Example #1
0
// MinGW specific.
void Symbol::replaceKeepingName(Symbol *Other, size_t Size) {
  StringRef OrigName = getName();
  memcpy(this, Other, Size);
  NameData = OrigName.data();
  NameSize = OrigName.size();
}
Example #2
0
static CXCodeCompleteResults *
clang_codeCompleteAt_Impl(CXTranslationUnit TU, const char *complete_filename,
                          unsigned complete_line, unsigned complete_column,
                          ArrayRef<CXUnsavedFile> unsaved_files,
                          unsigned options) {
  bool IncludeBriefComments = options & CXCodeComplete_IncludeBriefComments;

#ifdef UDP_CODE_COMPLETION_LOGGER
#ifdef UDP_CODE_COMPLETION_LOGGER_PORT
  const llvm::TimeRecord &StartTime =  llvm::TimeRecord::getCurrentTime();
#endif
#endif

  bool EnableLogging = getenv("LIBCLANG_CODE_COMPLETION_LOGGING") != nullptr;

  if (cxtu::isNotUsableTU(TU)) {
    LOG_BAD_TU(TU);
    return nullptr;
  }

  ASTUnit *AST = cxtu::getASTUnit(TU);
  if (!AST)
    return nullptr;

  CIndexer *CXXIdx = TU->CIdx;
  if (CXXIdx->isOptEnabled(CXGlobalOpt_ThreadBackgroundPriorityForEditing))
    setThreadBackgroundPriority();

  ASTUnit::ConcurrencyCheck Check(*AST);

  // Perform the remapping of source files.
  SmallVector<ASTUnit::RemappedFile, 4> RemappedFiles;

  for (auto &UF : unsaved_files) {
    std::unique_ptr<llvm::MemoryBuffer> MB =
        llvm::MemoryBuffer::getMemBufferCopy(getContents(UF), UF.Filename);
    RemappedFiles.push_back(std::make_pair(UF.Filename, MB.release()));
  }

  if (EnableLogging) {
    // FIXME: Add logging.
  }

  // Parse the resulting source file to find code-completion results.
  AllocatedCXCodeCompleteResults *Results = new AllocatedCXCodeCompleteResults(
      &AST->getFileManager());
  Results->Results = nullptr;
  Results->NumResults = 0;
  
  // Create a code-completion consumer to capture the results.
  CodeCompleteOptions Opts;
  Opts.IncludeBriefComments = IncludeBriefComments;
  CaptureCompletionResults Capture(Opts, *Results, &TU);

  // Perform completion.
  AST->CodeComplete(complete_filename, complete_line, complete_column,
                    RemappedFiles, (options & CXCodeComplete_IncludeMacros),
                    (options & CXCodeComplete_IncludeCodePatterns),
                    IncludeBriefComments, Capture,
                    CXXIdx->getPCHContainerOperations(), *Results->Diag,
                    Results->LangOpts, *Results->SourceMgr, *Results->FileMgr,
                    Results->Diagnostics, Results->TemporaryBuffers);

  Results->DiagnosticsWrappers.resize(Results->Diagnostics.size());

  // Keep a reference to the allocator used for cached global completions, so
  // that we can be sure that the memory used by our code completion strings
  // doesn't get freed due to subsequent reparses (while the code completion
  // results are still active).
  Results->CachedCompletionAllocator = AST->getCachedCompletionAllocator();

  

#ifdef UDP_CODE_COMPLETION_LOGGER
#ifdef UDP_CODE_COMPLETION_LOGGER_PORT
  const llvm::TimeRecord &EndTime =  llvm::TimeRecord::getCurrentTime();
  SmallString<256> LogResult;
  llvm::raw_svector_ostream os(LogResult);

  // Figure out the language and whether or not it uses PCH.
  const char *lang = 0;
  bool usesPCH = false;

  for (std::vector<const char*>::iterator I = argv.begin(), E = argv.end();
       I != E; ++I) {
    if (*I == 0)
      continue;
    if (strcmp(*I, "-x") == 0) {
      if (I + 1 != E) {
        lang = *(++I);
        continue;
      }
    }
    else if (strcmp(*I, "-include") == 0) {
      if (I+1 != E) {
        const char *arg = *(++I);
        SmallString<512> pchName;
        {
          llvm::raw_svector_ostream os(pchName);
          os << arg << ".pth";
        }
        pchName.push_back('\0');
        struct stat stat_results;
        if (stat(pchName.str().c_str(), &stat_results) == 0)
          usesPCH = true;
        continue;
      }
    }
  }

  os << "{ ";
  os << "\"wall\": " << (EndTime.getWallTime() - StartTime.getWallTime());
  os << ", \"numRes\": " << Results->NumResults;
  os << ", \"diags\": " << Results->Diagnostics.size();
  os << ", \"pch\": " << (usesPCH ? "true" : "false");
  os << ", \"lang\": \"" << (lang ? lang : "<unknown>") << '"';
  const char *name = getlogin();
  os << ", \"user\": \"" << (name ? name : "unknown") << '"';
  os << ", \"clangVer\": \"" << getClangFullVersion() << '"';
  os << " }";

  StringRef res = os.str();
  if (res.size() > 0) {
    do {
      // Setup the UDP socket.
      struct sockaddr_in servaddr;
      bzero(&servaddr, sizeof(servaddr));
      servaddr.sin_family = AF_INET;
      servaddr.sin_port = htons(UDP_CODE_COMPLETION_LOGGER_PORT);
      if (inet_pton(AF_INET, UDP_CODE_COMPLETION_LOGGER,
                    &servaddr.sin_addr) <= 0)
        break;

      int sockfd = socket(AF_INET, SOCK_DGRAM, 0);
      if (sockfd < 0)
        break;

      sendto(sockfd, res.data(), res.size(), 0,
             (struct sockaddr *)&servaddr, sizeof(servaddr));
      close(sockfd);
    }
    while (false);
  }
#endif
#endif
  return Results;
}
Example #3
0
static void create_PRUNTIME_FUNCTION(uint8_t *Code, size_t Size, StringRef fnname,
        uint8_t *Section, size_t Allocated, uint8_t *UnwindData)
{
    DWORD mod_size = 0;
#if defined(_CPU_X86_64_)
#if !defined(USE_MCJIT)
    uint8_t *catchjmp = Section+Allocated;
    UnwindData = (uint8_t*)(((uintptr_t)catchjmp+12+3)&~(uintptr_t)3);
    if (!catchjmp[0]) {
        catchjmp[0] = 0x48;
        catchjmp[1] = 0xb8; // mov RAX, QWORD PTR [...]
        *(uint64_t*)(&catchjmp[2]) = (uint64_t)&_seh_exception_handler;
        catchjmp[10] = 0xff;
        catchjmp[11] = 0xe0; // jmp RAX
        UnwindData[0] = 0x09; // version info, UNW_FLAG_EHANDLER
        UnwindData[1] = 4;    // size of prolog (bytes)
        UnwindData[2] = 2;    // count of unwind codes (slots)
        UnwindData[3] = 0x05; // frame register (rbp) = rsp
        UnwindData[4] = 4;    // second instruction
        UnwindData[5] = 0x03; // mov RBP, RSP
        UnwindData[6] = 1;    // first instruction
        UnwindData[7] = 0x50; // push RBP
        *(DWORD*)&UnwindData[8] = (DWORD)(catchjmp - Section); // relative location of catchjmp
        mod_size = (DWORD)Allocated+48;
    }
    PRUNTIME_FUNCTION tbl = (PRUNTIME_FUNCTION)(UnwindData+12);
#else
    PRUNTIME_FUNCTION tbl = (PRUNTIME_FUNCTION)malloc(sizeof(RUNTIME_FUNCTION));
#endif
    tbl->BeginAddress = (DWORD)(Code - Section);
    tbl->EndAddress = (DWORD)(Code - Section + Size);
    tbl->UnwindData = (DWORD)(UnwindData - Section);
#else // defined(_CPU_X86_64_)
    Section += (uintptr_t)Code;
    mod_size = Size;
#endif
    if (0) {
        assert(!jl_in_stackwalk);
        jl_in_stackwalk = 1;
        if (mod_size && !SymLoadModuleEx(GetCurrentProcess(), NULL, NULL, NULL, (DWORD64)Section, mod_size, NULL, SLMFLAG_VIRTUAL)) {
#if defined(_CPU_X86_64_) && !defined(USE_MCJIT)
            catchjmp[0] = 0;
#endif
            static int warned = 0;
            if (!warned) {
                jl_printf(JL_STDERR, "WARNING: failed to insert module info for backtrace: %lu\n", GetLastError());
                warned = 1;
            }
        }
        else {
            size_t len = fnname.size()+1;
            if (len > MAX_SYM_NAME)
                len = MAX_SYM_NAME;
            char *name = (char*)alloca(len);
            memcpy(name, fnname.data(), len-1);
            name[len-1] = 0;
            if (!SymAddSymbol(GetCurrentProcess(), (ULONG64)Section, name,
                        (DWORD64)Code, (DWORD)Size, 0)) {
                jl_printf(JL_STDERR, "WARNING: failed to insert function name %s into debug info: %lu\n", name, GetLastError());
            }
        }
        jl_in_stackwalk = 0;
    }
#if defined(_CPU_X86_64_)
    if (!RtlAddFunctionTable(tbl, 1, (DWORD64)Section)) {
        static int warned = 0;
        if (!warned) {
            jl_printf(JL_STDERR, "WARNING: failed to insert function stack unwind info: %lu\n", GetLastError());
            warned = 1;
        }
    }
#endif
}
Example #4
0
void Output::output(StringRef s) {
  Column += s.size();
  Out << s;
}
Example #5
0
/// ApplyQAOverride - Apply a list of edits to the input argument lists.
///
/// The input string is a space separate list of edits to perform,
/// they are applied in order to the input argument lists. Edits
/// should be one of the following forms:
///
///  '#': Silence information about the changes to the command line arguments.
///
///  '^': Add FOO as a new argument at the beginning of the command line.
///
///  '+': Add FOO as a new argument at the end of the command line.
///
///  's/XXX/YYY/': Substitute the regular expression XXX with YYY in the command
///  line.
///
///  'xOPTION': Removes all instances of the literal argument OPTION.
///
///  'XOPTION': Removes all instances of the literal argument OPTION,
///  and the following argument.
///
///  'Ox': Removes all flags matching 'O' or 'O[sz0-9]' and adds 'Ox'
///  at the end of the command line.
///
/// \param OS - The stream to write edit information to.
/// \param Args - The vector of command line arguments.
/// \param Edit - The override command to perform.
/// \param SavedStrings - Set to use for storing string representations.
static void ApplyOneQAOverride(raw_ostream &OS,
                               SmallVectorImpl<const char*> &Args,
                               StringRef Edit,
                               std::set<std::string> &SavedStrings) {
  // This does not need to be efficient.

  if (Edit[0] == '^') {
    const char *Str =
      SaveStringInSet(SavedStrings, Edit.substr(1));
    OS << "### Adding argument " << Str << " at beginning\n";
    Args.insert(Args.begin() + 1, Str);
  } else if (Edit[0] == '+') {
    const char *Str =
      SaveStringInSet(SavedStrings, Edit.substr(1));
    OS << "### Adding argument " << Str << " at end\n";
    Args.push_back(Str);
  } else if (Edit[0] == 's' && Edit[1] == '/' && Edit.endswith("/") &&
             Edit.slice(2, Edit.size()-1).find('/') != StringRef::npos) {
    StringRef MatchPattern = Edit.substr(2).split('/').first;
    StringRef ReplPattern = Edit.substr(2).split('/').second;
    ReplPattern = ReplPattern.slice(0, ReplPattern.size()-1);

    for (unsigned i = 1, e = Args.size(); i != e; ++i) {
      std::string Repl = llvm::Regex(MatchPattern).sub(ReplPattern, Args[i]);

      if (Repl != Args[i]) {
        OS << "### Replacing '" << Args[i] << "' with '" << Repl << "'\n";
        Args[i] = SaveStringInSet(SavedStrings, Repl);
      }
    }
  } else if (Edit[0] == 'x' || Edit[0] == 'X') {
    std::string Option = Edit.substr(1, std::string::npos);
    for (unsigned i = 1; i < Args.size();) {
      if (Option == Args[i]) {
        OS << "### Deleting argument " << Args[i] << '\n';
        Args.erase(Args.begin() + i);
        if (Edit[0] == 'X') {
          if (i < Args.size()) {
            OS << "### Deleting argument " << Args[i] << '\n';
            Args.erase(Args.begin() + i);
          } else
            OS << "### Invalid X edit, end of command line!\n";
        }
      } else
        ++i;
    }
  } else if (Edit[0] == 'O') {
    for (unsigned i = 1; i < Args.size();) {
      const char *A = Args[i];
      if (A[0] == '-' && A[1] == 'O' &&
          (A[2] == '\0' ||
           (A[3] == '\0' && (A[2] == 's' || A[2] == 'z' ||
                             ('0' <= A[2] && A[2] <= '9'))))) {
        OS << "### Deleting argument " << Args[i] << '\n';
        Args.erase(Args.begin() + i);
      } else
        ++i;
    }
    OS << "### Adding argument " << Edit << " at end\n";
    Args.push_back(SaveStringInSet(SavedStrings, '-' + Edit.str()));
  } else {
    OS << "### Unrecognized edit: " << Edit << "\n";
  }
}
Example #6
0
/// EmitInlineAsm - Emit a blob of inline asm to the output streamer.
void AsmPrinter::EmitInlineAsm(StringRef Str, const MCSubtargetInfo &STI,
                               const MCTargetOptions &MCOptions,
                               const MDNode *LocMDNode,
                               InlineAsm::AsmDialect Dialect) const {
  assert(!Str.empty() && "Can't emit empty inline asm block");

