TNodeColumn* StdMeshers_RadialPrism_3D::makeNodeColumn( TNode2ColumnMap& n2ColMap, const SMDS_MeshNode* outNode, const SMDS_MeshNode* inNode) { SMESHDS_Mesh * meshDS = myHelper->GetMeshDS(); int shapeID = myHelper->GetSubShapeID(); if ( myLayerPositions.empty() ) { gp_Pnt pIn = gpXYZ( inNode ), pOut = gpXYZ( outNode ); computeLayerPositions( pIn, pOut ); } int nbSegments = myLayerPositions.size() + 1; TNode2ColumnMap::iterator n_col = n2ColMap.insert( make_pair( outNode, TNodeColumn() )).first; TNodeColumn & column = n_col->second; column.resize( nbSegments + 1 ); column.front() = outNode; column.back() = inNode; gp_XYZ p1 = gpXYZ( outNode ); gp_XYZ p2 = gpXYZ( inNode ); for ( int z = 1; z < nbSegments; ++z ) { double r = myLayerPositions[ z - 1 ]; gp_XYZ p = ( 1 - r ) * p1 + r * p2; SMDS_MeshNode* n = meshDS->AddNode( p.X(), p.Y(), p.Z() ); meshDS->SetNodeInVolume( n, shapeID ); column[ z ] = n; } return & column; }
SMDS_MeshNode* SMESH_MesherHelper::AddNode(double x, double y, double z, int ID) { SMESHDS_Mesh * meshDS = GetMeshDS(); SMDS_MeshNode* node = 0; if ( ID ) node = meshDS->AddNodeWithID( x, y, z, ID ); else node = meshDS->AddNode( x, y, z ); if ( mySetElemOnShape && myShapeID > 0 ) { switch ( myShape.ShapeType() ) { case TopAbs_SOLID: meshDS->SetNodeInVolume( node, myShapeID); break; case TopAbs_SHELL: meshDS->SetNodeInVolume( node, myShapeID); break; case TopAbs_FACE: meshDS->SetNodeOnFace( node, myShapeID); break; case TopAbs_EDGE: meshDS->SetNodeOnEdge( node, myShapeID); break; case TopAbs_VERTEX: meshDS->SetNodeOnVertex( node, myShapeID); break; default: ; } } return node; }
//============================================================================= bool NETGENPlugin_Mesher::Compute() { #ifdef WNT netgen::MeshingParameters& mparams = netgen::GlobalMeshingParameters(); #else netgen::MeshingParameters& mparams = netgen::mparam; #endif MESSAGE("Compute with:\n" " max size = " << mparams.maxh << "\n" " segments per edge = " << mparams.segmentsperedge); MESSAGE("\n" " growth rate = " << mparams.grading << "\n" " elements per radius = " << mparams.curvaturesafety << "\n" " second order = " << mparams.secondorder << "\n" " quad allowed = " << mparams.quad); SMESH_ComputeErrorPtr error = SMESH_ComputeError::New(); nglib::Ng_Init(); // ------------------------- // Prepare OCC geometry // ------------------------- netgen::OCCGeometry occgeo; list< SMESH_subMesh* > meshedSM; PrepareOCCgeometry( occgeo, _shape, *_mesh, &meshedSM ); // ------------------------- // Generate the mesh // ------------------------- netgen::Mesh *ngMesh = NULL; SMESH_Comment comment; int err = 0; int nbInitNod = 0; int nbInitSeg = 0; int nbInitFac = 0; // vector of nodes in which node index == netgen ID vector< SMDS_MeshNode* > nodeVec; try { // ---------------- // compute 1D mesh // ---------------- // pass 1D simple parameters to NETGEN if ( _simpleHyp ) { if ( int nbSeg = _simpleHyp->GetNumberOfSegments() ) { // nb of segments mparams.segmentsperedge = nbSeg + 0.1; mparams.maxh = occgeo.boundingbox.Diam(); mparams.grading = 0.01; } else { // segment length mparams.segmentsperedge = 1; mparams.maxh = _simpleHyp->GetLocalLength(); } } // let netgen create ngMesh and calculate element size on not meshed shapes char *optstr = 0; int startWith = netgen::MESHCONST_ANALYSE; int endWith = netgen::MESHCONST_ANALYSE; err = netgen::OCCGenerateMesh(occgeo, ngMesh, startWith, endWith, optstr); if (err) comment << "Error in netgen::OCCGenerateMesh() at MESHCONST_ANALYSE step"; // fill ngMesh with nodes and elements of computed submeshes err = ! fillNgMesh(occgeo, *ngMesh, nodeVec, meshedSM); nbInitNod = ngMesh->GetNP(); nbInitSeg = ngMesh->GetNSeg(); nbInitFac = ngMesh->GetNSE(); // compute mesh if (!err) { startWith = endWith = netgen::MESHCONST_MESHEDGES; err = netgen::OCCGenerateMesh(occgeo, ngMesh, startWith, endWith, optstr); if (err) comment << "Error in netgen::OCCGenerateMesh() at 1D mesh generation"; } // --------------------- // compute surface mesh // --------------------- if (!err) { // pass 2D simple parameters to NETGEN if ( _simpleHyp ) { if ( double area = _simpleHyp->GetMaxElementArea() ) { // face area mparams.maxh = sqrt(2. * area/sqrt(3.0)); mparams.grading = 0.4; // moderate size growth } else { // length from edges double length = 0; TopTools_MapOfShape tmpMap; for ( TopExp_Explorer exp( _shape, TopAbs_EDGE ); exp.More(); exp.Next() ) if( tmpMap.Add(exp.Current()) ) length += SMESH_Algo::EdgeLength( TopoDS::Edge( exp.Current() )); if ( ngMesh->GetNSeg() ) { // we have to multiply length by 2 since for each TopoDS_Edge there // are double set of NETGEN edges or, in other words, we have to // divide ngMesh->GetNSeg() on 2. mparams.maxh = 2*length / ngMesh->GetNSeg(); } else mparams.maxh = 1000; mparams.grading = 0.2; // slow size growth } mparams.maxh = min( mparams.maxh, occgeo.boundingbox.Diam()/2 ); ngMesh->SetGlobalH (mparams.maxh); netgen::Box<3> bb = occgeo.GetBoundingBox(); bb.Increase (bb.Diam()/20); ngMesh->SetLocalH (bb.PMin(), bb.PMax(), mparams.grading); } // let netgen compute 2D mesh startWith = netgen::MESHCONST_MESHSURFACE; endWith = _optimize ? netgen::MESHCONST_OPTSURFACE : netgen::MESHCONST_MESHSURFACE; err = netgen::OCCGenerateMesh(occgeo, ngMesh, startWith, endWith, optstr); if (err) comment << "Error in netgen::OCCGenerateMesh() at surface mesh generation"; } // --------------------- // generate volume mesh // --------------------- if (!err && _isVolume) { // add ng face descriptors of meshed faces std::map< int, std::pair<int,int> >::iterator fId_soIds = _faceDescriptors.begin(); for ( ; fId_soIds != _faceDescriptors.end(); ++fId_soIds ) { int faceID = fId_soIds->first; int solidID1 = fId_soIds->second.first; int solidID2 = fId_soIds->second.second; ngMesh->AddFaceDescriptor (netgen::FaceDescriptor(faceID, solidID1, solidID2, 0)); } // pass 3D simple parameters to NETGEN const NETGENPlugin_SimpleHypothesis_3D* simple3d = dynamic_cast< const NETGENPlugin_SimpleHypothesis_3D* > ( _simpleHyp ); if ( simple3d ) { if ( double vol = simple3d->GetMaxElementVolume() ) { // max volume mparams.maxh = pow( 72, 1/6. ) * pow( vol, 1/3. ); mparams.maxh = min( mparams.maxh, occgeo.boundingbox.Diam()/2 ); } else { // length from faces mparams.maxh = ngMesh->AverageH(); } // netgen::ARRAY<double> maxhdom; // maxhdom.SetSize (occgeo.NrSolids()); // maxhdom = mparams.maxh; // ngMesh->SetMaxHDomain (maxhdom); ngMesh->SetGlobalH (mparams.maxh); mparams.grading = 0.4; ngMesh->CalcLocalH(); } // let netgen compute 3D mesh startWith = netgen::MESHCONST_MESHVOLUME; endWith = _optimize ? netgen::MESHCONST_OPTVOLUME : netgen::MESHCONST_MESHVOLUME; err = netgen::OCCGenerateMesh(occgeo, ngMesh, startWith, endWith, optstr); if (err) comment << "Error in netgen::OCCGenerateMesh()"; } if (!err && mparams.secondorder > 0) { netgen::OCCRefinementSurfaces ref (occgeo); ref.MakeSecondOrder (*ngMesh); } } catch (netgen::NgException exc) { error->myName = err = COMPERR_ALGO_FAILED; comment << exc.What(); } int nbNod = ngMesh->GetNP(); int nbSeg = ngMesh->GetNSeg(); int nbFac = ngMesh->GetNSE(); int nbVol = ngMesh->GetNE(); MESSAGE((err ? "Mesh Generation failure" : "End of Mesh Generation") << ", nb nodes: " << nbNod << ", nb segments: " << nbSeg << ", nb faces: " << nbFac << ", nb volumes: " << nbVol); // ----------------------------------------------------------- // Feed back the SMESHDS with the generated Nodes and Elements // ----------------------------------------------------------- SMESHDS_Mesh* meshDS = _mesh->GetMeshDS(); bool isOK = ( !err && (_isVolume ? (nbVol > 0) : (nbFac > 0)) ); if ( true /*isOK*/ ) // get whatever built { // map of nodes assigned to submeshes NCollection_Map<int> pindMap; // create and insert nodes into nodeVec nodeVec.resize( nbNod + 1 ); int i; for (i = nbInitNod+1; i <= nbNod /*&& isOK*/; ++i ) { const netgen::MeshPoint& ngPoint = ngMesh->Point(i); SMDS_MeshNode* node = NULL; bool newNodeOnVertex = false; TopoDS_Vertex aVert; if (i-nbInitNod <= occgeo.vmap.Extent()) { // point on vertex aVert = TopoDS::Vertex(occgeo.vmap(i-nbInitNod)); SMESHDS_SubMesh * submesh = meshDS->MeshElements(aVert); if (submesh) { SMDS_NodeIteratorPtr it = submesh->GetNodes(); if (it->more()) { node = const_cast<SMDS_MeshNode*> (it->next()); pindMap.Add(i); } } if (!node) newNodeOnVertex = true; } if (!node) node = meshDS->AddNode(ngPoint.X(), ngPoint.Y(), ngPoint.Z()); if (!node) { MESSAGE("Cannot create a mesh node"); if ( !comment.size() ) comment << "Cannot create a mesh node"; nbSeg = nbFac = nbVol = isOK = 0; break; } nodeVec.at(i) = node; if (newNodeOnVertex) { // point on vertex meshDS->SetNodeOnVertex(node, aVert); pindMap.Add(i); } } // create mesh segments along geometric edges NCollection_Map<Link> linkMap; for (i = nbInitSeg+1; i <= nbSeg/* && isOK*/; ++i ) { const netgen::Segment& seg = ngMesh->LineSegment(i); Link link(seg.p1, seg.p2); if (linkMap.Contains(link)) continue; linkMap.Add(link); TopoDS_Edge aEdge; int pinds[3] = { seg.p1, seg.p2, seg.pmid }; int nbp = 0; double param2 = 0; for (int j=0; j < 3; ++j) { int pind = pinds[j]; if (pind <= 0) continue; ++nbp; double param; if (j < 2) { if (aEdge.IsNull()) { int aGeomEdgeInd = seg.epgeominfo[j].edgenr; if (aGeomEdgeInd > 0 && aGeomEdgeInd <= occgeo.emap.Extent()) aEdge = TopoDS::Edge(occgeo.emap(aGeomEdgeInd)); } param = seg.epgeominfo[j].dist; param2 += param; } else param = param2 * 0.5; if (pind <= nbInitNod || pindMap.Contains(pind)) continue; if (!aEdge.IsNull()) { meshDS->SetNodeOnEdge(nodeVec.at(pind), aEdge, param); pindMap.Add(pind); } } SMDS_MeshEdge* edge; if (nbp < 3) // second order ? edge = meshDS->AddEdge(nodeVec.at(pinds[0]), nodeVec.at(pinds[1])); else edge = meshDS->AddEdge(nodeVec.at(pinds[0]), nodeVec.at(pinds[1]), nodeVec.at(pinds[2])); if (!edge) { if ( !comment.size() ) comment << "Cannot create a mesh edge"; MESSAGE("Cannot create a mesh edge"); nbSeg = nbFac = nbVol = isOK = 0; break; } if (!aEdge.IsNull()) meshDS->SetMeshElementOnShape(edge, aEdge); } // create mesh faces along geometric faces for (i = nbInitFac+1; i <= nbFac/* && isOK*/; ++i ) { const netgen::Element2d& elem = ngMesh->SurfaceElement(i); int aGeomFaceInd = elem.GetIndex(); TopoDS_Face aFace; if (aGeomFaceInd > 0 && aGeomFaceInd <= occgeo.fmap.Extent()) aFace = TopoDS::Face(occgeo.fmap(aGeomFaceInd)); vector<SMDS_MeshNode*> nodes; for (int j=1; j <= elem.GetNP(); ++j) { int pind = elem.PNum(j); SMDS_MeshNode* node = nodeVec.at(pind); nodes.push_back(node); if (pind <= nbInitNod || pindMap.Contains(pind)) continue; if (!aFace.IsNull()) { const netgen::PointGeomInfo& pgi = elem.GeomInfoPi(j); meshDS->SetNodeOnFace(node, aFace, pgi.u, pgi.v); pindMap.Add(pind); } } SMDS_MeshFace* face = NULL; switch (elem.GetType()) { case netgen::TRIG: face = meshDS->AddFace(nodes[0],nodes[1],nodes[2]); break; case netgen::QUAD: face = meshDS->AddFace(nodes[0],nodes[1],nodes[2],nodes[3]); break; case netgen::TRIG6: face = meshDS->AddFace(nodes[0],nodes[1],nodes[2],nodes[5],nodes[3],nodes[4]); break; case netgen::QUAD8: face = meshDS->AddFace(nodes[0],nodes[1],nodes[2],nodes[3], nodes[4],nodes[7],nodes[5],nodes[6]); break; default: MESSAGE("NETGEN created a face of unexpected type, ignoring"); continue; } if (!face) { if ( !comment.size() ) comment << "Cannot create a mesh face"; MESSAGE("Cannot create a mesh face"); nbSeg = nbFac = nbVol = isOK = 0; break; } if (!aFace.IsNull()) meshDS->SetMeshElementOnShape(face, aFace); } // create tetrahedra for (i = 1; i <= nbVol/* && isOK*/; ++i) { const netgen::Element& elem = ngMesh->VolumeElement(i); int aSolidInd = elem.GetIndex(); TopoDS_Solid aSolid; if (aSolidInd > 0 && aSolidInd <= occgeo.somap.Extent()) aSolid = TopoDS::Solid(occgeo.somap(aSolidInd)); vector<SMDS_MeshNode*> nodes; for (int j=1; j <= elem.GetNP(); ++j) { int pind = elem.PNum(j); SMDS_MeshNode* node = nodeVec.at(pind); nodes.push_back(node); if (pind <= nbInitNod || pindMap.Contains(pind)) continue; if (!aSolid.IsNull()) { // point in solid meshDS->SetNodeInVolume(node, aSolid); pindMap.Add(pind); } } SMDS_MeshVolume* vol = NULL; switch (elem.GetType()) { case netgen::TET: vol = meshDS->AddVolume(nodes[0],nodes[1],nodes[2],nodes[3]); break; case netgen::TET10: vol = meshDS->AddVolume(nodes[0],nodes[1],nodes[2],nodes[3], nodes[4],nodes[7],nodes[5],nodes[6],nodes[8],nodes[9]); break; default: MESSAGE("NETGEN created a volume of unexpected type, ignoring"); continue; } if (!vol) { if ( !comment.size() ) comment << "Cannot create a mesh volume"; MESSAGE("Cannot create a mesh volume"); nbSeg = nbFac = nbVol = isOK = 0; break; } if (!aSolid.IsNull()) meshDS->SetMeshElementOnShape(vol, aSolid); } } if ( error->IsOK() && ( !isOK || comment.size() > 0 )) error->myName = COMPERR_ALGO_FAILED; if ( !comment.empty() ) error->myComment = comment; // set bad compute error to subshapes of all failed subshapes shapes if ( !error->IsOK() && err ) { for (int i = 1; i <= occgeo.fmap.Extent(); i++) { int status = occgeo.facemeshstatus[i-1]; if (status == 1 ) continue; if ( SMESH_subMesh* sm = _mesh->GetSubMeshContaining( occgeo.fmap( i ))) { SMESH_ComputeErrorPtr& smError = sm->GetComputeError(); if ( !smError || smError->IsOK() ) { if ( status == -1 ) smError.reset( new SMESH_ComputeError( error->myName, error->myComment )); else smError.reset( new SMESH_ComputeError( COMPERR_ALGO_FAILED, "Ignored" )); } } } } nglib::Ng_DeleteMesh((nglib::Ng_Mesh*)ngMesh); nglib::Ng_Exit(); RemoveTmpFiles(); return error->IsOK(); }
