUG(name_ << ": Normalising window using factor: " << normFactor);
            for(uint i=0; i < wSize; i++)
                window[i] *= normFactor;
        }
    }
Example #6
0
MatrixXd Scalar<Element>::computeSourceTerm(const double time, const PetscInt time_idx) {
    mSource.setZero();
    for (auto &source : Element::Sources()) {
        RealVec pnt;
        if (Element::NumDim() == 2) {
            pnt.resize(2);
            pnt << source->LocR(), source->LocS();
        }
        if (Element::NumDim() == 3) {
            pnt.resize(3);
            pnt << source->LocR(), source->LocS(), source->LocT();
        }
        mSource += (Element::getDeltaFunctionCoefficients(pnt) * source->fire(time, time_idx));
    }
    return Element::applyTestAndIntegrate(mSource);
}
void MCMCGRDiagnosticPSRF::outputResults(
				const std::string& filenameGRScalars,
				const RealVec& sampledInd,
				int precData) const
{
	/* sampledInd may contain more values than we monitored */
	RealVec::const_iterator it;
	advance(it, scalars.size());
	RealVec sampledIndTmp(sampledInd.begin(), it);
	
	std::vector < std::string > colNames;
	getScalarColNames(colNames);
	colNames.push_back("W");
	colNames.push_back("B");
	colNames.push_back("estVarV");
	colNames.push_back("rhat");
	
		colNames.push_back("rhatFlag");
		colNames.push_back("sampled?");
	
	std::vector < const RealVec* > data;
	addDataPtrs(data, scalars);
	data.push_back(&Ws);
	data.push_back(&Bs);
	data.push_back(&estVarV);
	data.push_back(&rhat);
	
		data.push_back(&rhatFlag);
		data.push_back(&sampledIndTmp);
	
	outputToFileVertical(data, colNames, 
	filenameGRScalars, precData);
} 
void TriangleFunction::apply( RealVec& inputs, RealVec& outputs ) {
    // --- out <- 2.0*( (x-c)/a-floor((x-c)/a+0.5) )
	for( int i=0; i<(int)inputs.size(); i++ ) {
		Real sawtooth = (inputs[i]-phasev)/spanv-floor((inputs[i]-phasev)/spanv+0.5);
		outputs[i] = amplitudev*( 1.0 - fabs( sawtooth ) );
	}
}
    void PowerSpectrumAndSpatialDetection::hannWindow(RealVec &w, int fftSize)
    {
        int windowSize = (int)w.size();
        Real norm = sqrt(2.0/(fftSize*windowSize*0.375*2e-5*2e-5));

        for(int i=0; i< windowSize; i++)
            w[i] = norm*(0.5+0.5*cos(2*PI*(i-0.5*(windowSize-1))/windowSize));
    }
Example #10
0
	// fill a vector with probabilities as reals
	cxsc::real EquiProbProposal::EquiProbProposal::fillNodeProposalProbs(
									const size_t nLeaf,
									const size_t nCherry,
									RealVec& probs) const
	{
		cxsc::real retSum = 0.0;
		probs.reserve(nLeaf + nCherry);

		if (nLeaf + nCherry > 0) {
			cxsc::real pNode = 1.0/(nLeaf + nCherry);
			retSum += pNode*(1.0*nLeaf + 1.0*nCherry);

			probs.assign(nLeaf+nCherry, pNode);
		}

		return retSum;
	}
Example #11
0
	// fill a vector with probabilities as reals
	cxsc::real UniformSSMProposal::fillNodeProposalProbs(
			const size_t nLeaf, const size_t nCherry,
			RealVec& probs) const
	{
		cxsc::real retSum = 0.0;
		probs.reserve(nLeaf + nCherry);

		if (nLeaf > 0) {
			cxsc::real pLeaf = probSplitMerge/nLeaf;
			retSum += (1.0*nLeaf * pLeaf);
			probs.assign(nLeaf, pLeaf);
		}
		if (nCherry > 0) {
			cxsc::real pCherry = probSplitMerge/nCherry;
			retSum += (1.0*nCherry * pCherry);
			probs.insert(probs.end(), nCherry, pCherry);
		}

		return retSum;
	}
void ReferenceIntegrateDrudeSCFStepKernel::minimize(ContextImpl& context, double tolerance) {
    // Record the initial positions and determine a normalization constant for scaling the tolerance.

    vector<RealVec>& pos = extractPositions(context);
    int numDrudeParticles = drudeParticles.size();
    double norm = 0.0;
    for (int i = 0; i < numDrudeParticles; i++) {
        RealVec p = pos[drudeParticles[i]];
        minimizerPos[3*i] = p[0];
        minimizerPos[3*i+1] = p[1];
        minimizerPos[3*i+2] = p[2];
        norm += p.dot(p);
    }
    norm /= numDrudeParticles;
    norm = (norm < 1 ? 1 : sqrt(norm));
    minimizerParams.epsilon = tolerance/norm;
    
    // Perform the minimization.

    lbfgsfloatval_t fx;
    MinimizerData data(context, drudeParticles);
    lbfgs(numDrudeParticles*3, minimizerPos, &fx, evaluate, NULL, &data, &minimizerParams);
}
int MCMCGRDiagnosticPSRF::calcDiagnosticsForLoop()
{
	if (keepLogs) {
		// store the current runningSumAllChains as well
		runningSumOverall.push_back(runningSumAllChains);
	}

	// convergence diagnostics calculations for v's

	// the Ws: average, over chains, of sample variance of scalar value
	cxsc::real thisW = sumOfSampleVariancesOverChains/(chains * 1.0); 
	
