Example #1
0
void TileGrid::drawMissingRegion(const SkRegion& region, float opacity,
                                     const Color* background)
{
    SkRegion::Iterator iterator(region);
    const float tileWidth = TilesManager::tileWidth() / m_scale;
    const float tileHeight = TilesManager::tileHeight() / m_scale;
    while (!iterator.done()) {
        SkIRect r = iterator.rect();
        SkRect rect;
        rect.fLeft = r.x() * tileWidth;
        rect.fTop =  r.y() * tileHeight;
        rect.fRight = rect.fLeft + tileWidth * r.width();
        rect.fBottom = rect.fTop + tileHeight * r.height();
        ALOGV("draw tile x y, %d %d (%d %d) opacity %f", r.x(), r.y(),
              r.width(), r.height(), opacity);
        // Skia is using pre-multiplied color.
        Color postAlpha = Color(background->red() * background->alpha() / 255,
                                background->green() * background->alpha() / 255,
                                background->blue() * background->alpha() / 255,
                                background->alpha() );

        PureColorQuadData backGroundData(postAlpha, BaseQuad, 0, &rect, opacity);
        TilesManager::instance()->shader()->drawQuad(&backGroundData);
        iterator.next();
    }
}
Example #2
0
bool SkPixmap::readPixels(const SkImageInfo& requestedDstInfo, void* dstPixels, size_t dstRB,
                          int x, int y) const {
    if (kUnknown_SkColorType == requestedDstInfo.colorType()) {
        return false;
    }
    if (nullptr == dstPixels || dstRB < requestedDstInfo.minRowBytes()) {
        return false;
    }
    if (0 == requestedDstInfo.width() || 0 == requestedDstInfo.height()) {
        return false;
    }
    
    SkIRect srcR = SkIRect::MakeXYWH(x, y, requestedDstInfo.width(), requestedDstInfo.height());
    if (!srcR.intersect(0, 0, this->width(), this->height())) {
        return false;
    }
    
    // the intersect may have shrunk info's logical size
    const SkImageInfo dstInfo = requestedDstInfo.makeWH(srcR.width(), srcR.height());
    
    // if x or y are negative, then we have to adjust pixels
    if (x > 0) {
        x = 0;
    }
    if (y > 0) {
        y = 0;
    }
    // here x,y are either 0 or negative
    dstPixels = ((char*)dstPixels - y * dstRB - x * dstInfo.bytesPerPixel());

    const SkImageInfo srcInfo = this->info().makeWH(dstInfo.width(), dstInfo.height());
    const void* srcPixels = this->addr(srcR.x(), srcR.y());
    return SkPixelInfo::CopyPixels(dstInfo, dstPixels, dstRB,
                                   srcInfo, srcPixels, this->rowBytes(), this->ctable());
}
// This function is used to scale an image and extract a scaled fragment.
//
// ALGORITHM
//
// Because the scaled image size has to be integers, we approximate the real
// scale with the following formula (only X direction is shown):
//
// scaledImageWidth = round(scaleX * imageRect.width())
// approximateScaleX = scaledImageWidth / imageRect.width()
//
// With this method we maintain a constant scale factor among fragments in
// the scaled image. This allows fragments to stitch together to form the
// full scaled image. The downside is there will be a small difference
// between |scaleX| and |approximateScaleX|.
//
// A scaled image fragment is identified by:
//
// - Scaled image size
// - Scaled image fragment rectangle (IntRect)
//
// Scaled image size has been determined and the next step is to compute the
// rectangle for the scaled image fragment which needs to be an IntRect.
//
// scaledSrcRect = srcRect * (approximateScaleX, approximateScaleY)
// enclosingScaledSrcRect = enclosingIntRect(scaledSrcRect)
//
// Finally we extract the scaled image fragment using
// (scaledImageSize, enclosingScaledSrcRect).
//
SkBitmap NativeImageSkia::extractScaledImageFragment(const SkRect& srcRect, float scaleX, float scaleY, SkRect* scaledSrcRect) const
{
    SkISize imageSize = SkISize::Make(bitmap().width(), bitmap().height());
    SkISize scaledImageSize = SkISize::Make(clampToInteger(roundf(imageSize.width() * scaleX)),
        clampToInteger(roundf(imageSize.height() * scaleY)));

    SkRect imageRect = SkRect::MakeWH(imageSize.width(), imageSize.height());
    SkRect scaledImageRect = SkRect::MakeWH(scaledImageSize.width(), scaledImageSize.height());

    SkMatrix scaleTransform;
    scaleTransform.setRectToRect(imageRect, scaledImageRect, SkMatrix::kFill_ScaleToFit);
    scaleTransform.mapRect(scaledSrcRect, srcRect);

    bool ok = scaledSrcRect->intersect(scaledImageRect);
    ASSERT_UNUSED(ok, ok);
    SkIRect enclosingScaledSrcRect = enclosingIntRect(*scaledSrcRect);

    // |enclosingScaledSrcRect| can be larger than |scaledImageSize| because
    // of float inaccuracy so clip to get inside.
    ok = enclosingScaledSrcRect.intersect(SkIRect::MakeSize(scaledImageSize));
    ASSERT_UNUSED(ok, ok);

    // scaledSrcRect is relative to the pixel snapped fragment we're extracting.
    scaledSrcRect->offset(-enclosingScaledSrcRect.x(), -enclosingScaledSrcRect.y());

    return resizedBitmap(scaledImageSize, enclosingScaledSrcRect);
}
bool SkMagnifierImageFilter::asFragmentProcessor(GrFragmentProcessor** fp,
                                                 GrProcessorDataManager* procDataManager,
                                                 GrTexture* texture, const SkMatrix&,
                                                 const SkIRect&bounds) const {
    if (fp) {
        SkScalar yOffset = texture->origin() == kTopLeft_GrSurfaceOrigin ? fSrcRect.y() :
           texture->height() - fSrcRect.height() * texture->height() / bounds.height()
                             - fSrcRect.y();
        int boundsY = (texture->origin() == kTopLeft_GrSurfaceOrigin) ? bounds.y() :
                      (texture->height() - bounds.height());
        SkRect effectBounds = SkRect::MakeXYWH(
            SkIntToScalar(bounds.x()) / texture->width(),
            SkIntToScalar(boundsY) / texture->height(),
            SkIntToScalar(texture->width()) / bounds.width(),
            SkIntToScalar(texture->height()) / bounds.height());
        SkScalar invInset = fInset > 0 ? SkScalarInvert(fInset) : SK_Scalar1;
        *fp = GrMagnifierEffect::Create(procDataManager,
                                        texture,
                                        effectBounds,
                                        fSrcRect.x() / texture->width(),
                                        yOffset / texture->height(),
                                        fSrcRect.width() / bounds.width(),
                                        fSrcRect.height() / bounds.height(),
                                        bounds.width() * invInset,
                                        bounds.height() * invInset);
    }
    return true;
}
bool SkWritePixelsRec::trim(int dstWidth, int dstHeight) {
    if (nullptr == fPixels || fRowBytes < fInfo.minRowBytes()) {
        return false;
    }
    if (0 >= fInfo.width() || 0 >= fInfo.height()) {
        return false;
    }

    int x = fX;
    int y = fY;
    SkIRect dstR = SkIRect::MakeXYWH(x, y, fInfo.width(), fInfo.height());
    if (!dstR.intersect(0, 0, dstWidth, dstHeight)) {
        return false;
    }

    // if x or y are negative, then we have to adjust pixels
    if (x > 0) {
        x = 0;
    }
    if (y > 0) {
        y = 0;
    }
    // here x,y are either 0 or negative
    fPixels = ((const char*)fPixels - y * fRowBytes - x * fInfo.bytesPerPixel());
    // the intersect may have shrunk info's logical size
    fInfo = fInfo.makeWH(dstR.width(), dstR.height());
    fX = dstR.x();
    fY = dstR.y();

    return true;
}
Example #6
0
 void updateHandle(Handle hndl, const SkMatrix& ctm, const SkIRect& clip) override {
     CGContextRef cg = (CGContextRef)hndl;
     
     CGContextRestoreGState(cg);
     CGContextSaveGState(cg);
     CGContextClipToRect(cg, CGRectMake(clip.x(), clip.y(), clip.width(), clip.height()));
     CGContextConcatCTM(cg, matrix_to_transform(cg, ctm));
 }
Example #7
0
// Much of readPixels is exercised by copyTo testing, since readPixels is the backend for that
// method. Here we explicitly test subset copies.
//
DEF_TEST(BitmapReadPixels, reporter) {
    const int W = 4;
    const int H = 4;
    const size_t rowBytes = W * sizeof(SkPMColor);
    const SkImageInfo srcInfo = SkImageInfo::MakeN32Premul(W, H);
    SkPMColor srcPixels[16];
    fill_4x4_pixels(srcPixels);
    SkBitmap srcBM;
    srcBM.installPixels(srcInfo, srcPixels, rowBytes);

    SkImageInfo dstInfo = SkImageInfo::MakeN32Premul(W, H);
    SkPMColor dstPixels[16];

    const struct {
        bool     fExpectedSuccess;
        SkIPoint fRequestedSrcLoc;
        SkISize  fRequestedDstSize;
        // If fExpectedSuccess, check these, otherwise ignore
        SkIPoint fExpectedDstLoc;
        SkIRect  fExpectedSrcR;
    } gRec[] = {
        { true,  { 0, 0 }, { 4, 4 }, { 0, 0 }, { 0, 0, 4, 4 } },
        { true,  { 1, 1 }, { 2, 2 }, { 0, 0 }, { 1, 1, 3, 3 } },
        { true,  { 2, 2 }, { 4, 4 }, { 0, 0 }, { 2, 2, 4, 4 } },
        { true,  {-1,-1 }, { 2, 2 }, { 1, 1 }, { 0, 0, 1, 1 } },
        { false, {-1,-1 }, { 1, 1 }, { 0, 0 }, { 0, 0, 0, 0 } },
    };

    for (size_t i = 0; i < SK_ARRAY_COUNT(gRec); ++i) {
        clear_4x4_pixels(dstPixels);

        dstInfo = dstInfo.makeWH(gRec[i].fRequestedDstSize.width(),
                                 gRec[i].fRequestedDstSize.height());
        bool success = srcBM.readPixels(dstInfo, dstPixels, rowBytes,
                                        gRec[i].fRequestedSrcLoc.x(), gRec[i].fRequestedSrcLoc.y());

