Example #1
0
SkString GrDrawTargetCaps::dump() const {
    SkString r;
    static const char* gNY[] = {"NO", "YES"};
    r.appendf("MIP Map Support                    : %s\n", gNY[fMipMapSupport]);
    r.appendf("NPOT Texture Tile Support          : %s\n", gNY[fNPOTTextureTileSupport]);
    r.appendf("Two Sided Stencil Support          : %s\n", gNY[fTwoSidedStencilSupport]);
    r.appendf("Stencil Wrap Ops  Support          : %s\n", gNY[fStencilWrapOpsSupport]);
    r.appendf("Shader Derivative Support          : %s\n", gNY[fShaderDerivativeSupport]);
    r.appendf("Geometry Shader Support            : %s\n", gNY[fGeometryShaderSupport]);
    r.appendf("Dual Source Blending Support       : %s\n", gNY[fDualSourceBlendingSupport]);
    r.appendf("Path Rendering Support             : %s\n", gNY[fPathRenderingSupport]);
    r.appendf("Dst Read In Shader Support         : %s\n", gNY[fDstReadInShaderSupport]);
    r.appendf("Discard Render Target Support      : %s\n", gNY[fDiscardRenderTargetSupport]);
    r.appendf("Reuse Scratch Textures             : %s\n", gNY[fReuseScratchTextures]);
    r.appendf("Gpu Tracing Support                : %s\n", gNY[fGpuTracingSupport]);
    r.appendf("Compressed Update Support          : %s\n", gNY[fCompressedTexSubImageSupport]);
    r.appendf("Oversized Stencil Support          : %s\n", gNY[fOversizedStencilSupport]);
    r.appendf("Draw Instead of Clear [workaround] : %s\n", gNY[fUseDrawInsteadOfClear]);

    r.appendf("Max Texture Size                   : %d\n", fMaxTextureSize);
    r.appendf("Max Render Target Size             : %d\n", fMaxRenderTargetSize);
    r.appendf("Max Sample Count                   : %d\n", fMaxSampleCount);

    r.appendf("Map Buffer Support                 : %s\n",
              map_flags_to_string(fMapBufferFlags).c_str());

    static const char* kConfigNames[] = {
        "Unknown",  // kUnknown_GrPixelConfig
        "Alpha8",   // kAlpha_8_GrPixelConfig,
        "Index8",   // kIndex_8_GrPixelConfig,
        "RGB565",   // kRGB_565_GrPixelConfig,
        "RGBA444",  // kRGBA_4444_GrPixelConfig,
        "RGBA8888", // kRGBA_8888_GrPixelConfig,
        "BGRA8888", // kBGRA_8888_GrPixelConfig,
        "SRGBA8888",// kSRGBA_8888_GrPixelConfig,
        "ETC1",     // kETC1_GrPixelConfig,
        "LATC",     // kLATC_GrPixelConfig,
        "R11EAC",   // kR11_EAC_GrPixelConfig,
        "ASTC12x12",// kASTC_12x12_GrPixelConfig,
        "RGBAFloat",// kRGBA_float_GrPixelConfig
        "AlphaHalf",// kAlpha_half_GrPixelConfig
    };
    GR_STATIC_ASSERT(0  == kUnknown_GrPixelConfig);
    GR_STATIC_ASSERT(1  == kAlpha_8_GrPixelConfig);
    GR_STATIC_ASSERT(2  == kIndex_8_GrPixelConfig);
    GR_STATIC_ASSERT(3  == kRGB_565_GrPixelConfig);
    GR_STATIC_ASSERT(4  == kRGBA_4444_GrPixelConfig);
    GR_STATIC_ASSERT(5  == kRGBA_8888_GrPixelConfig);
    GR_STATIC_ASSERT(6  == kBGRA_8888_GrPixelConfig);
    GR_STATIC_ASSERT(7  == kSRGBA_8888_GrPixelConfig);
    GR_STATIC_ASSERT(8  == kETC1_GrPixelConfig);
    GR_STATIC_ASSERT(9  == kLATC_GrPixelConfig);
    GR_STATIC_ASSERT(10  == kR11_EAC_GrPixelConfig);
    GR_STATIC_ASSERT(11 == kASTC_12x12_GrPixelConfig);
    GR_STATIC_ASSERT(12 == kRGBA_float_GrPixelConfig);
    GR_STATIC_ASSERT(13 == kAlpha_half_GrPixelConfig);
    GR_STATIC_ASSERT(SK_ARRAY_COUNT(kConfigNames) == kGrPixelConfigCnt);

    SkASSERT(!fConfigRenderSupport[kUnknown_GrPixelConfig][0]);
    SkASSERT(!fConfigRenderSupport[kUnknown_GrPixelConfig][1]);

    for (size_t i = 1; i < SK_ARRAY_COUNT(kConfigNames); ++i)  {
        r.appendf("%s is renderable: %s, with MSAA: %s\n",
                  kConfigNames[i],
                  gNY[fConfigRenderSupport[i][0]],
                  gNY[fConfigRenderSupport[i][1]]);
    }

    SkASSERT(!fConfigTextureSupport[kUnknown_GrPixelConfig]);

    for (size_t i = 1; i < SK_ARRAY_COUNT(kConfigNames); ++i)  {
        r.appendf("%s is uploadable to a texture: %s\n",
                  kConfigNames[i],
                  gNY[fConfigTextureSupport[i]]);
    }

    r.appendf("Shader Float Precisions (varies: %s):\n", gNY[fShaderPrecisionVaries]);

    for (int s = 0; s < kGrShaderTypeCount; ++s) {
        GrShaderType shaderType = static_cast<GrShaderType>(s);
        r.appendf("\t%s:\n", shader_type_to_string(shaderType));
        for (int p = 0; p < kGrSLPrecisionCount; ++p) {
            if (fFloatPrecisions[s][p].supported()) {
                GrSLPrecision precision = static_cast<GrSLPrecision>(p);
                r.appendf("\t\t%s: log_low: %d log_high: %d bits: %d\n",
                          precision_to_string(precision),
                          fFloatPrecisions[s][p].fLogRangeLow,
                          fFloatPrecisions[s][p].fLogRangeHigh,
                          fFloatPrecisions[s][p].fBits);
            }
        }
    }

    return r;
}
Example #2
0
 virtual const char* onGetName() {
     return fName.c_str();
 }
void PictureBenchmark::run(SkPicture* pict) {
    SkASSERT(pict);
    if (NULL == pict) {
        return;
    }

    SkASSERT(fRenderer != NULL);
    if (NULL == fRenderer) {
        return;
    }

    fRenderer->init(pict, NULL, NULL, NULL, false);

    // We throw this away to remove first time effects (such as paging in this program)
    fRenderer->setup();

    if (fPreprocess) {
        if (NULL != fRenderer->getCanvas()) {
            fRenderer->getCanvas()->EXPERIMENTAL_optimize(pict);
        }
    }

    fRenderer->render(NULL);
    fRenderer->resetState(true);   // flush, swapBuffers and Finish

    if (fPreprocess) {
        if (NULL != fRenderer->getCanvas()) {
            fRenderer->getCanvas()->EXPERIMENTAL_purge(pict);
        }
    }

    if (fPurgeDecodedTex) {
        fRenderer->purgeTextures();
    }

    bool usingGpu = false;
#if SK_SUPPORT_GPU
    usingGpu = fRenderer->isUsingGpuDevice();
#endif

    uint32_t timerTypes = fTimerTypes;
    if (!usingGpu) {
        timerTypes &= ~TimerData::kGpu_Flag;
    }

    SkString timeFormat;
    if (TimerData::kPerIter_Result == fTimerResult) {
        timeFormat = fRenderer->getPerIterTimeFormat();
    } else {
        timeFormat = fRenderer->getNormalTimeFormat();
    }

    static const int kNumInnerLoops = 10;
    int numOuterLoops = 1;
    int numInnerLoops = fRepeats;

    if (TimerData::kPerIter_Result == fTimerResult && fRepeats > 1) {
        // interpret this flag combination to mean: generate 'fRepeats'
        // numbers by averaging each rendering 'kNumInnerLoops' times
        numOuterLoops = fRepeats;
        numInnerLoops = kNumInnerLoops;
    }

    if (fTimeIndividualTiles) {
        TiledPictureRenderer* tiledRenderer = fRenderer->getTiledRenderer();
        SkASSERT(tiledRenderer && tiledRenderer->supportsTimingIndividualTiles());
        if (NULL == tiledRenderer || !tiledRenderer->supportsTimingIndividualTiles()) {
            return;
        }
        int xTiles, yTiles;
        if (!tiledRenderer->tileDimensions(xTiles, yTiles)) {
            return;
        }

        int x, y;
        while (tiledRenderer->nextTile(x, y)) {
            // There are two timers, which will behave slightly differently:
            // 1) longRunningTimer, along with perTileTimerData, will time how long it takes to draw
            // one tile fRepeats times, and take the average. As such, it will not respect the
            // logPerIter or printMin options, since it does not know the time per iteration. It
            // will also be unable to call flush() for each tile.
            // The goal of this timer is to make up for a system timer that is not precise enough to
            // measure the small amount of time it takes to draw one tile once.
            //
            // 2) perTileTimer, along with perTileTimerData, will record each run separately, and
            // then take the average. As such, it supports logPerIter and printMin options.
            //
            // Although "legal", having two gpu timers running at the same time
            // seems to cause problems (i.e., INVALID_OPERATIONs) on several
            // platforms. To work around this, we disable the gpu timer on the
            // long running timer.
            SkAutoTDelete<Timer> longRunningTimer(this->setupTimer());
            TimerData longRunningTimerData(numOuterLoops);

            for (int outer = 0; outer < numOuterLoops; ++outer) {
                SkAutoTDelete<Timer> perTileTimer(this->setupTimer(false));
                TimerData perTileTimerData(numInnerLoops);

                longRunningTimer->start();
                for (int inner = 0; inner < numInnerLoops; ++inner) {
                    perTileTimer->start();
                    tiledRenderer->drawCurrentTile();
                    perTileTimer->truncatedEnd();
                    tiledRenderer->resetState(false);  // flush & swapBuffers, but don't Finish
                    perTileTimer->end();
                    SkAssertResult(perTileTimerData.appendTimes(perTileTimer.get()));

                    if (fPurgeDecodedTex) {
                        fRenderer->purgeTextures();
                    }
                }
                longRunningTimer->truncatedEnd();
                tiledRenderer->resetState(true);       // flush, swapBuffers and Finish
                longRunningTimer->end();
                SkAssertResult(longRunningTimerData.appendTimes(longRunningTimer.get()));
            }

            fWriter->tileConfig(tiledRenderer->getConfigName());
            fWriter->tileMeta(x, y, xTiles, yTiles);