	#ifdef MYDEBUG_CALCS_EXTRA
			cout << "and thisW = " << thisW << endl;
	#endif
	
				
	Ws.push_back(thisW); 
	// the Bs
	size_t statesForCalcs = states - statesNotInCalcs;
	
	cxsc::real thisB = (1.0/( (chains - 1) * statesForCalcs ) 
						* ( sumOfSquaresOfRunningSums 
						- (runningSumAllChains 
						* runningSumAllChains/(chains * 1.0)) ) );
	Bs.push_back(thisB); 
	
	#ifdef MYDEBUG_CALCS
		//check thisB is correct, doing it the long way
		// runningSumPtr has one running sum for each chain
		RealVec chainAverages;
		cxsc::real accRunningSums(0.0);
		for (RealVecItr it = runningSum.begin(); it < runningSum.end(); ++it) {
			cxsc::real thisChainRunningSum = (*it);
			cxsc::real thisChainAv = thisChainRunningSum/(statesForCalcs * 1.0);
			chainAverages.push_back(thisChainAv);
			accRunningSums+=thisChainRunningSum;
		}
		cxsc::real overallAv = accRunningSums/(statesForCalcs * chains * 1.0);
		cxsc::dotprecision accDiffs(0.0);
		for (RealVecItr it = chainAverages.begin(); it < chainAverages.end(); ++it) {
			cxsc::real thisDiff = (*it) - overallAv;
			// sum up the squares of the differences compared to overall average
			cxsc::accumulate(accDiffs, thisDiff, thisDiff);
		}
		cxsc::real altB = rnd(accDiffs)*( statesForCalcs/(chains - 1.0) );
		
		cout << "\nthisB for v's is\t" << thisB << endl;
		cout << "altB for v's is\t" << altB << endl;
		//assert(thisB == altB);
	
	#endif
	
	// the estimated var(v)
	cxsc::real thisVarV(0.0);
	if (statesForCalcs > 1) {
		thisVarV = statesForCalcs/(statesForCalcs-1.0) 
					* thisW + (1.0/statesForCalcs)*thisB;
	}
	#ifndef OLDCALCMETHOD
		if (statesForCalcs > 1) thisVarV +=thisB/(1.0*chains*statesForCalcs);
	#endif
	
	estVarV.push_back(thisVarV); 
	// the rhats
	cxsc::real thisRhat(0.0);
	// allow division by 0 if w = 0 when var does not
	if (thisW > 0.0 || thisVarV > 0.0) {
		thisRhat = thisVarV/thisW;
	}
	rhat.push_back(thisRhat); 
	
	#ifdef MYDEBUG_CALCS_EXTRA
			cout << "thisRhat = " << thisRhat << " - press any key " << endl;
			getchar();
	#endif
	
	if ( (thisRhat <= 1.0 + tol) 
				&& (thisRhat >= 1.0 - tol) ) {
		// if we have not been converged before on this scalar value
		if (!rhatDiagnosticFlag)  {
			#ifdef MYDEBUG
				cout << "\n" << getScalarsName() 
					<< " convergence test satisfied in state " 
					  << states << " (states in calcs = " 
					  << statesForCalcs << ")"<< endl;
			#endif
			// set the flag for this scalar value
			rhatDiagnosticFlag = 1;
		}
	} 
	else { // not converged on this scalar value
		// if we were okay on this scalar value before
		if (rhatDiagnosticFlag) {
			#ifdef MYDEBUG
				cout << "\n--------- Note: " << getScalarsName() 
				<< " convergence test now NOT satisfied in state " 
				  << states << endl;
		
			#endif
			
			rhatDiagnosticFlag = 0; // update the flag
			
		} 
	}
	
	if (keepLogs) {
		// store the flag as well, as a real, which is a fudge...
		rhatFlag.push_back(rhatDiagnosticFlag);
	}

	// end of checking diagnostic for v's

	return rhatDiagnosticFlag;
} // end calculations
void SawtoothFunction::apply( RealVec& inputs, RealVec& outputs ) {
    // --- out <- 2.0*( (x-c)/a-floor((x-c)/a+0.5) )
	for( int i=0; i<(int)inputs.size(); i++ ) {
		outputs[i] = amplitudev*( (inputs[i]-phasev)/spanv-floor((inputs[i]-phasev)/spanv+0.5) );
	}
}
void PseudoGaussFunction::apply( RealVec& inputs, RealVec& outputs ) {
	for( int i=0; i<(int)inputs.size(); i++ ) {
		outputs[i] = 0.5*amplitudev*( sin( 2.0*PI_GRECO*((inputs[i]-phasev)/spanv+0.25) ) + 1.0 );
	}
}
void SinFunction::apply( RealVec& inputs, RealVec& outputs ) {
	for( int i=0; i<(int)inputs.size(); i++ ) {
		outputs[i] = amplitudev*sin(2.0*PI_GRECO*(inputs[i]/spanv)-PI_GRECO*phasev);
	}
}
Example #17
0
double CpuCalcNonbondedForceKernel::execute(ContextImpl& context, bool includeForces, bool includeEnergy, bool includeDirect, bool includeReciprocal) {
    if (!hasInitializedPme) {
        hasInitializedPme = true;
        useOptimizedPme = false;
        if (nonbondedMethod == PME) {
            // If available, use the optimized PME implementation.

            try {
                optimizedPme = getPlatform().createKernel(CalcPmeReciprocalForceKernel::Name(), context);
                optimizedPme.getAs<CalcPmeReciprocalForceKernel>().initialize(gridSize[0], gridSize[1], gridSize[2], numParticles, ewaldAlpha);
                useOptimizedPme = true;
            }
            catch (OpenMMException& ex) {
                // The CPU PME plugin isn't available.
            }
        }
    }
    AlignedArray<float>& posq = data.posq;
    vector<RealVec>& posData = extractPositions(context);
    vector<RealVec>& forceData = extractForces(context);
    RealVec boxSize = extractBoxSize(context);
    float floatBoxSize[3] = {(float) boxSize[0], (float) boxSize[1], (float) boxSize[2]};
    double energy = (includeReciprocal ? ewaldSelfEnergy : 0.0);
    bool ewald  = (nonbondedMethod == Ewald);
    bool pme  = (nonbondedMethod == PME);
    if (nonbondedMethod != NoCutoff) {
        // Determine whether we need to recompute the neighbor list.
        