  // Remember if the buffer is nul terminated or not so we can avoid a copy.
  bool isNullTerminated = Str.back() == 0;
  if (isNullTerminated)
    Str = Str.substr(0, Str.size()-1);

  // If the output streamer does not have mature MC support or the integrated
  // assembler has been disabled, just emit the blob textually.
  // Otherwise parse the asm and emit it via MC support.
  // This is useful in case the asm parser doesn't handle something but the
  // system assembler does.
  const MCAsmInfo *MCAI = TM.getMCAsmInfo();
  assert(MCAI && "No MCAsmInfo");
  if (!MCAI->useIntegratedAssembler() &&
      !OutStreamer->isIntegratedAssemblerRequired()) {
    emitInlineAsmStart();
    OutStreamer->EmitRawText(Str);
    emitInlineAsmEnd(STI, nullptr);
    return;
  }

  if (!DiagInfo) {
    DiagInfo = make_unique<SrcMgrDiagInfo>();

    MCContext &Context = MMI->getContext();
    Context.setInlineSourceManager(&DiagInfo->SrcMgr);

    LLVMContext &LLVMCtx = MMI->getModule()->getContext();
    if (LLVMCtx.getInlineAsmDiagnosticHandler()) {
      DiagInfo->DiagHandler = LLVMCtx.getInlineAsmDiagnosticHandler();
      DiagInfo->DiagContext = LLVMCtx.getInlineAsmDiagnosticContext();
      DiagInfo->SrcMgr.setDiagHandler(srcMgrDiagHandler, DiagInfo.get());
    }
  }

  SourceMgr &SrcMgr = DiagInfo->SrcMgr;
  SrcMgr.setIncludeDirs(MCOptions.IASSearchPaths);

  std::unique_ptr<MemoryBuffer> Buffer;
  // The inline asm source manager will outlive Str, so make a copy of the
  // string for SourceMgr to own.
  Buffer = MemoryBuffer::getMemBufferCopy(Str, "<inline asm>");

  // Tell SrcMgr about this buffer, it takes ownership of the buffer.
  unsigned BufNum = SrcMgr.AddNewSourceBuffer(std::move(Buffer), SMLoc());

  // Store LocMDNode in DiagInfo, using BufNum as an identifier.
  if (LocMDNode) {
    DiagInfo->LocInfos.resize(BufNum);
    DiagInfo->LocInfos[BufNum-1] = LocMDNode;
  }

  std::unique_ptr<MCAsmParser> Parser(
      createMCAsmParser(SrcMgr, OutContext, *OutStreamer, *MAI, BufNum));

  // We create a new MCInstrInfo here since we might be at the module level
  // and not have a MachineFunction to initialize the TargetInstrInfo from and
  // we only need MCInstrInfo for asm parsing. We create one unconditionally
  // because it's not subtarget dependent.
  std::unique_ptr<MCInstrInfo> MII(TM.getTarget().createMCInstrInfo());
  std::unique_ptr<MCTargetAsmParser> TAP(TM.getTarget().createMCAsmParser(
      STI, *Parser, *MII, MCOptions));
  if (!TAP)
    report_fatal_error("Inline asm not supported by this streamer because"
                       " we don't have an asm parser for this target\n");
  Parser->setAssemblerDialect(Dialect);
  Parser->setTargetParser(*TAP.get());
  if (Dialect == InlineAsm::AD_Intel)
    // We need this flag to be able to parse numbers like "0bH"
    Parser->setParsingInlineAsm(true);
  if (MF) {
    const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
    TAP->SetFrameRegister(TRI->getFrameRegister(*MF));
  }

  emitInlineAsmStart();
  // Don't implicitly switch to the text section before the asm.
  int Res = Parser->Run(/*NoInitialTextSection*/ true,
                        /*NoFinalize*/ true);
  emitInlineAsmEnd(STI, &TAP->getSTI());

  if (Res && !DiagInfo->DiagHandler)
    report_fatal_error("Error parsing inline asm\n");
}
Example #7
0
Function* Decompiler::decompileFunction(unsigned Address) {
  // Check that Address is inside the current section.
  // TODO: Find a better way to do this check. What we really care about is
  // avoiding reads to library calls and areas of memory we can't "see".
  const object::SectionRef Sect = Dis->getCurrentSection();
  uint64_t SectStart, SectEnd;
  Sect.getAddress(SectStart);
  Sect.getSize(SectEnd);
  SectEnd += SectStart;
  if (Address < SectStart || Address > SectEnd) {
    errs() << "Address out of bounds for section (is this a library call?): "
           << format("%1" PRIx64, Address) << "\n";
    return NULL;
  }

  MachineFunction *MF = Dis->disassemble(Address);

  // Get Function Name
  // TODO: Determine Function Type
  FunctionType *FType = FunctionType::get(Type::getPrimitiveType(*Context,
      Type::VoidTyID), false);
  Function *F =
    cast<Function>(Mod->getOrInsertFunction(MF->getName(), FType));

  if (!F->empty()) {
    return F;
  }

  // Create a basic block to hold entry point (alloca) information
  BasicBlock *entry = getOrCreateBasicBlock("entry", F);

  // For each basic block
  MachineFunction::iterator BI = MF->begin(), BE = MF->end();
  while (BI != BE) {
    // Add branch from "entry"
    if (BI == MF->begin()) {
      entry->getInstList().push_back(
        BranchInst::Create(getOrCreateBasicBlock(BI->getName(), F)));
    } else {
      getOrCreateBasicBlock(BI->getName(), F);
    }
    ++BI;
  }

  BI = MF->begin();
  while (BI != BE) {
    if (decompileBasicBlock(BI, F) == NULL) {
      printError("Unable to decompile basic block!");
    }
    ++BI;
  }

  // During Decompilation, did any "in-between" basic blocks get created?
  // Nothing ever splits the entry block, so we skip it.
  for (Function::iterator I = ++F->begin(), E = F->end(); I != E; ++I) {
    if (!(I->empty())) {
      continue;
    }
    // Right now, the only way to get the right offset is to parse its name
    // it sucks, but it works.
    StringRef Name = I->getName();
    if (Name == "end" || Name == "entry") continue; // these can be empty

    size_t Off = F->getName().size() + 1;
    size_t Size = Name.size() - Off;
    StringRef BBAddrStr = Name.substr(Off, Size);
    unsigned long long BBAddr;
    getAsUnsignedInteger(BBAddrStr, 10, BBAddr);
    BBAddr += Address;
    DEBUG(errs() << "Split Target: " << Name << "\t Address: "
                 << BBAddr << "\n");
    // split Block at AddrStr
    Function::iterator SB;      // Split basic block
    BasicBlock::iterator SI, SE;    // Split instruction
    // Note the ++, nothing ever splits the entry block.
    for (SB = ++F->begin(); SB != E; ++SB) {
      DEBUG(outs() << "SB: " << SB->getName()
        << "\tRange: " << Dis->getDebugOffset(SB->begin()->getDebugLoc())
        << " " << Dis->getDebugOffset(SB->getTerminator()->getDebugLoc())
        << "\n");
      if (SB->empty() || BBAddr < getBasicBlockAddress(SB)
        || BBAddr > Dis->getDebugOffset(SB->getTerminator()->getDebugLoc())) {
        continue;
      }
      // Reorder instructions based on Debug Location
      sortBasicBlock(SB);
      DEBUG(errs() << "Found Split Block: " << SB->getName() << "\n");
      // Find iterator to split on.
      for (SI = SB->begin(), SE = SB->end(); SI != SE; ++SI) {
        // outs() << "SI: " << SI->getDebugLoc().getLine() << "\n";
        if (Dis->getDebugOffset(SI->getDebugLoc()) == BBAddr) break;
        if (Dis->getDebugOffset(SI->getDebugLoc()) > BBAddr) {
          errs() << "Could not find address inside basic block!\n"
                 << "SI: " << Dis->getDebugOffset(SI->getDebugLoc()) << "\n"
                 << "BBAddr: " << BBAddr << "\n";
          break;
        }
      }
      break;
    }
    if (!SB || SI == SE || SB == E) {
      errs() << "Decompiler: Failed to find instruction offset in function!\n";
      continue;
    }
    // outs() << SB->getName() << " " << SI->getName() << "\n";
    // outs() << "Creating Block...";
    splitBasicBlockIntoBlock(SB, SI, I);
  }

  // Clean up unnecessary stores and loads
  FunctionPassManager FPM(Mod);
  // FPM.add(createPromoteMemoryToRegisterPass()); // See Scalar.h for more.
  FPM.add(createTypeRecoveryPass());
  FPM.run(*F);

  return F;
}
Example #8
0
/// ReadCheckFile - Read the check file, which specifies the sequence of
/// expected strings.  The strings are added to the CheckStrings vector.
static bool ReadCheckFile(SourceMgr &SM,
                          std::vector<CheckString> &CheckStrings) {
  // Open the check file, and tell SourceMgr about it.
  OwningPtr<MemoryBuffer> File;
  if (error_code ec =
        MemoryBuffer::getFileOrSTDIN(CheckFilename.c_str(), File)) {
    errs() << "Could not open check file '" << CheckFilename << "': "
           << ec.message() << '\n';
    return true;
  }
  MemoryBuffer *F = File.take();

  // If we want to canonicalize whitespace, strip excess whitespace from the
  // buffer containing the CHECK lines.
  if (!NoCanonicalizeWhiteSpace)
    F = CanonicalizeInputFile(F);

  SM.AddNewSourceBuffer(F, SMLoc());

  // Find all instances of CheckPrefix followed by : in the file.
  StringRef Buffer = F->getBuffer();

  std::vector<std::pair<SMLoc, Pattern> > NotMatches;

  while (1) {
    // See if Prefix occurs in the memory buffer.
    Buffer = Buffer.substr(Buffer.find(CheckPrefix));

    // If we didn't find a match, we're done.
    if (Buffer.empty())
      break;

    const char *CheckPrefixStart = Buffer.data();

    // When we find a check prefix, keep track of whether we find CHECK: or
    // CHECK-NEXT:
    bool IsCheckNext = false, IsCheckNot = false;

    // Verify that the : is present after the prefix.
    if (Buffer[CheckPrefix.size()] == ':') {
      Buffer = Buffer.substr(CheckPrefix.size()+1);
    } else if (Buffer.size() > CheckPrefix.size()+6 &&
               memcmp(Buffer.data()+CheckPrefix.size(), "-NEXT:", 6) == 0) {
      Buffer = Buffer.substr(CheckPrefix.size()+7);
      IsCheckNext = true;
    } else if (Buffer.size() > CheckPrefix.size()+5 &&
               memcmp(Buffer.data()+CheckPrefix.size(), "-NOT:", 5) == 0) {
      Buffer = Buffer.substr(CheckPrefix.size()+6);
      IsCheckNot = true;
    } else {
      Buffer = Buffer.substr(1);
      continue;
    }

    // Okay, we found the prefix, yay.  Remember the rest of the line, but
    // ignore leading and trailing whitespace.
    Buffer = Buffer.substr(Buffer.find_first_not_of(" \t"));

    // Scan ahead to the end of line.
    size_t EOL = Buffer.find_first_of("\n\r");

    // Remember the location of the start of the pattern, for diagnostics.
    SMLoc PatternLoc = SMLoc::getFromPointer(Buffer.data());

    // Parse the pattern.
    Pattern P;
    if (P.ParsePattern(Buffer.substr(0, EOL), SM))
      return true;

    Buffer = Buffer.substr(EOL);


    // Verify that CHECK-NEXT lines have at least one CHECK line before them.
    if (IsCheckNext && CheckStrings.empty()) {
      SM.PrintMessage(SMLoc::getFromPointer(CheckPrefixStart),
                      "found '"+CheckPrefix+"-NEXT:' without previous '"+
                      CheckPrefix+ ": line", "error");
      return true;
    }

    // Handle CHECK-NOT.
    if (IsCheckNot) {
      NotMatches.push_back(std::make_pair(SMLoc::getFromPointer(Buffer.data()),
                                          P));
      continue;
    }


    // Okay, add the string we captured to the output vector and move on.
    CheckStrings.push_back(CheckString(P,
                                       PatternLoc,
                                       IsCheckNext));
    std::swap(NotMatches, CheckStrings.back().NotStrings);
  }

  // Add an EOF pattern for any trailing CHECK-NOTs.
  if (!NotMatches.empty()) {
    CheckStrings.push_back(CheckString(Pattern(true),
                                       SMLoc::getFromPointer(Buffer.data()),
                                       false));
    std::swap(NotMatches, CheckStrings.back().NotStrings);
  }

  if (CheckStrings.empty()) {
    errs() << "error: no check strings found with prefix '" << CheckPrefix
           << ":'\n";
    return true;
  }

  return false;
}
Example #9
0
SourceCompleteResult
ide::isSourceInputComplete(std::unique_ptr<llvm::MemoryBuffer> MemBuf) {
  SourceManager SM;
  auto BufferID = SM.addNewSourceBuffer(std::move(MemBuf));
  ParserUnit Parse(SM, BufferID);
  Parser &P = Parse.getParser();

  bool Done;
  do {
    P.parseTopLevel();
    Done = P.Tok.is(tok::eof);
  } while (!Done);

  SourceCompleteResult SCR;
  SCR.IsComplete = !P.isInputIncomplete();
    
  // Use the same code that was in the REPL code to track the indent level 
  // for now. In the future we should get this from the Parser if possible.