bool NETGENPlugin_NETGEN_3D::Compute(SMESH_Mesh& aMesh, const TopoDS_Shape& aShape) { MESSAGE("NETGENPlugin_NETGEN_3D::Compute with maxElmentsize = " << _maxElementVolume); SMESHDS_Mesh* meshDS = aMesh.GetMeshDS(); const int invalid_ID = -1; SMESH::Controls::Area areaControl; SMESH::Controls::TSequenceOfXYZ nodesCoords; // ------------------------------------------------------------------- // get triangles on aShell and make a map of nodes to Netgen node IDs // ------------------------------------------------------------------- SMESH_MesherHelper helper(aMesh); SMESH_MesherHelper* myTool = &helper; bool _quadraticMesh = myTool->IsQuadraticSubMesh(aShape); typedef map< const SMDS_MeshNode*, int, TIDCompare > TNodeToIDMap; TNodeToIDMap nodeToNetgenID; list< const SMDS_MeshElement* > triangles; list< bool > isReversed; // orientation of triangles TopAbs_ShapeEnum mainType = aMesh.GetShapeToMesh().ShapeType(); bool checkReverse = ( mainType == TopAbs_COMPOUND || mainType == TopAbs_COMPSOLID ); // for the degeneraged edge: ignore all but one node on it; // map storing ids of degen edges and vertices and their netgen id: map< int, int* > degenShapeIdToPtrNgId; map< int, int* >::iterator shId_ngId; list< int > degenNgIds; StdMeshers_QuadToTriaAdaptor Adaptor; Adaptor.Compute(aMesh,aShape); for (TopExp_Explorer exp(aShape,TopAbs_FACE); exp.More(); exp.Next()) { const TopoDS_Shape& aShapeFace = exp.Current(); const SMESHDS_SubMesh * aSubMeshDSFace = meshDS->MeshElements( aShapeFace ); if ( aSubMeshDSFace ) { bool isRev = false; if ( checkReverse && helper.NbAncestors(aShapeFace, aMesh, aShape.ShapeType()) > 1 ) // IsReversedSubMesh() can work wrong on strongly curved faces, // so we use it as less as possible isRev = SMESH_Algo::IsReversedSubMesh( TopoDS::Face(aShapeFace), meshDS ); SMDS_ElemIteratorPtr iteratorElem = aSubMeshDSFace->GetElements(); while ( iteratorElem->more() ) // loop on elements on a face { // check element const SMDS_MeshElement* elem = iteratorElem->next(); if ( !elem ) return error( COMPERR_BAD_INPUT_MESH, "Null element encounters"); bool isTraingle = ( elem->NbNodes()==3 || (_quadraticMesh && elem->NbNodes()==6 )); if ( !isTraingle ) { //return error( COMPERR_BAD_INPUT_MESH, // SMESH_Comment("Not triangle element ")<<elem->GetID()); // using adaptor const list<const SMDS_FaceOfNodes*>* faces = Adaptor.GetTriangles(elem); if(faces==0) { return error( COMPERR_BAD_INPUT_MESH, SMESH_Comment("Not triangles in adaptor for element ")<<elem->GetID()); } list<const SMDS_FaceOfNodes*>::const_iterator itf = faces->begin(); for(; itf!=faces->end(); itf++ ) { triangles.push_back( (*itf) ); isReversed.push_back( isRev ); // put triange's nodes to nodeToNetgenID map SMDS_ElemIteratorPtr triangleNodesIt = (*itf)->nodesIterator(); while ( triangleNodesIt->more() ) { const SMDS_MeshNode * node = static_cast<const SMDS_MeshNode *>(triangleNodesIt->next()); if(myTool->IsMedium(node)) continue; nodeToNetgenID.insert( make_pair( node, invalid_ID )); } } } else { // keep a triangle triangles.push_back( elem ); isReversed.push_back( isRev ); // put elem nodes to nodeToNetgenID map SMDS_ElemIteratorPtr triangleNodesIt = elem->nodesIterator(); while ( triangleNodesIt->more() ) { const SMDS_MeshNode * node = static_cast<const SMDS_MeshNode *>(triangleNodesIt->next()); if(myTool->IsMedium(node)) continue; nodeToNetgenID.insert( make_pair( node, invalid_ID )); } } #ifdef _DEBUG_ // check if a trainge is degenerated areaControl.GetPoints( elem, nodesCoords ); double area = areaControl.GetValue( nodesCoords ); if ( area <= DBL_MIN ) { MESSAGE( "Warning: Degenerated " << elem ); } #endif } // look for degeneraged edges and vetices for (TopExp_Explorer expE(aShapeFace,TopAbs_EDGE); expE.More(); expE.Next()) { TopoDS_Edge aShapeEdge = TopoDS::Edge( expE.Current() ); if ( BRep_Tool::Degenerated( aShapeEdge )) { degenNgIds.push_back( invalid_ID ); int* ptrIdOnEdge = & degenNgIds.back(); // remember edge id int edgeID = meshDS->ShapeToIndex( aShapeEdge ); degenShapeIdToPtrNgId.insert( make_pair( edgeID, ptrIdOnEdge )); // remember vertex id int vertexID = meshDS->ShapeToIndex( TopExp::FirstVertex( aShapeEdge )); degenShapeIdToPtrNgId.insert( make_pair( vertexID, ptrIdOnEdge )); } } } } // --------------------------------- // Feed the Netgen with surface mesh // --------------------------------- int Netgen_NbOfNodes = 0; int Netgen_param2ndOrder = 0; double Netgen_paramFine = 1.; double Netgen_paramSize = pow( 72, 1/6. ) * pow( _maxElementVolume, 1/3. ); double Netgen_point[3]; int Netgen_triangle[3]; int Netgen_tetrahedron[4]; Ng_Init(); Ng_Mesh * Netgen_mesh = Ng_NewMesh(); // set nodes and remember thier netgen IDs bool isDegen = false, hasDegen = !degenShapeIdToPtrNgId.empty(); TNodeToIDMap::iterator n_id = nodeToNetgenID.begin(); for ( ; n_id != nodeToNetgenID.end(); ++n_id ) { const SMDS_MeshNode* node = n_id->first; // ignore nodes on degenerated edge if ( hasDegen ) { int shapeId = node->GetPosition()->GetShapeId(); shId_ngId = degenShapeIdToPtrNgId.find( shapeId ); isDegen = ( shId_ngId != degenShapeIdToPtrNgId.end() ); if ( isDegen && *(shId_ngId->second) != invalid_ID ) { n_id->second = *(shId_ngId->second); continue; } } Netgen_point [ 0 ] = node->X(); Netgen_point [ 1 ] = node->Y(); Netgen_point [ 2 ] = node->Z(); Ng_AddPoint(Netgen_mesh, Netgen_point); n_id->second = ++Netgen_NbOfNodes; // set netgen ID if ( isDegen ) // all nodes on a degen edge get one netgen ID *(shId_ngId->second) = n_id->second; } // set triangles list< const SMDS_MeshElement* >::iterator tria = triangles.begin(); list< bool >::iterator reverse = isReversed.begin(); for ( ; tria != triangles.end(); ++tria, ++reverse ) { int i = 0; SMDS_ElemIteratorPtr triangleNodesIt = (*tria)->nodesIterator(); while ( triangleNodesIt->more() ) { const SMDS_MeshNode * node = static_cast<const SMDS_MeshNode *>(triangleNodesIt->next()); if(myTool->IsMedium(node)) continue; Netgen_triangle[ *reverse ? 