        REPORTER_ASSERT(reporter, gRec[i].fExpectedSuccess == success);
        if (success) {
            const SkIRect srcR = gRec[i].fExpectedSrcR;
            const int dstX = gRec[i].fExpectedDstLoc.x();
            const int dstY = gRec[i].fExpectedDstLoc.y();
            // Walk the dst pixels, and check if we got what we expected
            for (int y = 0; y < H; ++y) {
                for (int x = 0; x < W; ++x) {
                    SkPMColor dstC = dstPixels[y*4+x];
                    // get into src coordinates
                    int sx = x - dstX + srcR.x();
                    int sy = y - dstY + srcR.y();
                    if (srcR.contains(sx, sy)) {
                        REPORTER_ASSERT(reporter, check_4x4_pixel(dstC, sx, sy));
                    } else {
                        REPORTER_ASSERT(reporter, 0 == dstC);
                    }
                }
            }
        }
    }
}
Example #8
0
static void make_unstretched_key(GrUniqueKey* key, uint32_t imageID, const SkIRect& subset) {
    SkASSERT(SkIsU16(subset.width()));
    SkASSERT(SkIsU16(subset.height()));

    static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
    GrUniqueKey::Builder builder(key, kDomain, 4);
    builder[0] = imageID;
    builder[1] = subset.x();
    builder[2] = subset.y();
    builder[3] = subset.width() | (subset.height() << 16);
}
Example #9
0
// Return true if the rectangle is aligned to integer boundaries.
// See comments for computeBitmapDrawRects() for how this is used.
static bool areBoundariesIntegerAligned(const SkRect& rect)
{
    // Value is 1.19209e-007. This is the tolerance threshold.
    const float epsilon = std::numeric_limits<float>::epsilon();
    SkIRect roundedRect = roundedIntRect(rect);

    return fabs(rect.x() - roundedRect.x()) < epsilon
        && fabs(rect.y() - roundedRect.y()) < epsilon
        && fabs(rect.right() - roundedRect.right()) < epsilon
        && fabs(rect.bottom() - roundedRect.bottom()) < epsilon;
}
Example #10
0
SkImage* SkImage_Base::onApplyFilter(SkImageFilter* filter, SkIPoint* offsetResult,
                                     bool forceResultToOriginalSize) const {
    SkBitmap src;
    if (!this->getROPixels(&src)) {
        return nullptr;
    }

    const SkIRect srcBounds = SkIRect::MakeWH(this->width(), this->height());

    if (forceResultToOriginalSize) {
        const SkIRect clipBounds = srcBounds;
        SkRasterImageFilterProxy proxy;
        SkImageFilter::Context ctx(SkMatrix::I(), clipBounds, SkImageFilter::Cache::Get(),
                                   SkImageFilter::kExact_SizeConstraint);

        SkBitmap dst;
        if (filter->filterImage(&proxy, src, ctx, &dst, offsetResult)) {
            dst.setImmutable();
            return SkImage::NewFromBitmap(dst);
        }
    } else {
        const SkIRect dstR = compute_fast_ibounds(filter, srcBounds);

        SkImageInfo info = SkImageInfo::MakeN32Premul(dstR.width(), dstR.height());
        SkAutoTUnref<SkSurface> surface(this->onNewSurface(info));

        SkPaint paint;
        paint.setImageFilter(filter);
        surface->getCanvas()->drawImage(this, SkIntToScalar(-dstR.x()), SkIntToScalar(-dstR.y()),
                                        &paint);

        offsetResult->set(dstR.x(), dstR.y());
        return surface->newImageSnapshot();
    }
    return nullptr;
}
Example #11
0
sk_sp<SkImage> SkImage_Generator::onMakeSubset(const SkIRect& subset) const {
    // TODO: make this lazy, by wrapping the subset inside a new generator or something
    // For now, we do effectively what we did before, make it a raster

    const SkImageInfo info = SkImageInfo::MakeN32(subset.width(), subset.height(),
                                      this->isOpaque() ? kOpaque_SkAlphaType : kPremul_SkAlphaType);
    auto surface(SkSurface::MakeRaster(info));
    if (!surface) {
        return nullptr;
    }
    surface->getCanvas()->clear(0);
    surface->getCanvas()->drawImage(this, SkIntToScalar(-subset.x()), SkIntToScalar(-subset.y()),
                                    nullptr);
    return surface->makeImageSnapshot();
}
Example #12
0
bool SkBlurImageFilter::filterImageGPUDeprecated(Proxy* proxy, const SkBitmap& src,
                                                 const Context& ctx,
                                                 SkBitmap* result, SkIPoint* offset) const {
#if SK_SUPPORT_GPU
    SkBitmap input = src;
    SkIPoint srcOffset = SkIPoint::Make(0, 0);
    if (!this->filterInputGPUDeprecated(0, proxy, src, ctx, &input, &srcOffset)) {
        return false;
    }
    SkIRect srcBounds = input.bounds();
    srcBounds.offset(srcOffset);
    SkIRect dstBounds;
    if (!this->applyCropRect(this->mapContext(ctx), srcBounds, &dstBounds)) {
        return false;
    }
    if (!srcBounds.intersect(dstBounds)) {
        return false;
    }
    SkVector sigma = map_sigma(fSigma, ctx.ctm());
    if (sigma.x() == 0 && sigma.y() == 0) {
        input.extractSubset(result, srcBounds);
        offset->fX = srcBounds.x();
        offset->fY = srcBounds.y();
        return true;
    }
    offset->fX = dstBounds.fLeft;
    offset->fY = dstBounds.fTop;
    srcBounds.offset(-srcOffset);
    dstBounds.offset(-srcOffset);
    SkRect srcBoundsF(SkRect::Make(srcBounds));
    GrTexture* inputTexture = input.getTexture();
    SkAutoTUnref<GrTexture> tex(SkGpuBlurUtils::GaussianBlur(inputTexture->getContext(),
                                                             inputTexture,
                                                             false,
                                                             SkRect::Make(dstBounds),
                                                             &srcBoundsF,
                                                             sigma.x(),
                                                             sigma.y()));
    if (!tex) {
        return false;
    }
    GrWrapTextureInBitmap(tex, dstBounds.width(), dstBounds.height(), false, result);
    return true;
#else
    SkDEBUGFAIL("Should not call in GPU-less build");
    return false;
#endif
}
GrAlphaThresholdFragmentProcessor::GrAlphaThresholdFragmentProcessor(GrTexture* texture,
                                                                     GrTexture* maskTexture,
                                                                     float innerThreshold,
                                                                     float outerThreshold,
                                                                     const SkIRect& bounds)
    : fInnerThreshold(innerThreshold)
    , fOuterThreshold(outerThreshold)
    , fImageCoordTransform(kLocal_GrCoordSet,
                           GrCoordTransform::MakeDivByTextureWHMatrix(texture), texture,
                           GrTextureParams::kNone_FilterMode)
    , fImageTextureAccess(texture)
    , fMaskCoordTransform(kLocal_GrCoordSet,
                          make_div_and_translate_matrix(maskTexture, -bounds.x(), -bounds.y()),
                          maskTexture,
                          GrTextureParams::kNone_FilterMode)
    , fMaskTextureAccess(maskTexture) {
    this->initClassID<GrAlphaThresholdFragmentProcessor>();
    this->addCoordTransform(&fImageCoordTransform);
    this->addTextureAccess(&fImageTextureAccess);
    this->addCoordTransform(&fMaskCoordTransform);
    this->addTextureAccess(&fMaskTextureAccess);
}
Example #14
0
bool SkDisplacementMapEffect::filterImageGPU(Proxy* proxy, const SkBitmap& src, const Context& ctx,
                                             SkBitmap* result, SkIPoint* offset) const {
    SkBitmap colorBM = src;
    SkIPoint colorOffset = SkIPoint::Make(0, 0);
    if (getColorInput() && !getColorInput()->getInputResultGPU(proxy, src, ctx, &colorBM,
                                                               &colorOffset)) {
        return false;
    }
    SkBitmap displacementBM = src;
    SkIPoint displacementOffset = SkIPoint::Make(0, 0);
    if (getDisplacementInput() &&
        !getDisplacementInput()->getInputResultGPU(proxy, src, ctx, &displacementBM,
                                                   &displacementOffset)) {
        return false;
    }
    SkIRect bounds;
    // Since GrDisplacementMapEffect does bounds checking on color pixel access, we don't need to
    // pad the color bitmap to bounds here.
    if (!this->applyCropRect(ctx, colorBM, colorOffset, &bounds)) {
        return false;
    }
    SkIRect displBounds;
    if (!this->applyCropRect(ctx, proxy, displacementBM,
                             &displacementOffset, &displBounds, &displacementBM)) {
        return false;
    }
    if (!bounds.intersect(displBounds)) {
        return false;
    }
    GrTexture* color = colorBM.getTexture();
    GrTexture* displacement = displacementBM.getTexture();
    GrContext* context = color->getContext();

    GrSurfaceDesc desc;
    desc.fFlags = kRenderTarget_GrSurfaceFlag;
    desc.fWidth = bounds.width();
    desc.fHeight = bounds.height();
    desc.fConfig = kSkia8888_GrPixelConfig;

    SkAutoTUnref<GrTexture> dst(
        context->refScratchTexture(desc, GrContext::kApprox_ScratchTexMatch));

    if (!dst) {
        return false;
    }

    SkVector scale = SkVector::Make(fScale, fScale);
    ctx.ctm().mapVectors(&scale, 1);