  CharSourceRange entireRange = SM.getRangeForBuffer(BufferID);
  StringRef Buffer = SM.extractText(entireRange);
  const char *SourceStart = Buffer.data();
  const char *SourceEnd = Buffer.data() + Buffer.size();
  const char *LineStart = SourceStart;
  const char *LineSourceStart = nullptr;
  uint32_t LineIndent = 0;
  struct IndentInfo {
    StringRef Prefix;
    uint32_t Indent;
    IndentInfo(const char *s, size_t n, uint32_t i) :
      Prefix(s, n),
      Indent(i) {}
  };
  SmallVector<IndentInfo, 4> IndentInfos;
  for (const char *p = SourceStart; p<SourceEnd; ++p) {
    switch (*p) {
    case '\r':
    case '\n':
      LineIndent = 0;
      LineSourceStart = nullptr;
      LineStart = p + 1;
      break;

    case '"':
      p = skipStringInCode (p, SourceEnd);
      break;

    case '{':
    case '(':
    case '[':
      ++LineIndent;
      if (LineSourceStart == nullptr)
        IndentInfos.push_back(IndentInfo(LineStart,
                                         p - LineStart,
                                         LineIndent));
      else
        IndentInfos.push_back(IndentInfo(LineStart,
                                         LineSourceStart - LineStart,
                                         LineIndent));
      break;

    case '}':
    case ')':
    case ']':
      if (LineIndent > 0)
        --LineIndent;
      if (!IndentInfos.empty())
        IndentInfos.pop_back();
      break;
  
    default:
      if (LineSourceStart == nullptr && !isspace(*p))
        LineSourceStart = p;
      break;
    }
    if (*p == '\0')
      break;
  }
  if (!IndentInfos.empty()) {
    SCR.IndentPrefix = IndentInfos.back().Prefix.str();
    // Trim off anything that follows a non-space character
    const size_t pos = SCR.IndentPrefix.find_first_not_of(" \t");
    if (pos != std::string::npos)
        SCR.IndentPrefix.erase(pos);
    SCR.IndentLevel = IndentInfos.back().Indent;
  }
  return SCR;
}
Example #10
0
/// Match - Match the pattern string against the input buffer Buffer.  This
/// returns the position that is matched or npos if there is no match.  If
/// there is a match, the size of the matched string is returned in MatchLen.
size_t Pattern::Match(StringRef Buffer, size_t &MatchLen,
                      StringMap<StringRef> &VariableTable) const {
  // If this is the EOF pattern, match it immediately.
  if (MatchEOF) {
    MatchLen = 0;
    return Buffer.size();
  }

  // If this is a fixed string pattern, just match it now.
  if (!FixedStr.empty()) {
    MatchLen = FixedStr.size();
    return Buffer.find(FixedStr);
  }

  // Regex match.

  // If there are variable uses, we need to create a temporary string with the
  // actual value.
  StringRef RegExToMatch = RegExStr;
  std::string TmpStr;
  if (!VariableUses.empty()) {
    TmpStr = RegExStr;

    unsigned InsertOffset = 0;
    for (unsigned i = 0, e = VariableUses.size(); i != e; ++i) {
      StringMap<StringRef>::iterator it =
        VariableTable.find(VariableUses[i].first);
      // If the variable is undefined, return an error.
      if (it == VariableTable.end())
        return StringRef::npos;

      // Look up the value and escape it so that we can plop it into the regex.
      std::string Value;
      AddFixedStringToRegEx(it->second, Value);

      // Plop it into the regex at the adjusted offset.
      TmpStr.insert(TmpStr.begin()+VariableUses[i].second+InsertOffset,
                    Value.begin(), Value.end());
      InsertOffset += Value.size();
    }

    // Match the newly constructed regex.
    RegExToMatch = TmpStr;
  }


  SmallVector<StringRef, 4> MatchInfo;
  if (!Regex(RegExToMatch, Regex::Newline).match(Buffer, &MatchInfo))
    return StringRef::npos;

  // Successful regex match.
  assert(!MatchInfo.empty() && "Didn't get any match");
  StringRef FullMatch = MatchInfo[0];

  // If this defines any variables, remember their values.
  for (unsigned i = 0, e = VariableDefs.size(); i != e; ++i) {
    assert(VariableDefs[i].second < MatchInfo.size() &&
           "Internal paren error");
    VariableTable[VariableDefs[i].first] = MatchInfo[VariableDefs[i].second];
  }

  MatchLen = FullMatch.size();
  return FullMatch.data()-Buffer.data();
}
Example #11
0
void Pattern::PrintFailureInfo(const SourceMgr &SM, StringRef Buffer,
                               const StringMap<StringRef> &VariableTable) const{
  // If this was a regular expression using variables, print the current
  // variable values.
  if (!VariableUses.empty()) {
    for (unsigned i = 0, e = VariableUses.size(); i != e; ++i) {
      StringRef Var = VariableUses[i].first;
      StringMap<StringRef>::const_iterator it = VariableTable.find(Var);
      SmallString<256> Msg;
      raw_svector_ostream OS(Msg);

      // Check for undefined variable references.
      if (it == VariableTable.end()) {
        OS << "uses undefined variable \"";
        OS.write_escaped(Var) << "\"";;
      } else {
        OS << "with variable \"";
        OS.write_escaped(Var) << "\" equal to \"";
        OS.write_escaped(it->second) << "\"";
      }

      SM.PrintMessage(SMLoc::getFromPointer(Buffer.data()), OS.str(), "note",
                      /*ShowLine=*/false);
    }
  }

  // Attempt to find the closest/best fuzzy match.  Usually an error happens
  // because some string in the output didn't exactly match. In these cases, we
  // would like to show the user a best guess at what "should have" matched, to
  // save them having to actually check the input manually.
  size_t NumLinesForward = 0;
  size_t Best = StringRef::npos;
  double BestQuality = 0;

  // Use an arbitrary 4k limit on how far we will search.
  for (size_t i = 0, e = std::min(size_t(4096), Buffer.size()); i != e; ++i) {
    if (Buffer[i] == '\n')
      ++NumLinesForward;

    // Patterns have leading whitespace stripped, so skip whitespace when
    // looking for something which looks like a pattern.
    if (Buffer[i] == ' ' || Buffer[i] == '\t')
      continue;

    // Compute the "quality" of this match as an arbitrary combination of the
    // match distance and the number of lines skipped to get to this match.
    unsigned Distance = ComputeMatchDistance(Buffer.substr(i), VariableTable);
    double Quality = Distance + (NumLinesForward / 100.);

    if (Quality < BestQuality || Best == StringRef::npos) {
      Best = i;
      BestQuality = Quality;
    }
  }

  // Print the "possible intended match here" line if we found something
  // reasonable and not equal to what we showed in the "scanning from here"
  // line.
  if (Best && Best != StringRef::npos && BestQuality < 50) {
      SM.PrintMessage(SMLoc::getFromPointer(Buffer.data() + Best),
                      "possible intended match here", "note");

    // FIXME: If we wanted to be really friendly we would show why the match
    // failed, as it can be hard to spot simple one character differences.
  }
}
Example #12
0
bool Pattern::ParsePattern(StringRef PatternStr, SourceMgr &SM) {
  PatternLoc = SMLoc::getFromPointer(PatternStr.data());

  // Ignore trailing whitespace.
  while (!PatternStr.empty() &&
         (PatternStr.back() == ' ' || PatternStr.back() == '\t'))
    PatternStr = PatternStr.substr(0, PatternStr.size()-1);

  // Check that there is something on the line.
  if (PatternStr.empty()) {
    SM.PrintMessage(PatternLoc, "found empty check string with prefix '" +
                    CheckPrefix+":'", "error");
    return true;
  }

  // Check to see if this is a fixed string, or if it has regex pieces.
  if (PatternStr.size() < 2 ||
      (PatternStr.find("{{") == StringRef::npos &&
       PatternStr.find("[[") == StringRef::npos)) {
    FixedStr = PatternStr;
    return false;
  }

  // Paren value #0 is for the fully matched string.  Any new parenthesized
  // values add from their.
  unsigned CurParen = 1;

  // Otherwise, there is at least one regex piece.  Build up the regex pattern
  // by escaping scary characters in fixed strings, building up one big regex.
  while (!PatternStr.empty()) {
    // RegEx matches.
    if (PatternStr.size() >= 2 &&
        PatternStr[0] == '{' && PatternStr[1] == '{') {

      // Otherwise, this is the start of a regex match.  Scan for the }}.
      size_t End = PatternStr.find("}}");
      if (End == StringRef::npos) {
        SM.PrintMessage(SMLoc::getFromPointer(PatternStr.data()),
                        "found start of regex string with no end '}}'", "error");
        return true;
      }

      if (AddRegExToRegEx(PatternStr.substr(2, End-2), CurParen, SM))
        return true;
      PatternStr = PatternStr.substr(End+2);
      continue;
    }

    // Named RegEx matches.  These are of two forms: [[foo:.*]] which matches .*
    // (or some other regex) and assigns it to the FileCheck variable 'foo'. The
    // second form is [[foo]] which is a reference to foo.  The variable name
    // itself must be of the form "[a-zA-Z_][0-9a-zA-Z_]*", otherwise we reject
    // it.  This is to catch some common errors.
    if (PatternStr.size() >= 2 &&
        PatternStr[0] == '[' && PatternStr[1] == '[') {
      // Verify that it is terminated properly.
      size_t End = PatternStr.find("]]");
      if (End == StringRef::npos) {
        SM.PrintMessage(SMLoc::getFromPointer(PatternStr.data()),
                        "invalid named regex reference, no ]] found", "error");
        return true;
      }

      StringRef MatchStr = PatternStr.substr(2, End-2);
      PatternStr = PatternStr.substr(End+2);

      // Get the regex name (e.g. "foo").
      size_t NameEnd = MatchStr.find(':');
      StringRef Name = MatchStr.substr(0, NameEnd);

      if (Name.empty()) {
        SM.PrintMessage(SMLoc::getFromPointer(Name.data()),
                        "invalid name in named regex: empty name", "error");
        return true;
      }

      // Verify that the name is well formed.
      for (unsigned i = 0, e = Name.size(); i != e; ++i)
        if (Name[i] != '_' &&
            (Name[i] < 'a' || Name[i] > 'z') &&
            (Name[i] < 'A' || Name[i] > 'Z') &&
            (Name[i] < '0' || Name[i] > '9')) {
          SM.PrintMessage(SMLoc::getFromPointer(Name.data()+i),
                          "invalid name in named regex", "error");
          return true;
        }

      // Name can't start with a digit.
      if (isdigit(Name[0])) {
        SM.PrintMessage(SMLoc::getFromPointer(Name.data()),
                        "invalid name in named regex", "error");
        return true;
      }

      // Handle [[foo]].
      if (NameEnd == StringRef::npos) {
        VariableUses.push_back(std::make_pair(Name, RegExStr.size()));
        continue;
      }

      // Handle [[foo:.*]].
      VariableDefs.push_back(std::make_pair(Name, CurParen));
      RegExStr += '(';
      ++CurParen;

      if (AddRegExToRegEx(MatchStr.substr(NameEnd+1), CurParen, SM))
        return true;

      RegExStr += ')';
    }

    // Handle fixed string matches.
    // Find the end, which is the start of the next regex.
    size_t FixedMatchEnd = PatternStr.find("{{");
    FixedMatchEnd = std::min(FixedMatchEnd, PatternStr.find("[["));
    AddFixedStringToRegEx(PatternStr.substr(0, FixedMatchEnd), RegExStr);
    PatternStr = PatternStr.substr(FixedMatchEnd);
    continue;
  }

  return false;
}
Example #13
0
/// Interpreting the given string using the normal CamelCase
/// conventions, determine whether the given string starts with the
/// given "word", which is assumed to end in a lowercase letter.
static bool startsWithWord(StringRef name, StringRef word) {
  if (name.size() < word.size()) return false;
  return ((name.size() == word.size() || !isLowercase(name[word.size()])) &&
          name.startswith(word));
}
bool Punycode::decodePunycode(StringRef InputPunycode,
                              std::vector<uint32_t> &OutCodePoints) {
  OutCodePoints.clear();
  OutCodePoints.reserve(InputPunycode.size());