        double padding = 0.15*nonbondedCutoff;
        bool needRecompute = false;
        double closeCutoff2 = 0.25*padding*padding;
        double farCutoff2 = 0.5*padding*padding;
        int maxNumMoved = numParticles/10;
        vector<int> moved;
        for (int i = 0; i < numParticles; i++) {
            RealVec delta = posData[i]-lastPositions[i];
            double dist2 = delta.dot(delta);
            if (dist2 > closeCutoff2) {
                moved.push_back(i);
                if (dist2 > farCutoff2 || moved.size() > maxNumMoved) {
                    needRecompute = true;
                    break;
                }
            }
        }
        if (!needRecompute && moved.size() > 0) {
            // Some particles have moved further than half the padding distance.  Look for pairs
            // that are missing from the neighbor list.

            int numMoved = moved.size();
            double cutoff2 = nonbondedCutoff*nonbondedCutoff;
            double paddedCutoff2 = (nonbondedCutoff+padding)*(nonbondedCutoff+padding);
            for (int i = 1; i < numMoved && !needRecompute; i++)
                for (int j = 0; j < i; j++) {
                    RealVec delta = posData[moved[i]]-posData[moved[j]];
                    if (delta.dot(delta) < cutoff2) {
                        // These particles should interact.  See if they are in the neighbor list.
                        
                        RealVec oldDelta = lastPositions[moved[i]]-lastPositions[moved[j]];
                        if (oldDelta.dot(oldDelta) > paddedCutoff2) {
                            needRecompute = true;
                            break;
                        }
                    }
                }
        }
        if (needRecompute) {
            neighborList->computeNeighborList(numParticles, posq, exclusions, floatBoxSize, data.isPeriodic, nonbondedCutoff+padding, data.threads);
            lastPositions = posData;
        }
        nonbonded->setUseCutoff(nonbondedCutoff, *neighborList, rfDielectric);
    }
    if (data.isPeriodic) {
        double minAllowedSize = 1.999999*nonbondedCutoff;
        if (boxSize[0] < minAllowedSize || boxSize[1] < minAllowedSize || boxSize[2] < minAllowedSize)
            throw OpenMMException("The periodic box size has decreased to less than twice the nonbonded cutoff.");
        nonbonded->setPeriodic(floatBoxSize);
    }
    if (ewald)
        nonbonded->setUseEwald(ewaldAlpha, kmax[0], kmax[1], kmax[2]);
    if (pme)
        nonbonded->setUsePME(ewaldAlpha, gridSize);
    if (useSwitchingFunction)
        nonbonded->setUseSwitchingFunction(switchingDistance);
    double nonbondedEnergy = 0;
    if (includeDirect)
        nonbonded->calculateDirectIxn(numParticles, &posq[0], posData, particleParams, exclusions, data.threadForce, includeEnergy ? &nonbondedEnergy : NULL, data.threads);
    if (includeReciprocal) {
        if (useOptimizedPme) {
            PmeIO io(&posq[0], &data.threadForce[0][0], numParticles);
            Vec3 periodicBoxSize(boxSize[0], boxSize[1], boxSize[2]);
            optimizedPme.getAs<CalcPmeReciprocalForceKernel>().beginComputation(io, periodicBoxSize, includeEnergy);
            nonbondedEnergy += optimizedPme.getAs<CalcPmeReciprocalForceKernel>().finishComputation(io);
        }
        else
            nonbonded->calculateReciprocalIxn(numParticles, &posq[0], posData, particleParams, exclusions, forceData, includeEnergy ? &nonbondedEnergy : NULL);
    }
    energy += nonbondedEnergy;
    if (includeDirect) {
        ReferenceBondForce refBondForce;
        ReferenceLJCoulomb14 nonbonded14;
        refBondForce.calculateForce(num14, bonded14IndexArray, posData, bonded14ParamArray, forceData, includeEnergy ? &energy : NULL, nonbonded14);
        if (data.isPeriodic)
            energy += dispersionCoefficient/(boxSize[0]*boxSize[1]*boxSize[2]);
    }
    return energy;
}
double ReferenceCalcDrudeForceKernel::execute(ContextImpl& context, bool includeForces, bool includeEnergy) {
    vector<RealVec>& pos = extractPositions(context);
    vector<RealVec>& force = extractForces(context);
    int numParticles = particle.size();
    double energy = 0;
    
    // Compute the interactions from the harmonic springs.
    
    for (int i = 0; i < numParticles; i++) {
        int p = particle[i];
        int p1 = particle1[i];
        int p2 = particle2[i];
        int p3 = particle3[i];
        int p4 = particle4[i];
        
        RealOpenMM a1 = (p2 == -1 ? 1 : aniso12[i]);
        RealOpenMM a2 = (p3 == -1 || p4 == -1 ? 1 : aniso34[i]);
        RealOpenMM a3 = 3-a1-a2;
        RealOpenMM k3 = charge[i]*charge[i]/(polarizability[i]*a3);
        RealOpenMM k1 = charge[i]*charge[i]/(polarizability[i]*a1) - k3;
        RealOpenMM k2 = charge[i]*charge[i]/(polarizability[i]*a2) - k3;
        
        // Compute the isotropic force.
        