            // TODO(borenet): Turn off per-iteration tile time reporting for now.
            // Avoiding logging the time for every iteration for each tile cuts
            // down on data file size by a significant amount. Re-enable this once
            // we're loading the bench data directly into a data store and are no
            // longer generating SVG graphs.
#if 0
            fWriter->tileData(
                    &perTileTimerData,
                    timeFormat.c_str(),
                    fTimerResult,
                    timerTypes);
#endif

            if (fPurgeDecodedTex) {
                fWriter->addTileFlag(PictureResultsWriter::kPurging);
            }
            fWriter->addTileFlag(PictureResultsWriter::kAvg);
            fWriter->tileData(
                &longRunningTimerData,
                tiledRenderer->getNormalTimeFormat().c_str(),
                TimerData::kAvg_Result,
                timerTypes,
                numInnerLoops);
        }
    } else {
        SkAutoTDelete<Timer> longRunningTimer(this->setupTimer());
        TimerData longRunningTimerData(numOuterLoops);

        for (int outer = 0; outer < numOuterLoops; ++outer) {
            SkAutoTDelete<Timer> perRunTimer(this->setupTimer(false));
            TimerData perRunTimerData(numInnerLoops);

            longRunningTimer->start();
            for (int inner = 0; inner < numInnerLoops; ++inner) {
                fRenderer->setup();

                perRunTimer->start();
                fRenderer->render(NULL);
                perRunTimer->truncatedEnd();
                fRenderer->resetState(false);   // flush & swapBuffers, but don't Finish
                perRunTimer->end();

                SkAssertResult(perRunTimerData.appendTimes(perRunTimer.get()));

                if (fPreprocess) {
                    if (NULL != fRenderer->getCanvas()) {
                        fRenderer->getCanvas()->EXPERIMENTAL_purge(pict);
                    }
                }

                if (fPurgeDecodedTex) {
                    fRenderer->purgeTextures();
                }
            }
            longRunningTimer->truncatedEnd();
            fRenderer->resetState(true);        // flush, swapBuffers and Finish
            longRunningTimer->end();
            SkAssertResult(longRunningTimerData.appendTimes(longRunningTimer.get()));
        }

        fWriter->tileConfig(fRenderer->getConfigName());
        if (fPurgeDecodedTex) {
            fWriter->addTileFlag(PictureResultsWriter::kPurging);
        }

        // Beware - since the per-run-timer doesn't ever include a glFinish it can
        // report a lower time then the long-running-timer
#if 0
        fWriter->tileData(
                &perRunTimerData,
                timeFormat.c_str(),
                fTimerResult,
                timerTypes);
#else
        fWriter->tileData(
                &longRunningTimerData,
                timeFormat.c_str(),
                fTimerResult,
                timerTypes,
                numInnerLoops);
#endif
    }

    fRenderer->end();
}
Example #4
0
    virtual void onDraw(SkCanvas* canvas) {
        static const int kBmpSize = 2048;
        if (fLargeBitmap.isNull()) {
            makebm(&fLargeBitmap, kBmpSize, kBmpSize);
        }
        SkRect dstRect = { 0, 0, SkIntToScalar(64), SkIntToScalar(64)};
        static const int kMaxSrcRectSize = 1 << (SkNextLog2(kBmpSize) + 2);

        static const int kPadX = 30;
        static const int kPadY = 40;
        SkPaint paint;
        paint.setAlpha(0x20);
        canvas->drawBitmapRect(fLargeBitmap, NULL,
                               SkRect::MakeWH(gSize * SK_Scalar1,
                                              gSize * SK_Scalar1),
                               &paint);
        canvas->translate(SK_Scalar1 * kPadX / 2,
                          SK_Scalar1 * kPadY / 2);
        SkPaint blackPaint;
        SkScalar titleHeight = SK_Scalar1 * 24;
        blackPaint.setColor(SK_ColorBLACK);
        blackPaint.setTextSize(titleHeight);
        blackPaint.setAntiAlias(true);
        SkString title;
        title.printf("Bitmap size: %d x %d", kBmpSize, kBmpSize);
        canvas->drawText(title.c_str(), title.size(), 0,
                         titleHeight, blackPaint);

        canvas->translate(0, SK_Scalar1 * kPadY / 2  + titleHeight);
        int rowCount = 0;
        canvas->save();
        for (int w = 1; w <= kMaxSrcRectSize; w *= 4) {
            for (int h = 1; h <= kMaxSrcRectSize; h *= 4) {

                SkIRect srcRect = SkIRect::MakeXYWH((kBmpSize - w) / 2,
                                                    (kBmpSize - h) / 2,
                                                    w, h);
                canvas->drawBitmapRect(fLargeBitmap, &srcRect, dstRect);

                SkString label;
                label.appendf("%d x %d", w, h);
                blackPaint.setAntiAlias(true);
                blackPaint.setStyle(SkPaint::kFill_Style);
                blackPaint.setTextSize(SK_Scalar1 * 10);
                SkScalar baseline = dstRect.height() +
                                    blackPaint.getTextSize() + SK_Scalar1 * 3;
                canvas->drawText(label.c_str(), label.size(),
                                    0, baseline,
                                    blackPaint);
                blackPaint.setStyle(SkPaint::kStroke_Style);
                blackPaint.setStrokeWidth(SK_Scalar1);
                blackPaint.setAntiAlias(false);
                canvas->drawRect(dstRect, blackPaint);

                canvas->translate(dstRect.width() + SK_Scalar1 * kPadX, 0);
                ++rowCount;
                if ((dstRect.width() + kPadX) * rowCount > gSize) {
                    canvas->restore();
                    canvas->translate(0, dstRect.height() + SK_Scalar1 * kPadY);
                    canvas->save();
                    rowCount = 0;
                }
            }
        }

        {
            // test the following code path:
            // SkGpuDevice::drawPath() -> SkGpuDevice::drawWithMaskFilter()
            SkIRect srcRect;
            SkPaint paint;
            SkBitmap bm;

            bm = make_chessbm(5, 5);
            paint.setFilterLevel(SkPaint::kLow_FilterLevel);

            srcRect.setXYWH(1, 1, 3, 3);
            SkMaskFilter* mf = SkBlurMaskFilter::Create(
                kNormal_SkBlurStyle,
                SkBlurMask::ConvertRadiusToSigma(SkIntToScalar(5)),
                SkBlurMaskFilter::kHighQuality_BlurFlag |
                SkBlurMaskFilter::kIgnoreTransform_BlurFlag);
            paint.setMaskFilter(mf)->unref();
            canvas->drawBitmapRect(bm, &srcRect, dstRect, &paint);
        }
    }
Example #5
0
 SkString onShortName() override {
     SkString str = SkString("etc1bitmap_");
     str.append(this->fileExtension());
     return str;
 }
bool SkSVGPaint::writeChangedElements(SkSVGParser& parser,
        SkSVGPaint& current, bool* changed) {
    SkSVGPaint& lastState = parser.fLastFlush;
    for (int index = kInitial + 1; index < kTerminal; index++) {
        SkString* topAttr = current[index];
        size_t attrLength = topAttr->size();
        if (attrLength == 0)
            continue;
        const char* attrValue = topAttr->c_str();
        SkString* lastAttr = lastState[index];
        switch(index) {
            case kClipPath:
            case kClipRule:
                // !!! need to add this outside of paint
                break;
            case kEnableBackground:
                // !!! don't know what to do with this
                break;
            case kFill:
                goto addColor;
            case kFillRule:
            case kFilter:
                break;
            case kFontFamily:
                parser._startElement("typeface");
                parser._addAttributeLen("fontName", attrValue, attrLength);
                parser._endElement();   // typeface
                break;
            case kFontSize:
            case kLetterSpacing:
                break;
            case kMask:
            case kOpacity:
                if (changed[kStroke] == false && changed[kFill] == false) {
                    parser._startElement("color");
                    SkString& opacity = current.f_opacity;
                    parser._addAttributeLen("color", parser.fLastColor.c_str(), parser.fLastColor.size());
                    parser._addAttributeLen("alpha", opacity.c_str(), opacity.size());
                    parser._endElement();   // color
                }
                break;
            case kStopColor:
                break;
            case kStopOpacity:
                break;
            case kStroke:
addColor:
                if (strncmp(lastAttr->c_str(), "url(", 4) == 0 && strncmp(attrValue, "url(", 4) != 0) {
                    parser._startElement("shader");
                    parser._endElement();
                }
                if (topAttr->equals(*lastAttr))
                    continue;
                {
                    bool urlRef = strncmp(attrValue, "url(", 4) == 0;
                    bool colorNone = strcmp(attrValue, "none") == 0;
                    bool lastEqual = parser.fLastColor.equals(attrValue, attrLength);
                    bool newColor = urlRef == false && colorNone == false && lastEqual == false;
                    if (newColor || changed[kOpacity]) {
                        parser._startElement("color");
                        if (newColor || changed[kOpacity]) {
                            parser._addAttributeLen("color", attrValue, attrLength);
                            parser.fLastColor.set(attrValue, attrLength);
                        }
                        if (changed[kOpacity]) {
                            SkString& opacity = current.f_opacity;
                            parser._addAttributeLen("alpha", opacity.c_str(), opacity.size());
                        }
                        parser._endElement();   // color
                    }
                }
                break;
            case kStroke_Dasharray:
                parser._startElement("dash");
                SkSVGParser::ConvertToArray(*topAttr);
                parser._addAttribute("intervals", topAttr->c_str());
                parser._endElement();   // dash
            break;
            case kStroke_Linecap:
            case kStroke_Linejoin:
            case kStroke_Miterlimit:
            case kStroke_Width:
            case kStyle:
            case kTransform:
                break;
        default:
            SkASSERT(0);
            return false;
        }
    }
    return true;
}
 const char* onGetName() override {
     return fName.c_str();
 }
Example #8
0
 GrMipMapBench(int w, int h) : fW(w), fH(h) {
     fName.printf("gr_mipmap_build_%dx%d", w, h);
 }
Example #9
0
static void output_font(SkTypeface* face, const char* name, SkTypeface::Style style,
        const char* used, FILE* out) {
    int emSize = face->getUnitsPerEm() * 2;
    SkPaint paint;
    paint.setAntiAlias(true);
    paint.setTextAlign(SkPaint::kLeft_Align);
    paint.setTextEncoding(SkPaint::kUTF16_TextEncoding);
    paint.setTextSize(emSize);
    SkSafeUnref(paint.setTypeface(face));
    SkTDArray<SkPath::Verb> verbs;
    SkTDArray<unsigned> charCodes;
    SkTDArray<SkScalar> widths;
    SkString ptsOut;
    output_path_data(paint, used, emSize, &ptsOut, &verbs, &charCodes, &widths);
    SkString fontnameStr(name);
    SkString strippedStr = strip_spaces(fontnameStr);
    strippedStr.appendf("%s", gStyleName[style]);
    const char* fontname = strippedStr.c_str();
    fprintf(out, "const SkScalar %sPoints[] = {\n", fontname);
    ptsOut = strip_final(ptsOut);
    fprintf(out, "%s", ptsOut.c_str());
    fprintf(out, "\n};\n\n");
    fprintf(out, "const unsigned char %sVerbs[] = {\n", fontname);
    int verbCount = verbs.count();
    int outChCount = 0;
    for (int index = 0; index < verbCount;) {
        SkPath::Verb verb = verbs[index];
        SkASSERT(verb >= SkPath::kMove_Verb && verb <= SkPath::kDone_Verb);
        SkASSERT((unsigned) verb == (unsigned char) verb);
        fprintf(out, "%u", verb);
        if (++index < verbCount) {
            outChCount += 3;
            fprintf(out, "%c", ',');
            if (outChCount >= kMaxLineLength) {
                outChCount = 0;
                fprintf(out, "%c", '\n');
            } else {
                fprintf(out, "%c", ' ');
            }
        }
    }
    fprintf(out, "\n};\n\n");
    