  // -- Build the decoded string as UTF32 first because we need random access.
  uint32_t n = initial_n;
  int i = 0;
  int bias = initial_bias;
  /// let output = an empty string indexed from 0
  // consume all code points before the last delimiter (if there is one)
  //  and copy them to output,
  size_t lastDelimiter = InputPunycode.find_last_of(delimiter);
  if (lastDelimiter != StringRef::npos) {
    for (char c : InputPunycode.slice(0, lastDelimiter)) {
      // fail on any non-basic code point
      if (static_cast<unsigned char>(c) > 0x7f)
        return true;
      OutCodePoints.push_back(c);
    }
    // if more than zero code points were consumed then consume one more
    //  (which will be the last delimiter)
    InputPunycode =
        InputPunycode.slice(lastDelimiter + 1, InputPunycode.size());
  }
  
  while (!InputPunycode.empty()) {
    int oldi = i;
    int w = 1;
    for (int k = base; ; k += base) {
      // consume a code point, or fail if there was none to consume
      if (InputPunycode.empty())
        return true;
      char codePoint = InputPunycode.front();
      InputPunycode = InputPunycode.slice(1, InputPunycode.size());
      // let digit = the code point's digit-value, fail if it has none
      int digit = digit_index(codePoint);
      if (digit < 0)
        return true;
      
      i = i + digit * w;
      int t = k <= bias ? tmin
            : k >= bias + tmax ? tmax
            : k - bias;
      if (digit < t)
        break;
      w = w * (base - t);
    }
    bias = adapt(i - oldi, OutCodePoints.size() + 1, oldi == 0);
    n = n + i / (OutCodePoints.size() + 1);
    i = i % (OutCodePoints.size() + 1);
    // if n is a basic code point then fail
    if (n < 0x80)
      return true;
    // insert n into output at position i
    OutCodePoints.insert(OutCodePoints.begin() + i, n);
    i++;
  }
  
  return true;
}
void IntegerTypesCheck::check(const MatchFinder::MatchResult &Result) {
  auto TL = *Result.Nodes.getNodeAs<TypeLoc>("tl");
  SourceLocation Loc = TL.getBeginLoc();

  if (Loc.isInvalid() || Loc.isMacroID())
    return;

  // Look through qualification.
  if (auto QualLoc = TL.getAs<QualifiedTypeLoc>())
    TL = QualLoc.getUnqualifiedLoc();

  auto BuiltinLoc = TL.getAs<BuiltinTypeLoc>();
  if (!BuiltinLoc)
    return;

  Token Tok = getTokenAtLoc(Loc, Result, *IdentTable);
  // Ensure the location actually points to one of the builting integral type
  // names we're interested in. Otherwise, we might be getting this match from
  // implicit code (e.g. an implicit assignment operator of a class containing
  // an array of non-POD types).
  if (!Tok.isOneOf(tok::kw_short, tok::kw_long, tok::kw_unsigned,
                   tok::kw_signed))
    return;

  bool IsSigned;
  unsigned Width;
  const TargetInfo &TargetInfo = Result.Context->getTargetInfo();

  // Look for uses of short, long, long long and their unsigned versions.
  switch (BuiltinLoc.getTypePtr()->getKind()) {
  case BuiltinType::Short:
    Width = TargetInfo.getShortWidth();
    IsSigned = true;
    break;
  case BuiltinType::Long:
    Width = TargetInfo.getLongWidth();
    IsSigned = true;
    break;
  case BuiltinType::LongLong:
    Width = TargetInfo.getLongLongWidth();
    IsSigned = true;
    break;
  case BuiltinType::UShort:
    Width = TargetInfo.getShortWidth();
    IsSigned = false;
    break;
  case BuiltinType::ULong:
    Width = TargetInfo.getLongWidth();
    IsSigned = false;
    break;
  case BuiltinType::ULongLong:
    Width = TargetInfo.getLongLongWidth();
    IsSigned = false;
    break;
  default:
    return;
  }

  // We allow "unsigned short port" as that's reasonably common and required by
  // the sockets API.
  const StringRef Port = "unsigned short port";
  const char *Data = Result.SourceManager->getCharacterData(Loc);
  if (!std::strncmp(Data, Port.data(), Port.size()) &&
      !isIdentifierBody(Data[Port.size()]))
    return;

  std::string Replacement =
      ((IsSigned ? SignedTypePrefix : UnsignedTypePrefix) + Twine(Width) +
       TypeSuffix)
          .str();

  // We don't add a fix-it as changing the type can easily break code,
  // e.g. when a function requires a 'long' argument on all platforms.
  // QualTypes are printed with implicit quotes.
  diag(Loc, "consider replacing %0 with '%1'") << BuiltinLoc.getType()
                                               << Replacement;
}
Example #16
0
/// Mangle this entity as a std::string.
std::string LinkEntity::mangleAsString() const {
  IRGenMangler mangler;
  switch (getKind()) {
  case Kind::DispatchThunk: {
    auto *func = cast<FuncDecl>(getDecl());
    return mangler.mangleDispatchThunk(func);
  }

  case Kind::DispatchThunkInitializer: {
    auto *ctor = cast<ConstructorDecl>(getDecl());
    return mangler.mangleConstructorDispatchThunk(ctor,
                                                  /*isAllocating=*/false);
  }

  case Kind::DispatchThunkAllocator: {
    auto *ctor = cast<ConstructorDecl>(getDecl());
    return mangler.mangleConstructorDispatchThunk(ctor,
                                                  /*isAllocating=*/true);
  }

  case Kind::MethodDescriptor: {
    auto *func = cast<FuncDecl>(getDecl());
    return mangler.mangleMethodDescriptor(func);
  }

  case Kind::MethodDescriptorInitializer: {
    auto *ctor = cast<ConstructorDecl>(getDecl());
    return mangler.mangleConstructorMethodDescriptor(ctor,
                                                     /*isAllocating=*/false);
  }

  case Kind::MethodDescriptorAllocator: {
    auto *ctor = cast<ConstructorDecl>(getDecl());
    return mangler.mangleConstructorMethodDescriptor(ctor,
                                                     /*isAllocating=*/true);
  }

  case Kind::MethodLookupFunction: {
    auto *classDecl = cast<ClassDecl>(getDecl());
    return mangler.mangleMethodLookupFunction(classDecl);
  }

  case Kind::ValueWitness:
    return mangler.mangleValueWitness(getType(), getValueWitness());

  case Kind::ValueWitnessTable:
    return mangler.mangleValueWitnessTable(getType());

  case Kind::TypeMetadataAccessFunction:
    return mangler.mangleTypeMetadataAccessFunction(getType());

  case Kind::TypeMetadataLazyCacheVariable:
    return mangler.mangleTypeMetadataLazyCacheVariable(getType());

  case Kind::TypeMetadataInstantiationCache:
    return mangler.mangleTypeMetadataInstantiationCache(
                                            cast<NominalTypeDecl>(getDecl()));

  case Kind::TypeMetadataInstantiationFunction:
    return mangler.mangleTypeMetadataInstantiationFunction(
                                            cast<NominalTypeDecl>(getDecl()));

  case Kind::TypeMetadataSingletonInitializationCache:
    return mangler.mangleTypeMetadataSingletonInitializationCache(
                                            cast<NominalTypeDecl>(getDecl()));

  case Kind::TypeMetadataCompletionFunction:
    return mangler.mangleTypeMetadataCompletionFunction(
                                            cast<NominalTypeDecl>(getDecl()));

  case Kind::TypeMetadata:
    switch (getMetadataAddress()) {
      case TypeMetadataAddress::FullMetadata:
        return mangler.mangleTypeFullMetadataFull(getType());
      case TypeMetadataAddress::AddressPoint:
        return mangler.mangleTypeMetadataFull(getType());
    }
    llvm_unreachable("invalid metadata address");

  case Kind::TypeMetadataPattern:
    return mangler.mangleTypeMetadataPattern(
                                        cast<NominalTypeDecl>(getDecl()));

  case Kind::SwiftMetaclassStub:
    return mangler.mangleClassMetaClass(cast<ClassDecl>(getDecl()));

  case Kind::ObjCMetadataUpdateFunction:
    return mangler.mangleObjCMetadataUpdateFunction(cast<ClassDecl>(getDecl()));

  case Kind::ObjCResilientClassStub:
    switch (getMetadataAddress()) {
    case TypeMetadataAddress::FullMetadata:
      return mangler.mangleFullObjCResilientClassStub(cast<ClassDecl>(getDecl()));
    case TypeMetadataAddress::AddressPoint:
      return mangler.mangleObjCResilientClassStub(cast<ClassDecl>(getDecl()));
    }
    llvm_unreachable("invalid metadata address");

  case Kind::ClassMetadataBaseOffset:               // class metadata base offset
    return mangler.mangleClassMetadataBaseOffset(cast<ClassDecl>(getDecl()));

  case Kind::NominalTypeDescriptor:
    return mangler.mangleNominalTypeDescriptor(
                                        cast<NominalTypeDecl>(getDecl()));

  case Kind::OpaqueTypeDescriptor:
    return mangler.mangleOpaqueTypeDescriptor(cast<OpaqueTypeDecl>(getDecl()));

  case Kind::OpaqueTypeDescriptorAccessor:
    return mangler.mangleOpaqueTypeDescriptorAccessor(
        cast<OpaqueTypeDecl>(getDecl()));

  case Kind::OpaqueTypeDescriptorAccessorImpl:
    return mangler.mangleOpaqueTypeDescriptorAccessorImpl(
        cast<OpaqueTypeDecl>(getDecl()));

  case Kind::OpaqueTypeDescriptorAccessorKey:
    return mangler.mangleOpaqueTypeDescriptorAccessorKey(
        cast<OpaqueTypeDecl>(getDecl()));

  case Kind::OpaqueTypeDescriptorAccessorVar:
    return mangler.mangleOpaqueTypeDescriptorAccessorVar(
        cast<OpaqueTypeDecl>(getDecl()));

  case Kind::PropertyDescriptor:
    return mangler.manglePropertyDescriptor(
                                        cast<AbstractStorageDecl>(getDecl()));

  case Kind::ModuleDescriptor:
    return mangler.mangleModuleDescriptor(cast<ModuleDecl>(getDecl()));
  
  case Kind::ExtensionDescriptor:
    return mangler.mangleExtensionDescriptor(getExtension());

  case Kind::AnonymousDescriptor:
    return mangler.mangleAnonymousDescriptor(getAnonymousDeclContext());

  case Kind::ProtocolDescriptor:
    return mangler.mangleProtocolDescriptor(cast<ProtocolDecl>(getDecl()));

  case Kind::ProtocolRequirementsBaseDescriptor:
    return mangler.mangleProtocolRequirementsBaseDescriptor(
                                                 cast<ProtocolDecl>(getDecl()));

  case Kind::AssociatedTypeDescriptor:
    return mangler.mangleAssociatedTypeDescriptor(
                                          cast<AssociatedTypeDecl>(getDecl()));

  case Kind::AssociatedConformanceDescriptor: {
    auto assocConformance = getAssociatedConformance();
    return mangler.mangleAssociatedConformanceDescriptor(
             cast<ProtocolDecl>(getDecl()),
             assocConformance.first,
             assocConformance.second);
  }

  case Kind::BaseConformanceDescriptor: {
    auto assocConformance = getAssociatedConformance();
    return mangler.mangleBaseConformanceDescriptor(
             cast<ProtocolDecl>(getDecl()),
             assocConformance.second);
  }

  case Kind::DefaultAssociatedConformanceAccessor: {
    auto assocConformance = getAssociatedConformance();
    return mangler.mangleDefaultAssociatedConformanceAccessor(
             cast<ProtocolDecl>(getDecl()),
             assocConformance.first,
             assocConformance.second);
  }

  case Kind::ProtocolConformanceDescriptor:
    return mangler.mangleProtocolConformanceDescriptor(
                                                  getRootProtocolConformance());

  case Kind::EnumCase:
    return mangler.mangleEnumCase(getDecl());

  case Kind::FieldOffset:
    return mangler.mangleFieldOffset(getDecl());

  case Kind::ProtocolWitnessTable:
    return mangler.mangleWitnessTable(getRootProtocolConformance());

  case Kind::GenericProtocolWitnessTableInstantiationFunction:
    return mangler.mangleGenericProtocolWitnessTableInstantiationFunction(
                                                    getProtocolConformance());

  case Kind::ProtocolWitnessTablePattern:
    return mangler.mangleProtocolWitnessTablePattern(getProtocolConformance());

  case Kind::ProtocolWitnessTableLazyAccessFunction:
    return mangler.mangleProtocolWitnessTableLazyAccessFunction(getType(),
                                                    getProtocolConformance());

  case Kind::ProtocolWitnessTableLazyCacheVariable:
    return mangler.mangleProtocolWitnessTableLazyCacheVariable(getType(),
                                                    getProtocolConformance());

  case Kind::AssociatedTypeWitnessTableAccessFunction: {
    auto assocConf = getAssociatedConformance();
    if (isa<GenericTypeParamType>(assocConf.first)) {
      return mangler.mangleBaseWitnessTableAccessFunction(
                  getProtocolConformance(), assocConf.second);
    }
    
    return mangler.mangleAssociatedTypeWitnessTableAccessFunction(
                getProtocolConformance(), assocConf.first, assocConf.second);
  }

  case Kind::CoroutineContinuationPrototype:
    return mangler.mangleCoroutineContinuationPrototype(
                                            cast<SILFunctionType>(getType()));