        RealVec delta = pos[p]-pos[p1];
        RealOpenMM r2 = delta.dot(delta);
        energy += 0.5*k3*r2;
        force[p] -= delta*k3;
        force[p1] += delta*k3;
        
        // Compute the first anisotropic force.
        
        if (p2 != -1) {
            RealVec dir = pos[p1]-pos[p2];
            RealOpenMM invDist = 1.0/sqrt(dir.dot(dir));
            dir *= invDist;
            RealOpenMM rprime = dir.dot(delta);
            energy += 0.5*k1*rprime*rprime;
            RealVec f1 = dir*(k1*rprime); 
            RealVec f2 = (delta-dir*rprime)*(k1*rprime*invDist);
            force[p] -= f1;
            force[p1] += f1-f2;
            force[p2] += f2;
        }
        
        // Compute the second anisotropic force.
        
        if (p3 != -1 && p4 != -1) {
            RealVec dir = pos[p3]-pos[p4];
            RealOpenMM invDist = 1.0/sqrt(dir.dot(dir));
            dir *= invDist;
            RealOpenMM rprime = dir.dot(delta);
            energy += 0.5*k2*rprime*rprime;
            RealVec f1 = dir*(k2*rprime);
            RealVec f2 = (delta-dir*rprime)*(k2*rprime*invDist);
            force[p] -= f1;
            force[p1] += f1;
            force[p3] -= f2;
            force[p4] += f2;
        }
    }
    
    // Compute the screened interaction between bonded dipoles.
    
    int numPairs = pair1.size();
    for (int i = 0; i < numPairs; i++) {
        int dipole1 = pair1[i];
        int dipole2 = pair2[i];
        int dipole1Particles[] = {particle[dipole1], particle1[dipole1]};
        int dipole2Particles[] = {particle[dipole2], particle1[dipole2]};
        for (int j = 0; j < 2; j++)
            for (int k = 0; k < 2; k++) {
                int p1 = dipole1Particles[j];
                int p2 = dipole2Particles[k];
                RealOpenMM chargeProduct = charge[dipole1]*charge[dipole2]*(j == k ? 1 : -1);
                RealVec delta = pos[p1]-pos[p2];
                RealOpenMM r = sqrt(delta.dot(delta));
                RealOpenMM u = r*pairThole[i]/pow(polarizability[dipole1]*polarizability[dipole2], 1.0/6.0);
                RealOpenMM screening = 1.0 - (1.0+0.5*u)*exp(-u);
                energy += ONE_4PI_EPS0*chargeProduct*screening/r;
                RealVec f = delta*(ONE_4PI_EPS0*chargeProduct*screening/(r*r*r));
                force[p1] += f;
                force[p2] -= f;
            }
    }
    return energy;
}
Example #19
0
    bool CompressSpectrum::initializeInternal(const SignalBank &input)
    {
        LOUDNESS_ASSERT(input.getNChannels() > 1, name_ << ": Insufficient number of channels.");


        /*
         * This code is sloppy due to along time spent figuring how 
         * to implement the damn thing.
         * It's currently in two parts, one that searches for the limits of each
         * summation range in order to satisfy summation criterion.
         * The other that finds the average Centre frequencies per compressed band.
         */
        int nChannels = input.getNChannels();
        int i=0, binIdxPrev = 0;
        Real dif = hertzToCam(input.getCentreFreq(1)) - 
                   hertzToCam(input.getCentreFreq(0));
        int groupSize = max(2.0, std::floor(alpha_/(dif)));
        int groupSizePrev = groupSize;
        vector<int> groupSizeStore, binIdx;

        while(i < nChannels-1)
        {

            //compute different between adjacent bins on Cam scale 
            dif = hertzToCam(input.getCentreFreq(i+1)) - hertzToCam(input.getCentreFreq(i));

            //Check if we can sum bins in group size
            if(dif < (alpha_/double(groupSize)))
            {
                /*  
                 *  from here we can group bins in groupSize
                 *  whilst maintaining alpha spacing
                 */

                //Check we have zero idx
                if((binIdx.size() < 1) && (i>0))
                {
                    binIdx.push_back(0);
                    groupSizeStore.push_back(1);
                }

                /*
                 * This line ensures the next group starts at the next multiple of the previous
                 * groupSize above the previous starting position.
                 * This is why you sometimes get finer resolution than the criterion
                 */

                int store = ceil((i-binIdxPrev)/double(groupSizePrev))*groupSizePrev+binIdxPrev;
                
                /*  
                 *  This line is cheeky; it re-evaluates the groupSize at the new multiple
                 *  in attempt to maintain alpha spacing, I'm not 100% but the algorithm
                 *  seems to satisfy various criteria
                 */
                if((store > 0) && (store < nChannels))
                {
                    dif = hertzToCam(input.getCentreFreq(store)) - 
                          hertzToCam(input.getCentreFreq(store-1));
                    groupSize = max((double)groupSize, std::floor(alpha_/dif));
                }

                //fill variables
                groupSizePrev = groupSize;
                binIdxPrev = store;

                //storage
                binIdx.push_back(store);
                groupSizeStore.push_back(groupSize);
                //print "Bin: %d, Binnew: %d, composite bin size: %d" % (i, store, groupSize)

                //Move i along
                i = store+groupSize;

                //increment groupSize for wider group
                groupSize += 1;
            }
            else
                i += 1;
        }

        //add the final frequency
        if(binIdx[binIdx.size()-1] < nChannels)
            binIdx.push_back(nChannels);

        //PART 2
        //compressed spectrum
        RealVec cfs;
        Real fa = 0;
        int count = 0;
        int j = 0;
        i = 0;
        while(i < nChannels)
        {
            //bounds check out?
            if(i<binIdx[j+1])
            {
                fa += input.getCentreFreq(i);
                count++;
                if (count==groupSizeStore[j])
                {
                    //upper limit
                    upperBandIdx_.push_back(i+1); //+1 for < conditional
                    //set the output frequency
                    cfs.push_back(fa/count);
                    count = 0;
                    fa = 0;
                }
                i++;
            }
            else
                j++;
        }