    GrPaint paint;
    SkMatrix offsetMatrix = GrCoordTransform::MakeDivByTextureWHMatrix(displacement);
    offsetMatrix.preTranslate(SkIntToScalar(colorOffset.fX - displacementOffset.fX),
                              SkIntToScalar(colorOffset.fY - displacementOffset.fY));

    paint.addColorProcessor(
        GrDisplacementMapEffect::Create(fXChannelSelector,
                                        fYChannelSelector,
                                        scale,
                                        displacement,
                                        offsetMatrix,
                                        color,
                                        colorBM.dimensions()))->unref();
    SkIRect colorBounds = bounds;
    colorBounds.offset(-colorOffset);
    SkMatrix matrix;
    matrix.setTranslate(-SkIntToScalar(colorBounds.x()),
                        -SkIntToScalar(colorBounds.y()));
    context->drawRect(dst->asRenderTarget(), GrClip::WideOpen(), paint, matrix,
                      SkRect::Make(colorBounds));
    offset->fX = bounds.left();
    offset->fY = bounds.top();
    WrapTexture(dst, bounds.width(), bounds.height(), result);
    return true;
}
bool SkJPEGImageDecoder::onDecodeRegion(SkBitmap* bm, SkIRect region) {
    if (index == NULL) {
        return false;
    }
    jpeg_decompress_struct *cinfo = index->cinfo;

    SkIRect rect = SkIRect::MakeWH(this->imageWidth, this->imageHeight);
    if (!rect.intersect(region)) {
        // If the requested region is entirely outsides the image, just
        // returns false
        return false;
    }
    SkAutoMalloc  srcStorage;
    skjpeg_error_mgr        sk_err;
    cinfo->err = jpeg_std_error(&sk_err);
    sk_err.error_exit = skjpeg_error_exit;
    if (setjmp(sk_err.fJmpBuf)) {
        return false;
    }
    int requestedSampleSize = this->getSampleSize();
    cinfo->scale_denom = requestedSampleSize;

    if (this->getPreferQualityOverSpeed()) {
        cinfo->dct_method = JDCT_ISLOW;
    } else {
        cinfo->dct_method = JDCT_IFAST;
    }

    SkBitmap::Config config = this->getPrefConfig(k32Bit_SrcDepth, false);
    if (config != SkBitmap::kARGB_8888_Config &&
        config != SkBitmap::kARGB_4444_Config &&
        config != SkBitmap::kRGB_565_Config) {
        config = SkBitmap::kARGB_8888_Config;
    }

    /* default format is RGB */
    cinfo->out_color_space = JCS_RGB;

#ifdef ANDROID_RGB
    cinfo->dither_mode = JDITHER_NONE;
    if (config == SkBitmap::kARGB_8888_Config) {
        cinfo->out_color_space = JCS_RGBA_8888;
    } else if (config == SkBitmap::kRGB_565_Config) {
        cinfo->out_color_space = JCS_RGB_565;
        if (this->getDitherImage()) {
            cinfo->dither_mode = JDITHER_ORDERED;
        }
    }
#endif
    int startX = rect.fLeft;
    int startY = rect.fTop;
    int width = rect.width();
    int height = rect.height();

    jpeg_init_read_tile_scanline(cinfo, index->index,
                                 &startX, &startY, &width, &height);
    int skiaSampleSize = recompute_sampleSize(requestedSampleSize, *cinfo);
    int actualSampleSize = skiaSampleSize * (DCTSIZE / cinfo->min_DCT_scaled_size);

    SkBitmap *bitmap = new SkBitmap;
    SkAutoTDelete<SkBitmap> adb(bitmap);

#ifdef ANDROID_RGB
    /* short-circuit the SkScaledBitmapSampler when possible, as this gives
       a significant performance boost.
    */
    if (skiaSampleSize == 1 &&
        ((config == SkBitmap::kARGB_8888_Config &&
                cinfo->out_color_space == JCS_RGBA_8888) ||
        (config == SkBitmap::kRGB_565_Config &&
                cinfo->out_color_space == JCS_RGB_565)))
    {
        bitmap->setConfig(config, cinfo->output_width, height);
        bitmap->setIsOpaque(true);

        // Check ahead of time if the swap(dest, src) is possible or not.
        // If yes, then we will stick to AllocPixelRef since it's cheaper
        // with the swap happening. If no, then we will use alloc to allocate
        // pixels to prevent garbage collection.
        //
        // Not using a recycled-bitmap and the output rect is same as the
        // decoded region.
        int w = rect.width() / actualSampleSize;
        int h = rect.height() / actualSampleSize;
        bool swapOnly = (rect == region) && bm->isNull() &&
                        (w == bitmap->width()) && (h == bitmap->height()) &&
                        ((startX - rect.x()) / actualSampleSize == 0) &&
                        ((startY - rect.y()) / actualSampleSize == 0);
        if (swapOnly) {
            if (!this->allocPixelRef(bitmap, NULL)) {
                return return_false(*cinfo, *bitmap, "allocPixelRef");
            }
        } else {
            if (!bitmap->allocPixels()) {
                return return_false(*cinfo, *bitmap, "allocPixels");
            }
        }

        SkAutoLockPixels alp(*bitmap);
        JSAMPLE* rowptr = (JSAMPLE*)bitmap->getPixels();
        INT32 const bpr = bitmap->rowBytes();
        int row_total_count = 0;

        while (row_total_count < height) {
            int row_count = jpeg_read_tile_scanline(cinfo,
                    index->index, &rowptr);
            // if row_count == 0, then we didn't get a scanline, so abort.
            // if we supported partial images, we might return true in this case
            if (0 == row_count) {
                return return_false(*cinfo, *bitmap, "read_scanlines");
            }
            if (this->shouldCancelDecode()) {
                return return_false(*cinfo, *bitmap, "shouldCancelDecode");
            }
            row_total_count += row_count;
            rowptr += bpr;
        }

        if (swapOnly) {
            bm->swap(*bitmap);
        } else {
            cropBitmap(bm, bitmap, actualSampleSize, region.x(), region.y(),
                       region.width(), region.height(), startX, startY);
        }
        return true;
    }
#endif
    // check for supported formats
    SkScaledBitmapSampler::SrcConfig sc;
    if (3 == cinfo->out_color_components && JCS_RGB == cinfo->out_color_space) {
        sc = SkScaledBitmapSampler::kRGB;
#ifdef ANDROID_RGB
    } else if (JCS_RGBA_8888 == cinfo->out_color_space) {
        sc = SkScaledBitmapSampler::kRGBX;
    } else if (JCS_RGB_565 == cinfo->out_color_space) {
        sc = SkScaledBitmapSampler::kRGB_565;
#endif
    } else if (1 == cinfo->out_color_components &&
               JCS_GRAYSCALE == cinfo->out_color_space) {
        sc = SkScaledBitmapSampler::kGray;
    } else {
        return return_false(*cinfo, *bm, "jpeg colorspace");
    }

    SkScaledBitmapSampler sampler(width, height, skiaSampleSize);

    bitmap->setConfig(config, sampler.scaledWidth(), sampler.scaledHeight());
    bitmap->setIsOpaque(true);

    // Check ahead of time if the swap(dest, src) is possible or not.
    // If yes, then we will stick to AllocPixelRef since it's cheaper with the
    // swap happening. If no, then we will use alloc to allocate pixels to
    // prevent garbage collection.
    int w = rect.width() / actualSampleSize;
    int h = rect.height() / actualSampleSize;
    bool swapOnly = (rect == region) && bm->isNull() &&
                    (w == bitmap->width()) && (h == bitmap->height()) &&
                    ((startX - rect.x()) / actualSampleSize == 0) &&
                    ((startY - rect.y()) / actualSampleSize == 0);
    if (swapOnly) {
        if (!this->allocPixelRef(bitmap, NULL)) {
            return return_false(*cinfo, *bitmap, "allocPixelRef");
        }
    } else {
        if (!bitmap->allocPixels()) {
            return return_false(*cinfo, *bitmap, "allocPixels");
        }
    }

    SkAutoLockPixels alp(*bitmap);
    if (!sampler.begin(bitmap, sc, this->getDitherImage())) {
        return return_false(*cinfo, *bitmap, "sampler.begin");
    }

    uint8_t* srcRow = (uint8_t*)srcStorage.reset(width * 4);

    //  Possibly skip initial rows [sampler.srcY0]
    if (!skip_src_rows_tile(cinfo, index->index, srcRow, sampler.srcY0())) {
        return return_false(*cinfo, *bitmap, "skip rows");
    }

    // now loop through scanlines until y == bitmap->height() - 1
    for (int y = 0;; y++) {
        JSAMPLE* rowptr = (JSAMPLE*)srcRow;
        int row_count = jpeg_read_tile_scanline(cinfo, index->index, &rowptr);
        if (0 == row_count) {
            return return_false(*cinfo, *bitmap, "read_scanlines");
        }
        if (this->shouldCancelDecode()) {
            return return_false(*cinfo, *bitmap, "shouldCancelDecode");
        }

        sampler.next(srcRow);
        if (bitmap->height() - 1 == y) {
            // we're done
            break;
        }

        if (!skip_src_rows_tile(cinfo, index->index, srcRow,
                                sampler.srcDY() - 1)) {
            return return_false(*cinfo, *bitmap, "skip rows");
        }
    }
    if (swapOnly) {
        bm->swap(*bitmap);
    } else {
        cropBitmap(bm, bitmap, actualSampleSize, region.x(), region.y(),
                   region.width(), region.height(), startX, startY);
    }
    return true;
}
SkCodec::Result SkSampledCodec::onGetAndroidPixels(const SkImageInfo& info, void* pixels,
        size_t rowBytes, const AndroidOptions& options) {
    // Create an Options struct for the codec.
    SkCodec::Options codecOptions;
    codecOptions.fZeroInitialized = options.fZeroInitialized;
    codecOptions.fPremulBehavior = SkTransferFunctionBehavior::kIgnore;

    SkIRect* subset = options.fSubset;
    if (!subset || subset->size() == this->codec()->getInfo().dimensions()) {
        if (this->codec()->dimensionsSupported(info.dimensions())) {
            return this->codec()->getPixels(info, pixels, rowBytes, &codecOptions);
        }

        // If the native codec does not support the requested scale, scale by sampling.
        return this->sampledDecode(info, pixels, rowBytes, options);
    }