    fprintf(out, "const unsigned %sCharCodes[] = {\n", fontname);
    int offsetCount = charCodes.count();
    for (int index = 0; index < offsetCount;) {
        unsigned offset = charCodes[index];
        fprintf(out, "%u", offset);
        if (++index < offsetCount) {
            outChCount += offset_str_len(offset) + 2;
            fprintf(out, "%c", ',');
            if (outChCount >= kMaxLineLength) {
                outChCount = 0;
                fprintf(out, "%c", '\n');
            } else {
                fprintf(out, "%c", ' ');
            }
        }
    }
    fprintf(out, "\n};\n\n");
    
    SkString widthsStr;
    fprintf(out, "const SkFixed %sWidths[] = {\n", fontname);
    for (int index = 0; index < offsetCount; ++index) {
        output_fixed(widths[index], emSize, &widthsStr);
    }
    widthsStr = strip_final(widthsStr);
    fprintf(out, "%s\n};\n\n", widthsStr.c_str());
    
    fprintf(out, "const int %sCharCodesCount = (int) SK_ARRAY_COUNT(%sCharCodes);\n\n",
            fontname, fontname);

    SkPaint::FontMetrics metrics;
    paint.getFontMetrics(&metrics);
    fprintf(out, "const SkPaint::FontMetrics %sMetrics = {\n", fontname);
    SkString metricsStr;
    metricsStr.printf("0x%08x, ", metrics.fFlags);
    output_scalar(metrics.fTop, emSize, &metricsStr);
    output_scalar(metrics.fAscent, emSize, &metricsStr);
    output_scalar(metrics.fDescent, emSize, &metricsStr);
    output_scalar(metrics.fBottom, emSize, &metricsStr);
    output_scalar(metrics.fLeading, emSize, &metricsStr);
    output_scalar(metrics.fAvgCharWidth, emSize, &metricsStr);
    output_scalar(metrics.fMaxCharWidth, emSize, &metricsStr);
    output_scalar(metrics.fXMin, emSize, &metricsStr);
    output_scalar(metrics.fXMax, emSize, &metricsStr);
    output_scalar(metrics.fXHeight, emSize, &metricsStr);
    output_scalar(metrics.fCapHeight, emSize, &metricsStr);
    output_scalar(metrics.fUnderlineThickness, emSize, &metricsStr);
    output_scalar(metrics.fUnderlinePosition, emSize, &metricsStr);
    metricsStr = strip_final(metricsStr);
    fprintf(out, "%s\n};\n\n", metricsStr.c_str());
}
Example #10
0
int tool_main(int argc, char** argv) {
    SkString usage;
    usage.printf("Time drawing .skp files.\n"
                 "\tPossible arguments for --filter: [%s]\n\t\t[%s]",
                 filterTypesUsage().c_str(), filterFlagsUsage().c_str());
    SkCommandLineFlags::SetUsage(usage.c_str());
    SkCommandLineFlags::Parse(argc, argv);

    if (FLAGS_repeat < 1) {
        SkString error;
        error.printf("--repeats must be >= 1. Was %i\n", FLAGS_repeat);
        gLogger.logError(error);
        exit(-1);
    }

    if (FLAGS_logFile.count() == 1) {
        if (!gLogger.SetLogFile(FLAGS_logFile[0])) {
            SkString str;
            str.printf("Could not open %s for writing.\n", FLAGS_logFile[0]);
            gLogger.logError(str);
            // TODO(borenet): We're disabling this for now, due to
            // write-protected Android devices.  The very short-term
            // solution is to ignore the fact that we have no log file.
            //exit(-1);
        }
    }

#ifdef SK_BUILD_JSON_WRITER
    SkAutoTDelete<PictureJSONResultsWriter> jsonWriter;
    if (FLAGS_jsonLog.count() == 1) {
        jsonWriter.reset(SkNEW(PictureJSONResultsWriter(FLAGS_jsonLog[0])));
        gWriter.add(jsonWriter.get());
    }

#endif
    gWriter.add(&gLogWriter);


#if SK_ENABLE_INST_COUNT
    gPrintInstCount = true;
#endif
    SkAutoGraphics ag;

    sk_tools::PictureBenchmark benchmark;

    setup_benchmark(&benchmark);

    int failures = 0;
    for (int i = 0; i < FLAGS_readPath.count(); ++i) {
        failures += process_input(FLAGS_readPath[i], benchmark);
    }

    if (failures != 0) {
        SkString err;
        err.printf("Failed to run %i benchmarks.\n", failures);
        gLogger.logError(err);
        return 1;
    }
#if SK_LAZY_CACHE_STATS
    if (FLAGS_trackDeferredCaching) {
        SkDebugf("Total cache hit rate: %f\n",
                 (double) gTotalCacheHits / (gTotalCacheHits + gTotalCacheMisses));
    }
#endif
    gWriter.end();
    return 0;
}
Example #11
0
static int filter_picture(const SkString& inFile, const SkString& outFile) {
    SkAutoTUnref<SkPicture> inPicture;

    SkFILEStream inStream(inFile.c_str());
    if (inStream.isValid()) {
        inPicture.reset(SkPicture::CreateFromStream(&inStream));
    }

    if (nullptr == inPicture.get()) {
        SkDebugf("Could not read file %s\n", inFile.c_str());
        return -1;
    }

    int localCount[SK_ARRAY_COUNT(gOptTable)];

    memset(localCount, 0, sizeof(localCount));

    SkDebugCanvas debugCanvas(SkScalarCeilToInt(inPicture->cullRect().width()),
                              SkScalarCeilToInt(inPicture->cullRect().height()));
    inPicture->playback(&debugCanvas);

    // delete the initial save and restore since replaying the commands will
    // re-add them
    if (debugCanvas.getSize() > 1) {
        debugCanvas.deleteDrawCommandAt(0);
        debugCanvas.deleteDrawCommandAt(debugCanvas.getSize()-1);
    }

    bool changed = true;
    int numBefore = debugCanvas.getSize();

    while (changed) {
        changed = false;
        for (int i = 0; i < debugCanvas.getSize(); ++i) {
            for (size_t opt = 0; opt < SK_ARRAY_COUNT(gOptTable); ++opt) {
                if ((*gOptTable[opt].fCheck)(&debugCanvas, i)) {
                    (*gOptTable[opt].fApply)(&debugCanvas, i);

                    ++gOptTable[opt].fNumTimesApplied;
                    ++localCount[opt];

                    if (debugCanvas.getSize() == i) {
                        // the optimization removed all the remaining operations
                        break;
                    }

                    opt = 0;          // try all the opts all over again
                    changed = true;
                }
            }
        }
    }

    int numAfter = debugCanvas.getSize();

    if (!outFile.isEmpty()) {
        SkPictureRecorder recorder;
        SkCanvas* canvas = recorder.beginRecording(inPicture->cullRect().width(),
                                                   inPicture->cullRect().height(),
                                                   nullptr, 0);
        debugCanvas.draw(canvas);
        SkAutoTUnref<SkPicture> outPicture(recorder.endRecording());