    // An Objective-C class reference reference. The symbol is private, so
    // the mangling is unimportant; it should just be readable in LLVM IR.
  case Kind::ObjCClassRef: {
    llvm::SmallString<64> tempBuffer;
    StringRef name = cast<ClassDecl>(getDecl())->getObjCRuntimeName(tempBuffer);
    std::string Result("OBJC_CLASS_REF_$_");
    Result.append(name.data(), name.size());
    return Result;
  }

    // An Objective-C class reference;  not a swift mangling.
  case Kind::ObjCClass: {
    llvm::SmallString<64> TempBuffer;
    StringRef Name = cast<ClassDecl>(getDecl())->getObjCRuntimeName(TempBuffer);
    std::string Result("OBJC_CLASS_$_");
    Result.append(Name.data(), Name.size());
    return Result;
  }

    // An Objective-C metaclass reference;  not a swift mangling.
  case Kind::ObjCMetaclass: {
    llvm::SmallString<64> TempBuffer;
    StringRef Name = cast<ClassDecl>(getDecl())->getObjCRuntimeName(TempBuffer);
    std::string Result("OBJC_METACLASS_$_");
    Result.append(Name.data(), Name.size());
    return Result;
  }

  case Kind::SILFunction: {
    std::string Result(getSILFunction()->getName());
    if (isDynamicallyReplaceable()) {
      Result.append("TI");
    }
    return Result;
  }
  case Kind::DynamicallyReplaceableFunctionImpl: {
    assert(isa<AbstractFunctionDecl>(getDecl()));
    std::string Result;
    if (auto *Constructor = dyn_cast<ConstructorDecl>(getDecl())) {
      Result = mangler.mangleConstructorEntity(Constructor, isAllocator(),
                                               /*isCurried=*/false);
    } else  {
      Result = mangler.mangleEntity(getDecl(), /*isCurried=*/false);
    }
    Result.append("TI");
    return Result;
  }

  case Kind::DynamicallyReplaceableFunctionVariable: {
    std::string Result(getSILFunction()->getName());
    Result.append("TX");
    return Result;
  }

  case Kind::DynamicallyReplaceableFunctionKey: {
    std::string Result(getSILFunction()->getName());
    Result.append("Tx");
    return Result;
  }


  case Kind::DynamicallyReplaceableFunctionVariableAST: {
    assert(isa<AbstractFunctionDecl>(getDecl()));
    std::string Result;
    if (auto *Constructor = dyn_cast<ConstructorDecl>(getDecl())) {
      Result =
          mangler.mangleConstructorEntity(Constructor, isAllocator(),
                                          /*isCurried=*/false);
    } else  {
      Result = mangler.mangleEntity(getDecl(), /*isCurried=*/false);
    }
    Result.append("TX");
    return Result;
  }

  case Kind::DynamicallyReplaceableFunctionKeyAST: {
    assert(isa<AbstractFunctionDecl>(getDecl()));
    std::string Result;
    if (auto *Constructor = dyn_cast<ConstructorDecl>(getDecl())) {
      Result =
          mangler.mangleConstructorEntity(Constructor, isAllocator(),
                                          /*isCurried=*/false);
    } else  {
      Result = mangler.mangleEntity(getDecl(), /*isCurried=*/false);
    }
    Result.append("Tx");
    return Result;
  }

  case Kind::SILGlobalVariable:
    return getSILGlobalVariable()->getName();

  case Kind::ReflectionBuiltinDescriptor:
    return mangler.mangleReflectionBuiltinDescriptor(getType());
  case Kind::ReflectionFieldDescriptor:
    return mangler.mangleReflectionFieldDescriptor(getType());
  case Kind::ReflectionAssociatedTypeDescriptor:
    return mangler.mangleReflectionAssociatedTypeDescriptor(
                                                    getProtocolConformance());
  }
  llvm_unreachable("bad entity kind!");
}
Example #17
0
static void TranslateOptArg(Arg *A, llvm::opt::DerivedArgList &DAL,
                            bool SupportsForcingFramePointer,
                            const char *ExpandChar, const OptTable &Opts) {
  assert(A->getOption().matches(options::OPT__SLASH_O));

  StringRef OptStr = A->getValue();
  for (size_t I = 0, E = OptStr.size(); I != E; ++I) {
    const char &OptChar = *(OptStr.data() + I);
    switch (OptChar) {
    default:
      break;
    case '1':
    case '2':
    case 'x':
    case 'd':
      if (&OptChar == ExpandChar) {
        if (OptChar == 'd') {
          DAL.AddFlagArg(A, Opts.getOption(options::OPT_O0));
        } else {
          if (OptChar == '1') {
            DAL.AddJoinedArg(A, Opts.getOption(options::OPT_O), "s");
          } else if (OptChar == '2' || OptChar == 'x') {
            DAL.AddFlagArg(A, Opts.getOption(options::OPT_fbuiltin));
            DAL.AddJoinedArg(A, Opts.getOption(options::OPT_O), "2");
          }
          if (SupportsForcingFramePointer &&
              !DAL.hasArgNoClaim(options::OPT_fno_omit_frame_pointer))
            DAL.AddFlagArg(A,
                           Opts.getOption(options::OPT_fomit_frame_pointer));
          if (OptChar == '1' || OptChar == '2')
            DAL.AddFlagArg(A,
                           Opts.getOption(options::OPT_ffunction_sections));
        }
      }
      break;
    case 'b':
      if (I + 1 != E && isdigit(OptStr[I + 1])) {
        switch (OptStr[I + 1]) {
        case '0':
          DAL.AddFlagArg(A, Opts.getOption(options::OPT_fno_inline));
          break;
        case '1':
          DAL.AddFlagArg(A, Opts.getOption(options::OPT_finline_hint_functions));
          break;
        case '2':
          DAL.AddFlagArg(A, Opts.getOption(options::OPT_finline_functions));
          break;
        }
        ++I;
      }
      break;
    case 'g':
      break;
    case 'i':
      if (I + 1 != E && OptStr[I + 1] == '-') {
        ++I;
        DAL.AddFlagArg(A, Opts.getOption(options::OPT_fno_builtin));
      } else {
        DAL.AddFlagArg(A, Opts.getOption(options::OPT_fbuiltin));
      }
      break;
    case 's':
      DAL.AddJoinedArg(A, Opts.getOption(options::OPT_O), "s");
      break;
    case 't':
      DAL.AddJoinedArg(A, Opts.getOption(options::OPT_O), "2");
      break;
    case 'y': {
      bool OmitFramePointer = true;
      if (I + 1 != E && OptStr[I + 1] == '-') {
        OmitFramePointer = false;
        ++I;
      }
      if (SupportsForcingFramePointer) {
        if (OmitFramePointer)
          DAL.AddFlagArg(A,
                         Opts.getOption(options::OPT_fomit_frame_pointer));
        else
          DAL.AddFlagArg(
              A, Opts.getOption(options::OPT_fno_omit_frame_pointer));
      } else {
        // Don't warn about /Oy- in 64-bit builds (where
        // SupportsForcingFramePointer is false).  The flag having no effect
        // there is a compiler-internal optimization, and people shouldn't have
        // to special-case their build files for 64-bit clang-cl.
        A->claim();
      }
      break;
    }
    }
  }
}
const MCSection *TargetLoweringObjectFileELF::
SelectSectionForGlobal(const GlobalValue *GV, SectionKind Kind,
                       Mangler &Mang, const TargetMachine &TM) const {
  // If we have -ffunction-section or -fdata-section then we should emit the
  // global value to a uniqued section specifically for it.
  bool EmitUniquedSection;
  if (Kind.isText())
    EmitUniquedSection = TM.getFunctionSections();
  else
    EmitUniquedSection = TM.getDataSections();

  // If this global is linkonce/weak and the target handles this by emitting it
  // into a 'uniqued' section name, create and return the section now.
  if ((GV->isWeakForLinker() || EmitUniquedSection || GV->hasComdat()) &&
      !Kind.isCommon()) {
    StringRef Prefix = getSectionPrefixForGlobal(Kind);

    SmallString<128> Name(Prefix);
    TM.getNameWithPrefix(Name, GV, Mang, true);

    StringRef Group = "";
    unsigned Flags = getELFSectionFlags(Kind);
    if (GV->isWeakForLinker() || GV->hasComdat()) {
      if (const Comdat *C = getELFComdat(GV))
        Group = C->getName();
      else
        Group = Name.substr(Prefix.size());
      Flags |= ELF::SHF_GROUP;
    }

    return getContext().getELFSection(Name.str(),
                                      getELFSectionType(Name.str(), Kind),
                                      Flags, Kind, 0, Group);
  }

  if (Kind.isText()) return TextSection;

  if (Kind.isMergeable1ByteCString() ||
      Kind.isMergeable2ByteCString() ||
      Kind.isMergeable4ByteCString()) {

    // We also need alignment here.
    // FIXME: this is getting the alignment of the character, not the
    // alignment of the global!
    unsigned Align =
        TM.getSubtargetImpl()->getDataLayout()->getPreferredAlignment(
            cast<GlobalVariable>(GV));

    const char *SizeSpec = ".rodata.str1.";
    if (Kind.isMergeable2ByteCString())
      SizeSpec = ".rodata.str2.";
    else if (Kind.isMergeable4ByteCString())
      SizeSpec = ".rodata.str4.";
    else
      assert(Kind.isMergeable1ByteCString() && "unknown string width");


    std::string Name = SizeSpec + utostr(Align);
    return getContext().getELFSection(Name, ELF::SHT_PROGBITS,
                                      ELF::SHF_ALLOC |
                                      ELF::SHF_MERGE |
                                      ELF::SHF_STRINGS,
                                      Kind);
  }

  if (Kind.isMergeableConst()) {
    if (Kind.isMergeableConst4() && MergeableConst4Section)
      return MergeableConst4Section;
    if (Kind.isMergeableConst8() && MergeableConst8Section)
      return MergeableConst8Section;
    if (Kind.isMergeableConst16() && MergeableConst16Section)
      return MergeableConst16Section;
    return ReadOnlySection;  // .const
  }

  if (Kind.isReadOnly())             return ReadOnlySection;

  if (Kind.isThreadData())           return TLSDataSection;
  if (Kind.isThreadBSS())            return TLSBSSSection;

  // Note: we claim that common symbols are put in BSSSection, but they are
  // really emitted with the magic .comm directive, which creates a symbol table
  // entry but not a section.
  if (Kind.isBSS() || Kind.isCommon()) return BSSSection;

  if (Kind.isDataNoRel())            return DataSection;
  if (Kind.isDataRelLocal())         return DataRelLocalSection;
  if (Kind.isDataRel())              return DataRelSection;
  if (Kind.isReadOnlyWithRelLocal()) return DataRelROLocalSection;

  assert(Kind.isReadOnlyWithRel() && "Unknown section kind");
  return DataRelROSection;
}
// Returns the offset of the first reference to a member offset.
static ErrorOr<unsigned>
writeSymbolTable(raw_fd_ostream &Out, object::Archive::Kind Kind,
                 ArrayRef<NewArchiveIterator> Members,
                 ArrayRef<MemoryBufferRef> Buffers,
                 std::vector<unsigned> &MemberOffsetRefs, bool Deterministic) {
  unsigned HeaderStartOffset = 0;
  unsigned BodyStartOffset = 0;
  SmallString<128> NameBuf;
  raw_svector_ostream NameOS(NameBuf);
  LLVMContext Context;
  for (unsigned MemberNum = 0, N = Members.size(); MemberNum < N; ++MemberNum) {
    MemoryBufferRef MemberBuffer = Buffers[MemberNum];
    ErrorOr<std::unique_ptr<object::SymbolicFile>> ObjOrErr =
        object::SymbolicFile::createSymbolicFile(
            MemberBuffer, sys::fs::file_magic::unknown, &Context);
    if (!ObjOrErr)
      continue;  // FIXME: check only for "not an object file" errors.
    object::SymbolicFile &Obj = *ObjOrErr.get();

    if (!HeaderStartOffset) {
      HeaderStartOffset = Out.tell();
      if (Kind == object::Archive::K_GNU)
        printGNUSmallMemberHeader(Out, "", now(Deterministic), 0, 0, 0, 0);
      else
        printBSDMemberHeader(Out, "__.SYMDEF", now(Deterministic), 0, 0, 0, 0);
      BodyStartOffset = Out.tell();
      print32(Out, Kind, 0); // number of entries or bytes
    }

    for (const object::BasicSymbolRef &S : Obj.symbols()) {
      uint32_t Symflags = S.getFlags();
      if (Symflags & object::SymbolRef::SF_FormatSpecific)
        continue;
      if (!(Symflags & object::SymbolRef::SF_Global))
        continue;
      if (Symflags & object::SymbolRef::SF_Undefined)
        continue;

      unsigned NameOffset = NameOS.tell();
      if (auto EC = S.printName(NameOS))
        return EC;
      NameOS << '\0';
      MemberOffsetRefs.push_back(MemberNum);
      if (Kind == object::Archive::K_BSD)
        print32(Out, Kind, NameOffset);
      print32(Out, Kind, 0); // member offset
    }
  }

  if (HeaderStartOffset == 0)
    return 0;

  StringRef StringTable = NameOS.str();
  if (Kind == object::Archive::K_BSD)
    print32(Out, Kind, StringTable.size()); // byte count of the string table
  Out << StringTable;