        //add the final component if it didn't make it
        if (count>0)
        {
            cfs.push_back(fa/count);
            upperBandIdx_.push_back(i); 
        }

        //check
        #if defined(DEBUG)
        Real freqLimit = 0.0;
        for(unsigned int i=0; i<cfs.size()-1; i++)
        {
            if((hertzToCam(cfs[i+1]) - hertzToCam(cfs[i])) > alpha_)
                freqLimit = cfs[i];
        }
        LOUDNESS_DEBUG("CompressSpectrum: Criterion satisfied above " << freqLimit << " Hz.");
        #endif

        //set output SignalBank
        output_.initialize(input.getNSources(),
                           input.getNEars(),
                           cfs.size(),
                           1,
                           input.getFs());
        output_.setCentreFreqs(cfs);
        output_.setFrameRate(input.getFrameRate());
        LOUDNESS_DEBUG(name_ << ": Number of bins comprising the compressed spectrum: "
                << output_.getNChannels());

        return 1;
    }
Example #20
0
void ReferenceIntegrateDrudeLangevinStepKernel::execute(ContextImpl& context, const DrudeLangevinIntegrator& integrator) {
    vector<RealVec>& pos = extractPositions(context);
    vector<RealVec>& vel = extractVelocities(context);
    vector<RealVec>& force = extractForces(context);
    
    // Update velocities of ordinary particles.
    
    const RealOpenMM vscale = exp(-integrator.getStepSize()*integrator.getFriction());
    const RealOpenMM fscale = (1-vscale)/integrator.getFriction();
    const RealOpenMM kT = BOLTZ*integrator.getTemperature();
    const RealOpenMM noisescale = sqrt(2*kT*integrator.getFriction())*sqrt(0.5*(1-vscale*vscale)/integrator.getFriction());
    for (int i = 0; i < (int) normalParticles.size(); i++) {
        int index = normalParticles[i];
        RealOpenMM invMass = particleInvMass[index];
        if (invMass != 0.0) {
            RealOpenMM sqrtInvMass = sqrt(invMass);
            for (int j = 0; j < 3; j++)
                vel[index][j] = vscale*vel[index][j] + fscale*invMass*force[index][j] + noisescale*sqrtInvMass*SimTKOpenMMUtilities::getNormallyDistributedRandomNumber();
        }
    }
    
    // Update velocities of Drude particle pairs.
    
    const RealOpenMM vscaleDrude = exp(-integrator.getStepSize()*integrator.getDrudeFriction());
    const RealOpenMM fscaleDrude = (1-vscaleDrude)/integrator.getDrudeFriction();
    const RealOpenMM kTDrude = BOLTZ*integrator.getDrudeTemperature();
    const RealOpenMM noisescaleDrude = sqrt(2*kTDrude*integrator.getDrudeFriction())*sqrt(0.5*(1-vscaleDrude*vscaleDrude)/integrator.getDrudeFriction());
    for (int i = 0; i < (int) pairParticles.size(); i++) {
        int p1 = pairParticles[i].first;
        int p2 = pairParticles[i].second;
        RealOpenMM mass1fract = pairInvTotalMass[i]/particleInvMass[p1];
        RealOpenMM mass2fract = pairInvTotalMass[i]/particleInvMass[p2];
        RealOpenMM sqrtInvTotalMass = sqrt(pairInvTotalMass[i]);
        RealOpenMM sqrtInvReducedMass = sqrt(pairInvReducedMass[i]);
        RealVec cmVel = vel[p1]*mass1fract+vel[p2]*mass2fract;
        RealVec relVel = vel[p2]-vel[p1];
        RealVec cmForce = force[p1]+force[p2];
        RealVec relForce = force[p2]*mass1fract - force[p1]*mass2fract;
        for (int j = 0; j < 3; j++) {
            cmVel[j] = vscale*cmVel[j] + fscale*pairInvTotalMass[i]*cmForce[j] + noisescale*sqrtInvTotalMass*SimTKOpenMMUtilities::getNormallyDistributedRandomNumber();
            relVel[j] = vscaleDrude*relVel[j] + fscaleDrude*pairInvReducedMass[i]*relForce[j] + noisescaleDrude*sqrtInvReducedMass*SimTKOpenMMUtilities::getNormallyDistributedRandomNumber();
        }
        vel[p1] = cmVel-relVel*mass2fract;
        vel[p2] = cmVel+relVel*mass1fract;
    }

    // Update the particle positions.
    
    int numParticles = particleInvMass.size();
    vector<RealVec> xPrime(numParticles);
    RealOpenMM dt = integrator.getStepSize();
    for (int i = 0; i < numParticles; i++)
        if (particleInvMass[i] != 0.0)
            xPrime[i] = pos[i]+vel[i]*dt;
    
    // Apply constraints.
    
    extractConstraints(context).apply(pos, xPrime, particleInvMass, integrator.getConstraintTolerance());
    
    // Record the constrained positions and velocities.
    