        SkFILEWStream outStream(outFile.c_str());

        outPicture->serialize(&outStream);
    }

    bool someOptFired = false;
    for (size_t opt = 0; opt < SK_ARRAY_COUNT(gOptTable); ++opt) {
        if (0 != localCount[opt]) {
            SkDebugf("%d: %d ", opt, localCount[opt]);
            someOptFired = true;
        }
    }

    if (!someOptFired) {
        SkDebugf("No opts fired\n");
    } else {
        SkDebugf("\t before: %d after: %d delta: %d\n",
                 numBefore, numAfter, numBefore-numAfter);
    }

    return 0;
}
Example #12
0
static void setup_benchmark(sk_tools::PictureBenchmark* benchmark) {
    sk_tools::PictureRenderer::DrawFilterFlags drawFilters[SkDrawFilter::kTypeCount];
    sk_bzero(drawFilters, sizeof(drawFilters));

    if (FLAGS_filter.count() > 0) {
        const char* filters = FLAGS_filter[0];
        const char* colon = strchr(filters, ':');
        if (colon) {
            int32_t type = -1;
            size_t typeLen = colon - filters;
            for (size_t tIndex = 0; tIndex < kFilterTypesCount; ++tIndex) {
                if (typeLen == strlen(gFilterTypes[tIndex])
                        && !strncmp(filters, gFilterTypes[tIndex], typeLen)) {
                    type = SkToS32(tIndex);
                    break;
                }
            }
            if (type < 0) {
                SkString err;
                err.printf("Unknown type for --filter %s\n", filters);
                gLogger.logError(err);
                exit(-1);
            }
            int flag = -1;
            size_t flagLen = strlen(filters) - typeLen - 1;
            for (size_t fIndex = 0; fIndex < kFilterFlagsCount; ++fIndex) {
                if (flagLen == strlen(gFilterFlags[fIndex])
                        && !strncmp(colon + 1, gFilterFlags[fIndex], flagLen)) {
                    flag = 1 << fIndex;
                    break;
                }
            }
            if (flag < 0) {
                SkString err;
                err.printf("Unknown flag for --filter %s\n", filters);
                gLogger.logError(err);
                exit(-1);
            }
            for (int index = 0; index < SkDrawFilter::kTypeCount; ++index) {
                if (type != SkDrawFilter::kTypeCount && index != type) {
                    continue;
                }
                drawFilters[index] = (sk_tools::PictureRenderer::DrawFilterFlags)
                        (drawFilters[index] | flag);
            }
        } else {
            SkString err;
            err.printf("Unknown arg for --filter %s : missing colon\n", filters);
            gLogger.logError(err);
            exit(-1);
        }
    }

    if (FLAGS_timers.count() > 0) {
        size_t index = 0;
        bool timerWall = false;
        bool truncatedTimerWall = false;
        bool timerCpu = false;
        bool truncatedTimerCpu = false;
        bool timerGpu = false;
        while (index < strlen(FLAGS_timers[0])) {
            switch (FLAGS_timers[0][index]) {
                case 'w':
                    timerWall = true;
                    break;
                case 'c':
                    timerCpu = true;
                    break;
                case 'W':
                    truncatedTimerWall = true;
                    break;
                case 'C':
                    truncatedTimerCpu = true;
                    break;
                case 'g':
                    timerGpu = true;
                    break;
                default:
                    SkDebugf("mystery character\n");
                    break;
            }
            index++;
        }
        benchmark->setTimersToShow(timerWall, truncatedTimerWall, timerCpu, truncatedTimerCpu,
                                  timerGpu);
    }

    SkString errorString;
    SkAutoTUnref<sk_tools::PictureRenderer> renderer(parseRenderer(errorString,
                                                                   kBench_PictureTool));

    if (errorString.size() > 0) {
        gLogger.logError(errorString);
    }

    if (NULL == renderer.get()) {
        exit(-1);
    }

    if (FLAGS_timeIndividualTiles) {
        if (FLAGS_multi > 1) {
            gLogger.logError("Cannot time individual tiles with more than one thread.\n");
            exit(-1);
        }
        sk_tools::TiledPictureRenderer* tiledRenderer = renderer->getTiledRenderer();
        if (NULL == tiledRenderer) {
            gLogger.logError("--timeIndividualTiles requires tiled rendering.\n");
            exit(-1);
        }
        if (!tiledRenderer->supportsTimingIndividualTiles()) {
            gLogger.logError("This renderer does not support --timeIndividualTiles.\n");
            exit(-1);
        }
        benchmark->setTimeIndividualTiles(true);
    }

    benchmark->setPurgeDecodedTex(FLAGS_purgeDecodedTex);
    benchmark->setPreprocess(FLAGS_preprocess);

    if (FLAGS_readPath.count() < 1) {
        gLogger.logError(".skp files or directories are required.\n");
        exit(-1);
    }

    renderer->setDrawFilters(drawFilters, filtersName(drawFilters));
    if (FLAGS_logPerIter) {
        benchmark->setTimerResultType(TimerData::kPerIter_Result);
    } else if (FLAGS_min) {
        benchmark->setTimerResultType(TimerData::kMin_Result);
    } else {
        benchmark->setTimerResultType(TimerData::kAvg_Result);
    }
    benchmark->setRenderer(renderer);
    benchmark->setRepeats(FLAGS_repeat);
    benchmark->setWriter(&gWriter);
}
Example #13
0
static bool run_single_benchmark(const SkString& inputPath,
                                 sk_tools::PictureBenchmark& benchmark) {
    SkFILEStream inputStream;

    inputStream.setPath(inputPath.c_str());
    if (!inputStream.isValid()) {
        SkString err;
        err.printf("Could not open file %s\n", inputPath.c_str());
        gLogger.logError(err);
        return false;
    }

    SkDiscardableMemoryPool* pool = SkGetGlobalDiscardableMemoryPool();
    // Since the old picture has been deleted, all pixels should be cleared.
    SkASSERT(pool->getRAMUsed() == 0);
    if (FLAGS_countRAM) {
        pool->setRAMBudget(SK_MaxU32);
        // Set the limit to max, so all pixels will be kept
    }

    SkPicture::InstallPixelRefProc proc;
    if (FLAGS_deferImageDecoding) {
        proc = &sk_tools::LazyDecodeBitmap;
    } else {
        proc = &SkImageDecoder::DecodeMemory;
    }
    SkAutoTUnref<SkPicture> picture(SkPicture::CreateFromStream(&inputStream, proc));

    if (NULL == picture.get()) {
        SkString err;
        err.printf("Could not read an SkPicture from %s\n", inputPath.c_str());
        gLogger.logError(err);
        return false;
    }

    SkString filename = SkOSPath::SkBasename(inputPath.c_str());

    gWriter.bench(filename.c_str(), picture->width(), picture->height());

    benchmark.run(picture);

#if SK_LAZY_CACHE_STATS
    if (FLAGS_trackDeferredCaching) {
        int cacheHits = pool->getCacheHits();
        int cacheMisses = pool->getCacheMisses();
        pool->resetCacheHitsAndMisses();
        SkString hitString;
        hitString.printf("Cache hit rate: %f\n", (double) cacheHits / (cacheHits + cacheMisses));
        gLogger.logProgress(hitString);
        gTotalCacheHits += cacheHits;
        gTotalCacheMisses += cacheMisses;
    }
#endif
    if (FLAGS_countRAM) {
        SkString ramCount("RAM used for bitmaps: ");
        size_t bytes = pool->getRAMUsed();
        if (bytes > 1024) {
            size_t kb = bytes / 1024;
            if (kb > 1024) {
                size_t mb = kb / 1024;
                ramCount.appendf("%zi MB\n", mb);
            } else {
                ramCount.appendf("%zi KB\n", kb);
            }
        } else {
            ramCount.appendf("%zi bytes\n", bytes);
        }
        gLogger.logProgress(ramCount);
    }

    return true;
}
Example #14
0
static SkStreamAsset* resource(const char path[]) {
    SkString fullPath = GetResourcePath(path);
    return SkStream::NewFromFile(fullPath.c_str());
}
void SkSVGPaint::setSave(SkSVGParser& parser) {
    SkTDArray<SkString*> clips;
    SkSVGPaint* walking = parser.fHead;
    int index;
    SkMatrix sum;
    sum.reset();
    while (walking != NULL) {
        for (index = kInitial + 1; index < kTerminal; index++) {
            SkString* lastAttr = (*walking)[index];
            if (lastAttr->size() == 0)
                continue;
            if (index == kTransform) {
                const char* str = lastAttr->c_str();
                SkASSERT(strncmp(str, "matrix(", 7) == 0);
                str += 6;
                const char* strEnd = strrchr(str, ')');
                SkASSERT(strEnd != NULL);
                SkString mat(str, strEnd - str);
                SkSVGParser::ConvertToArray(mat);
                SkScalar values[6];
                SkParse::FindScalars(mat.c_str() + 1, values, 6);
                SkMatrix matrix;
                matrix.reset();
                matrix.setScaleX(values[0]);
                matrix.setSkewY(values[1]);
                matrix.setSkewX(values[2]);
                matrix.setScaleY(values[3]);
                matrix.setTranslateX(values[4]);
                matrix.setTranslateY(values[5]);
                sum.setConcat(matrix, sum);
                continue;
            }
            if ( index == kClipPath) 
                *clips.insert(0) = lastAttr;
        }
        walking = walking->fNext;
    }
    if ((sum == parser.fLastTransform) == false) {
        SkMatrix inverse;
        bool success = parser.fLastTransform.invert(&inverse);
        SkASSERT(success == true);
        SkMatrix output;
        output.setConcat(inverse, sum);
        parser.fLastTransform = sum;
        SkString outputStr;
        outputStr.appendUnichar('[');
        outputStr.appendScalar(output.getScaleX());
        outputStr.appendUnichar(',');
        outputStr.appendScalar(output.getSkewX());
        outputStr.appendUnichar(',');
        outputStr.appendScalar(output.getTranslateX());
        outputStr.appendUnichar(',');
        outputStr.appendScalar(output.getSkewY());
        outputStr.appendUnichar(',');
        outputStr.appendScalar(output.getScaleY());
        outputStr.appendUnichar(',');
        outputStr.appendScalar(output.getTranslateY());
        outputStr.appendUnichar(',');
        outputStr.appendScalar(output.getPerspX());
        outputStr.appendUnichar(',');
        outputStr.appendScalar(output.getPerspY());
        outputStr.append(",1]");
        parser._startElement("matrix");
        parser._addAttributeLen("matrix", outputStr.c_str(), outputStr.size());
        parser._endElement();
    }
#if 0   // incomplete
    if (parser.fTransformClips.size() > 0) {
        // need to reset the clip when the 'g' scope is ended
        parser._startElement("add");
        const char* start = strchr(current->f_clipPath.c_str(), '#') + 1;
        SkASSERT(start);
        parser._addAttributeLen("use", start, strlen(start) - 1);
        parser._endElement();   // clip
    }
#endif
}
void GrInOrderDrawBuffer::flush() {
    if (fFlushing) {
        return;
    }

    SkASSERT(kReserved_GeometrySrcType != this->getGeomSrc().fVertexSrc);
    SkASSERT(kReserved_GeometrySrcType != this->getGeomSrc().fIndexSrc);

    int numCmds = fCmds.count();
    if (0 == numCmds) {
        return;
    }

    GrAutoTRestore<bool> flushRestore(&fFlushing);
    fFlushing = true;

    fVertexPool.unlock();
    fIndexPool.unlock();