  // ld64 requires the next member header to start at an offset that is
  // 4 bytes aligned.
  unsigned Pad = OffsetToAlignment(Out.tell(), 4);
  while (Pad--)
    Out.write(uint8_t(0));

  // Patch up the size of the symbol table now that we know how big it is.
  unsigned Pos = Out.tell();
  const unsigned MemberHeaderSize = 60;
  Out.seek(HeaderStartOffset + 48); // offset of the size field.
  printWithSpacePadding(Out, Pos - MemberHeaderSize - HeaderStartOffset, 10);

  // Patch up the number of symbols.
  Out.seek(BodyStartOffset);
  unsigned NumSyms = MemberOffsetRefs.size();
  if (Kind == object::Archive::K_GNU)
    print32(Out, Kind, NumSyms);
  else
    print32(Out, Kind, NumSyms * 8);

  Out.seek(Pos);
  return BodyStartOffset + 4;
}
Example #20
0
static void dumpCXXData(const ObjectFile *Obj) {
  struct CompleteObjectLocator {
    StringRef Symbols[2];
    ArrayRef<little32_t> Data;
  };
  struct ClassHierarchyDescriptor {
    StringRef Symbols[1];
    ArrayRef<little32_t> Data;
  };
  struct BaseClassDescriptor {
    StringRef Symbols[2];
    ArrayRef<little32_t> Data;
  };
  struct TypeDescriptor {
    StringRef Symbols[1];
    uint64_t AlwaysZero;
    StringRef MangledName;
  };
  struct ThrowInfo {
    uint32_t Flags;
  };
  struct CatchableTypeArray {
    uint32_t NumEntries;
  };
  struct CatchableType {
    uint32_t Flags;
    uint32_t NonVirtualBaseAdjustmentOffset;
    int32_t VirtualBasePointerOffset;
    uint32_t VirtualBaseAdjustmentOffset;
    uint32_t Size;
    StringRef Symbols[2];
  };
  std::map<std::pair<StringRef, uint64_t>, StringRef> VFTableEntries;
  std::map<std::pair<StringRef, uint64_t>, StringRef> TIEntries;
  std::map<std::pair<StringRef, uint64_t>, StringRef> CTAEntries;
  std::map<StringRef, ArrayRef<little32_t>> VBTables;
  std::map<StringRef, CompleteObjectLocator> COLs;
  std::map<StringRef, ClassHierarchyDescriptor> CHDs;
  std::map<std::pair<StringRef, uint64_t>, StringRef> BCAEntries;
  std::map<StringRef, BaseClassDescriptor> BCDs;
  std::map<StringRef, TypeDescriptor> TDs;
  std::map<StringRef, ThrowInfo> TIs;
  std::map<StringRef, CatchableTypeArray> CTAs;
  std::map<StringRef, CatchableType> CTs;

  std::map<std::pair<StringRef, uint64_t>, StringRef> VTableSymEntries;
  std::map<std::pair<StringRef, uint64_t>, int64_t> VTableDataEntries;
  std::map<std::pair<StringRef, uint64_t>, StringRef> VTTEntries;
  std::map<StringRef, StringRef> TINames;

  uint8_t BytesInAddress = Obj->getBytesInAddress();

  for (const object::SymbolRef &Sym : Obj->symbols()) {
    StringRef SymName;
    if (error(Sym.getName(SymName)))
      return;
    object::section_iterator SecI(Obj->section_begin());
    if (error(Sym.getSection(SecI)))
      return;
    // Skip external symbols.
    if (SecI == Obj->section_end())
      continue;
    const SectionRef &Sec = *SecI;
    // Skip virtual or BSS sections.
    if (Sec.isBSS() || Sec.isVirtual())
      continue;
    StringRef SecContents;
    if (error(Sec.getContents(SecContents)))
      return;
    uint64_t SymAddress, SymSize;
    if (error(Sym.getAddress(SymAddress)) || error(Sym.getSize(SymSize)))
      return;
    uint64_t SecAddress = Sec.getAddress();
    uint64_t SecSize = Sec.getSize();
    uint64_t SymOffset = SymAddress - SecAddress;
    StringRef SymContents = SecContents.substr(SymOffset, SymSize);

    // VFTables in the MS-ABI start with '??_7' and are contained within their
    // own COMDAT section.  We then determine the contents of the VFTable by
    // looking at each relocation in the section.
    if (SymName.startswith("??_7")) {
      // Each relocation either names a virtual method or a thunk.  We note the
      // offset into the section and the symbol used for the relocation.
      collectRelocationOffsets(Obj, Sec, SecAddress, SecAddress, SecSize,
                               SymName, VFTableEntries);
    }
    // VBTables in the MS-ABI start with '??_8' and are filled with 32-bit
    // offsets of virtual bases.
    else if (SymName.startswith("??_8")) {
      ArrayRef<little32_t> VBTableData(
          reinterpret_cast<const little32_t *>(SymContents.data()),
          SymContents.size() / sizeof(little32_t));
      VBTables[SymName] = VBTableData;
    }
    // Complete object locators in the MS-ABI start with '??_R4'
    else if (SymName.startswith("??_R4")) {
      CompleteObjectLocator COL;
      COL.Data = ArrayRef<little32_t>(
          reinterpret_cast<const little32_t *>(SymContents.data()), 3);
      StringRef *I = std::begin(COL.Symbols), *E = std::end(COL.Symbols);
      if (collectRelocatedSymbols(Obj, Sec, SecAddress, SymAddress, SymSize, I,
                                  E))
        return;
      COLs[SymName] = COL;
    }
    // Class hierarchy descriptors in the MS-ABI start with '??_R3'
    else if (SymName.startswith("??_R3")) {
      ClassHierarchyDescriptor CHD;
      CHD.Data = ArrayRef<little32_t>(
          reinterpret_cast<const little32_t *>(SymContents.data()), 3);
      StringRef *I = std::begin(CHD.Symbols), *E = std::end(CHD.Symbols);
      if (collectRelocatedSymbols(Obj, Sec, SecAddress, SymAddress, SymSize, I,
                                  E))
        return;
      CHDs[SymName] = CHD;
    }
    // Class hierarchy descriptors in the MS-ABI start with '??_R2'
    else if (SymName.startswith("??_R2")) {
      // Each relocation names a base class descriptor.  We note the offset into
      // the section and the symbol used for the relocation.
      collectRelocationOffsets(Obj, Sec, SecAddress, SymAddress, SymSize,
                               SymName, BCAEntries);
    }
    // Base class descriptors in the MS-ABI start with '??_R1'
    else if (SymName.startswith("??_R1")) {
      BaseClassDescriptor BCD;
      BCD.Data = ArrayRef<little32_t>(
          reinterpret_cast<const little32_t *>(SymContents.data()) + 1, 5);
      StringRef *I = std::begin(BCD.Symbols), *E = std::end(BCD.Symbols);
      if (collectRelocatedSymbols(Obj, Sec, SecAddress, SymAddress, SymSize, I,
                                  E))
        return;
      BCDs[SymName] = BCD;
    }
    // Type descriptors in the MS-ABI start with '??_R0'
    else if (SymName.startswith("??_R0")) {
      const char *DataPtr = SymContents.drop_front(BytesInAddress).data();
      TypeDescriptor TD;
      if (BytesInAddress == 8)
        TD.AlwaysZero = *reinterpret_cast<const little64_t *>(DataPtr);
      else
        TD.AlwaysZero = *reinterpret_cast<const little32_t *>(DataPtr);
      TD.MangledName = SymContents.drop_front(BytesInAddress * 2);
      StringRef *I = std::begin(TD.Symbols), *E = std::end(TD.Symbols);
      if (collectRelocatedSymbols(Obj, Sec, SecAddress, SymAddress, SymSize, I,
                                  E))
        return;
      TDs[SymName] = TD;
    }
    // Throw descriptors in the MS-ABI start with '_TI'
    else if (SymName.startswith("_TI") || SymName.startswith("__TI")) {
      ThrowInfo TI;
      TI.Flags = *reinterpret_cast<const little32_t *>(SymContents.data());
      collectRelocationOffsets(Obj, Sec, SecAddress, SymAddress, SymSize,
                               SymName, TIEntries);
      TIs[SymName] = TI;
    }
    // Catchable type arrays in the MS-ABI start with _CTA or __CTA.
    else if (SymName.startswith("_CTA") || SymName.startswith("__CTA")) {
      CatchableTypeArray CTA;
      CTA.NumEntries =
          *reinterpret_cast<const little32_t *>(SymContents.data());
      collectRelocationOffsets(Obj, Sec, SecAddress, SymAddress, SymSize,
                               SymName, CTAEntries);
      CTAs[SymName] = CTA;
    }
    // Catchable types in the MS-ABI start with _CT or __CT.
    else if (SymName.startswith("_CT") || SymName.startswith("__CT")) {
      const little32_t *DataPtr =
          reinterpret_cast<const little32_t *>(SymContents.data());
      CatchableType CT;
      CT.Flags = DataPtr[0];
      CT.NonVirtualBaseAdjustmentOffset = DataPtr[2];
      CT.VirtualBasePointerOffset = DataPtr[3];
      CT.VirtualBaseAdjustmentOffset = DataPtr[4];
      CT.Size = DataPtr[5];
      StringRef *I = std::begin(CT.Symbols), *E = std::end(CT.Symbols);
      if (collectRelocatedSymbols(Obj, Sec, SecAddress, SymAddress, SymSize, I,
                                  E))
        return;
      CTs[SymName] = CT;
    }
    // Construction vtables in the Itanium ABI start with '_ZTT' or '__ZTT'.
    else if (SymName.startswith("_ZTT") || SymName.startswith("__ZTT")) {
      collectRelocationOffsets(Obj, Sec, SecAddress, SymAddress, SymSize,
                               SymName, VTTEntries);
    }
    // Typeinfo names in the Itanium ABI start with '_ZTS' or '__ZTS'.
    else if (SymName.startswith("_ZTS") || SymName.startswith("__ZTS")) {
      TINames[SymName] = SymContents.slice(0, SymContents.find('\0'));
    }
    // Vtables in the Itanium ABI start with '_ZTV' or '__ZTV'.
    else if (SymName.startswith("_ZTV") || SymName.startswith("__ZTV")) {
      collectRelocationOffsets(Obj, Sec, SecAddress, SymAddress, SymSize,
                               SymName, VTableSymEntries);
      for (uint64_t SymOffI = 0; SymOffI < SymSize; SymOffI += BytesInAddress) {
        auto Key = std::make_pair(SymName, SymOffI);
        if (VTableSymEntries.count(Key))
          continue;
        const char *DataPtr =
            SymContents.substr(SymOffI, BytesInAddress).data();
        int64_t VData;
        if (BytesInAddress == 8)
          VData = *reinterpret_cast<const little64_t *>(DataPtr);
        else
          VData = *reinterpret_cast<const little32_t *>(DataPtr);
        VTableDataEntries[Key] = VData;
      }
    }
    // Typeinfo structures in the Itanium ABI start with '_ZTI' or '__ZTI'.
    else if (SymName.startswith("_ZTI") || SymName.startswith("__ZTI")) {
      // FIXME: Do something with these!
    }
  }
  for (const auto &VFTableEntry : VFTableEntries) {
    StringRef VFTableName = VFTableEntry.first.first;
    uint64_t Offset = VFTableEntry.first.second;
    StringRef SymName = VFTableEntry.second;
    outs() << VFTableName << '[' << Offset << "]: " << SymName << '\n';
  }
  for (const auto &VBTable : VBTables) {
    StringRef VBTableName = VBTable.first;
    uint32_t Idx = 0;
    for (little32_t Offset : VBTable.second) {
      outs() << VBTableName << '[' << Idx << "]: " << Offset << '\n';
      Idx += sizeof(Offset);
    }
  }
  for (const auto &COLPair : COLs) {
    StringRef COLName = COLPair.first;
    const CompleteObjectLocator &COL = COLPair.second;
    outs() << COLName << "[IsImageRelative]: " << COL.Data[0] << '\n';
    outs() << COLName << "[OffsetToTop]: " << COL.Data[1] << '\n';
    outs() << COLName << "[VFPtrOffset]: " << COL.Data[2] << '\n';
    outs() << COLName << "[TypeDescriptor]: " << COL.Symbols[0] << '\n';
    outs() << COLName << "[ClassHierarchyDescriptor]: " << COL.Symbols[1]
           << '\n';
  }
  for (const auto &CHDPair : CHDs) {
    StringRef CHDName = CHDPair.first;
    const ClassHierarchyDescriptor &CHD = CHDPair.second;
    outs() << CHDName << "[AlwaysZero]: " << CHD.Data[0] << '\n';
    outs() << CHDName << "[Flags]: " << CHD.Data[1] << '\n';
    outs() << CHDName << "[NumClasses]: " << CHD.Data[2] << '\n';
    outs() << CHDName << "[BaseClassArray]: " << CHD.Symbols[0] << '\n';
  }
  for (const auto &BCAEntry : BCAEntries) {
    StringRef BCAName = BCAEntry.first.first;
    uint64_t Offset = BCAEntry.first.second;
    StringRef SymName = BCAEntry.second;
    outs() << BCAName << '[' << Offset << "]: " << SymName << '\n';
  }
  for (const auto &BCDPair : BCDs) {
    StringRef BCDName = BCDPair.first;
    const BaseClassDescriptor &BCD = BCDPair.second;
    outs() << BCDName << "[TypeDescriptor]: " << BCD.Symbols[0] << '\n';
    outs() << BCDName << "[NumBases]: " << BCD.Data[0] << '\n';
    outs() << BCDName << "[OffsetInVBase]: " << BCD.Data[1] << '\n';
    outs() << BCDName << "[VBPtrOffset]: " << BCD.Data[2] << '\n';
    outs() << BCDName << "[OffsetInVBTable]: " << BCD.Data[3] << '\n';
    outs() << BCDName << "[Flags]: " << BCD.Data[4] << '\n';
    outs() << BCDName << "[ClassHierarchyDescriptor]: " << BCD.Symbols[1]
           << '\n';
  }
  for (const auto &TDPair : TDs) {
    StringRef TDName = TDPair.first;
    const TypeDescriptor &TD = TDPair.second;
    outs() << TDName << "[VFPtr]: " << TD.Symbols[0] << '\n';
    outs() << TDName << "[AlwaysZero]: " << TD.AlwaysZero << '\n';
    outs() << TDName << "[MangledName]: ";
    outs().write_escaped(TD.MangledName.rtrim(StringRef("\0", 1)),
                         /*UseHexEscapes=*/true)
        << '\n';
  }
  for (const auto &TIPair : TIs) {
    StringRef TIName = TIPair.first;
    const ThrowInfo &TI = TIPair.second;
    auto dumpThrowInfoFlag = [&](const char *Name, uint32_t Flag) {
      outs() << TIName << "[Flags." << Name
             << "]: " << (TI.Flags & Flag ? "true" : "false") << '\n';
    };
    auto dumpThrowInfoSymbol = [&](const char *Name, int Offset) {
      outs() << TIName << '[' << Name << "]: ";
      auto Entry = TIEntries.find(std::make_pair(TIName, Offset));
      outs() << (Entry == TIEntries.end() ? "null" : Entry->second) << '\n';
    };
    outs() << TIName << "[Flags]: " << TI.Flags << '\n';
    dumpThrowInfoFlag("Const", 1);
    dumpThrowInfoFlag("Volatile", 2);
    dumpThrowInfoSymbol("CleanupFn", 4);
    dumpThrowInfoSymbol("ForwardCompat", 8);
    dumpThrowInfoSymbol("CatchableTypeArray", 12);
  }
  for (const auto &CTAPair : CTAs) {
    StringRef CTAName = CTAPair.first;
    const CatchableTypeArray &CTA = CTAPair.second;