2 - i : i ] = nodeToNetgenID[ node ]; ++i; } if ( !hasDegen || // ignore degenerated triangles, they have 2 or 3 same ids (Netgen_triangle[0] != Netgen_triangle[1] && Netgen_triangle[0] != Netgen_triangle[2] && Netgen_triangle[2] != Netgen_triangle[1] )) { Ng_AddSurfaceElement(Netgen_mesh, NG_TRIG, Netgen_triangle); } } // ------------------------- // Generate the volume mesh // ------------------------- Ng_Meshing_Parameters Netgen_param; Netgen_param.secondorder = Netgen_param2ndOrder; Netgen_param.fineness = Netgen_paramFine; Netgen_param.maxh = Netgen_paramSize; Ng_Result status; try { #if (OCC_VERSION_MAJOR << 16 | OCC_VERSION_MINOR << 8 | OCC_VERSION_MAINTENANCE) > 0x060100 OCC_CATCH_SIGNALS; #endif status = Ng_GenerateVolumeMesh(Netgen_mesh, &Netgen_param); } catch (Standard_Failure& exc) { error(COMPERR_OCC_EXCEPTION, exc.GetMessageString()); status = NG_VOLUME_FAILURE; } catch (...) { error("Exception in Ng_GenerateVolumeMesh()"); status = NG_VOLUME_FAILURE; } if ( GetComputeError()->IsOK() ) { switch ( status ) { case NG_SURFACE_INPUT_ERROR: error( status, "NG_SURFACE_INPUT_ERROR"); case NG_VOLUME_FAILURE: error( status, "NG_VOLUME_FAILURE"); case NG_STL_INPUT_ERROR: error( status, "NG_STL_INPUT_ERROR"); case NG_SURFACE_FAILURE: error( status, "NG_SURFACE_FAILURE"); case NG_FILE_NOT_FOUND: error( status, "NG_FILE_NOT_FOUND"); }; } int Netgen_NbOfNodesNew = Ng_GetNP(Netgen_mesh); int Netgen_NbOfTetra = Ng_GetNE(Netgen_mesh); MESSAGE("End of Volume Mesh Generation. status=" << status << ", nb new nodes: " << Netgen_NbOfNodesNew - Netgen_NbOfNodes << ", nb tetra: " << Netgen_NbOfTetra); // ------------------------------------------------------------------- // Feed back the SMESHDS with the generated Nodes and Volume Elements // ------------------------------------------------------------------- bool isOK = ( /*status == NG_OK &&*/ Netgen_NbOfTetra > 0 );// get whatever built if ( isOK ) { // vector of nodes in which node index == netgen ID vector< const SMDS_MeshNode* > nodeVec ( Netgen_NbOfNodesNew + 1 ); // insert old nodes into nodeVec for ( n_id = nodeToNetgenID.begin(); n_id != nodeToNetgenID.end(); ++n_id ) { nodeVec.at( n_id->second ) = n_id->first; } // create and insert new nodes into nodeVec int nodeIndex = Netgen_NbOfNodes + 1; int shapeID = meshDS->ShapeToIndex( aShape ); for ( ; nodeIndex <= Netgen_NbOfNodesNew; ++nodeIndex ) { Ng_GetPoint( Netgen_mesh, nodeIndex, Netgen_point ); SMDS_MeshNode * node = meshDS->AddNode(Netgen_point[0], Netgen_point[1], Netgen_point[2]); meshDS->SetNodeInVolume(node, shapeID); nodeVec.at(nodeIndex) = node; } // create tetrahedrons for ( int elemIndex = 1; elemIndex <= Netgen_NbOfTetra; ++elemIndex ) { Ng_GetVolumeElement(Netgen_mesh, elemIndex, Netgen_tetrahedron); SMDS_MeshVolume * elt = myTool->AddVolume (nodeVec.at( Netgen_tetrahedron[0] ), nodeVec.at( Netgen_tetrahedron[1] ), nodeVec.at( Netgen_tetrahedron[2] ), nodeVec.at( Netgen_tetrahedron[3] )); meshDS->SetMeshElementOnShape(elt, shapeID ); } } Ng_DeleteMesh(Netgen_mesh); Ng_Exit(); NETGENPlugin_Mesher::RemoveTmpFiles(); return (status == NG_OK); }
/*! * Special function for search or creation medium node */ const SMDS_MeshNode* SMESH_MesherHelper::GetMediumNode(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, bool force3d) { TopAbs_ShapeEnum shapeType = myShape.IsNull() ? TopAbs_SHAPE : myShape.ShapeType(); NLink link(( n1 < n2 ? n1 : n2 ), ( n1 < n2 ? n2 : n1 )); ItNLinkNode itLN = myNLinkNodeMap.find( link ); if ( itLN != myNLinkNodeMap.end() ) { return (*itLN).second; } else { // create medium node SMDS_MeshNode* n12; SMESHDS_Mesh* meshDS = GetMeshDS(); int faceID = -1, edgeID = -1; const SMDS_PositionPtr Pos1 = n1->GetPosition(); const SMDS_PositionPtr Pos2 = n2->GetPosition(); if( myShape.IsNull() ) { if( Pos1->GetTypeOfPosition()==SMDS_TOP_FACE ) { faceID = Pos1->GetShapeId(); } else if( Pos2->GetTypeOfPosition()==SMDS_TOP_FACE ) { faceID = Pos2->GetShapeId(); } if( Pos1->GetTypeOfPosition()==SMDS_TOP_EDGE ) { edgeID = Pos1->GetShapeId(); } if( Pos2->GetTypeOfPosition()==SMDS_TOP_EDGE ) { edgeID = Pos2->GetShapeId(); } } if(!force3d) { // we try to create medium node using UV parameters of // nodes, else - medium between corresponding 3d points if(faceID>-1 || shapeType == TopAbs_FACE) { // obtaining a face and 2d points for nodes TopoDS_Face F; if( myShape.IsNull() ) F = TopoDS::Face(meshDS->IndexToShape(faceID)); else { F = TopoDS::Face(myShape); faceID = myShapeID; } gp_XY p1 = GetNodeUV(F,n1,n2); gp_XY p2 = GetNodeUV(F,n2,n1); if ( IsDegenShape( Pos1->GetShapeId() )) p1.SetCoord( myParIndex, p2.Coord( myParIndex )); else if ( IsDegenShape( Pos2->GetShapeId() )) p2.SetCoord( myParIndex, p1.Coord( myParIndex )); //checking if surface is periodic Handle(Geom_Surface) S = BRep_Tool::Surface(F); Standard_Real UF,UL,VF,VL; S->Bounds(UF,UL,VF,VL); Standard_Real u,v; Standard_Boolean isUPeriodic = S->IsUPeriodic(); if(isUPeriodic) { Standard_Real UPeriod = S->UPeriod(); Standard_Real p2x = p2.X()+ShapeAnalysis::AdjustByPeriod(p2.X(),p1.X(),UPeriod); Standard_Real pmid = (p1.X()+p2x)/2.; u = pmid+ShapeAnalysis::AdjustToPeriod(pmid,UF,UL); } else u= (p1.X()+p2.X())/2.; Standard_Boolean isVPeriodic = S->IsVPeriodic(); if(isVPeriodic) { Standard_Real VPeriod = S->VPeriod(); Standard_Real p2y = p2.Y()+ShapeAnalysis::AdjustByPeriod(p2.Y(),p1.Y(),VPeriod); Standard_Real pmid = (p1.Y()+p2y)/2.; v = pmid+ShapeAnalysis::AdjustToPeriod(pmid,VF,VL); } else v = (p1.Y()+p2.Y())/2.; gp_Pnt P = S->Value(u, v); n12 = meshDS->AddNode(P.X(), P.Y(), P.Z()); meshDS->SetNodeOnFace(n12, faceID, u, v); myNLinkNodeMap.insert(NLinkNodeMap::value_type(link,n12)); return n12; } if (edgeID>-1 || shapeType == TopAbs_EDGE) { TopoDS_Edge E; if( myShape.IsNull() ) E = TopoDS::Edge(meshDS->IndexToShape(edgeID)); else { E = TopoDS::Edge(myShape); edgeID = myShapeID; } double p1 = GetNodeU(E,n1); double p2 = GetNodeU(E,n2); double f,l; Handle(Geom_Curve) C = BRep_Tool::Curve(E, f, l); if(!C.IsNull()) { Standard_Boolean isPeriodic = C->IsPeriodic(); double u; if(isPeriodic) { Standard_Real Period = C->Period(); Standard_Real p = p2+ShapeAnalysis::AdjustByPeriod(p2,p1,Period); Standard_Real pmid = (p1+p)/2.; u = pmid+ShapeAnalysis::AdjustToPeriod(pmid,C->FirstParameter(),C->LastParameter()); } else u = (p1+p2)/2.; gp_Pnt P = C->Value( u ); n12 = meshDS->AddNode(P.X(), P.Y(), P.Z()); meshDS->SetNodeOnEdge(n12, edgeID, u); myNLinkNodeMap.insert(NLinkNodeMap::value_type(link,n12)); return n12; } } } // 3d variant double x = ( n1->X() + n2->X() )/2.; double y = ( n1->Y() + n2->Y() )/2.; double z = ( n1->Z() + n2->Z() )/2.; n12 = meshDS->AddNode(x,y,z); if(edgeID>-1) meshDS->SetNodeOnEdge(n12, edgeID); else if(faceID>-1) meshDS->SetNodeOnFace(n12, faceID); else meshDS->SetNodeInVolume(n12, myShapeID); myNLinkNodeMap.insert(NLinkNodeMap::value_type(link,n12)); return n12; } }