    GrDrawTarget::AutoClipRestore acr(fDstGpu);
    AutoGeometryAndStatePush agasp(fDstGpu, kPreserve_ASRInit);

    GrDrawState playbackState;
    GrDrawState* prevDrawState = fDstGpu->drawState();
    prevDrawState->ref();
    fDstGpu->setDrawState(&playbackState);

    GrClipData clipData;

    int currState       = 0;
    int currClip        = 0;
    int currClear       = 0;
    int currDraw        = 0;
    int currStencilPath = 0;
    int currDrawPath    = 0;
    int currDrawPaths   = 0;
    int currCopySurface = 0;
    int currCmdMarker   = 0;

    for (int c = 0; c < numCmds; ++c) {
        GrGpuTraceMarker newMarker("", -1);
        if (cmd_has_trace_marker(fCmds[c])) {
            SkString traceString = fGpuCmdMarkers[currCmdMarker].toString();
            newMarker.fMarker = traceString.c_str();
            fDstGpu->addGpuTraceMarker(&newMarker);
            ++currCmdMarker;
        }
        switch (strip_trace_bit(fCmds[c])) {
            case kDraw_Cmd: {
                const DrawRecord& draw = fDraws[currDraw];
                fDstGpu->setVertexSourceToBuffer(draw.fVertexBuffer);
                if (draw.isIndexed()) {
                    fDstGpu->setIndexSourceToBuffer(draw.fIndexBuffer);
                }
                fDstGpu->executeDraw(draw);
                ++currDraw;
                break;
            }
            case kStencilPath_Cmd: {
                const StencilPath& sp = fStencilPaths[currStencilPath];
                fDstGpu->stencilPath(sp.fPath.get(), sp.fFill);
                ++currStencilPath;
                break;
            }
            case kDrawPath_Cmd: {
                const DrawPath& cp = fDrawPath[currDrawPath];
                fDstGpu->executeDrawPath(cp.fPath.get(), cp.fFill,
                                         NULL != cp.fDstCopy.texture() ? &cp.fDstCopy : NULL);
                ++currDrawPath;
                break;
            }
            case kDrawPaths_Cmd: {
                DrawPaths& dp = fDrawPaths[currDrawPaths];
                const GrDeviceCoordTexture* dstCopy =
                    NULL != dp.fDstCopy.texture() ? &dp.fDstCopy : NULL;
                fDstGpu->executeDrawPaths(dp.fPathCount, dp.fPaths,
                                          dp.fTransforms, dp.fFill, dp.fStroke,
                                          dstCopy);
                ++currDrawPaths;
                break;
            }
            case kSetState_Cmd:
                fStates[currState].restoreTo(&playbackState);
                ++currState;
                break;
            case kSetClip_Cmd:
                clipData.fClipStack = &fClips[currClip];
                clipData.fOrigin = fClipOrigins[currClip];
                fDstGpu->setClip(&clipData);
                ++currClip;
                break;
            case kClear_Cmd:
                if (GrColor_ILLEGAL == fClears[currClear].fColor) {
                    fDstGpu->discard(fClears[currClear].fRenderTarget);
                } else {
                    fDstGpu->clear(&fClears[currClear].fRect,
                                   fClears[currClear].fColor,
                                   fClears[currClear].fCanIgnoreRect,
                                   fClears[currClear].fRenderTarget);
                }
                ++currClear;
                break;
            case kCopySurface_Cmd:
                fDstGpu->copySurface(fCopySurfaces[currCopySurface].fDst.get(),
                                     fCopySurfaces[currCopySurface].fSrc.get(),
                                     fCopySurfaces[currCopySurface].fSrcRect,
                                     fCopySurfaces[currCopySurface].fDstPoint);
                ++currCopySurface;
                break;
        }
        if (cmd_has_trace_marker(fCmds[c])) {
            fDstGpu->removeGpuTraceMarker(&newMarker);
        }
    }
    // we should have consumed all the states, clips, etc.
    SkASSERT(fStates.count() == currState);
    SkASSERT(fClips.count() == currClip);
    SkASSERT(fClipOrigins.count() == currClip);
    SkASSERT(fClears.count() == currClear);
    SkASSERT(fDraws.count()  == currDraw);
    SkASSERT(fCopySurfaces.count() == currCopySurface);
    SkASSERT(fGpuCmdMarkers.count() == currCmdMarker);

    fDstGpu->setDrawState(prevDrawState);
    prevDrawState->unref();
    this->reset();
    ++fDrawID;
}
bool SkSVGPaint::writeChangedAttributes(SkSVGParser& parser, 
        SkSVGPaint& current, bool* changed) {
    SkSVGPaint& lastState = parser.fLastFlush;
    for (int index = kInitial + 1; index < kTerminal; index++) {
        if (changed[index] == false)
                continue;
        SkString* topAttr = current[index];
        size_t attrLength = topAttr->size();
        if (attrLength == 0)
            continue;
        const char* attrValue = topAttr->c_str();
        SkString* lastAttr = lastState[index];
        switch(index) {
            case kClipPath:
            case kClipRule:
            case kEnableBackground:
                break;
            case kFill:
                if (topAttr->equals("none") == false && lastAttr->equals("none") == true) 
                    parser._addAttribute("stroke", "false");
                goto fillStrokeAttrCommon;
            case kFillRule:
            case kFilter:
            case kFontFamily:
                break;
            case kFontSize:
                parser._addAttributeLen("textSize", attrValue, attrLength);
                break;
            case kLetterSpacing:
                parser._addAttributeLen("textTracking", attrValue, attrLength);
                break;
            case kMask:
                break;
            case kOpacity:
                break;
            case kStopColor:
                break;
            case kStopOpacity:
                break;
            case kStroke:
                if (topAttr->equals("none") == false && lastAttr->equals("none") == true) 
                    parser._addAttribute("stroke", "true");
fillStrokeAttrCommon:
                if (strncmp(attrValue, "url(", 4) == 0) {
                    SkASSERT(attrValue[4] == '#');
                    const char* idStart = attrValue + 5;
                    const char* idEnd = strrchr(attrValue, ')');
                    SkASSERT(idStart < idEnd);
                    SkString id(idStart, idEnd - idStart);
                    SkSVGElement* found;
                    if (strncmp(id.c_str(), "mask", 4) != 0) {
                        bool itsFound = parser.fIDs.find(id.c_str(), &found);
                        SkASSERT(itsFound);
                        SkASSERT(found->getType() == SkSVGType_LinearGradient ||
                            found->getType() == SkSVGType_RadialGradient);
                    }
                    parser._addAttribute("shader", id.c_str());
                }
                break;
            case kStroke_Dasharray:
                break;
            case kStroke_Linecap:
                parser._addAttributeLen("strokeCap", attrValue, attrLength);
                break;
            case kStroke_Linejoin:
                parser._addAttributeLen("strokeJoin", attrValue, attrLength);
                break;
            case kStroke_Miterlimit:
                parser._addAttributeLen("strokeMiter", attrValue, attrLength);
                break;
            case kStroke_Width:
                parser._addAttributeLen("strokeWidth", attrValue, attrLength);
            case kStyle:
            case kTransform:
                break;
        default:
            SkASSERT(0);
            return false;
        }
    }
    return true;
}
Example #18
0
SkString GrGLCaps::dump() const {

    SkString r = INHERITED::dump();

    r.appendf("--- GL-Specific ---\n");
    for (int i = 0; i < fStencilFormats.count(); ++i) {
        r.appendf("Stencil Format %d, stencil bits: %02d, total bits: %02d\n",
                 i,
                 fStencilFormats[i].fStencilBits,
                 fStencilFormats[i].fTotalBits);
    }

    static const char* kMSFBOExtStr[] = {
        "None",
        "ARB",
        "EXT",
        "ES 3.0",
        "Apple",
        "IMG MS To Texture",
        "EXT MS To Texture",
    };
    GR_STATIC_ASSERT(0 == kNone_MSFBOType);
    GR_STATIC_ASSERT(1 == kDesktop_ARB_MSFBOType);
    GR_STATIC_ASSERT(2 == kDesktop_EXT_MSFBOType);
    GR_STATIC_ASSERT(3 == kES_3_0_MSFBOType);
    GR_STATIC_ASSERT(4 == kES_Apple_MSFBOType);
    GR_STATIC_ASSERT(5 == kES_IMG_MsToTexture_MSFBOType);
    GR_STATIC_ASSERT(6 == kES_EXT_MsToTexture_MSFBOType);
    GR_STATIC_ASSERT(SK_ARRAY_COUNT(kMSFBOExtStr) == kLast_MSFBOType + 1);

    static const char* kFBFetchTypeStr[] = {
        "None",
        "EXT",
        "NV",
    };
    GR_STATIC_ASSERT(0 == kNone_FBFetchType);
    GR_STATIC_ASSERT(1 == kEXT_FBFetchType);
    GR_STATIC_ASSERT(2 == kNV_FBFetchType);
    GR_STATIC_ASSERT(SK_ARRAY_COUNT(kFBFetchTypeStr) == kLast_FBFetchType + 1);

    static const char* kInvalidateFBTypeStr[] = {
        "None",
        "Discard",
        "Invalidate",
    };
    GR_STATIC_ASSERT(0 == kNone_InvalidateFBType);
    GR_STATIC_ASSERT(1 == kDiscard_InvalidateFBType);
    GR_STATIC_ASSERT(2 == kInvalidate_InvalidateFBType);
    GR_STATIC_ASSERT(SK_ARRAY_COUNT(kInvalidateFBTypeStr) == kLast_InvalidateFBType + 1);

    static const char* kMapBufferTypeStr[] = {
        "None",
        "MapBuffer",
        "MapBufferRange",
        "Chromium",
    };
    GR_STATIC_ASSERT(0 == kNone_MapBufferType);
    GR_STATIC_ASSERT(1 == kMapBuffer_MapBufferType);
    GR_STATIC_ASSERT(2 == kMapBufferRange_MapBufferType);
    GR_STATIC_ASSERT(3 == kChromium_MapBufferType);
    GR_STATIC_ASSERT(SK_ARRAY_COUNT(kMapBufferTypeStr) == kLast_MapBufferType + 1);