    outs() << CTAName << "[NumEntries]: " << CTA.NumEntries << '\n';

    unsigned Idx = 0;
    for (auto I = CTAEntries.lower_bound(std::make_pair(CTAName, 0)),
              E = CTAEntries.upper_bound(std::make_pair(CTAName, UINT64_MAX));
         I != E; ++I)
      outs() << CTAName << '[' << Idx++ << "]: " << I->second << '\n';
  }
  for (const auto &CTPair : CTs) {
    StringRef CTName = CTPair.first;
    const CatchableType &CT = CTPair.second;
    auto dumpCatchableTypeFlag = [&](const char *Name, uint32_t Flag) {
      outs() << CTName << "[Flags." << Name
             << "]: " << (CT.Flags & Flag ? "true" : "false") << '\n';
    };
    outs() << CTName << "[Flags]: " << CT.Flags << '\n';
    dumpCatchableTypeFlag("ScalarType", 1);
    dumpCatchableTypeFlag("VirtualInheritance", 4);
    outs() << CTName << "[TypeDescriptor]: " << CT.Symbols[0] << '\n';
    outs() << CTName << "[NonVirtualBaseAdjustmentOffset]: "
           << CT.NonVirtualBaseAdjustmentOffset << '\n';
    outs() << CTName
           << "[VirtualBasePointerOffset]: " << CT.VirtualBasePointerOffset
           << '\n';
    outs() << CTName << "[VirtualBaseAdjustmentOffset]: "
           << CT.VirtualBaseAdjustmentOffset << '\n';
    outs() << CTName << "[Size]: " << CT.Size << '\n';
    outs() << CTName
           << "[CopyCtor]: " << (CT.Symbols[1].empty() ? "null" : CT.Symbols[1])
           << '\n';
  }
  for (const auto &VTTPair : VTTEntries) {
    StringRef VTTName = VTTPair.first.first;
    uint64_t VTTOffset = VTTPair.first.second;
    StringRef VTTEntry = VTTPair.second;
    outs() << VTTName << '[' << VTTOffset << "]: " << VTTEntry << '\n';
  }
  for (const auto &TIPair : TINames) {
    StringRef TIName = TIPair.first;
    outs() << TIName << ": " << TIPair.second << '\n';
  }
  auto VTableSymI = VTableSymEntries.begin();
  auto VTableSymE = VTableSymEntries.end();
  auto VTableDataI = VTableDataEntries.begin();
  auto VTableDataE = VTableDataEntries.end();
  for (;;) {
    bool SymDone = VTableSymI == VTableSymE;
    bool DataDone = VTableDataI == VTableDataE;
    if (SymDone && DataDone)
      break;
    if (!SymDone && (DataDone || VTableSymI->first < VTableDataI->first)) {
      StringRef VTableName = VTableSymI->first.first;
      uint64_t Offset = VTableSymI->first.second;
      StringRef VTableEntry = VTableSymI->second;
      outs() << VTableName << '[' << Offset << "]: ";
      outs() << VTableEntry;
      outs() << '\n';
      ++VTableSymI;
      continue;
    }
    if (!DataDone && (SymDone || VTableDataI->first < VTableSymI->first)) {
      StringRef VTableName = VTableDataI->first.first;
      uint64_t Offset = VTableDataI->first.second;
      int64_t VTableEntry = VTableDataI->second;
      outs() << VTableName << '[' << Offset << "]: ";
      outs() << VTableEntry;
      outs() << '\n';
      ++VTableDataI;
      continue;
    }
  }
}
Example #21
0
static StringRef copyString(llvm::BumpPtrAllocator &Allocator, StringRef Str) {
  char *Mem = Allocator.Allocate<char>(Str.size());
  std::copy(Str.begin(), Str.end(), Mem);
  return StringRef(Mem, Str.size());
}
  void ReadHeader(MemoryBuffer &Input) final {
    StringRef FC = Input.getBuffer();

    // Initialize the current bundle with the end of the container.
    CurBundleInfo = BundlesInfo.end();

    // Check if buffer is smaller than magic string.
    size_t ReadChars = sizeof(OFFLOAD_BUNDLER_MAGIC_STR) - 1;
    if (ReadChars > FC.size())
      return;

    // Check if no magic was found.
    StringRef Magic(FC.data(), sizeof(OFFLOAD_BUNDLER_MAGIC_STR) - 1);
    if (!Magic.equals(OFFLOAD_BUNDLER_MAGIC_STR))
      return;

    // Read number of bundles.
    if (ReadChars + 8 > FC.size())
      return;

    uint64_t NumberOfBundles = Read8byteIntegerFromBuffer(FC, ReadChars);
    ReadChars += 8;

    // Read bundle offsets, sizes and triples.
    for (uint64_t i = 0; i < NumberOfBundles; ++i) {

      // Read offset.
      if (ReadChars + 8 > FC.size())
        return;

      uint64_t Offset = Read8byteIntegerFromBuffer(FC, ReadChars);
      ReadChars += 8;

      // Read size.
      if (ReadChars + 8 > FC.size())
        return;

      uint64_t Size = Read8byteIntegerFromBuffer(FC, ReadChars);
      ReadChars += 8;

      // Read triple size.
      if (ReadChars + 8 > FC.size())
        return;

      uint64_t TripleSize = Read8byteIntegerFromBuffer(FC, ReadChars);
      ReadChars += 8;

      // Read triple.
      if (ReadChars + TripleSize > FC.size())
        return;

      StringRef Triple(&FC.data()[ReadChars], TripleSize);
      ReadChars += TripleSize;

      // Check if the offset and size make sense.
      if (!Size || !Offset || Offset + Size > FC.size())
        return;

      assert(BundlesInfo.find(Triple) == BundlesInfo.end() &&
             "Triple is duplicated??");
      BundlesInfo[Triple] = BundleInfo(Size, Offset);
    }
    // Set the iterator to where we will start to read.
    CurBundleInfo = BundlesInfo.begin();
  }
Example #23
0
/// ParseSectionSpecifier - Parse the section specifier indicated by "Spec".
/// This is a string that can appear after a .section directive in a mach-o
/// flavored .s file.  If successful, this fills in the specified Out
/// parameters and returns an empty string.  When an invalid section
/// specifier is present, this returns a string indicating the problem.
std::string MCSectionMachO::ParseSectionSpecifier(StringRef Spec,        // In.
                                                  StringRef &Segment,    // Out.
                                                  StringRef &Section,    // Out.
                                                  unsigned  &TAA,        // Out.
                                                  bool      &TAAParsed,  // Out.
                                                  unsigned  &StubSize) { // Out.
  TAAParsed = false;

  SmallVector<StringRef, 5> SplitSpec;
  Spec.split(SplitSpec, ",");
  // Remove leading and trailing whitespace.
  auto GetEmptyOrTrim = [&SplitSpec](size_t Idx) -> StringRef {
    return SplitSpec.size() > Idx ? SplitSpec[Idx].trim() : StringRef();
  };
  Segment = GetEmptyOrTrim(0);
  Section = GetEmptyOrTrim(1);
  StringRef SectionType = GetEmptyOrTrim(2);
  StringRef Attrs = GetEmptyOrTrim(3);
  StringRef StubSizeStr = GetEmptyOrTrim(4);

  // Verify that the segment is present and not too long.
  if (Segment.empty() || Segment.size() > 16)
    return "mach-o section specifier requires a segment whose length is "
           "between 1 and 16 characters";

  // Verify that the section is present and not too long.
  if (Section.empty())
    return "mach-o section specifier requires a segment and section "
           "separated by a comma";

  if (Section.size() > 16)
    return "mach-o section specifier requires a section whose length is "
           "between 1 and 16 characters";

  // If there is no comma after the section, we're done.
  TAA = 0;
  StubSize = 0;
  if (SectionType.empty())
    return "";

  // Figure out which section type it is.
  auto TypeDescriptor = std::find_if(
      std::begin(SectionTypeDescriptors), std::end(SectionTypeDescriptors),
      [&](decltype(*SectionTypeDescriptors) &Descriptor) {
        return Descriptor.AssemblerName &&
               SectionType == Descriptor.AssemblerName;
      });

  // If we didn't find the section type, reject it.
  if (TypeDescriptor == std::end(SectionTypeDescriptors))
    return "mach-o section specifier uses an unknown section type";

  // Remember the TypeID.
  TAA = TypeDescriptor - std::begin(SectionTypeDescriptors);
  TAAParsed = true;

  // If we have no comma after the section type, there are no attributes.
  if (Attrs.empty()) {
    // S_SYMBOL_STUBS always require a symbol stub size specifier.
    if (TAA == MachO::S_SYMBOL_STUBS)
      return "mach-o section specifier of type 'symbol_stubs' requires a size "
             "specifier";
    return "";
  }

  // The attribute list is a '+' separated list of attributes.
  SmallVector<StringRef, 1> SectionAttrs;
  Attrs.split(SectionAttrs, "+", /*MaxSplit=*/-1, /*KeepEmpty=*/false);

  for (StringRef &SectionAttr : SectionAttrs) {
    auto AttrDescriptorI = std::find_if(
        std::begin(SectionAttrDescriptors), std::end(SectionAttrDescriptors),
        [&](decltype(*SectionAttrDescriptors) &Descriptor) {
          return Descriptor.AssemblerName &&
                 SectionAttr.trim() == Descriptor.AssemblerName;
        });
    if (AttrDescriptorI == std::end(SectionAttrDescriptors))
      return "mach-o section specifier has invalid attribute";

    TAA |= AttrDescriptorI->AttrFlag;
  }

  // Okay, we've parsed the section attributes, see if we have a stub size spec.
  if (StubSizeStr.empty()) {
    // S_SYMBOL_STUBS always require a symbol stub size specifier.
    if (TAA == MachO::S_SYMBOL_STUBS)
      return "mach-o section specifier of type 'symbol_stubs' requires a size "
      "specifier";
    return "";
  }

  // If we have a stub size spec, we must have a sectiontype of S_SYMBOL_STUBS.
  if ((TAA & MachO::SECTION_TYPE) != MachO::S_SYMBOL_STUBS)
    return "mach-o section specifier cannot have a stub size specified because "
           "it does not have type 'symbol_stubs'";