    // We are performing a subset decode.
    int sampleSize = options.fSampleSize;
    SkISize scaledSize = this->getSampledDimensions(sampleSize);
    if (!this->codec()->dimensionsSupported(scaledSize)) {
        // If the native codec does not support the requested scale, scale by sampling.
        return this->sampledDecode(info, pixels, rowBytes, options);
    }

    // Calculate the scaled subset bounds.
    int scaledSubsetX = subset->x() / sampleSize;
    int scaledSubsetY = subset->y() / sampleSize;
    int scaledSubsetWidth = info.width();
    int scaledSubsetHeight = info.height();

    const SkImageInfo scaledInfo = info.makeWH(scaledSize.width(), scaledSize.height());

    {
        // Although startScanlineDecode expects the bottom and top to match the
        // SkImageInfo, startIncrementalDecode uses them to determine which rows to
        // decode.
        SkIRect incrementalSubset = SkIRect::MakeXYWH(scaledSubsetX, scaledSubsetY,
                                                      scaledSubsetWidth, scaledSubsetHeight);
        codecOptions.fSubset = &incrementalSubset;
        const SkCodec::Result startResult = this->codec()->startIncrementalDecode(
                scaledInfo, pixels, rowBytes, &codecOptions);
        if (SkCodec::kSuccess == startResult) {
            int rowsDecoded;
            const SkCodec::Result incResult = this->codec()->incrementalDecode(&rowsDecoded);
            if (incResult == SkCodec::kSuccess) {
                return SkCodec::kSuccess;
            }
            SkASSERT(SkCodec::kIncompleteInput == incResult);

            // FIXME: Can zero initialized be read from SkCodec::fOptions?
            this->codec()->fillIncompleteImage(scaledInfo, pixels, rowBytes,
                    options.fZeroInitialized, scaledSubsetHeight, rowsDecoded);
            return SkCodec::kIncompleteInput;
        } else if (startResult != SkCodec::kUnimplemented) {
            return startResult;
        }
        // Otherwise fall down to use the old scanline decoder.
        // codecOptions.fSubset will be reset below, so it will not continue to
        // point to the object that is no longer on the stack.
    }

    // Start the scanline decode.
    SkIRect scanlineSubset = SkIRect::MakeXYWH(scaledSubsetX, 0, scaledSubsetWidth,
            scaledSize.height());
    codecOptions.fSubset = &scanlineSubset;

    SkCodec::Result result = this->codec()->startScanlineDecode(scaledInfo,
            &codecOptions);
    if (SkCodec::kSuccess != result) {
        return result;
    }

    // At this point, we are only concerned with subsetting.  Either no scale was
    // requested, or the this->codec() is handling the scale.
    // Note that subsetting is only supported for kTopDown, so this code will not be
    // reached for other orders.
    SkASSERT(this->codec()->getScanlineOrder() == SkCodec::kTopDown_SkScanlineOrder);
    if (!this->codec()->skipScanlines(scaledSubsetY)) {
        this->codec()->fillIncompleteImage(info, pixels, rowBytes, options.fZeroInitialized,
                scaledSubsetHeight, 0);
        return SkCodec::kIncompleteInput;
    }

    int decodedLines = this->codec()->getScanlines(pixels, scaledSubsetHeight, rowBytes);
    if (decodedLines != scaledSubsetHeight) {
        return SkCodec::kIncompleteInput;
    }
    return SkCodec::kSuccess;
}
sk_sp<SkSpecialImage> SkDisplacementMapEffect::onFilterImage(SkSpecialImage* source,
                                                             const Context& ctx,
                                                             SkIPoint* offset) const {
    SkIPoint colorOffset = SkIPoint::Make(0, 0);
    sk_sp<SkSpecialImage> color(this->filterInput(1, source, ctx, &colorOffset));
    if (!color) {
        return nullptr;
    }

    SkIPoint displOffset = SkIPoint::Make(0, 0);
    sk_sp<SkSpecialImage> displ(this->filterInput(0, source, ctx, &displOffset));
    if (!displ) {
        return nullptr;
    }

    const SkIRect srcBounds = SkIRect::MakeXYWH(colorOffset.x(), colorOffset.y(),
                                                color->width(), color->height());

    // Both paths do bounds checking on color pixel access, we don't need to
    // pad the color bitmap to bounds here.
    SkIRect bounds;
    if (!this->applyCropRect(ctx, srcBounds, &bounds)) {
        return nullptr;
    }

    SkIRect displBounds;
    displ = this->applyCropRect(ctx, displ.get(), &displOffset, &displBounds);
    if (!displ) {
        return nullptr;
    }

    if (!bounds.intersect(displBounds)) {
        return nullptr;
    }

    const SkIRect colorBounds = bounds.makeOffset(-colorOffset.x(), -colorOffset.y());

    SkVector scale = SkVector::Make(fScale, fScale);
    ctx.ctm().mapVectors(&scale, 1);

#if SK_SUPPORT_GPU
    if (source->isTextureBacked()) {
        GrContext* context = source->getContext();

        sk_sp<GrTexture> colorTexture(color->asTextureRef(context));
        sk_sp<GrTexture> displTexture(displ->asTextureRef(context));
        if (!colorTexture || !displTexture) {
            return nullptr;
        }

        GrSurfaceDesc desc;
        desc.fFlags = kRenderTarget_GrSurfaceFlag;
        desc.fWidth = bounds.width();
        desc.fHeight = bounds.height();
        desc.fConfig = kSkia8888_GrPixelConfig;

        SkAutoTUnref<GrTexture> dst(context->textureProvider()->createApproxTexture(desc));
        if (!dst) {
            return nullptr;
        }

        GrPaint paint;
        SkMatrix offsetMatrix = GrCoordTransform::MakeDivByTextureWHMatrix(displTexture.get());
        offsetMatrix.preTranslate(SkIntToScalar(colorOffset.fX - displOffset.fX),
                                  SkIntToScalar(colorOffset.fY - displOffset.fY));

        paint.addColorFragmentProcessor(
            GrDisplacementMapEffect::Create(fXChannelSelector,
                                            fYChannelSelector,
                                            scale,
                                            displTexture.get(),
                                            offsetMatrix,
                                            colorTexture.get(),
                                            SkISize::Make(color->width(),
                                                          color->height())))->unref();
        paint.setPorterDuffXPFactory(SkXfermode::kSrc_Mode);
        SkMatrix matrix;
        matrix.setTranslate(-SkIntToScalar(colorBounds.x()), -SkIntToScalar(colorBounds.y()));

        SkAutoTUnref<GrDrawContext> drawContext(context->drawContext(dst->asRenderTarget()));
        if (!drawContext) {
            return nullptr;
        }

        drawContext->drawRect(GrClip::WideOpen(), paint, matrix, SkRect::Make(colorBounds));

        offset->fX = bounds.left();
        offset->fY = bounds.top();
        return SkSpecialImage::MakeFromGpu(SkIRect::MakeWH(bounds.width(), bounds.height()),
                                           kNeedNewImageUniqueID_SpecialImage,
                                           dst);
    }
#endif

    SkBitmap colorBM, displBM;

    if (!color->getROPixels(&colorBM) || !displ->getROPixels(&displBM)) {
        return nullptr;
    }

    if ((colorBM.colorType() != kN32_SkColorType) ||
        (displBM.colorType() != kN32_SkColorType)) {
        return nullptr;
    }

    SkAutoLockPixels colorLock(colorBM), displLock(displBM);
    if (!colorBM.getPixels() || !displBM.getPixels()) {
        return nullptr;
    }

    SkImageInfo info = SkImageInfo::MakeN32(bounds.width(), bounds.height(),
                                            colorBM.alphaType());

    SkBitmap dst;
    if (!dst.tryAllocPixels(info)) {
        return nullptr;
    }

    SkAutoLockPixels dstLock(dst);

    computeDisplacement(fXChannelSelector, fYChannelSelector, scale, &dst,
                        displBM, colorOffset - displOffset, colorBM, colorBounds);

    offset->fX = bounds.left();
    offset->fY = bounds.top();
    return SkSpecialImage::MakeFromRaster(SkIRect::MakeWH(bounds.width(), bounds.height()),
                                          dst);
}
Example #18
0
SkCodec::Result SkSampledCodec::onGetAndroidPixels(const SkImageInfo& info, void* pixels,
        size_t rowBytes, const AndroidOptions& options) {
    // Create an Options struct for the codec.
    SkCodec::Options codecOptions;
    codecOptions.fZeroInitialized = options.fZeroInitialized;

    SkIRect* subset = options.fSubset;
    if (!subset || subset->size() == this->codec()->getInfo().dimensions()) {
        if (this->codec()->dimensionsSupported(info.dimensions())) {
            return this->codec()->getPixels(info, pixels, rowBytes, &codecOptions,
                    options.fColorPtr, options.fColorCount);
        }

        // If the native codec does not support the requested scale, scale by sampling.
        return this->sampledDecode(info, pixels, rowBytes, options);
    }

    // We are performing a subset decode.
    int sampleSize = options.fSampleSize;
    SkISize scaledSize = this->getSampledDimensions(sampleSize);
    if (!this->codec()->dimensionsSupported(scaledSize)) {
        // If the native codec does not support the requested scale, scale by sampling.
        return this->sampledDecode(info, pixels, rowBytes, options);
    }

    // Calculate the scaled subset bounds.
    int scaledSubsetX = subset->x() / sampleSize;
    int scaledSubsetY = subset->y() / sampleSize;
    int scaledSubsetWidth = info.width();
    int scaledSubsetHeight = info.height();

    // Start the scanline decode.
    SkIRect scanlineSubset = SkIRect::MakeXYWH(scaledSubsetX, 0, scaledSubsetWidth,
            scaledSize.height());
    codecOptions.fSubset = &scanlineSubset;
    SkCodec::Result result = this->codec()->startScanlineDecode(info.makeWH(scaledSize.width(),
            scaledSize.height()), &codecOptions, options.fColorPtr, options.fColorCount);
    if (SkCodec::kSuccess != result) {
        return result;
    }