    r.appendf("Core Profile: %s\n", (fIsCoreProfile ? "YES" : "NO"));
    r.appendf("MSAA Type: %s\n", kMSFBOExtStr[fMSFBOType]);
    r.appendf("FB Fetch Type: %s\n", kFBFetchTypeStr[fFBFetchType]);
    r.appendf("Invalidate FB Type: %s\n", kInvalidateFBTypeStr[fInvalidateFBType]);
    r.appendf("Map Buffer Type: %s\n", kMapBufferTypeStr[fMapBufferType]);
    r.appendf("Max FS Uniform Vectors: %d\n", fMaxFragmentUniformVectors);
    r.appendf("Max FS Texture Units: %d\n", fMaxFragmentTextureUnits);
    if (!fIsCoreProfile) {
        r.appendf("Max Fixed Function Texture Coords: %d\n", fMaxFixedFunctionTextureCoords);
    }
    r.appendf("Max Vertex Attributes: %d\n", fMaxVertexAttributes);
    r.appendf("Support RGBA8 Render Buffer: %s\n", (fRGBA8RenderbufferSupport ? "YES": "NO"));
    r.appendf("BGRA is an internal format: %s\n", (fBGRAIsInternalFormat ? "YES": "NO"));
    r.appendf("Support texture swizzle: %s\n", (fTextureSwizzleSupport ? "YES": "NO"));
    r.appendf("Unpack Row length support: %s\n", (fUnpackRowLengthSupport ? "YES": "NO"));
    r.appendf("Unpack Flip Y support: %s\n", (fUnpackFlipYSupport ? "YES": "NO"));
    r.appendf("Pack Row length support: %s\n", (fPackRowLengthSupport ? "YES": "NO"));
    r.appendf("Pack Flip Y support: %s\n", (fPackFlipYSupport ? "YES": "NO"));

    r.appendf("Texture Usage support: %s\n", (fTextureUsageSupport ? "YES": "NO"));
    r.appendf("Texture Storage support: %s\n", (fTexStorageSupport ? "YES": "NO"));
    r.appendf("GL_R support: %s\n", (fTextureRedSupport ? "YES": "NO"));
    r.appendf("GL_ARB_imaging support: %s\n", (fImagingSupport ? "YES": "NO"));
    r.appendf("Two Format Limit: %s\n", (fTwoFormatLimit ? "YES": "NO"));
    r.appendf("Fragment coord conventions support: %s\n",
             (fFragCoordsConventionSupport ? "YES": "NO"));
    r.appendf("Vertex array object support: %s\n", (fVertexArrayObjectSupport ? "YES": "NO"));
    r.appendf("Use non-VBO for dynamic data: %s\n",
             (fUseNonVBOVertexAndIndexDynamicData ? "YES" : "NO"));
    r.appendf("Full screen clear is free: %s\n", (fFullClearIsFree ? "YES" : "NO"));
    r.appendf("Drops tile on zero divide: %s\n", (fDropsTileOnZeroDivide ? "YES" : "NO"));
    return r;
}
Example #19
0
 virtual const char* onGetName() {
     fName.printf("shadermask");
     fName.appendf("_%s", fontQualityName(fPaint));
     fName.appendf("_%02X", fPaint.getAlpha());
     return fName.c_str();
 }
Example #20
0
bool SkScriptRuntime::executeTokens(unsigned char* opCode) {
    SkOperand2 operand[2];    // 1=accumulator and 2=operand
    SkScriptEngine2::TypeOp op;
    size_t ref;
    int index, size;
    int registerLoad;
    SkScriptCallBack* callBack SK_INIT_TO_AVOID_WARNING;
    do {
    switch ((op = (SkScriptEngine2::TypeOp) *opCode++)) {
        case SkScriptEngine2::kArrayToken:    // create an array
            operand[0].fArray = new SkOpArray(SkOperand2::kNoType /*fReturnType*/);
            break;
        case SkScriptEngine2::kArrayIndex:    // array accessor
            index = operand[1].fS32;
            if (index >= operand[0].fArray->count()) {
                fError = kArrayIndexOutOfBounds;
                return false;
            }
            operand[0] = operand[0].fArray->begin()[index];
            break;
        case SkScriptEngine2::kArrayParam:    // array initializer, or function param
            *operand[0].fArray->append() = operand[1];
            break;
        case SkScriptEngine2::kCallback:
            memcpy(&index, opCode, sizeof(index));
            opCode += sizeof(index);
            callBack = fCallBackArray[index];
            break;
        case SkScriptEngine2::kFunctionCall: {
            memcpy(&ref, opCode, sizeof(ref));
            opCode += sizeof(ref);
            SkScriptCallBackFunction* callBackFunction = (SkScriptCallBackFunction*) callBack;
            if (callBackFunction->invoke(ref, operand[0].fArray, /* params */
                    &operand[0] /* result */) == false) {
                fError = kFunctionCallFailed;
                return false;
            }
            } break;
        case SkScriptEngine2::kMemberOp: {
            memcpy(&ref, opCode, sizeof(ref));
            opCode += sizeof(ref);
            SkScriptCallBackMember* callBackMember = (SkScriptCallBackMember*) callBack;
            if (callBackMember->invoke(ref, operand[0].fObject, &operand[0]) == false) {
                fError = kMemberOpFailed;
                return false;
            }
            } break;
        case SkScriptEngine2::kPropertyOp: {
            memcpy(&ref, opCode, sizeof(ref));
            opCode += sizeof(ref);
            SkScriptCallBackProperty* callBackProperty = (SkScriptCallBackProperty*) callBack;
            if (callBackProperty->getResult(ref, &operand[0])== false) {
                fError = kPropertyOpFailed;
                return false;
            }
            } break;
        case SkScriptEngine2::kAccumulatorPop:
            fRunStack.pop(&operand[0]);
            break;
        case SkScriptEngine2::kAccumulatorPush:
            *fRunStack.push() = operand[0];
            break;
        case SkScriptEngine2::kIntegerAccumulator:
        case SkScriptEngine2::kIntegerOperand:
            registerLoad = op - SkScriptEngine2::kIntegerAccumulator;
            memcpy(&operand[registerLoad].fS32, opCode, sizeof(int32_t));
            opCode += sizeof(int32_t);
            break;
        case SkScriptEngine2::kScalarAccumulator:
        case SkScriptEngine2::kScalarOperand:
            registerLoad = op - SkScriptEngine2::kScalarAccumulator;
            memcpy(&operand[registerLoad].fScalar, opCode, sizeof(SkScalar));
            opCode += sizeof(SkScalar);
            break;
        case SkScriptEngine2::kStringAccumulator:
        case SkScriptEngine2::kStringOperand: {
            SkString* strPtr = new SkString();
            track(strPtr);
            registerLoad = op - SkScriptEngine2::kStringAccumulator;
            memcpy(&size, opCode, sizeof(size));
            opCode += sizeof(size);
            strPtr->set((char*) opCode, size);
            opCode += size;
            operand[registerLoad].fString = strPtr;
            } break;
        case SkScriptEngine2::kStringTrack: // call after kObjectToValue
            track(operand[0].fString);
            break;
        case SkScriptEngine2::kBoxToken: {
            SkOperand2::OpType type;
            memcpy(&type, opCode, sizeof(type));
            opCode += sizeof(type);
            SkScriptCallBackConvert* callBackBox = (SkScriptCallBackConvert*) callBack;
            if (callBackBox->convert(type, &operand[0]) == false)
                return false;
            } break;
        case SkScriptEngine2::kUnboxToken:
        case SkScriptEngine2::kUnboxToken2: {
            SkScriptCallBackConvert* callBackUnbox = (SkScriptCallBackConvert*) callBack;
            if (callBackUnbox->convert(SkOperand2::kObject, &operand[0]) == false)
                return false;
            } break;
        case SkScriptEngine2::kIfOp:
        case SkScriptEngine2::kLogicalAndInt:
            memcpy(&size, opCode, sizeof(size));
            opCode += sizeof(size);
            if (operand[0].fS32 == 0)
                opCode += size; // skip to else (or end of if predicate)
            break;
        case SkScriptEngine2::kElseOp:
            memcpy(&size, opCode, sizeof(size));
            opCode += sizeof(size);
            opCode += size; // if true: after predicate, always skip to end of else
            break;
        case SkScriptEngine2::kLogicalOrInt:
            memcpy(&size, opCode, sizeof(size));
            opCode += sizeof(size);
            if (operand[0].fS32 != 0)
                opCode += size; // skip to kToBool opcode after || predicate
            break;
        // arithmetic conversion ops
        case SkScriptEngine2::kFlipOpsOp:
            SkTSwap(operand[0], operand[1]);
            break;
        case SkScriptEngine2::kIntToString:
        case SkScriptEngine2::kIntToString2:
        case SkScriptEngine2::kScalarToString:
        case SkScriptEngine2::kScalarToString2:{
            SkString* strPtr = new SkString();
            track(strPtr);
            if (op == SkScriptEngine2::kIntToString || op == SkScriptEngine2::kIntToString2)
                strPtr->appendS32(operand[op - SkScriptEngine2::kIntToString].fS32);
            else
                strPtr->appendScalar(operand[op - SkScriptEngine2::kScalarToString].fScalar);
            operand[0].fString = strPtr;
            } break;
        case SkScriptEngine2::kIntToScalar:
        case SkScriptEngine2::kIntToScalar2:
            operand[0].fScalar = SkScriptEngine2::IntToScalar(operand[op - SkScriptEngine2::kIntToScalar].fS32);
            break;
        case SkScriptEngine2::kStringToInt:
            if (SkParse::FindS32(operand[0].fString->c_str(), &operand[0].fS32) == NULL)
                return false;
            break;
        case SkScriptEngine2::kStringToScalar:
        case SkScriptEngine2::kStringToScalar2:
            if (SkParse::FindScalar(operand[0].fString->c_str(),
                    &operand[op - SkScriptEngine2::kStringToScalar].fScalar) == NULL)
                return false;
            break;
        case SkScriptEngine2::kScalarToInt:
            operand[0].fS32 = SkScalarFloorToInt(operand[0].fScalar);
            break;
        // arithmetic ops
        case SkScriptEngine2::kAddInt:
            operand[0].fS32 += operand[1].fS32;
            break;
        case SkScriptEngine2::kAddScalar:
            operand[0].fScalar += operand[1].fScalar;
            break;
        case SkScriptEngine2::kAddString:
//            if (fTrackString.find(operand[1].fString) < 0) {
//                operand[1].fString = SkNEW_ARGS(SkString, (*operand[1].fString));
//                track(operand[1].fString);
//            }
            operand[0].fString->append(*operand[1].fString);
            break;
        case SkScriptEngine2::kBitAndInt:
            operand[0].fS32 &= operand[1].fS32;
            break;
        case SkScriptEngine2::kBitNotInt:
            operand[0].fS32 = ~operand[0].fS32;
            break;
        case SkScriptEngine2::kBitOrInt:
            operand[0].fS32 |= operand[1].fS32;
            break;
        case SkScriptEngine2::kDivideInt:
            SkASSERT(operand[1].fS32 != 0);
            if (operand[1].fS32 == 0)
                operand[0].fS32 = operand[0].fS32 == 0 ? SK_NaN32 :
                    operand[0].fS32 > 0 ? SK_MaxS32 : -SK_MaxS32;
            else
            if (operand[1].fS32 != 0) // throw error on divide by zero?
                operand[0].fS32 /= operand[1].fS32;
            break;
        case SkScriptEngine2::kDivideScalar:
            if (operand[1].fScalar == 0)
                operand[0].fScalar = operand[0].fScalar == 0 ? SK_ScalarNaN :
                    operand[0].fScalar > 0 ? SK_ScalarMax : -SK_ScalarMax;
            else
                operand[0].fScalar = operand[0].fScalar / operand[1].fScalar;
            break;
        case SkScriptEngine2::kEqualInt:
            operand[0].fS32 = operand[0].fS32 == operand[1].fS32;
            break;
        case SkScriptEngine2::kEqualScalar:
            operand[0].fS32 = operand[0].fScalar == operand[1].fScalar;
            break;
        case SkScriptEngine2::kEqualString:
            operand[0].fS32 = *operand[0].fString == *operand[1].fString;
            break;
        case SkScriptEngine2::kGreaterEqualInt:
            operand[0].fS32 = operand[0].fS32 >= operand[1].fS32;
            break;
        case SkScriptEngine2::kGreaterEqualScalar:
            operand[0].fS32 = operand[0].fScalar >= operand[1].fScalar;
            break;
        case SkScriptEngine2::kGreaterEqualString:
            operand[0].fS32 = strcmp(operand[0].fString->c_str(), operand[1].fString->c_str()) >= 0;
            break;
        case SkScriptEngine2::kToBool:
            operand[0].fS32 = !! operand[0].fS32;
            break;
        case SkScriptEngine2::kLogicalNotInt:
            operand[0].fS32 = ! operand[0].fS32;
            break;
        case SkScriptEngine2::kMinusInt:
            operand[0].fS32 = -operand[0].fS32;
            break;
        case SkScriptEngine2::kMinusScalar:
            operand[0].fScalar = -operand[0].fScalar;
            break;
        case SkScriptEngine2::kModuloInt:
            operand[0].fS32 %= operand[1].fS32;
            break;
        case SkScriptEngine2::kModuloScalar:
            operand[0].fScalar = SkScalarMod(operand[0].fScalar, operand[1].fScalar);
            break;
        case SkScriptEngine2::kMultiplyInt:
            operand[0].fS32 *= operand[1].fS32;
            break;
        case SkScriptEngine2::kMultiplyScalar:
            operand[0].fScalar = SkScalarMul(operand[0].fScalar, operand[1].fScalar);
            break;
        case SkScriptEngine2::kShiftLeftInt:
            operand[0].fS32 <<= operand[1].fS32;
            break;
        case SkScriptEngine2::kShiftRightInt:
            operand[0].fS32 >>= operand[1].fS32;
            break;
        case SkScriptEngine2::kSubtractInt:
            operand[0].fS32 -= operand[1].fS32;
            break;
        case SkScriptEngine2::kSubtractScalar:
            operand[0].fScalar -= operand[1].fScalar;
            break;
        case SkScriptEngine2::kXorInt:
            operand[0].fS32 ^= operand[1].fS32;
            break;
        case SkScriptEngine2::kEnd:
            goto done;
        case SkScriptEngine2::kNop:
                SkASSERT(0);
    default:
        break;
    }
    } while (true);
done:
    fRunStack.push(operand[0]);
    return true;
}
Example #21
0
void GrContext::printGpuStats() const {
    SkString out;
    this->dumpGpuStats(&out);
    SkDebugf("%s", out.c_str());
}
SkTypeface* SkFontMgr_Indirect::onMatchFaceStyle(const SkTypeface* familyMember,
                                                 const SkFontStyle& fontStyle) const {
    SkString familyName;
    familyMember->getFamilyName(&familyName);
    return this->matchFamilyStyle(familyName.c_str(), fontStyle);
}
Example #23
0
void GrGLVertexProgramEffects::emitTransforms(GrGLFullShaderBuilder* builder,
                                              const GrEffectRef& effect,
                                              EffectKey effectKey,
                                              TransformedCoordsArray* outCoords) {
    SkTArray<Transform, true>& transforms = fTransforms.push_back();
    EffectKey totalKey = GrBackendEffectFactory::GetTransformKey(effectKey);
    int numTransforms = effect->numTransforms();
    transforms.push_back_n(numTransforms);
    for (int t = 0; t < numTransforms; t++) {
        GrSLType varyingType = kVoid_GrSLType;
        const char* uniName;
        switch (get_matrix_type(totalKey, t)) {
            case kIdentity_MatrixType:
                transforms[t].fType = kVoid_GrSLType;
                uniName = NULL;
                varyingType = kVec2f_GrSLType;
                break;
            case kTrans_MatrixType:
                transforms[t].fType = kVec2f_GrSLType;
                uniName = "StageTranslate";
                varyingType = kVec2f_GrSLType;
                break;
            case kNoPersp_MatrixType:
                transforms[t].fType = kMat33f_GrSLType;
                uniName = "StageMatrix";
                varyingType = kVec2f_GrSLType;
                break;
            case kGeneral_MatrixType:
                transforms[t].fType = kMat33f_GrSLType;
                uniName = "StageMatrix";
                varyingType = kVec3f_GrSLType;
                break;
            default:
                GrCrash("Unexpected key.");
        }
        SkString suffixedUniName;
        if (kVoid_GrSLType != transforms[t].fType) {
            if (0 != t) {
                suffixedUniName.append(uniName);
                suffixedUniName.appendf("_%i", t);
                uniName = suffixedUniName.c_str();
            }
            transforms[t].fHandle = builder->addUniform(GrGLShaderBuilder::kVertex_Visibility,
                                                        transforms[t].fType,
                                                        uniName,
                                                        &uniName);
        }