    RealOpenMM dtInv = 1.0/dt;
    for (int i = 0; i < numParticles; i++) {
        if (particleInvMass[i] != 0.0) {
            vel[i] = (xPrime[i]-pos[i])*dtInv;
            pos[i] = xPrime[i];
        }
    }

    // Apply hard wall constraints.

    const RealOpenMM maxDrudeDistance = integrator.getMaxDrudeDistance();
    if (maxDrudeDistance > 0) {
        const RealOpenMM hardwallscaleDrude = sqrt(kTDrude);
        for (int i = 0; i < (int) pairParticles.size(); i++) {
            int p1 = pairParticles[i].first;
            int p2 = pairParticles[i].second;
            RealVec delta = pos[p1]-pos[p2];
            RealOpenMM r = sqrt(delta.dot(delta));
            RealOpenMM rInv = 1/r;
            if (rInv*maxDrudeDistance < 1.0) {
                // The constraint has been violated, so make the inter-particle distance "bounce"
                // off the hard wall.
                
                if (rInv*maxDrudeDistance < 0.5)
                    throw OpenMMException("Drude particle moved too far beyond hard wall constraint");
                RealVec bondDir = delta*rInv;
                RealVec vel1 = vel[p1];
                RealVec vel2 = vel[p2];
                RealOpenMM mass1 = particleMass[p1];
                RealOpenMM mass2 = particleMass[p2];
                RealOpenMM deltaR = r-maxDrudeDistance;
                RealOpenMM deltaT = dt;
                RealOpenMM dotvr1 = vel1.dot(bondDir);
                RealVec vb1 = bondDir*dotvr1;
                RealVec vp1 = vel1-vb1;
                if (mass2 == 0) {
                    // The parent particle is massless, so move only the Drude particle.

                    if (dotvr1 != 0.0)
                        deltaT = deltaR/abs(dotvr1);
                    if (deltaT > dt)
                        deltaT = dt;
                    dotvr1 = -dotvr1*hardwallscaleDrude/(abs(dotvr1)*sqrt(mass1));
                    RealOpenMM dr = -deltaR + deltaT*dotvr1;
                    pos[p1] += bondDir*dr;
                    vel[p1] = vp1 + bondDir*dotvr1;
                }
                else {
                    // Move both particles.

                    RealOpenMM invTotalMass = pairInvTotalMass[i];
                    RealOpenMM dotvr2 = vel2.dot(bondDir);
                    RealVec vb2 = bondDir*dotvr2;
                    RealVec vp2 = vel2-vb2;
                    RealOpenMM vbCMass = (mass1*dotvr1 + mass2*dotvr2)*invTotalMass;
                    dotvr1 -= vbCMass;
                    dotvr2 -= vbCMass;
                    if (dotvr1 != dotvr2)
                        deltaT = deltaR/abs(dotvr1-dotvr2);
                    if (deltaT > dt)
                        deltaT = dt;
                    RealOpenMM vBond = hardwallscaleDrude/sqrt(mass1);
                    dotvr1 = -dotvr1*vBond*mass2*invTotalMass/abs(dotvr1);
                    dotvr2 = -dotvr2*vBond*mass1*invTotalMass/abs(dotvr2);
                    RealOpenMM dr1 = -deltaR*mass2*invTotalMass + deltaT*dotvr1;
                    RealOpenMM dr2 = deltaR*mass1*invTotalMass + deltaT*dotvr2;
                    dotvr1 += vbCMass;
                    dotvr2 += vbCMass;
                    pos[p1] += bondDir*dr1;
                    pos[p2] += bondDir*dr2;
                    vel[p1] = vp1 + bondDir*dotvr1;
                    vel[p2] = vp2 + bondDir*dotvr2;
                }
            }
        }
    }
    ReferenceVirtualSites::computePositions(context.getSystem(), pos);
    data.time += integrator.getStepSize();
    data.stepCount++;
}
Example #21
0
//-----------------------------------------------------------------------
// optimizing over smoothing parameter Temp - 
// getting best histogram over parameter in [t_lo, t_hi] by max/minmising 
// a CV based score
//-----------------------------------------------------------------------
// this is a slower and generic K-fold CV method -- USE Leave1Out for Histograms!!!
// CAUTON: held out Lkl is used as an example and should be replaced 
//with the appropriate scoring rule for maximization over parameter in [t_lo, t_hi]
bool selectPriorByLlkCV (RVecData & transformedData, size_t K, double t_lo, double t_hi,
				int LocalMaxTempIterations, int MaxTempIterations,
				RealVec & AvgHeldOutLkls, vector<double> & Temperatures, 
				double & t_opt, double & AvgHeldOutLkls_opt,
				size_t minPoints, int chooseStarts, int keep, 
				bool stopOnMaxPosterior, string postFileName, 
				string checkPostFileNameBase, int precPQ, 
				unsigned long int seedStarts)
{
  RealVec AvgHeldOutEmpiricalDeviations;
  // first get a root box containing all points 
  AdaptiveHistogram adhA0;//main hist object 
  bool successfulInsertion = false;
  successfulInsertion = adhA0.insertFromRVec(transformedData);//insert transformed data
  if (!successfulInsertion) throw std::runtime_error("Failed to insert transformed data");
  //transformedData.clear();//keep the transformed data!!
  size_t n = adhA0.getRootCounter();
  size_t d = adhA0.getDimensions ();
  //cout << "transformed data:  n = " << n << endl; getchar();