    // At this point, we are only concerned with subsetting.  Either no scale was
    // requested, or the this->codec() is handling the scale.
    switch (this->codec()->getScanlineOrder()) {
        case SkCodec::kTopDown_SkScanlineOrder:
        case SkCodec::kNone_SkScanlineOrder: {
            if (!this->codec()->skipScanlines(scaledSubsetY)) {
                this->codec()->fillIncompleteImage(info, pixels, rowBytes, options.fZeroInitialized,
                        scaledSubsetHeight, 0);
                return SkCodec::kIncompleteInput;
            }

            int decodedLines = this->codec()->getScanlines(pixels, scaledSubsetHeight, rowBytes);
            if (decodedLines != scaledSubsetHeight) {
                return SkCodec::kIncompleteInput;
            }
            return SkCodec::kSuccess;
        }
        default:
            SkASSERT(false);
            return SkCodec::kUnimplemented;
    }
}
Example #19
0
SkCodec::Result SkSampledCodec::sampledDecode(const SkImageInfo& info, void* pixels,
        size_t rowBytes, const AndroidOptions& options) {
    // We should only call this function when sampling.
    SkASSERT(options.fSampleSize > 1);

    // Create options struct for the codec.
    SkCodec::Options sampledOptions;
    sampledOptions.fZeroInitialized = options.fZeroInitialized;

    // FIXME: This was already called by onGetAndroidPixels. Can we reduce that?
    int sampleSize = options.fSampleSize;
    int nativeSampleSize;
    SkISize nativeSize = this->accountForNativeScaling(&sampleSize, &nativeSampleSize);

    // Check if there is a subset.
    SkIRect subset;
    int subsetY = 0;
    int subsetWidth = nativeSize.width();
    int subsetHeight = nativeSize.height();
    if (options.fSubset) {
        // We will need to know about subsetting in the y-dimension in order to use the
        // scanline decoder.
        // Update the subset to account for scaling done by this->codec().
        SkIRect* subsetPtr = options.fSubset;

        // Do the divide ourselves, instead of calling get_scaled_dimension. If
        // X and Y are 0, they should remain 0, rather than being upgraded to 1
        // due to being smaller than the sampleSize.
        const int subsetX = subsetPtr->x() / nativeSampleSize;
        subsetY = subsetPtr->y() / nativeSampleSize;

        subsetWidth = get_scaled_dimension(subsetPtr->width(), nativeSampleSize);
        subsetHeight = get_scaled_dimension(subsetPtr->height(), nativeSampleSize);

        // The scanline decoder only needs to be aware of subsetting in the x-dimension.
        subset.setXYWH(subsetX, 0, subsetWidth, nativeSize.height());
        sampledOptions.fSubset = &subset;
    }

    // Start the scanline decode.
    SkCodec::Result result = this->codec()->startScanlineDecode(
            info.makeWH(nativeSize.width(), nativeSize.height()), &sampledOptions,
            options.fColorPtr, options.fColorCount);
    if (SkCodec::kSuccess != result) {
        return result;
    }

    SkSampler* sampler = this->codec()->getSampler(true);
    if (!sampler) {
        return SkCodec::kUnimplemented;
    }

    // Since we guarantee that output dimensions are always at least one (even if the sampleSize
    // is greater than a given dimension), the input sampleSize is not always the sampleSize that
    // we use in practice.
    const int sampleX = subsetWidth / info.width();
    const int sampleY = subsetHeight / info.height();
    if (sampler->setSampleX(sampleX) != info.width()) {
        return SkCodec::kInvalidScale;
    }
    if (get_scaled_dimension(subsetHeight, sampleY) != info.height()) {
        return SkCodec::kInvalidScale;
    }

    const int samplingOffsetY = get_start_coord(sampleY);
    const int startY = samplingOffsetY + subsetY;
    int dstHeight = info.height();
    switch(this->codec()->getScanlineOrder()) {
        case SkCodec::kTopDown_SkScanlineOrder: {
            if (!this->codec()->skipScanlines(startY)) {
                this->codec()->fillIncompleteImage(info, pixels, rowBytes, options.fZeroInitialized,
                        dstHeight, 0);
                return SkCodec::kIncompleteInput;
            }
            void* pixelPtr = pixels;
            for (int y = 0; y < dstHeight; y++) {
                if (1 != this->codec()->getScanlines(pixelPtr, 1, rowBytes)) {
                    this->codec()->fillIncompleteImage(info, pixels, rowBytes,
                            options.fZeroInitialized, dstHeight, y + 1);
                    return SkCodec::kIncompleteInput;
                }
                if (y < dstHeight - 1) {
                    if (!this->codec()->skipScanlines(sampleY - 1)) {
                        this->codec()->fillIncompleteImage(info, pixels, rowBytes,
                                options.fZeroInitialized, dstHeight, y + 1);
                        return SkCodec::kIncompleteInput;
                    }
                }
                pixelPtr = SkTAddOffset<void>(pixelPtr, rowBytes);
            }
            return SkCodec::kSuccess;
        }
        case SkCodec::kOutOfOrder_SkScanlineOrder:
        case SkCodec::kBottomUp_SkScanlineOrder: {
            // Note that these modes do not support subsetting.
            SkASSERT(0 == subsetY && nativeSize.height() == subsetHeight);
            int y;
            for (y = 0; y < nativeSize.height(); y++) {
                int srcY = this->codec()->nextScanline();
                if (is_coord_necessary(srcY, sampleY, dstHeight)) {
                    void* pixelPtr = SkTAddOffset<void>(pixels,
                            rowBytes * get_dst_coord(srcY, sampleY));
                    if (1 != this->codec()->getScanlines(pixelPtr, 1, rowBytes)) {
                        break;
                    }
                } else {
                    if (!this->codec()->skipScanlines(1)) {
                        break;
                    }
                }
            }

            if (nativeSize.height() == y) {
                return SkCodec::kSuccess;
            }

            // We handle filling uninitialized memory here instead of using this->codec().
            // this->codec() does not know that we are sampling.
            const uint32_t fillValue = this->codec()->getFillValue(info.colorType());
            const SkImageInfo fillInfo = info.makeWH(info.width(), 1);
            for (; y < nativeSize.height(); y++) {
                int srcY = this->codec()->outputScanline(y);
                if (!is_coord_necessary(srcY, sampleY, dstHeight)) {
                    continue;
                }

                void* rowPtr = SkTAddOffset<void>(pixels, rowBytes * get_dst_coord(srcY, sampleY));
                SkSampler::Fill(fillInfo, rowPtr, rowBytes, fillValue, options.fZeroInitialized);
            }
            return SkCodec::kIncompleteInput;
        }
        case SkCodec::kNone_SkScanlineOrder: {
            const int linesNeeded = subsetHeight - samplingOffsetY;
            SkAutoTMalloc<uint8_t> storage(linesNeeded * rowBytes);
            uint8_t* storagePtr = storage.get();

            if (!this->codec()->skipScanlines(startY)) {
                this->codec()->fillIncompleteImage(info, pixels, rowBytes, options.fZeroInitialized,
                        dstHeight, 0);
                return SkCodec::kIncompleteInput;
            }
            int scanlines = this->codec()->getScanlines(storagePtr, linesNeeded, rowBytes);

            for (int y = 0; y < dstHeight; y++) {
                memcpy(pixels, storagePtr, info.minRowBytes());
                storagePtr += sampleY * rowBytes;
                pixels = SkTAddOffset<void>(pixels, rowBytes);
            }

            if (scanlines < dstHeight) {
                // this->codec() has already handled filling uninitialized memory.
                return SkCodec::kIncompleteInput;
            }
            return SkCodec::kSuccess;
        }
        default:
            SkASSERT(false);
            return SkCodec::kUnimplemented;
    }
}
sk_sp<SkSpecialImage> SkBlurImageFilter::onFilterImage(SkSpecialImage* source,
                                                       const Context& ctx,
                                                       SkIPoint* offset) const {
    SkIPoint inputOffset = SkIPoint::Make(0, 0);

    sk_sp<SkSpecialImage> input(this->filterInput(0, source, ctx, &inputOffset));
    if (!input) {
        return nullptr;
    }

    SkIRect inputBounds = SkIRect::MakeXYWH(inputOffset.fX, inputOffset.fY,
                                            input->width(), input->height());

    SkIRect dstBounds;
    if (!this->applyCropRect(this->mapContext(ctx), inputBounds, &dstBounds)) {
        return nullptr;
    }
    if (!inputBounds.intersect(dstBounds)) {
        return nullptr;
    }

    const SkVector sigma = map_sigma(fSigma, ctx.ctm());

#if SK_SUPPORT_GPU
    if (input->peekTexture() && input->peekTexture()->getContext()) {
        if (0 == sigma.x() && 0 == sigma.y()) {
            offset->fX = inputBounds.x();
            offset->fY = inputBounds.y();
            return input->makeSubset(inputBounds.makeOffset(-inputOffset.x(),
                                                            -inputOffset.y()));
        }

        GrTexture* inputTexture = input->peekTexture();

        offset->fX = dstBounds.fLeft;
        offset->fY = dstBounds.fTop;
        inputBounds.offset(-inputOffset);
        dstBounds.offset(-inputOffset);
        SkRect inputBoundsF(SkRect::Make(inputBounds));
        SkAutoTUnref<GrTexture> tex(SkGpuBlurUtils::GaussianBlur(inputTexture->getContext(),
                                                                 inputTexture,
                                                                 false,
                                                                 source->props().allowSRGBInputs(),
                                                                 SkRect::Make(dstBounds),
                                                                 &inputBoundsF,
                                                                 sigma.x(),
                                                                 sigma.y()));
        if (!tex) {
            return nullptr;
        }

        return SkSpecialImage::MakeFromGpu(source->internal_getProxy(),
                                           SkIRect::MakeWH(dstBounds.width(), dstBounds.height()),
                                           kNeedNewImageUniqueID_SpecialImage,
                                           tex, &source->props());
    }
#endif

    int kernelSizeX, kernelSizeX3, lowOffsetX, highOffsetX;
    int kernelSizeY, kernelSizeY3, lowOffsetY, highOffsetY;
    get_box3_params(sigma.x(), &kernelSizeX, &kernelSizeX3, &lowOffsetX, &highOffsetX);
    get_box3_params(sigma.y(), &kernelSizeY, &kernelSizeY3, &lowOffsetY, &highOffsetY);

    if (kernelSizeX < 0 || kernelSizeY < 0) {
        return nullptr;
    }

    if (kernelSizeX == 0 && kernelSizeY == 0) {
        offset->fX = inputBounds.x();
        offset->fY = inputBounds.y();
        return input->makeSubset(inputBounds.makeOffset(-inputOffset.x(),
                                                        -inputOffset.y()));
    }