bool StdMeshers_Projection_3D::Compute(SMESH_Mesh& aMesh, const TopoDS_Shape& aShape) { if ( !_sourceHypo ) return false; SMESH_Mesh * srcMesh = _sourceHypo->GetSourceMesh(); SMESH_Mesh * tgtMesh = & aMesh; if ( !srcMesh ) srcMesh = tgtMesh; SMESHDS_Mesh * srcMeshDS = srcMesh->GetMeshDS(); SMESHDS_Mesh * tgtMeshDS = tgtMesh->GetMeshDS(); // get shell from shape3D TopoDS_Shell srcShell, tgtShell; TopExp_Explorer exp( _sourceHypo->GetSource3DShape(), TopAbs_SHELL ); int nbShell; for ( nbShell = 0; exp.More(); exp.Next(), ++nbShell ) srcShell = TopoDS::Shell( exp.Current() ); if ( nbShell != 1 ) return error(COMPERR_BAD_SHAPE, SMESH_Comment("Source shape must have 1 shell but not ") << nbShell); exp.Init( aShape, TopAbs_SHELL ); for ( nbShell = 0; exp.More(); exp.Next(), ++nbShell ) tgtShell = TopoDS::Shell( exp.Current() ); if ( nbShell != 1 ) return error(COMPERR_BAD_SHAPE, SMESH_Comment("Target shape must have 1 shell but not ") << nbShell); // Check that shapes are blocks if ( TAssocTool::Count( tgtShell, TopAbs_FACE , 1 ) != 6 || TAssocTool::Count( tgtShell, TopAbs_EDGE , 1 ) != 12 || TAssocTool::Count( tgtShell, TopAbs_WIRE , 1 ) != 6 ) return error(COMPERR_BAD_SHAPE, "Target shape is not a block"); if ( TAssocTool::Count( srcShell, TopAbs_FACE , 1 ) != 6 || TAssocTool::Count( srcShell, TopAbs_EDGE , 1 ) != 12 || TAssocTool::Count( srcShell, TopAbs_WIRE , 1 ) != 6 ) return error(COMPERR_BAD_SHAPE, "Source shape is not a block"); // Assure that mesh on a source shape is computed SMESH_subMesh* srcSubMesh = srcMesh->GetSubMesh( _sourceHypo->GetSource3DShape() ); //SMESH_subMesh* tgtSubMesh = tgtMesh->GetSubMesh( aShape ); if ( tgtMesh == srcMesh && !aShape.IsSame( _sourceHypo->GetSource3DShape() )) { if ( !TAssocTool::MakeComputed( srcSubMesh )) return error(COMPERR_BAD_INPUT_MESH,"Source mesh not computed"); } else { if ( !srcSubMesh->IsMeshComputed() ) return error(COMPERR_BAD_INPUT_MESH,"Source mesh not computed"); } // Find 2 pairs of corresponding vertices TopoDS_Vertex tgtV000, tgtV100, srcV000, srcV100; TAssocTool::TShapeShapeMap shape2ShapeMap; if ( _sourceHypo->HasVertexAssociation() ) { tgtV000 = _sourceHypo->GetTargetVertex(1); tgtV100 = _sourceHypo->GetTargetVertex(2); srcV000 = _sourceHypo->GetSourceVertex(1); srcV100 = _sourceHypo->GetSourceVertex(2); } else { if ( !TAssocTool::FindSubShapeAssociation( tgtShell, tgtMesh, srcShell, srcMesh, shape2ShapeMap) ) return error(COMPERR_BAD_SHAPE,"Topology of source and target shapes seems different" ); exp.Init( tgtShell, TopAbs_EDGE ); TopExp::Vertices( TopoDS::Edge( exp.Current() ), tgtV000, tgtV100 ); if ( !shape2ShapeMap.IsBound( tgtV000 ) || !shape2ShapeMap.IsBound( tgtV100 )) return error("Association of subshapes failed" ); srcV000 = TopoDS::Vertex( shape2ShapeMap( tgtV000 )); srcV100 = TopoDS::Vertex( shape2ShapeMap( tgtV100 )); if ( !TAssocTool::IsSubShape( srcV000, srcShell ) || !TAssocTool::IsSubShape( srcV100, srcShell )) return error("Incorrect association of subshapes" ); } // Load 2 SMESH_Block's with src and tgt shells SMESH_Block srcBlock, tgtBlock; TopTools_IndexedMapOfOrientedShape scrShapes, tgtShapes; if ( !tgtBlock.LoadBlockShapes( tgtShell, tgtV000, tgtV100, tgtShapes )) return error(COMPERR_BAD_SHAPE, "Can't detect block subshapes. Not a block?"); if ( !srcBlock.LoadBlockShapes( srcShell, srcV000, srcV100, scrShapes )) return error(COMPERR_BAD_SHAPE, "Can't detect block subshapes. Not a block?"); // Find matching nodes of src and tgt shells TNodeNodeMap src2tgtNodeMap; for ( int fId = SMESH_Block::ID_FirstF; fId < SMESH_Block::ID_Shell; ++fId ) { // Corresponding subshapes TopoDS_Face srcFace = TopoDS::Face( scrShapes( fId )); TopoDS_Face tgtFace = TopoDS::Face( tgtShapes( fId )); if ( _sourceHypo->HasVertexAssociation() ) { // associate face subshapes shape2ShapeMap.Clear(); vector< int > edgeIdVec; SMESH_Block::GetFaceEdgesIDs( fId, edgeIdVec ); for ( int i = 0; i < edgeIdVec.size(); ++i ) { int eID = edgeIdVec[ i ]; shape2ShapeMap.Bind( tgtShapes( eID ), scrShapes( eID )); if ( i < 2 ) { vector< int > vertexIdVec; SMESH_Block::GetEdgeVertexIDs( eID, vertexIdVec ); shape2ShapeMap.Bind( tgtShapes( vertexIdVec[0] ), scrShapes( vertexIdVec[0] )); shape2ShapeMap.Bind( tgtShapes( vertexIdVec[1] ), scrShapes( vertexIdVec[1] )); } } } // Find matching nodes of tgt and src faces TNodeNodeMap faceMatchingNodes; if ( ! TAssocTool::FindMatchingNodesOnFaces( srcFace, srcMesh, tgtFace, tgtMesh, shape2ShapeMap, faceMatchingNodes )) return error(COMPERR_BAD_INPUT_MESH,SMESH_Comment("Mesh on faces #") << srcMeshDS->ShapeToIndex( srcFace ) << " and " << tgtMeshDS->ShapeToIndex( tgtFace ) << " seems different" ); // put found matching nodes of 2 faces to the global map src2tgtNodeMap.insert( faceMatchingNodes.begin(), faceMatchingNodes.end() ); } // ------------------ // Make mesh // ------------------ SMDS_VolumeTool volTool; SMESH_MesherHelper helper( *tgtMesh ); helper.IsQuadraticSubMesh( aShape ); SMESHDS_SubMesh* srcSMDS = srcSubMesh->GetSubMeshDS(); SMDS_ElemIteratorPtr volIt = srcSMDS->GetElements(); while ( volIt->more() ) // loop on source volumes { const SMDS_MeshElement* srcVol = volIt->next(); if ( !srcVol || srcVol->GetType() != SMDSAbs_Volume ) continue; int nbNodes = srcVol->NbNodes(); SMDS_VolumeTool::VolumeType volType = volTool.GetType( nbNodes ); if ( srcVol->IsQuadratic() ) nbNodes = volTool.NbCornerNodes( volType ); // Find or create a new tgt node for each node of a src volume vector< const SMDS_MeshNode* > nodes( nbNodes ); for ( int i = 0; i < nbNodes; ++i ) { const SMDS_MeshNode* srcNode = srcVol->GetNode( i ); const SMDS_MeshNode* tgtNode = 0; TNodeNodeMap::iterator sN_tN = src2tgtNodeMap.find( srcNode ); if ( sN_tN != src2tgtNodeMap.end() ) // found { tgtNode = sN_tN->second; } else // Create a new tgt node { // compute normalized parameters of source node in srcBlock gp_Pnt srcCoord = gpXYZ( srcNode ); gp_XYZ srcParam; if ( !srcBlock.ComputeParameters( srcCoord, srcParam )) return error(SMESH_Comment("Can't compute normalized parameters ") << "for source node " << srcNode->GetID()); // compute coordinates of target node by srcParam gp_XYZ tgtXYZ; if ( !tgtBlock.ShellPoint( srcParam, tgtXYZ )) return error("Can't compute coordinates by normalized parameters"); // add node SMDS_MeshNode* newNode = tgtMeshDS->AddNode( tgtXYZ.X(), tgtXYZ.Y(), tgtXYZ.Z() ); tgtMeshDS->SetNodeInVolume( newNode, helper.GetSubShapeID() ); tgtNode = newNode; src2tgtNodeMap.insert( make_pair( srcNode, tgtNode )); } nodes[ i ] = tgtNode; } // Create a new volume SMDS_MeshVolume * tgtVol = 0; int id = 0, force3d = false; switch ( volType ) { case SMDS_VolumeTool::TETRA : case SMDS_VolumeTool::QUAD_TETRA: tgtVol = helper.AddVolume( nodes[0], nodes[1], nodes[2], nodes[3], id, force3d); break; case SMDS_VolumeTool::PYRAM : case SMDS_VolumeTool::QUAD_PYRAM: tgtVol = helper.AddVolume( nodes[0], nodes[1], nodes[2], nodes[3], nodes[4], id, force3d); break; case SMDS_VolumeTool::PENTA : case SMDS_VolumeTool::QUAD_PENTA: tgtVol = helper.AddVolume( nodes[0], nodes[1], nodes[2], nodes[3], nodes[4], nodes[5], id, force3d); break; case SMDS_VolumeTool::HEXA : case SMDS_VolumeTool::QUAD_HEXA : tgtVol = helper.AddVolume( nodes[0], nodes[1], nodes[2], nodes[3], nodes[4], nodes[5], nodes[6], nodes[7], id, force3d); break; default: // polyhedron const SMDS_PolyhedralVolumeOfNodes * poly = dynamic_cast<const SMDS_PolyhedralVolumeOfNodes*>( srcVol ); if ( !poly ) RETURN_BAD_RESULT("Unexpected volume type"); tgtVol = tgtMeshDS->AddPolyhedralVolume( nodes, poly->GetQuanities() ); } if ( tgtVol ) { tgtMeshDS->SetMeshElementOnShape( tgtVol, helper.GetSubShapeID() ); } } // loop on volumes of src shell return true; }
bool StdMeshers_Hexa_3D::Compute(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape)// throw(SALOME_Exception) { // PAL14921. Enable catching std::bad_alloc and Standard_OutOfMemory outside //Unexpect aCatch(SalomeException); MESSAGE("StdMeshers_Hexa_3D::Compute"); SMESHDS_Mesh * meshDS = aMesh.GetMeshDS(); // 0. - shape and face mesh verification // 0.1 - shape must be a solid (or a shell) with 6 faces vector < SMESH_subMesh * >meshFaces; for (TopExp_Explorer exp(aShape, TopAbs_FACE); exp.More(); exp.Next()) { SMESH_subMesh *aSubMesh = aMesh.GetSubMeshContaining(exp.Current()); ASSERT(aSubMesh); meshFaces.push_back(aSubMesh); } if (meshFaces.size() != 6) { //return error(COMPERR_BAD_SHAPE, TComm(meshFaces.size())<<" instead of 6 faces in a block"); static StdMeshers_CompositeHexa_3D compositeHexa(-10, 0, aMesh.GetGen()); if ( !compositeHexa.Compute( aMesh, aShape )) return error( compositeHexa.GetComputeError() ); return true; } // 0.2 - is each face meshed with Quadrangle_2D? (so, with a wire of 4 edges) // tool for working with quadratic elements SMESH_MesherHelper aTool (aMesh); _quadraticMesh = aTool.IsQuadraticSubMesh(aShape); // cube structure typedef struct cubeStruct { TopoDS_Vertex V000; TopoDS_Vertex V001; TopoDS_Vertex V010; TopoDS_Vertex V011; TopoDS_Vertex V100; TopoDS_Vertex V101; TopoDS_Vertex V110; TopoDS_Vertex V111; faceQuadStruct* quad_X0; faceQuadStruct* quad_X1; faceQuadStruct* quad_Y0; faceQuadStruct* quad_Y1; faceQuadStruct* quad_Z0; faceQuadStruct* quad_Z1; Point3DStruct* np; // normalised 3D coordinates } CubeStruct; CubeStruct aCube; // bounding faces FaceQuadStruct* aQuads[6]; for (int i = 0; i < 6; i++) aQuads[i] = 0; for (int i = 0; i < 6; i++) { TopoDS_Shape aFace = meshFaces[i]->GetSubShape(); SMESH_Algo *algo = _gen->GetAlgo(aMesh, aFace); string algoName = algo->GetName(); bool isAllQuad = false; if (algoName == "Quadrangle_2D") { SMESHDS_SubMesh * sm = meshDS->MeshElements( aFace ); if ( sm ) { isAllQuad = true; SMDS_ElemIteratorPtr eIt = sm->GetElements(); while ( isAllQuad && eIt->more() ) { const SMDS_MeshElement* elem = eIt->next(); isAllQuad = ( elem->NbNodes()==4 ||(_quadraticMesh && elem->NbNodes()==8) ); } } } if ( ! isAllQuad ) { SMESH_ComputeErrorPtr err = ComputePentahedralMesh(aMesh, aShape); return ClearAndReturn( aQuads, error(err)); } StdMeshers_Quadrangle_2D *quadAlgo = dynamic_cast < StdMeshers_Quadrangle_2D * >(algo); ASSERT(quadAlgo); try { aQuads[i] = quadAlgo->CheckAnd2Dcompute(aMesh, aFace, _quadraticMesh); if(!aQuads[i]) { return error( quadAlgo->GetComputeError()); } } catch(SALOME_Exception & S_ex) { return ClearAndReturn( aQuads, error(COMPERR_SLM_EXCEPTION,TComm(S_ex.what()) << " Raised by StdMeshers_Quadrangle_2D " " on face #" << meshDS->ShapeToIndex( aFace ))); } // 0.2.1 - number of points on the opposite edges must be the same if (aQuads[i]->side[0]->NbPoints() != aQuads[i]->side[2]->NbPoints() || aQuads[i]->side[1]->NbPoints() != aQuads[i]->side[3]->NbPoints() /*aQuads[i]->side[0]->NbEdges() != 1 || aQuads[i]->side[1]->NbEdges() != 1 || aQuads[i]->side[2]->NbEdges() != 1 || aQuads[i]->side[3]->NbEdges() != 1*/) { MESSAGE("different number of points on the opposite edges of face " << i); // Try to go into penta algorithm 'cause it has been improved. SMESH_ComputeErrorPtr err = ComputePentahedralMesh(aMesh, aShape); return ClearAndReturn( aQuads, error(err)); } } // 1. - identify faces and vertices of the "cube" // 1.1 - ancestor maps vertex->edges in the cube // TopTools_IndexedDataMapOfShapeListOfShape MS; // TopExp::MapShapesAndAncestors(aShape, TopAbs_VERTEX, TopAbs_EDGE, MS); // 1.2 - first face is choosen as face Y=0 of the unit cube const TopoDS_Shape & aFace = meshFaces[0]->GetSubShape(); //const TopoDS_Face & F = TopoDS::Face(aFace); // 1.3 - identify the 4 vertices of the face Y=0: V000, V100, V101, V001 aCube.V000 = aQuads[0]->side[0]->FirstVertex(); // will be (0,0,0) on the unit cube aCube.V100 = aQuads[0]->side[0]->LastVertex(); // will be (1,0,0) on the unit cube aCube.V001 = aQuads[0]->side[2]->FirstVertex(); // will be (0,0,1) on the unit cube aCube.V101 = aQuads[0]->side[2]->LastVertex(); // will be (1,0,1) on the unit cube TopTools_IndexedMapOfShape MV0; TopExp::MapShapes(aFace, TopAbs_VERTEX, MV0); aCube.V010 = OppositeVertex( aCube.V000, MV0, aQuads); aCube.V110 = OppositeVertex( aCube.V100, MV0, aQuads); aCube.V011 = OppositeVertex( aCube.V001, MV0, aQuads); aCube.V111 = OppositeVertex( aCube.V101, MV0, aQuads); // 1.6 - find remaining faces given 4 vertices int _indY0 = 0; int _indY1 = GetFaceIndex(aMesh, aShape, meshFaces, aCube.V010, aCube.V011, aCube.V110, aCube.V111); int _indZ0 = GetFaceIndex(aMesh, aShape, meshFaces, aCube.V000, aCube.V010, aCube.V100, aCube.V110); int _indZ1 = GetFaceIndex(aMesh, aShape, meshFaces, aCube.V001, aCube.V011, aCube.V101, aCube.V111); int _indX0 = GetFaceIndex(aMesh, aShape, meshFaces, aCube.V000, aCube.V001, aCube.V010, aCube.V011); int _indX1 = GetFaceIndex(aMesh, aShape, meshFaces, aCube.V100, aCube.V101, aCube.V110, aCube.V111); // IPAL21120: SIGSEGV on Meshing attached Compound with Automatic Hexadralization if ( _indY1 < 1 || _indZ0 < 1 || _indZ1 < 1 || _indX0 < 1 || _indX1 < 1 ) return error(COMPERR_BAD_SHAPE); aCube.quad_Y0 = aQuads[_indY0]; aCube.quad_Y1 = aQuads[_indY1]; aCube.quad_Z0 = aQuads[_indZ0]; aCube.quad_Z1 = aQuads[_indZ1]; aCube.quad_X0 = aQuads[_indX0]; aCube.quad_X1 = aQuads[_indX1]; // 1.7 - get convertion coefs from face 2D normalized to 3D normalized Conv2DStruct cx0; // for face X=0 Conv2DStruct cx1; // for face X=1 Conv2DStruct cy0; Conv2DStruct cy1; Conv2DStruct cz0; Conv2DStruct cz1; GetConv2DCoefs(*aCube.quad_X0, meshFaces[_indX0]->GetSubShape(), aCube.V000, aCube.V010, aCube.V011, aCube.V001, cx0); GetConv2DCoefs(*aCube.quad_X1, meshFaces[_indX1]->GetSubShape(), aCube.V100, aCube.V110, aCube.V111, aCube.V101, cx1); GetConv2DCoefs(*aCube.quad_Y0, meshFaces[_indY0]->GetSubShape(), aCube.V000, aCube.V100, aCube.V101, aCube.V001, cy0); GetConv2DCoefs(*aCube.quad_Y1, meshFaces[_indY1]->GetSubShape(), aCube.V010, aCube.V110, aCube.V111, aCube.V011, cy1); GetConv2DCoefs(*aCube.quad_Z0, meshFaces[_indZ0]->GetSubShape(), aCube.V000, aCube.V100, aCube.V110, aCube.V010, cz0); GetConv2DCoefs(*aCube.quad_Z1, meshFaces[_indZ1]->GetSubShape(), aCube.V001, aCube.V101, aCube.V111, aCube.V011, cz1); // 1.8 - create a 3D structure for normalized values int nbx = aCube.quad_Z0->side[0]->NbPoints(); if (cz0.a1 == 0.) nbx = aCube.quad_Z0->side[1]->NbPoints(); int nby = aCube.quad_X0->side[0]->NbPoints(); if (cx0.a1 == 0.) nby = aCube.quad_X0->side[1]->NbPoints(); int nbz = aCube.quad_Y0->side[0]->NbPoints(); if (cy0.a1 != 0.) nbz = aCube.quad_Y0->side[1]->NbPoints(); int i1, j1, nbxyz = nbx * nby * nbz; Point3DStruct *np = new Point3DStruct[nbxyz]; // 1.9 - store node indexes of faces { const TopoDS_Face & F = TopoDS::Face(meshFaces[_indX0]->GetSubShape()); faceQuadStruct *quad = aCube.quad_X0; int i = 0; // j = x/face , k = y/face int nbdown = quad->side[0]->NbPoints(); int nbright = quad->side[1]->NbPoints(); SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes(); while(itf->more()) { const SMDS_MeshNode * node = itf->next(); if(aTool.IsMedium(node)) continue; if ( !findIJ( node, quad, i1, j1 )) return ClearAndReturn( aQuads, false ); int ij1 = j1 * nbdown + i1; quad->uv_grid[ij1].node = node; } for (int i1 = 0; i1 < nbdown; i1++) for (int j1 = 0; j1 < nbright; j1++) { int ij1 = j1 * nbdown + i1; int j = cx0.ia * i1 + cx0.ib * j1 + cx0.ic; // j = x/face int k = cx0.ja * i1 + cx0.jb * j1 + cx0.jc; // k = y/face int ijk = k * nbx * nby + j * nbx + i; //MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk); np[ijk].node = quad->uv_grid[ij1].node; //SCRUTE(np[ijk].nodeId); } } { const TopoDS_Face & F = TopoDS::Face(meshFaces[_indX1]->GetSubShape()); SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes(); faceQuadStruct *quad = aCube.quad_X1; int i = nbx - 1; // j = x/face , k = y/face int nbdown = quad->side[0]->NbPoints(); int nbright = quad->side[1]->NbPoints(); while(itf->more()) { const SMDS_MeshNode * node = itf->next(); if(aTool.IsMedium(node)) continue; if ( !findIJ( node, quad, i1, j1 )) return ClearAndReturn( aQuads, false ); int ij1 = j1 * nbdown + i1; quad->uv_grid[ij1].node = node; } for (int i1 = 0; i1 < nbdown; i1++) for (int j1 = 0; j1 < nbright; j1++) { int ij1 = j1 * nbdown + i1; int j = cx1.ia * i1 + cx1.ib * j1 + cx1.ic; // j = x/face int k = cx1.ja * i1 + cx1.jb * j1 + cx1.jc; // k = y/face int ijk = k * nbx * nby + j * nbx + i; //MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk); np[ijk].node = quad->uv_grid[ij1].node; //SCRUTE(np[ijk].nodeId); } } { const TopoDS_Face & F = TopoDS::Face(meshFaces[_indY0]->GetSubShape()); SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes(); faceQuadStruct *quad = aCube.quad_Y0; int j = 0; // i = x/face , k = y/face int nbdown = quad->side[0]->NbPoints(); int nbright = quad->side[1]->NbPoints(); while(itf->more()) { const SMDS_MeshNode * node = itf->next(); if(aTool.IsMedium(node)) continue; if ( !findIJ( node, quad, i1, j1 )) return ClearAndReturn( aQuads, false ); int ij1 = j1 * nbdown + i1; quad->uv_grid[ij1].node = node; } for (int i1 = 0; i1 < nbdown; i1++) for (int j1 = 0; j1 < nbright; j1++) { int ij1 = j1 * nbdown + i1; int i = cy0.ia * i1 + cy0.ib * j1 + cy0.ic; // i = x/face int k = cy0.ja * i1 + cy0.jb * j1 + cy0.jc; // k = y/face int ijk = k * nbx * nby + j * nbx + i; //MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk); np[ijk].node = quad->uv_grid[ij1].node; //SCRUTE(np[ijk].nodeId); } } { const TopoDS_Face & F = TopoDS::Face(meshFaces[_indY1]->GetSubShape()); SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes(); faceQuadStruct *quad = aCube.quad_Y1; int j = nby - 1; // i = x/face , k = y/face int nbdown = quad->side[0]->NbPoints(); int nbright = quad->side[1]->NbPoints(); while(itf->more()) { const SMDS_MeshNode * node = itf->next(); if(aTool.IsMedium(node)) continue; if ( !findIJ( node, quad, i1, j1 )) return ClearAndReturn( aQuads, false ); int ij1 = j1 * nbdown + i1; quad->uv_grid[ij1].node = node; } for (int i1 = 0; i1 < nbdown; i1++) for (int j1 = 0; j1 < nbright; j1++) { int ij1 = j1 * nbdown + i1; int i = cy1.ia * i1 + cy1.ib * j1 + cy1.ic; // i = x/face int k = cy1.ja * i1 + cy1.jb * j1 + cy1.jc; // k = y/face int ijk = k * nbx * nby + j * nbx + i; //MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk); np[ijk].node = quad->uv_grid[ij1].node; //SCRUTE(np[ijk].nodeId); } } { const TopoDS_Face & F = TopoDS::Face(meshFaces[_indZ0]->GetSubShape()); SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes(); faceQuadStruct *quad = aCube.quad_Z0; int k = 0; // i = x/face , j = y/face int nbdown = quad->side[0]->NbPoints(); int nbright = quad->side[1]->NbPoints(); while(itf->more()) { const SMDS_MeshNode * node = itf->next(); if(aTool.IsMedium(node)) continue; if ( !findIJ( node, quad, i1, j1 )) return ClearAndReturn( aQuads, false ); int ij1 = j1 * nbdown + i1; quad->uv_grid[ij1].node = node; } for (int i1 = 0; i1 < nbdown; i1++) for (int j1 = 0; j1 < nbright; j1++) { int ij1 = j1 * nbdown + i1; int i = cz0.ia * i1 + cz0.ib * j1 + cz0.ic; // i = x/face int j = cz0.ja * i1 + cz0.jb * j1 + cz0.jc; // j = y/face int ijk = k * nbx * nby + j * nbx + i; //MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk); np[ijk].node = quad->uv_grid[ij1].node; //SCRUTE(np[ijk].nodeId); } } { const TopoDS_Face & F = TopoDS::Face(meshFaces[_indZ1]->GetSubShape()); SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes(); faceQuadStruct *quad = aCube.quad_Z1; int k = nbz - 1; // i = x/face , j = y/face int nbdown = quad->side[0]->NbPoints(); int nbright = quad->side[1]->NbPoints(); while(itf->more()) { const SMDS_MeshNode * node = itf->next(); if(aTool.IsMedium(node)) continue; if ( !findIJ( node, quad, i1, j1 )) return ClearAndReturn( aQuads, false ); int ij1 = j1 * nbdown + i1; quad->uv_grid[ij1].node = node; } for (int i1 = 0; i1 < nbdown; i1++) for (int j1 = 0; j1 < nbright; j1++) { int ij1 = j1 * nbdown + i1; int i = cz1.ia * i1 + cz1.ib * j1 + cz1.ic; // i = x/face int j = cz1.ja * i1 + cz1.jb * j1 + cz1.jc; // j = y/face int ijk = k * nbx * nby + j * nbx + i; //MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk); np[ijk].node = quad->uv_grid[ij1].node; //SCRUTE(np[ijk].nodeId); } } // 2.0 - for each node of the cube: // - get the 8 points 3D = 8 vertices of the cube // - get the 12 points 3D on the 12 edges of the cube // - get the 6 points 3D on the 6 faces with their ID // - compute the point 3D // - store the point 3D in SMESHDS, store its ID in 3D structure int shapeID = meshDS->ShapeToIndex( aShape ); Pt3 p000, p001, p010, p011, p100, p101, p110, p111; Pt3 px00, px01, px10, px11; Pt3 p0y0, p0y1, p1y0, p1y1; Pt3 p00z, p01z, p10z, p11z; Pt3 pxy0, pxy1, px0z, px1z, p0yz, p1yz; GetPoint(p000, 0, 0, 0, nbx, nby, nbz, np, meshDS); GetPoint(p001, 0, 0, nbz - 1, nbx, nby, nbz, np, meshDS); GetPoint(p010, 0, nby - 1, 0, nbx, nby, nbz, np, meshDS); GetPoint(p011, 0, nby - 1, nbz - 1, nbx, nby, nbz, np, meshDS); GetPoint(p100, nbx - 1, 0, 0, nbx, nby, nbz, np, meshDS); GetPoint(p101, nbx - 1, 0, nbz - 1, nbx, nby, nbz, np, meshDS); GetPoint(p110, nbx - 1, nby - 1, 0, nbx, nby, nbz, np, meshDS); GetPoint(p111, nbx - 1, nby - 1, nbz - 1, nbx, nby, nbz, np, meshDS); for (int i = 1; i < nbx - 1; i++) { for (int j = 1; j < nby - 1; j++) { for (int k = 1; k < nbz - 1; k++) { // *** seulement maillage regulier // 12 points on edges GetPoint(px00, i, 0, 0, nbx, nby, nbz, np, meshDS); GetPoint(px01, i, 0, nbz - 1, nbx, nby, nbz, np, meshDS); GetPoint(px10, i, nby - 1, 0, nbx, nby, nbz, np, meshDS); GetPoint(px11, i, nby - 1, nbz - 1, nbx, nby, nbz, np, meshDS); GetPoint(p0y0, 0, j, 0, nbx, nby, nbz, np, meshDS); GetPoint(p0y1, 0, j, nbz - 1, nbx, nby, nbz, np, meshDS); GetPoint(p1y0, nbx - 1, j, 0, nbx, nby, nbz, np, meshDS); GetPoint(p1y1, nbx - 1, j, nbz - 1, nbx, nby, nbz, np, meshDS); GetPoint(p00z, 0, 0, k, nbx, nby, nbz, np, meshDS); GetPoint(p01z, 0, nby - 1, k, nbx, nby, nbz, np, meshDS); GetPoint(p10z, nbx - 1, 0, k, nbx, nby, nbz, np, meshDS); GetPoint(p11z, nbx - 1, nby - 1, k, nbx, nby, nbz, np, meshDS); // 12 points on faces GetPoint(pxy0, i, j, 0, nbx, nby, nbz, np, meshDS); GetPoint(pxy1, i, j, nbz - 1, nbx, nby, nbz, np, meshDS); GetPoint(px0z, i, 0, k, nbx, nby, nbz, np, meshDS); GetPoint(px1z, i, nby - 1, k, nbx, nby, nbz, np, meshDS); GetPoint(p0yz, 0, j, k, nbx, nby, nbz, np, meshDS); GetPoint(p1yz, nbx - 1, j, k, nbx, nby, nbz, np, meshDS); int ijk = k * nbx * nby + j * nbx + i; double x = double (i) / double (nbx - 1); // *** seulement double y = double (j) / double (nby - 1); // *** maillage double z = double (k) / double (nbz - 1); // *** regulier Pt3 X; for (int i = 0; i < 3; i++) { X[i] = (1 - x) * p0yz[i] + x * p1yz[i] + (1 - y) * px0z[i] + y * px1z[i] + (1 - z) * pxy0[i] + z * pxy1[i] - (1 - x) * ((1 - y) * p00z[i] + y * p01z[i]) - x * ((1 - y) * p10z[i] + y * p11z[i]) - (1 - y) * ((1 - z) * px00[i] + z * px01[i]) - y * ((1 - z) * px10[i] + z * px11[i]) - (1 - z) * ((1 - x) * p0y0[i] + x * p1y0[i]) - z * ((1 - x) * p0y1[i] + x * p1y1[i]) + (1 - x) * ((1 - y) * ((1 - z) * p000[i] + z * p001[i]) + y * ((1 - z) * p010[i] + z * p011[i])) + x * ((1 - y) * ((1 - z) * p100[i] + z * p101[i]) + y * ((1 - z) * p110[i] + z * p111[i])); } SMDS_MeshNode * node = meshDS->AddNode(X[0], X[1], X[2]); np[ijk].node = node; meshDS->SetNodeInVolume(node, shapeID); } } } // find orientation of furute volumes according to MED convention vector< bool > forward( nbx * nby ); SMDS_VolumeTool vTool; for (int i = 0; i < nbx - 1; i++) { for (int j = 0; j < nby - 1; j++) { int n1 = j * nbx + i; int n2 = j * nbx + i + 1; int n3 = (j + 1) * nbx + i + 1; int n4 = (j + 1) * nbx + i; int n5 = nbx * nby + j * nbx + i; int n6 = nbx * nby + j * nbx + i + 1; int n7 = nbx * nby + (j + 1) * nbx + i + 1; int n8 = nbx * nby + (j + 1) * nbx + i; SMDS_VolumeOfNodes tmpVol (np[n1].node,np[n2].node,np[n3].node,np[n4].node, np[n5].node,np[n6].node,np[n7].node,np[n8].node); vTool.Set( &tmpVol ); forward[ n1 ] = vTool.IsForward(); } } //2.1 - for each node of the cube (less 3 *1 Faces): // - store hexahedron in SMESHDS MESSAGE("Storing hexahedron into the DS"); for (int i = 0; i < nbx - 1; i++) { for (int j = 0; j < nby - 1; j++) { bool isForw = forward.at( j * nbx + i ); for (int k = 0; k < nbz - 1; k++) { int n1 = k * nbx * nby + j * nbx + i; int n2 = k * nbx * nby + j * nbx + i + 1; int n3 = k * nbx * nby + (j + 1) * nbx + i + 1; int n4 = k * nbx * nby + (j + 1) * nbx + i; int n5 = (k + 1) * nbx * nby + j * nbx + i; int n6 = (k + 1) * nbx * nby + j * nbx + i + 1; int n7 = (k + 1) * nbx * nby + (j + 1) * nbx + i + 1; int n8 = (k + 1) * nbx * nby + (j + 1) * nbx + i; SMDS_MeshVolume * elt; if ( isForw ) { elt = aTool.AddVolume(np[n1].node, np[n2].node, np[n3].node, np[n4].node, np[n5].node, np[n6].node, np[n7].node, np[n8].node); } else { elt = aTool.AddVolume(np[n1].node, np[n4].node, np[n3].node, np[n2].node, np[n5].node, np[n8].node, np[n7].node, np[n6].node); } meshDS->SetMeshElementOnShape(elt, shapeID); } } } if ( np ) delete [] np; return ClearAndReturn( aQuads, true ); }