        const char* varyingName = "MatrixCoord";
        SkString suffixedVaryingName;
        if (0 != t) {
            suffixedVaryingName.append(varyingName);
            suffixedVaryingName.appendf("_%i", t);
            varyingName = suffixedVaryingName.c_str();
        }
        const char* vsVaryingName;
        const char* fsVaryingName;
        builder->addVarying(varyingType, varyingName, &vsVaryingName, &fsVaryingName);

        const GrGLShaderVar& coords = kPosition_GrCoordSet == get_source_coords(totalKey, t) ?
                                          builder->positionAttribute() :
                                          builder->localCoordsAttribute();
        // varying = matrix * coords (logically)
        switch (transforms[t].fType) {
            case kVoid_GrSLType:
                SkASSERT(kVec2f_GrSLType == varyingType);
                builder->vsCodeAppendf("\t%s = %s;\n", vsVaryingName, coords.c_str());
                break;
            case kVec2f_GrSLType:
                SkASSERT(kVec2f_GrSLType == varyingType);
                builder->vsCodeAppendf("\t%s = %s + %s;\n",
                                       vsVaryingName, uniName, coords.c_str());
                break;
            case kMat33f_GrSLType: {
                SkASSERT(kVec2f_GrSLType == varyingType || kVec3f_GrSLType == varyingType);
                if (kVec2f_GrSLType == varyingType) {
                    builder->vsCodeAppendf("\t%s = (%s * vec3(%s, 1)).xy;\n",
                                           vsVaryingName, uniName, coords.c_str());
                } else {
                    builder->vsCodeAppendf("\t%s = %s * vec3(%s, 1);\n",
                                           vsVaryingName, uniName, coords.c_str());
                }
                break;
            }
            default:
                GrCrash("Unexpected uniform type.");
        }
        SkNEW_APPEND_TO_TARRAY(outCoords, TransformedCoords,
                               (SkString(fsVaryingName), varyingType));
    }
}
Example #24
0
SkPDFString::SkPDFString(const SkString& value)
    : fValue(FormatString(value.c_str(), value.size())) {
}
Example #25
0
 InterpBench(void* param, const char name[]) : INHERITED(param) {
     fName.printf("interp_%s", name);
     fFx = 3.3f;
     fDx = 0.1257f;
 }
Example #26
0
// static
SkString SkPDFString::DoFormatString(const void* input, size_t len,
                                     bool wideInput, bool wideOutput) {
    SkASSERT(len <= kMaxLen);
    const uint16_t* win = (const uint16_t*) input;
    const char* cin = (const char*) input;

    if (wideOutput) {
        SkASSERT(wideInput);
        SkString result;
        result.append("<");
        for (size_t i = 0; i < len; i++) {
            result.appendHex(win[i], 4);
        }
        result.append(">");
        return result;
    }

    // 7-bit clean is a heuristic to decide what string format to use;
    // a 7-bit clean string should require little escaping.
    bool sevenBitClean = true;
    for (size_t i = 0; i < len; i++) {
        SkASSERT(!wideInput || !(win[i] & ~0xFF));
        char val = wideInput ? win[i] : cin[i];
        if (val > '~' || val < ' ') {
            sevenBitClean = false;
            break;
        }
    }

    SkString result;
    if (sevenBitClean) {
        result.append("(");
        for (size_t i = 0; i < len; i++) {
            SkASSERT(!wideInput || !(win[i] & ~0xFF));
            char val = wideInput ? win[i] : cin[i];
            if (val == '\\' || val == '(' || val == ')') {
                result.append("\\");
            }
            result.append(&val, 1);
        }
        result.append(")");
    } else {
        result.append("<");
        for (size_t i = 0; i < len; i++) {
            SkASSERT(!wideInput || !(win[i] & ~0xFF));
            unsigned char val = wideInput ? win[i] : cin[i];
            result.appendHex(val, 2);
        }
        result.append(">");
    }

    return result;
}
Example #27
0
void GrGLBicubicEffect::emitCode(EmitArgs& args) {
    const GrBicubicEffect& bicubicEffect = args.fFp.cast<GrBicubicEffect>();

    GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
    fCoefficientsUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
                                                  kMat44f_GrSLType, kDefault_GrSLPrecision,
                                                  "Coefficients");
    fImageIncrementUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
                                                    kVec2f_GrSLType, kDefault_GrSLPrecision,
                                                    "ImageIncrement");

    const char* imgInc = uniformHandler->getUniformCStr(fImageIncrementUni);
    const char* coeff = uniformHandler->getUniformCStr(fCoefficientsUni);

    GrGLSLColorSpaceXformHelper colorSpaceHelper(uniformHandler, bicubicEffect.colorSpaceXform(),
                                                 &fColorSpaceXformUni);

    SkString cubicBlendName;

    static const GrGLSLShaderVar gCubicBlendArgs[] = {
        GrGLSLShaderVar("coefficients",  kMat44f_GrSLType),
        GrGLSLShaderVar("t",             kFloat_GrSLType),
        GrGLSLShaderVar("c0",            kVec4f_GrSLType),
        GrGLSLShaderVar("c1",            kVec4f_GrSLType),
        GrGLSLShaderVar("c2",            kVec4f_GrSLType),
        GrGLSLShaderVar("c3",            kVec4f_GrSLType),
    };
    GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
    SkString coords2D = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]);
    fragBuilder->emitFunction(kVec4f_GrSLType,
                              "cubicBlend",
                              SK_ARRAY_COUNT(gCubicBlendArgs),
                              gCubicBlendArgs,
                              "\tvec4 ts = vec4(1.0, t, t * t, t * t * t);\n"
                              "\tvec4 c = coefficients * ts;\n"
                              "\treturn c.x * c0 + c.y * c1 + c.z * c2 + c.w * c3;\n",
                              &cubicBlendName);
    fragBuilder->codeAppendf("\tvec2 coord = %s - %s * vec2(0.5);\n", coords2D.c_str(), imgInc);
    // We unnormalize the coord in order to determine our fractional offset (f) within the texel
    // We then snap coord to a texel center and renormalize. The snap prevents cases where the
    // starting coords are near a texel boundary and accumulations of imgInc would cause us to skip/
    // double hit a texel.
    fragBuilder->codeAppendf("\tcoord /= %s;\n", imgInc);
    fragBuilder->codeAppend("\tvec2 f = fract(coord);\n");
    fragBuilder->codeAppendf("\tcoord = (coord - f + vec2(0.5)) * %s;\n", imgInc);
    fragBuilder->codeAppend("\tvec4 rowColors[4];\n");
    for (int y = 0; y < 4; ++y) {
        for (int x = 0; x < 4; ++x) {
            SkString coord;
            coord.printf("coord + %s * vec2(%d, %d)", imgInc, x - 1, y - 1);
            SkString sampleVar;
            sampleVar.printf("rowColors[%d]", x);
            fDomain.sampleTexture(fragBuilder,
                                  args.fUniformHandler,
                                  args.fGLSLCaps,
                                  bicubicEffect.domain(),
                                  sampleVar.c_str(),
                                  coord,
                                  args.fTexSamplers[0]);
        }
        fragBuilder->codeAppendf(
            "\tvec4 s%d = %s(%s, f.x, rowColors[0], rowColors[1], rowColors[2], rowColors[3]);\n",
            y, cubicBlendName.c_str(), coeff);
    }
    SkString bicubicColor;
    bicubicColor.printf("%s(%s, f.y, s0, s1, s2, s3)", cubicBlendName.c_str(), coeff);
    if (colorSpaceHelper.getXformMatrix()) {
        SkString xformedColor;
        fragBuilder->appendColorGamutXform(&xformedColor, bicubicColor.c_str(), &colorSpaceHelper);
        bicubicColor.swap(xformedColor);
    }
    fragBuilder->codeAppendf("\t%s = %s;\n",
                             args.fOutputColor, (GrGLSLExpr4(bicubicColor.c_str()) *
                                                 GrGLSLExpr4(args.fInputColor)).c_str());
}
bool SkSVGPaint::flush(SkSVGParser& parser, bool isFlushable, bool isDef) {
    SkSVGPaint current;
    SkSVGPaint* walking = parser.fHead;
    int index;
    while (walking != NULL) {
        for (index = kInitial + 1; index < kTerminal; index++) {
            SkString* lastAttr = (*walking)[index];
            if (lastAttr->size() == 0)
                continue;
            if (current[index]->size() > 0)
                continue;
            current[index]->set(*lastAttr);
        }
        walking = walking->fNext;
    }
    bool paintChanged = false;
    SkSVGPaint& lastState = parser.fLastFlush;
    if (isFlushable == false) {
        if (isDef == true) {
            if (current.f_mask.size() > 0 && current.f_mask.equals(lastState.f_mask) == false) {
                SkSVGElement* found;
                const char* idStart = strchr(current.f_mask.c_str(), '#');
                SkASSERT(idStart);
                SkString id(idStart + 1, strlen(idStart) - 2);
                bool itsFound = parser.fIDs.find(id.c_str(), &found);
                SkASSERT(itsFound);
                SkSVGElement* gradient = found->getGradient();
                if (gradient) {
                    gradient->write(parser, current.f_fill);
                    gradient->write(parser, current.f_stroke);
                }
            }
        }
        goto setLast;
    }
    {
        bool changed[kTerminal];
        memset(changed, 0, sizeof(changed));
        for (index = kInitial + 1; index < kTerminal; index++) {
            if (index == kTransform || index == kClipPath || index == kStopColor || index == kStopOpacity ||
                    index == kClipRule || index == kFillRule)
                continue;
            SkString* lastAttr = lastState[index];
            SkString* currentAttr = current[index];
            paintChanged |= changed[index] = lastAttr->equals(*currentAttr) == false;
        }
        if (paintChanged) {
            if (current.f_mask.size() > 0) {
                if (current.f_fill.equals("none") == false && strncmp(current.f_fill.c_str(), "url(#", 5) != 0) {
                    SkASSERT(current.f_fill.c_str()[0] == '#');
                    SkString replacement("url(#mask");
                    replacement.append(current.f_fill.c_str() + 1);
                    replacement.appendUnichar(')');
                    current.f_fill.set(replacement);
                }
                if (current.f_stroke.equals("none") == false && strncmp(current.f_stroke.c_str(), "url(#", 5) != 0) {
                    SkASSERT(current.f_stroke.c_str()[0] == '#');
                    SkString replacement("url(#mask");
                    replacement.append(current.f_stroke.c_str() + 1);
                    replacement.appendUnichar(')');
                    current.f_stroke.set(replacement);
                }
            }
            if (current.f_fill.equals("none") && current.f_stroke.equals("none"))
                current.f_opacity.set("0");
            if (parser.fSuppressPaint == false) {
                parser._startElement("paint");
                bool success = writeChangedAttributes(parser, current, changed);
                if (success == false)
                    return paintChanged;
                success = writeChangedElements(parser, current, changed);
                if (success == false)
                    return paintChanged;
                parser._endElement(); // paint
            }
        }
    }
setLast:
    for (index = kInitial + 1; index < kTerminal; index++) {
        SkString* lastAttr = lastState[index];
        SkString* currentAttr = current[index];
        lastAttr->set(*currentAttr);
    }
    return paintChanged;
}
Example #29
0
void WriteTask::makeDirOrFail(SkString dir) {
    if (!sk_mkdir(dir.c_str())) {
        this->fail();
    }
}
static bool run_single_benchmark(const SkString& inputPath,
                                 sk_tools::PictureBenchmark& benchmark) {
    SkFILEStream inputStream;

    inputStream.setPath(inputPath.c_str());
    if (!inputStream.isValid()) {
        SkString err;
        err.printf("Could not open file %s\n", inputPath.c_str());
        gLogger.logError(err);
        return false;
    }

    // Since the old picture has been deleted, all pixels should be cleared.
    SkASSERT(gLruImageCache.getImageCacheUsed() == 0);
    if (FLAGS_countRAM) {
        // Set the limit to zero, so all pixels will be kept
      gLruImageCache.setImageCacheLimit(0);
    }

    SkPicture::InstallPixelRefProc proc;
    if (FLAGS_deferImageDecoding) {
        proc = &sk_tools::LazyDecodeBitmap;
    } else {
        proc = &SkImageDecoder::DecodeMemory;
    }
    SkAutoTUnref<SkPicture> picture(SkPicture::CreateFromStream(&inputStream, proc));

    if (NULL == picture.get()) {
        SkString err;
        err.printf("Could not read an SkPicture from %s\n", inputPath.c_str());
        gLogger.logError(err);
        return false;
    }

    SkString filename;
    sk_tools::get_basename(&filename, inputPath);

    SkString result;
    result.printf("running bench [%i %i] %s ", picture->width(), picture->height(),
                  filename.c_str());
    gLogger.logProgress(result);

    benchmark.run(picture);

#if LAZY_CACHE_STATS
    if (FLAGS_trackDeferredCaching) {
        int32_t cacheHits = SkLazyPixelRef::GetCacheHits();
        int32_t cacheMisses = SkLazyPixelRef::GetCacheMisses();
        SkLazyPixelRef::ResetCacheStats();
        SkString hitString;
        hitString.printf("Cache hit rate: %f\n", (double) cacheHits / (cacheHits + cacheMisses));
        gLogger.logProgress(hitString);
        gTotalCacheHits += cacheHits;
        gTotalCacheMisses += cacheMisses;
    }
#endif
    if (FLAGS_countRAM) {
        SkString ramCount("RAM used for bitmaps: ");
        size_t bytes = gLruImageCache.getImageCacheUsed();
        if (bytes > 1024) {
            size_t kb = bytes / 1024;
            if (kb > 1024) {
                size_t mb = kb / 1024;
                ramCount.appendf("%zi MB\n", mb);
            } else {
                ramCount.appendf("%zi KB\n", kb);
            }
        } else {
            ramCount.appendf("%zi bytes\n", bytes);
        }
        gLogger.logProgress(ramCount);
    }

    return true;
}