    SkPixmap inputPixmap;

    if (!input->peekPixels(&inputPixmap)) {
        return nullptr;
    }

    if (inputPixmap.colorType() != kN32_SkColorType) {
        return nullptr;
    }

    SkImageInfo info = SkImageInfo::Make(dstBounds.width(), dstBounds.height(),
                                         inputPixmap.colorType(), inputPixmap.alphaType());

    SkBitmap tmp, dst;
    if (!tmp.tryAllocPixels(info) || !dst.tryAllocPixels(info)) {
        return nullptr;
    }

    SkAutoLockPixels tmpLock(tmp), dstLock(dst);

    offset->fX = dstBounds.fLeft;
    offset->fY = dstBounds.fTop;
    SkPMColor* t = tmp.getAddr32(0, 0);
    SkPMColor* d = dst.getAddr32(0, 0);
    int w = dstBounds.width(), h = dstBounds.height();
    const SkPMColor* s = inputPixmap.addr32(inputBounds.x() - inputOffset.x(),
                                            inputBounds.y() - inputOffset.y());
    inputBounds.offset(-dstBounds.x(), -dstBounds.y());
    dstBounds.offset(-dstBounds.x(), -dstBounds.y());
    SkIRect inputBoundsT = SkIRect::MakeLTRB(inputBounds.top(), inputBounds.left(),
                                             inputBounds.bottom(), inputBounds.right());
    SkIRect dstBoundsT = SkIRect::MakeWH(dstBounds.height(), dstBounds.width());
    int sw = int(inputPixmap.rowBytes() >> 2);

    /**
     *
     * In order to make memory accesses cache-friendly, we reorder the passes to
     * use contiguous memory reads wherever possible.
     *
     * For example, the 6 passes of the X-and-Y blur case are rewritten as
     * follows. Instead of 3 passes in X and 3 passes in Y, we perform
     * 2 passes in X, 1 pass in X transposed to Y on write, 2 passes in X,
     * then 1 pass in X transposed to Y on write.
     *
     * +----+       +----+       +----+        +---+       +---+       +---+        +----+
     * + AB + ----> | AB | ----> | AB | -----> | A | ----> | A | ----> | A | -----> | AB |
     * +----+ blurX +----+ blurX +----+ blurXY | B | blurX | B | blurX | B | blurXY +----+
     *                                         +---+       +---+       +---+
     *
     * In this way, two of the y-blurs become x-blurs applied to transposed
     * images, and all memory reads are contiguous.
     */
    if (kernelSizeX > 0 && kernelSizeY > 0) {
        SkOpts::box_blur_xx(s, sw,  inputBounds,  t, kernelSizeX,  lowOffsetX,  highOffsetX, w, h);
        SkOpts::box_blur_xx(t,  w,  dstBounds,    d, kernelSizeX,  highOffsetX, lowOffsetX,  w, h);
        SkOpts::box_blur_xy(d,  w,  dstBounds,    t, kernelSizeX3, highOffsetX, highOffsetX, w, h);
        SkOpts::box_blur_xx(t,  h,  dstBoundsT,   d, kernelSizeY,  lowOffsetY,  highOffsetY, h, w);
        SkOpts::box_blur_xx(d,  h,  dstBoundsT,   t, kernelSizeY,  highOffsetY, lowOffsetY,  h, w);
        SkOpts::box_blur_xy(t,  h,  dstBoundsT,   d, kernelSizeY3, highOffsetY, highOffsetY, h, w);
    } else if (kernelSizeX > 0) {
        SkOpts::box_blur_xx(s, sw,  inputBounds,  d, kernelSizeX,  lowOffsetX,  highOffsetX, w, h);
        SkOpts::box_blur_xx(d,  w,  dstBounds,    t, kernelSizeX,  highOffsetX, lowOffsetX,  w, h);
        SkOpts::box_blur_xx(t,  w,  dstBounds,    d, kernelSizeX3, highOffsetX, highOffsetX, w, h);
    } else if (kernelSizeY > 0) {
        SkOpts::box_blur_yx(s, sw,  inputBoundsT, d, kernelSizeY,  lowOffsetY,  highOffsetY, h, w);
        SkOpts::box_blur_xx(d,  h,  dstBoundsT,   t, kernelSizeY,  highOffsetY, lowOffsetY,  h, w);
        SkOpts::box_blur_xy(t,  h,  dstBoundsT,   d, kernelSizeY3, highOffsetY, highOffsetY, h, w);
    }

    return SkSpecialImage::MakeFromRaster(source->internal_getProxy(),
                                          SkIRect::MakeWH(dstBounds.width(),
                                                          dstBounds.height()),
                                          dst, &source->props());
}
sk_sp<SkSpecialImage> SkMagnifierImageFilter::onFilterImage(SkSpecialImage* source,
                                                            const Context& ctx,
                                                            SkIPoint* offset) const {
    SkIPoint inputOffset = SkIPoint::Make(0, 0);
    sk_sp<SkSpecialImage> input(this->filterInput(0, source, ctx, &inputOffset));
    if (!input) {
        return nullptr;
    }

    const SkIRect inputBounds = SkIRect::MakeXYWH(inputOffset.x(), inputOffset.y(),
                                                  input->width(), input->height());

    SkIRect bounds;
    if (!this->applyCropRect(ctx, inputBounds, &bounds)) {
        return nullptr;
    }

    SkScalar invInset = fInset > 0 ? SkScalarInvert(fInset) : SK_Scalar1;

    SkScalar invXZoom = fSrcRect.width() / bounds.width();
    SkScalar invYZoom = fSrcRect.height() / bounds.height();


#if SK_SUPPORT_GPU
    if (source->isTextureBacked()) {
        GrContext* context = source->getContext();

        sk_sp<GrTexture> inputTexture(input->asTextureRef(context));
        SkASSERT(inputTexture);

        offset->fX = bounds.left();
        offset->fY = bounds.top();
        bounds.offset(-inputOffset);

        SkScalar yOffset = inputTexture->origin() == kTopLeft_GrSurfaceOrigin 
            ? fSrcRect.y()
            : inputTexture->height() - 
                      fSrcRect.height() * inputTexture->height() / bounds.height() - fSrcRect.y();
        int boundsY = inputTexture->origin() == kTopLeft_GrSurfaceOrigin
            ? bounds.y()
            : inputTexture->height() - bounds.height();
        SkRect effectBounds = SkRect::MakeXYWH(
            SkIntToScalar(bounds.x()) / inputTexture->width(),
            SkIntToScalar(boundsY) / inputTexture->height(),
            SkIntToScalar(inputTexture->width()) / bounds.width(),
            SkIntToScalar(inputTexture->height()) / bounds.height());
        // SRGBTODO: Handle sRGB here
        sk_sp<GrFragmentProcessor> fp(GrMagnifierEffect::Create(
                                                        inputTexture.get(),
                                                        effectBounds,
                                                        fSrcRect.x() / inputTexture->width(),
                                                        yOffset / inputTexture->height(),
                                                        invXZoom,
                                                        invYZoom,
                                                        bounds.width() * invInset,
                                                        bounds.height() * invInset));
        if (!fp) {
            return nullptr;
        }

        return DrawWithFP(context, std::move(fp), bounds);
    }
#endif

    SkBitmap inputBM;

    if (!input->getROPixels(&inputBM)) {
        return nullptr;
    }

    if ((inputBM.colorType() != kN32_SkColorType) ||
        (fSrcRect.width() >= inputBM.width()) || (fSrcRect.height() >= inputBM.height())) {
        return nullptr;
    }

    SkAutoLockPixels alp(inputBM);
    SkASSERT(inputBM.getPixels());
    if (!inputBM.getPixels() || inputBM.width() <= 0 || inputBM.height() <= 0) {
        return nullptr;
    }

    const SkImageInfo info = SkImageInfo::MakeN32Premul(bounds.width(), bounds.height());

    SkBitmap dst;
    if (!dst.tryAllocPixels(info)) {
        return nullptr;
    }

    SkAutoLockPixels dstLock(dst);

    SkColor* dptr = dst.getAddr32(0, 0);
    int dstWidth = dst.width(), dstHeight = dst.height();
    for (int y = 0; y < dstHeight; ++y) {
        for (int x = 0; x < dstWidth; ++x) {
            SkScalar x_dist = SkMin32(x, dstWidth - x - 1) * invInset;
            SkScalar y_dist = SkMin32(y, dstHeight - y - 1) * invInset;
            SkScalar weight = 0;

            static const SkScalar kScalar2 = SkScalar(2);

            // To create a smooth curve at the corners, we need to work on
            // a square twice the size of the inset.
            if (x_dist < kScalar2 && y_dist < kScalar2) {
                x_dist = kScalar2 - x_dist;
                y_dist = kScalar2 - y_dist;

                SkScalar dist = SkScalarSqrt(SkScalarSquare(x_dist) +
                                             SkScalarSquare(y_dist));
                dist = SkMaxScalar(kScalar2 - dist, 0);
                weight = SkMinScalar(SkScalarSquare(dist), SK_Scalar1);
            } else {
                SkScalar sqDist = SkMinScalar(SkScalarSquare(x_dist),
                                              SkScalarSquare(y_dist));
                weight = SkMinScalar(sqDist, SK_Scalar1);
            }