  bool success=false;
  const size_t N = adhA0.getRootCounter();//size of successfully inserted transformed data
  const size_t KofN = N/K; //cout << KofN << endl; getchar();
  size_t nTrain;
  adhA0.clearAllHistData();//clear the transformed data to make space during CV
  RVecData transformedDataT;//container to keep the transformed Training data from first burst
  RVecData transformedDataV;//container to keep the transformed Validation data from first burst
  // set up for permutations
  const gsl_rng_type * T;
  gsl_rng * r;
  gsl_permutation * p = gsl_permutation_alloc (N);
  gsl_permutation * q = gsl_permutation_alloc (N);
  gsl_rng_env_setup();
  T = gsl_rng_default;
  r = gsl_rng_alloc (T);
  //printf ("initial permutation:");  
  gsl_permutation_init (p);
  //gsl_permutation_fprintf (stdout, p, " %u"); printf ("\n"); getchar();
////////////////////////////////////////////////////////////////////////////////////////////////
        int TempIterations=0;
        std::vector<double> LocalTemperatures;
     do{// outer temp iterations
          if (TempIterations!=0){
            std::vector<size_t> indtop(AvgHeldOutLkls.size());
            topk(AvgHeldOutLkls, indtop);
            double tBest =Temperatures[indtop[0]];
            double t2ndBest =Temperatures[indtop[1]];
            double t3rdBest =Temperatures[indtop[2]];
            double tWorst = max(abs(tBest-t2ndBest),abs(tBest-t3rdBest));
            t_lo = max(0.00001,tBest-tWorst); t_hi = tBest+tWorst;
//            cout << t_lo << " , " << t_hi << " : "<< tBest << " , " << t2ndBest << " , " << t3rdBest << endl; getchar();
            if (t_hi-t_lo<0.001 || 
			abs(AvgHeldOutLkls[indtop[0]]-AvgHeldOutLkls[indtop[1]])<0.01) {
              cout << "reaching temp values < 0.001 or likl diff < 1.0"<<endl; getchar(); break;
            }
          }
          double t_Delta=(t_hi-t_lo)/double(LocalMaxTempIterations-1);
          LocalTemperatures.clear();
          for(int i=0; i<LocalMaxTempIterations; i++){ 
                        Temperatures.push_back(t_lo+(double(i))*t_Delta);
                        LocalTemperatures.push_back(t_lo+(double(i))*t_Delta);
          }
        int LocalTempIterations=0;
        do
        {
          //LogTemperaturePrior logPrior(Temperatures[TempIterations]);//t_lo);
          LogTemperaturePrior logPrior(LocalTemperatures[LocalTempIterations]);//t_lo);
	  seedStarts += TempIterations;
          real HeldOutLkl = 0.0;
          real HeldOutEmpiricalDeviation = 0.0;
          // a container for our histograms at various temperatures
          AdaptiveHistogram adhA0cv(adhA0.getRootBox()); // make adh for CV with root box from adhA0
          for (int cvI=1; cvI<K; cvI++)//K-fold CV loop
          { 
            gsl_ran_shuffle (r, p->data, N, sizeof(size_t));
            successfulInsertion = false;
            std::vector< subpavings::AdaptiveHistogram* > histsT;
            adhA0cv.clearAllHistData();//clear the cv histogram before insertion
            adhA0cv.mergeUp();//Merge the possibly multileaf cv histogram up to just root. 
            transformedDataV.clear(); transformedDataT.clear();//clear Cv containers
            for(size_t i=0; i<KofN; i++) transformedDataV.push_back(transformedData[gsl_permutation_get(p,i)]);
            for(size_t i=KofN; i<N; i++) transformedDataT.push_back(transformedData[gsl_permutation_get(p,i)]);
            successfulInsertion = adhA0cv.insertFromRVec(transformedDataT);//insert transformed data
            if (!successfulInsertion) throw std::runtime_error("Failed to insert transformed data");
	    /* some guesses for max points in a node to stop posterior queue */
            nTrain = adhA0cv.getRootCounter(); //cout << "nTrain = " << nTrain << endl; getchar();
	    size_t critSEB = static_cast<size_t>(std::log(static_cast<double>(nTrain)));//can be as low as 1
	    /* some guesses for maximum leaves we'll let SEB queue go to */
	    size_t maxLeavesSEB = nTrain/2;// / critSEB; // integer division
	    size_t maxLeavesCarving = maxLeavesSEB / 3; // integer division
	    SPSNodeMeasureVolMassMinus compCarving(nTrain);
	    AdaptiveHistogram::PrioritySplitQueueEvaluator evaluatorCarving(compCarving, maxLeavesCarving);
	    SPSNodeMeasureCount compSEB;
	    AdaptiveHistogram::PrioritySplitQueueEvaluator evaluatorSEB(compSEB, critSEB, maxLeavesSEB);
	    CarverSEB::findStartingPointsBest(adhA0cv, histsT, evaluatorCarving, evaluatorSEB, logPrior, 
						minPoints, chooseStarts, keep, stopOnMaxPosterior, 
						postFileName, checkPostFileNameBase, precPQ, seedStarts);
            PiecewiseConstantFunction pcfT(*histsT[0]);
            pcfT.smearZeroValues(0.0000001);
	    //assert (pcfT.getTotalIntegral() == cxsc::real(1.0));
            histsT[0]->clearAllHistData();//clear the data from training big burst
            histsT[0]->insertFromRVec(transformedDataV);//insert validation data
            HeldOutLkl += pcfT.getLogLikelihood(*histsT[0]);
            PiecewiseConstantFunction pcfV(*histsT[0]);
	    //if(pcfT.getTotalIntegral() != cxsc::real(1.0)) {cout << "433!!!"; getchar();}
            //histsT[0]->clearAllHistData();//clear the data from validation big burst
            //histsT[0]->mergeUp();//merge up to root
            HeldOutEmpiricalDeviation += pcfT.getL1Distance(pcfV);
            //cout << HeldOutLkl << '\t' << HeldOutEmpiricalDeviation << endl; getchar();
            //to free all the contents of histsT at the end
            for (size_t i = 0; i < histsT.size(); ++i)
            {
              if (NULL != histsT[i]) delete histsT[i];
              histsT[i] = NULL;
            }
          }
          //cout << "Avg HeldOutLkl = " << HeldOutLkl/double(K) << '\n' 
          //     << "Avg HeldOutEmpiricalDeviation = " << HeldOutEmpiricalDeviation/double(K) << endl; getchar();
          AvgHeldOutLkls.push_back(HeldOutLkl/double(K));
          AvgHeldOutEmpiricalDeviations.push_back(HeldOutEmpiricalDeviation/double(K));
          LocalTempIterations++;
        }
        while (LocalTempIterations<LocalMaxTempIterations);// && CVgain>0.1);
      TempIterations++;
      }
      while (TempIterations<MaxTempIterations);// && CVgain>0.1);
////////////////////////////////////////////////////////////////////////////////////////////////
          cout << Temperatures << endl;
          cout << AvgHeldOutLkls << endl << AvgHeldOutEmpiricalDeviations << endl;
          cout << "Temp Iteration Number " << TempIterations << endl; getchar();
          cout << "MaxTempIterations = " << MaxTempIterations << endl; getchar();