            SkScalar x_interp = SkScalarMul(weight, (fSrcRect.x() + x * invXZoom)) +
                           (SK_Scalar1 - weight) * x;
            SkScalar y_interp = SkScalarMul(weight, (fSrcRect.y() + y * invYZoom)) +
                           (SK_Scalar1 - weight) * y;

            int x_val = SkTPin(bounds.x() + SkScalarFloorToInt(x_interp), 0, inputBM.width() - 1);
            int y_val = SkTPin(bounds.y() + SkScalarFloorToInt(y_interp), 0, inputBM.height() - 1);

            *dptr = *inputBM.getAddr32(x_val, y_val);
            dptr++;
        }
    }

    offset->fX = bounds.left();
    offset->fY = bounds.top();
    return SkSpecialImage::MakeFromRaster(SkIRect::MakeWH(bounds.width(), bounds.height()),
                                          dst);
}
Example #22
0
static void
SetPaintPattern(SkPaint& aPaint, const Pattern& aPattern, TempBitmap& aTmpBitmap,
                Float aAlpha = 1.0)
{
  switch (aPattern.GetType()) {
    case PatternType::COLOR: {
      Color color = static_cast<const ColorPattern&>(aPattern).mColor;
      aPaint.setColor(ColorToSkColor(color, aAlpha));
      break;
    }
    case PatternType::LINEAR_GRADIENT: {
      const LinearGradientPattern& pat = static_cast<const LinearGradientPattern&>(aPattern);
      GradientStopsSkia *stops = static_cast<GradientStopsSkia*>(pat.mStops.get());
      SkShader::TileMode mode = ExtendModeToTileMode(stops->mExtendMode);

      if (stops->mCount >= 2) {
        SkPoint points[2];
        points[0] = SkPoint::Make(SkFloatToScalar(pat.mBegin.x), SkFloatToScalar(pat.mBegin.y));
        points[1] = SkPoint::Make(SkFloatToScalar(pat.mEnd.x), SkFloatToScalar(pat.mEnd.y));

        SkShader* shader = SkGradientShader::CreateLinear(points,
                                                          &stops->mColors.front(),
                                                          &stops->mPositions.front(),
                                                          stops->mCount,
                                                          mode);

        if (shader) {
            SkMatrix mat;
            GfxMatrixToSkiaMatrix(pat.mMatrix, mat);
            SkShader* matrixShader = SkShader::CreateLocalMatrixShader(shader, mat);
            SkSafeUnref(shader);
            SkSafeUnref(aPaint.setShader(matrixShader));
        }

      } else {
        aPaint.setColor(SkColorSetARGB(0, 0, 0, 0));
      }
      break;
    }
    case PatternType::RADIAL_GRADIENT: {
      const RadialGradientPattern& pat = static_cast<const RadialGradientPattern&>(aPattern);
      GradientStopsSkia *stops = static_cast<GradientStopsSkia*>(pat.mStops.get());
      SkShader::TileMode mode = ExtendModeToTileMode(stops->mExtendMode);

      if (stops->mCount >= 2) {
        SkPoint points[2];
        points[0] = SkPoint::Make(SkFloatToScalar(pat.mCenter1.x), SkFloatToScalar(pat.mCenter1.y));
        points[1] = SkPoint::Make(SkFloatToScalar(pat.mCenter2.x), SkFloatToScalar(pat.mCenter2.y));

        SkShader* shader = SkGradientShader::CreateTwoPointConical(points[0],
                                                                   SkFloatToScalar(pat.mRadius1),
                                                                   points[1],
                                                                   SkFloatToScalar(pat.mRadius2),
                                                                   &stops->mColors.front(),
                                                                   &stops->mPositions.front(),
                                                                   stops->mCount,
                                                                   mode);
        if (shader) {
            SkMatrix mat;
            GfxMatrixToSkiaMatrix(pat.mMatrix, mat);
            SkShader* matrixShader = SkShader::CreateLocalMatrixShader(shader, mat);
            SkSafeUnref(shader);
            SkSafeUnref(aPaint.setShader(matrixShader));
        }

      } else {
        aPaint.setColor(SkColorSetARGB(0, 0, 0, 0));
      }
      break;
    }
    case PatternType::SURFACE: {
      const SurfacePattern& pat = static_cast<const SurfacePattern&>(aPattern);
      aTmpBitmap = GetBitmapForSurface(pat.mSurface);
      SkBitmap& bitmap = aTmpBitmap.mBitmap;

      SkMatrix mat;
      GfxMatrixToSkiaMatrix(pat.mMatrix, mat);

      if (!pat.mSamplingRect.IsEmpty()) {
        SkIRect rect = IntRectToSkIRect(pat.mSamplingRect);
        bitmap.extractSubset(&bitmap, rect);
        mat.preTranslate(rect.x(), rect.y());
      }

      SkShader::TileMode mode = ExtendModeToTileMode(pat.mExtendMode);
      SkShader* shader = SkShader::CreateBitmapShader(bitmap, mode, mode);
      SkShader* matrixShader = SkShader::CreateLocalMatrixShader(shader, mat);
      SkSafeUnref(shader);
      SkSafeUnref(aPaint.setShader(matrixShader));
      if (pat.mFilter == Filter::POINT) {
        aPaint.setFilterLevel(SkPaint::kNone_FilterLevel);
      }
      break;
    }
  }
}
Example #23
0
bool SkBlurImageFilter::onFilterImageDeprecated(Proxy* proxy,
                                                const SkBitmap& source, const Context& ctx,
                                                SkBitmap* dst, SkIPoint* offset) const {
    SkBitmap src = source;
    SkIPoint srcOffset = SkIPoint::Make(0, 0);
    if (!this->filterInputDeprecated(0, proxy, source, ctx, &src, &srcOffset)) {
        return false;
    }

    if (src.colorType() != kN32_SkColorType) {
        return false;
    }

    SkIRect srcBounds = src.bounds();
    srcBounds.offset(srcOffset);
    SkIRect dstBounds;
    if (!this->applyCropRect(this->mapContext(ctx), srcBounds, &dstBounds)) {
        return false;
    }
    if (!srcBounds.intersect(dstBounds)) {
        return false;
    }

    SkVector sigma = map_sigma(fSigma, ctx.ctm());

    int kernelSizeX, kernelSizeX3, lowOffsetX, highOffsetX;
    int kernelSizeY, kernelSizeY3, lowOffsetY, highOffsetY;
    getBox3Params(sigma.x(), &kernelSizeX, &kernelSizeX3, &lowOffsetX, &highOffsetX);
    getBox3Params(sigma.y(), &kernelSizeY, &kernelSizeY3, &lowOffsetY, &highOffsetY);

    if (kernelSizeX < 0 || kernelSizeY < 0) {
        return false;
    }

    if (kernelSizeX == 0 && kernelSizeY == 0) {
        src.extractSubset(dst, srcBounds);
        offset->fX = srcBounds.x();
        offset->fY = srcBounds.y();
        return true;
    }

    SkAutoLockPixels alp(src);
    if (!src.getPixels()) {
        return false;
    }

    SkAutoTUnref<SkBaseDevice> device(proxy->createDevice(dstBounds.width(), dstBounds.height()));
    if (!device) {
        return false;
    }
    *dst = device->accessBitmap(false);
    SkAutoLockPixels alp_dst(*dst);

    SkAutoTUnref<SkBaseDevice> tempDevice(proxy->createDevice(dst->width(), dst->height()));
    if (!tempDevice) {
        return false;
    }
    SkBitmap temp = tempDevice->accessBitmap(false);
    SkAutoLockPixels alpTemp(temp);

    offset->fX = dstBounds.fLeft;
    offset->fY = dstBounds.fTop;
    SkPMColor* t = temp.getAddr32(0, 0);
    SkPMColor* d = dst->getAddr32(0, 0);
    int w = dstBounds.width(), h = dstBounds.height();
    const SkPMColor* s = src.getAddr32(srcBounds.x() - srcOffset.x(), srcBounds.y() - srcOffset.y());
    srcBounds.offset(-dstBounds.x(), -dstBounds.y());
    dstBounds.offset(-dstBounds.x(), -dstBounds.y());
    SkIRect srcBoundsT = SkIRect::MakeLTRB(srcBounds.top(), srcBounds.left(), srcBounds.bottom(), srcBounds.right());
    SkIRect dstBoundsT = SkIRect::MakeWH(dstBounds.height(), dstBounds.width());
    int sw = src.rowBytesAsPixels();

    /**
     *
     * In order to make memory accesses cache-friendly, we reorder the passes to
     * use contiguous memory reads wherever possible.
     *
     * For example, the 6 passes of the X-and-Y blur case are rewritten as
     * follows. Instead of 3 passes in X and 3 passes in Y, we perform
     * 2 passes in X, 1 pass in X transposed to Y on write, 2 passes in X,
     * then 1 pass in X transposed to Y on write.
     *
     * +----+       +----+       +----+        +---+       +---+       +---+        +----+
     * + AB + ----> | AB | ----> | AB | -----> | A | ----> | A | ----> | A | -----> | AB |
     * +----+ blurX +----+ blurX +----+ blurXY | B | blurX | B | blurX | B | blurXY +----+
     *                                         +---+       +---+       +---+
     *
     * In this way, two of the y-blurs become x-blurs applied to transposed
     * images, and all memory reads are contiguous.
     */
    if (kernelSizeX > 0 && kernelSizeY > 0) {
        SkOpts::box_blur_xx(s, sw,  srcBounds,  t, kernelSizeX,  lowOffsetX,  highOffsetX, w, h);
        SkOpts::box_blur_xx(t,  w,  dstBounds,  d, kernelSizeX,  highOffsetX, lowOffsetX,  w, h);
        SkOpts::box_blur_xy(d,  w,  dstBounds,  t, kernelSizeX3, highOffsetX, highOffsetX, w, h);
        SkOpts::box_blur_xx(t,  h,  dstBoundsT, d, kernelSizeY,  lowOffsetY,  highOffsetY, h, w);
        SkOpts::box_blur_xx(d,  h,  dstBoundsT, t, kernelSizeY,  highOffsetY, lowOffsetY,  h, w);
        SkOpts::box_blur_xy(t,  h,  dstBoundsT, d, kernelSizeY3, highOffsetY, highOffsetY, h, w);
    } else if (kernelSizeX > 0) {
        SkOpts::box_blur_xx(s, sw,  srcBounds,  d, kernelSizeX,  lowOffsetX,  highOffsetX, w, h);
        SkOpts::box_blur_xx(d,  w,  dstBounds,  t, kernelSizeX,  highOffsetX, lowOffsetX,  w, h);
        SkOpts::box_blur_xx(t,  w,  dstBounds,  d, kernelSizeX3, highOffsetX, highOffsetX, w, h);
    } else if (kernelSizeY > 0) {
        SkOpts::box_blur_yx(s, sw,  srcBoundsT, d, kernelSizeY,  lowOffsetY,  highOffsetY, h, w);
        SkOpts::box_blur_xx(d,  h,  dstBoundsT, t, kernelSizeY,  highOffsetY, lowOffsetY,  h, w);
        SkOpts::box_blur_xy(t,  h,  dstBoundsT, d, kernelSizeY3, highOffsetY, highOffsetY, h, w);
    }
    return true;
}
Example #24
0
sk_sp<GrDrawContext> GaussianBlur(GrContext* context,
                                  GrTexture* origSrc,
                                  sk_sp<SkColorSpace> colorSpace,
                                  const SkIRect& dstBounds,
                                  const SkIRect* srcBounds,
                                  float sigmaX,
                                  float sigmaY,
                                  SkBackingFit fit) {
    SkASSERT(context);
    SkIRect clearRect;
    int scaleFactorX, radiusX;
    int scaleFactorY, radiusY;
    int maxTextureSize = context->caps()->maxTextureSize();
    sigmaX = adjust_sigma(sigmaX, maxTextureSize, &scaleFactorX, &radiusX);
    sigmaY = adjust_sigma(sigmaY, maxTextureSize, &scaleFactorY, &radiusY);
    SkASSERT(sigmaX || sigmaY);

    SkIPoint srcOffset = SkIPoint::Make(-dstBounds.x(), -dstBounds.y());
    SkIRect localDstBounds = SkIRect::MakeWH(dstBounds.width(), dstBounds.height());
    SkIRect localSrcBounds;
    SkIRect srcRect;
    if (srcBounds) {
        srcRect = localSrcBounds = *srcBounds;
        srcRect.offset(srcOffset);
        srcBounds = &localSrcBounds;
    } else {
        srcRect = localDstBounds;
    }

    scale_irect_roundout(&srcRect, 1.0f / scaleFactorX, 1.0f / scaleFactorY);
    scale_irect(&srcRect, scaleFactorX, scaleFactorY);

    // setup new clip
    GrFixedClip clip(localDstBounds);

    sk_sp<GrTexture> srcTexture(sk_ref_sp(origSrc));

    SkASSERT(kBGRA_8888_GrPixelConfig == srcTexture->config() ||
             kRGBA_8888_GrPixelConfig == srcTexture->config() ||
             kSRGBA_8888_GrPixelConfig == srcTexture->config() ||
             kSBGRA_8888_GrPixelConfig == srcTexture->config() ||
             kRGBA_half_GrPixelConfig == srcTexture->config() ||
             kAlpha_8_GrPixelConfig == srcTexture->config());

    const int width = dstBounds.width();
    const int height = dstBounds.height();
    const GrPixelConfig config = srcTexture->config();

    sk_sp<GrDrawContext> dstDrawContext(context->makeDrawContext(fit,
                                                                 width, height, config, colorSpace,
                                                                 0, kDefault_GrSurfaceOrigin));
    if (!dstDrawContext) {
        return nullptr;
    }

    // For really small blurs (certainly no wider than 5x5 on desktop gpus) it is faster to just
    // launch a single non separable kernel vs two launches
    if (sigmaX > 0.0f && sigmaY > 0.0f &&
            (2 * radiusX + 1) * (2 * radiusY + 1) <= MAX_KERNEL_SIZE) {
        // We shouldn't be scaling because this is a small size blur
        SkASSERT((1 == scaleFactorX) && (1 == scaleFactorY));

        convolve_gaussian_2d(dstDrawContext.get(), clip, localDstBounds, srcOffset,
                             srcTexture.get(), radiusX, radiusY, sigmaX, sigmaY, srcBounds);

        return dstDrawContext;
    } 

    sk_sp<GrDrawContext> tmpDrawContext(context->makeDrawContext(fit,
                                                                 width, height, config, colorSpace,
                                                                 0, kDefault_GrSurfaceOrigin));
    if (!tmpDrawContext) {
        return nullptr;
    }

    sk_sp<GrDrawContext> srcDrawContext;

    SkASSERT(SkIsPow2(scaleFactorX) && SkIsPow2(scaleFactorY));

    for (int i = 1; i < scaleFactorX || i < scaleFactorY; i *= 2) {
        GrPaint paint;
        paint.setGammaCorrect(dstDrawContext->isGammaCorrect());
        SkMatrix matrix;
        matrix.setIDiv(srcTexture->width(), srcTexture->height());
        SkIRect dstRect(srcRect);
        if (srcBounds && i == 1) {
            SkRect domain;
            matrix.mapRect(&domain, SkRect::Make(*srcBounds));
            domain.inset((i < scaleFactorX) ? SK_ScalarHalf / srcTexture->width() : 0.0f,
                         (i < scaleFactorY) ? SK_ScalarHalf / srcTexture->height() : 0.0f);
            sk_sp<GrFragmentProcessor> fp(GrTextureDomainEffect::Make(
                                                        srcTexture.get(),
                                                        nullptr,
                                                        matrix,
                                                        domain,
                                                        GrTextureDomain::kDecal_Mode,
                                                        GrTextureParams::kBilerp_FilterMode));
            paint.addColorFragmentProcessor(std::move(fp));
            srcRect.offset(-srcOffset);
            srcOffset.set(0, 0);
        } else {
            GrTextureParams params(SkShader::kClamp_TileMode, GrTextureParams::kBilerp_FilterMode);
            paint.addColorTextureProcessor(srcTexture.get(), nullptr, matrix, params);
        }
        paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
        shrink_irect_by_2(&dstRect, i < scaleFactorX, i < scaleFactorY);

        dstDrawContext->fillRectToRect(clip, paint, SkMatrix::I(),
                                       SkRect::Make(dstRect), SkRect::Make(srcRect));

        srcDrawContext = dstDrawContext;
        srcRect = dstRect;
        srcTexture = srcDrawContext->asTexture();
        dstDrawContext.swap(tmpDrawContext);
        localSrcBounds = srcRect;
    }

    srcRect = localDstBounds;
    scale_irect_roundout(&srcRect, 1.0f / scaleFactorX, 1.0f / scaleFactorY);
    if (sigmaX > 0.0f) {
        if (scaleFactorX > 1) {
            SkASSERT(srcDrawContext);

            // Clear out a radius to the right of the srcRect to prevent the
            // X convolution from reading garbage.
            clearRect = SkIRect::MakeXYWH(srcRect.fRight, srcRect.fTop,
                                          radiusX, srcRect.height());
            srcDrawContext->clear(&clearRect, 0x0, false);
        }

        convolve_gaussian(dstDrawContext.get(), clip, srcRect,
                          srcTexture.get(), Gr1DKernelEffect::kX_Direction, radiusX, sigmaX,
                          srcBounds, srcOffset);
        srcDrawContext = dstDrawContext;
        srcTexture = srcDrawContext->asTexture();
        srcRect.offsetTo(0, 0);
        dstDrawContext.swap(tmpDrawContext);
        localSrcBounds = srcRect;
        srcOffset.set(0, 0);
    }

    if (sigmaY > 0.0f) {
        if (scaleFactorY > 1 || sigmaX > 0.0f) {
            SkASSERT(srcDrawContext);

            // Clear out a radius below the srcRect to prevent the Y
            // convolution from reading garbage.
            clearRect = SkIRect::MakeXYWH(srcRect.fLeft, srcRect.fBottom,
                                          srcRect.width(), radiusY);
            srcDrawContext->clear(&clearRect, 0x0, false);
        }

        convolve_gaussian(dstDrawContext.get(), clip, srcRect,
                          srcTexture.get(), Gr1DKernelEffect::kY_Direction, radiusY, sigmaY,
                          srcBounds, srcOffset);

        srcDrawContext = dstDrawContext;
        srcRect.offsetTo(0, 0);
        dstDrawContext.swap(tmpDrawContext);
    }

    SkASSERT(srcDrawContext);
    srcTexture = nullptr;     // we don't use this from here on out

    if (scaleFactorX > 1 || scaleFactorY > 1) {
        // Clear one pixel to the right and below, to accommodate bilinear upsampling.
        clearRect = SkIRect::MakeXYWH(srcRect.fLeft, srcRect.fBottom, srcRect.width() + 1, 1);
        srcDrawContext->clear(&clearRect, 0x0, false);
        clearRect = SkIRect::MakeXYWH(srcRect.fRight, srcRect.fTop, 1, srcRect.height());
        srcDrawContext->clear(&clearRect, 0x0, false);

        SkMatrix matrix;
        matrix.setIDiv(srcDrawContext->width(), srcDrawContext->height());

        GrPaint paint;
        paint.setGammaCorrect(dstDrawContext->isGammaCorrect());
        // FIXME:  this should be mitchell, not bilinear.
        GrTextureParams params(SkShader::kClamp_TileMode, GrTextureParams::kBilerp_FilterMode);
        sk_sp<GrTexture> tex(srcDrawContext->asTexture());
        paint.addColorTextureProcessor(tex.get(), nullptr, matrix, params);
        paint.setPorterDuffXPFactory(SkBlendMode::kSrc);

        SkIRect dstRect(srcRect);
        scale_irect(&dstRect, scaleFactorX, scaleFactorY);

        dstDrawContext->fillRectToRect(clip, paint, SkMatrix::I(),
                                       SkRect::Make(dstRect), SkRect::Make(srcRect));

        srcDrawContext = dstDrawContext;
        srcRect = dstRect;
        dstDrawContext.swap(tmpDrawContext);
    }

    return srcDrawContext;
}