        vector<size_t> indtop(AvgHeldOutLkls.size());
        topk(AvgHeldOutLkls, indtop);
        t_opt = _double(Temperatures[indtop[0]]);
        AvgHeldOutLkls_opt = _double(AvgHeldOutLkls[indtop[0]]);

        gsl_permutation_free (p);
        gsl_rng_free (r);

        success=true;
        return success;
}
Example #22
0
//-----------------------------------------------------------------------
// optimizing over smoothing parameter Temp - 
// getting best histogram over parameter in [t_lo, t_hi] by max/minmising 
// a CV based score
//-----------------------------------------------------------------------
bool selectPriorByLv1OutCV (RVecData & Data, double t_lo, double t_hi,
				int LocalMaxTempIterations, int MaxTempIterations,
				RealVec & Lv1OutCVScores, vector<double> & Temperatures, 
				double & t_opt, double & Lv1OutCVScores_opt,
				size_t minPoints, double minVolume, int chooseStarts, int keep, 
				bool stopOnMaxPosterior, string postFileName, 
				string checkPostFileNameBase, string burstsFileBaseName, 
				bool printHist, int precPQ, 
				bool CarvingMaxPosterior, 
				unsigned long int seedStarts)
{
  bool success=false;
  int TempIterations=0;
  std::vector<double> LocalTemperatures;
     do{// outer temp iterations
          if (TempIterations!=0){
            std::vector<size_t> indtop(Lv1OutCVScores.size());
            topk(Lv1OutCVScores, indtop);
            double tBest =Temperatures[indtop[0]];
            double t2ndBest =Temperatures[indtop[1]];
            double t3rdBest =Temperatures[indtop[2]];
            double tWorst = max(abs(tBest-t2ndBest),abs(tBest-t3rdBest));
            t_lo = max(t_lo,tBest-tWorst); t_hi = tBest+tWorst;
//            cout << t_lo << " , " << t_hi << " : "<< tBest << " , " << t2ndBest << " , " << t3rdBest << endl; getchar();
            if (t_hi-t_lo<0.001){ 
		//|| abs(Lv1OutCVScores[indtop[0]]-Lv1OutCVScores[indtop[1]])<0.00001) {
              	cout << "reaching temp values < 0.001 or Lv1OutCVScores diff < 0.00001"<<endl; 
		getchar(); 
		break;
            }
          }
          double t_Delta=(t_hi-t_lo)/double(LocalMaxTempIterations-1);
          LocalTemperatures.clear();
          for(int i=0; i<LocalMaxTempIterations; i++){ 
                        Temperatures.push_back(t_lo+(double(i))*t_Delta);
                        LocalTemperatures.push_back(t_lo+(double(i))*t_Delta);
          }
        int LocalTempIterations=0;
        do
        {
          //LogTemperaturePrior logPrior(Temperatures[TempIterations]);//t_lo);
          
          //LogTemperaturePrior logPrior(LocalTemperatures[LocalTempIterations]);//t_lo);
          double temperatureNow = LocalTemperatures[LocalTempIterations];
	  seedStarts += TempIterations;
	  // a container for our histograms
  	  std::vector< subpavings::AdaptiveHistogram* > hists;
  	  // a container for our PCFs of histograms
  	  std::vector< subpavings::PiecewiseConstantFunction* > pcfs;
  	  bool succPQMCopt = false;

	  //ostringstream strs; strs << temperatureNow;
          //string burstsFileBaseNameNow = burstsFileBaseName+"_"+strs.str();
	  succPQMCopt = optPQMCAdapHist (Data, temperatureNow, hists, pcfs,
				minPoints, minVolume, chooseStarts, keep, 
				stopOnMaxPosterior, postFileName, 
				checkPostFileNameBase, burstsFileBaseName, printHist, precPQ, 
				CarvingMaxPosterior, seedStarts);

    	  real lv1outCVScore = pcfs[0]->getLeave1OutCVScore(*hists[0]);
          Lv1OutCVScores.push_back(-1.0*lv1outCVScore);// -1.0* so we want to max to be min
          LocalTempIterations++;
    	  //to free all the contents of pcfs at the end
    	  for (size_t i = 0; i < pcfs.size(); ++i) 
    	    { if (NULL != pcfs[i]) delete pcfs[i]; pcfs[i] = NULL;}
      	  //to free all the contents of hists at the end
    	  if(CarvingMaxPosterior)
    	  { for (size_t i = 0; i < hists.size(); ++i) 
              { if (NULL != hists[i]) delete hists[i]; hists[i] = NULL;}
          }    
        }
        while (LocalTempIterations<LocalMaxTempIterations);// && CVgain>0.1);
      TempIterations++;
      }
      while (TempIterations<MaxTempIterations);// && CVgain>0.1);
////////////////////////////////////////////////////////////////////////////////////////////////
          cout << "Temperatures:" << endl;
          cout << Temperatures << endl;
          cout << "- Lv1OutCVScores: (looking for maximum of -1.0*Lv1OutCVScores)" << endl;
          cout << Lv1OutCVScores << endl << endl;
          cout << "Temp Iteration Number " << TempIterations << endl; //getchar();
          cout << "MaxTempIterations = " << MaxTempIterations << endl; //getchar();

        vector<size_t> indtop(Lv1OutCVScores.size());
        topk(Lv1OutCVScores, indtop);
        t_opt = _double(Temperatures[indtop[0]]);
        Lv1OutCVScores_opt = _double(Lv1OutCVScores[indtop[0]]);

        success=true;
        return success;
}