  // Convert the stub size from a string to an integer.
  if (StubSizeStr.getAsInteger(0, StubSize))
    return "mach-o section specifier has a malformed stub size";

  return "";
}
Example #24
0
/// Get the name of a profiling variable for a particular function.
static std::string getVarName(InstrProfIncrementInst *Inc, StringRef Prefix) {
  StringRef NamePrefix = getInstrProfNameVarPrefix();
  StringRef Name = Inc->getName()->getName().substr(NamePrefix.size());
  return (Prefix + Name).str();
}
Example #25
0
/// \brief returns a printable representation of first item from input range
///
/// This function returns a printable representation of the next item in a line
///  of source. If the next byte begins a valid and printable character, that
///  character is returned along with 'true'.
///
/// Otherwise, if the next byte begins a valid, but unprintable character, a
///  printable, escaped representation of the character is returned, along with
///  'false'. Otherwise a printable, escaped representation of the next byte
///  is returned along with 'false'.
///
/// \note The index is updated to be used with a subsequent call to
///        printableTextForNextCharacter.
///
/// \param SourceLine The line of source
/// \param i Pointer to byte index,
/// \param TabStop used to expand tabs
/// \return pair(printable text, 'true' iff original text was printable)
///
static std::pair<SmallString<16>, bool>
printableTextForNextCharacter(StringRef SourceLine, size_t *i,
                              unsigned TabStop) {
  assert(i && "i must not be null");
  assert(*i<SourceLine.size() && "must point to a valid index");
  
  if (SourceLine[*i]=='\t') {
    assert(0 < TabStop && TabStop <= DiagnosticOptions::MaxTabStop &&
           "Invalid -ftabstop value");
    unsigned col = bytesSincePreviousTabOrLineBegin(SourceLine, *i);
    unsigned NumSpaces = TabStop - col%TabStop;
    assert(0 < NumSpaces && NumSpaces <= TabStop
           && "Invalid computation of space amt");
    ++(*i);

    SmallString<16> expandedTab;
    expandedTab.assign(NumSpaces, ' ');
    return std::make_pair(expandedTab, true);
  }

  unsigned char const *begin, *end;
  begin = reinterpret_cast<unsigned char const *>(&*(SourceLine.begin() + *i));
  end = begin + (SourceLine.size() - *i);
  
  if (isLegalUTF8Sequence(begin, end)) {
    UTF32 c;
    UTF32 *cptr = &c;
    unsigned char const *original_begin = begin;
    unsigned char const *cp_end = begin+getNumBytesForUTF8(SourceLine[*i]);

    ConversionResult res = ConvertUTF8toUTF32(&begin, cp_end, &cptr, cptr+1,
                                              strictConversion);
    (void)res;
    assert(conversionOK==res);
    assert(0 < begin-original_begin
           && "we must be further along in the string now");
    *i += begin-original_begin;

    if (!llvm::sys::locale::isPrint(c)) {
      // If next character is valid UTF-8, but not printable
      SmallString<16> expandedCP("<U+>");
      while (c) {
        expandedCP.insert(expandedCP.begin()+3, llvm::hexdigit(c%16));
        c/=16;
      }
      while (expandedCP.size() < 8)
        expandedCP.insert(expandedCP.begin()+3, llvm::hexdigit(0));
      return std::make_pair(expandedCP, false);
    }

    // If next character is valid UTF-8, and printable
    return std::make_pair(SmallString<16>(original_begin, cp_end), true);

  }

  // If next byte is not valid UTF-8 (and therefore not printable)
  SmallString<16> expandedByte("<XX>");
  unsigned char byte = SourceLine[*i];
  expandedByte[1] = llvm::hexdigit(byte / 16);
  expandedByte[2] = llvm::hexdigit(byte % 16);
  ++(*i);
  return std::make_pair(expandedByte, false);
}
Example #26
0
static StringRef StripTrailingDots(StringRef s) {
  for (StringRef::size_type i = s.size(); i != 0; --i)
    if (s[i - 1] != '.')
      return s.substr(0, i);
  return "";
}
Example #27
0
    virtual void NotifyObjectEmitted(const ObjectImage &obj)
#endif
    {
        uint64_t Addr;
        uint64_t Size;
        object::SymbolRef::Type SymbolType;
#ifdef LLVM36
        object::section_iterator Section = obj.section_begin();
        object::section_iterator EndSection = obj.section_end();
        uint64_t SectionAddr = 0;
        StringRef sName;
#else
        object::section_iterator Section = obj.begin_sections();
        object::section_iterator EndSection = obj.end_sections();
        bool isText;
#ifndef _OS_LINUX_
        StringRef sName;
#endif
#endif

#ifndef LLVM36
        uint64_t SectionAddr = 0;
#endif
        uint64_t SectionSize = 0;
        uint64_t SectionAddrCheck = 0; // assert that all of the Sections are at the same location

#if defined(_OS_WINDOWS_)
#if defined(_CPU_X86_64_)
        uint8_t *UnwindData = NULL;
        uint8_t *catchjmp = NULL;
        for (const object::SymbolRef &sym_iter : obj.symbols()) {
#  ifdef LLVM37
            sName = sym_iter.getName().get();
#  else
            sym_iter.getName(sName);
#  endif
            if (sName.equals("__UnwindData")) {
#  ifdef LLVM37
                Addr = sym_iter.getAddress().get();
#  else
                sym_iter.getAddress(Addr);
#  endif
                sym_iter.getSection(Section);
#  ifdef LLVM36
                assert(Section->isText());
#    ifdef LLVM38
                SectionAddr = L.getSectionLoadAddress(*Section);
#    else
                Section->getName(sName);
                SectionAddr = L.getSectionLoadAddress(sName);
#    endif
                Addr += SectionAddr;
#  else
                if (Section->isText(isText) || !isText) assert(0 && "!isText");
                Section->getAddress(SectionAddr);
#  endif
                UnwindData = (uint8_t*)Addr;
                if (SectionAddrCheck)
                    assert(SectionAddrCheck == SectionAddr);
                else
                    SectionAddrCheck = SectionAddr;
            }
            if (sName.equals("__catchjmp")) {
#  ifdef LLVM37
                Addr = sym_iter.getAddress().get();
#  else
                sym_iter.getAddress(Addr);
#  endif
                sym_iter.getSection(Section);
#  ifdef LLVM36
                assert(Section->isText());
#    ifdef LLVM38
                SectionAddr = L.getSectionLoadAddress(*Section);
#    else
                Section->getName(sName);
                SectionAddr = L.getSectionLoadAddress(sName);
#    endif
                Addr += SectionAddr;
#  else
                if (Section->isText(isText) || !isText) assert(0 && "!isText");
                Section->getAddress(SectionAddr);
#  endif
                catchjmp = (uint8_t*)Addr;
                if (SectionAddrCheck)
                    assert(SectionAddrCheck == SectionAddr);
                else
                    SectionAddrCheck = SectionAddr;
            }
        }
        assert(catchjmp);
        assert(UnwindData);
        catchjmp[0] = 0x48;
        catchjmp[1] = 0xb8; // mov RAX, QWORD PTR [&_seh_exception_handle]
        *(uint64_t*)(&catchjmp[2]) = (uint64_t)&_seh_exception_handler;
        catchjmp[10] = 0xff;
        catchjmp[11] = 0xe0; // jmp RAX
        UnwindData[0] = 0x09; // version info, UNW_FLAG_EHANDLER
        UnwindData[1] = 4;    // size of prolog (bytes)
        UnwindData[2] = 2;    // count of unwind codes (slots)
        UnwindData[3] = 0x05; // frame register (rbp) = rsp
        UnwindData[4] = 4;    // second instruction
        UnwindData[5] = 0x03; // mov RBP, RSP
        UnwindData[6] = 1;    // first instruction
        UnwindData[7] = 0x50; // push RBP
        *(DWORD*)&UnwindData[8] = (DWORD)(catchjmp - (uint8_t*)SectionAddr); // relative location of catchjmp
#else // defined(_OS_X86_64_)
        uint8_t *UnwindData = NULL;
#endif // defined(_OS_X86_64_)
#endif // defined(_OS_WINDOWS_)

#ifdef LLVM35
        for (const object::SymbolRef &sym_iter : obj.symbols()) {
#           ifdef LLVM37
            SymbolType = sym_iter.getType();
#           else
            sym_iter.getType(SymbolType);
#           endif
            if (SymbolType != object::SymbolRef::ST_Function) continue;
#           ifdef LLVM37
            Addr = sym_iter.getAddress().get();
#           else
            sym_iter.getAddress(Addr);
#           endif
            sym_iter.getSection(Section);
            if (Section == EndSection) continue;
#if defined(LLVM36)
            if (!Section->isText()) continue;
#    ifdef LLVM38
            SectionAddr = L.getSectionLoadAddress(*Section);
#    else
            Section->getName(sName);
            SectionAddr = L.getSectionLoadAddress(sName);
#    endif
            Addr += SectionAddr;
#else
            if (Section->isText(isText) || !isText) continue;
#endif
#if defined(LLVM36)
            SectionSize = Section->getSize();
#else
            Section->getAddress(SectionAddr);
            Section->getSize(SectionSize);
#endif
#ifdef _OS_DARWIN_
#   if defined(LLVM37)
            Size = Section->getSize();
            sName = sym_iter.getName().get();
#   else
            sym_iter.getName(sName);
#   endif
#   if defined(LLVM36)
            if (sName[0] == '_') {
                sName = sName.substr(1);
            }
#   else
            Addr = ((MCJIT*)jl_ExecutionEngine)->getSymbolAddress(sName, true);
            if (!Addr && sName[0] == '_') {
                sName = sName.substr(1);
                Addr = ((MCJIT*)jl_ExecutionEngine)->getSymbolAddress(sName, true);
            }
            if (!Addr) continue;
#   endif
#elif defined(_OS_WINDOWS_)
#   if defined(LLVM37)
            assert(obj.isELF());
            Size = ((llvm::object::ELFSymbolRef)sym_iter).getSize();
            sName = sym_iter.getName().get();
#   else
            sym_iter.getSize(Size);
            sym_iter.getName(sName);
#   endif
#   ifdef _CPU_X86_
            if (sName[0] == '_') sName = sName.substr(1);
#   endif
            if (SectionAddrCheck)
                assert(SectionAddrCheck == SectionAddr);
            else
                SectionAddrCheck = SectionAddr;
            create_PRUNTIME_FUNCTION(
                   (uint8_t*)(intptr_t)Addr, (size_t)Size, sName,
                   (uint8_t*)(intptr_t)SectionAddr, (size_t)SectionSize, UnwindData);
#endif
            const object::ObjectFile *objfile =
#ifdef LLVM36
                &obj;
#else
                obj.getObjectFile();
#endif
            ObjectInfo tmp = {objfile, SectionSize
#ifdef LLVM37
                ,L.clone().release()
#elif defined(LLVM36)
                ,(size_t)SectionAddr
#endif
#ifdef _OS_DARWIN_
                ,strndup(sName.data(), sName.size())
#endif
            };
            objectmap[Addr] = tmp;
        }
#else //LLVM34
        error_code itererr;
        object::symbol_iterator sym_iter = obj.begin_symbols();
        object::symbol_iterator sym_end = obj.end_symbols();
        for (; sym_iter != sym_end; sym_iter.increment(itererr)) {
            sym_iter->getType(SymbolType);
            if (SymbolType != object::SymbolRef::ST_Function) continue;
            sym_iter->getAddress(Addr);
            sym_iter->getSize(Size);

            ObjectInfo tmp = {obj.getObjectFile(), (size_t)Size};
            objectmap[Addr] = tmp;
        }
#endif
    }
Example #28
0
/// EmitInlineAsm - Emit a blob of inline asm to the output streamer.
void AsmPrinter::EmitInlineAsm(StringRef Str, const MDNode *LocMDNode,
                               InlineAsm::AsmDialect Dialect) const {
  assert(!Str.empty() && "Can't emit empty inline asm block");

  // Remember if the buffer is nul terminated or not so we can avoid a copy.
  bool isNullTerminated = Str.back() == 0;
  if (isNullTerminated)
    Str = Str.substr(0, Str.size()-1);

  // If the output streamer is actually a .s file, just emit the blob textually.
  // This is useful in case the asm parser doesn't handle something but the
  // system assembler does.
  if (OutStreamer.hasRawTextSupport()) {
    OutStreamer.EmitRawText(Str);
    return;
  }

  SourceMgr SrcMgr;
  SrcMgrDiagInfo DiagInfo;

  // If the current LLVMContext has an inline asm handler, set it in SourceMgr.
  LLVMContext &LLVMCtx = MMI->getModule()->getContext();
  bool HasDiagHandler = false;
  if (LLVMCtx.getInlineAsmDiagnosticHandler() != 0) {
    // If the source manager has an issue, we arrange for srcMgrDiagHandler
    // to be invoked, getting DiagInfo passed into it.
    DiagInfo.LocInfo = LocMDNode;
    DiagInfo.DiagHandler = LLVMCtx.getInlineAsmDiagnosticHandler();
    DiagInfo.DiagContext = LLVMCtx.getInlineAsmDiagnosticContext();
    SrcMgr.setDiagHandler(srcMgrDiagHandler, &DiagInfo);
    HasDiagHandler = true;
  }

  MemoryBuffer *Buffer;
  if (isNullTerminated)
    Buffer = MemoryBuffer::getMemBuffer(Str, "<inline asm>");
  else
    Buffer = MemoryBuffer::getMemBufferCopy(Str, "<inline asm>");

  // Tell SrcMgr about this buffer, it takes ownership of the buffer.
  SrcMgr.AddNewSourceBuffer(Buffer, SMLoc());

  OwningPtr<MCAsmParser> Parser(createMCAsmParser(SrcMgr,
                                                  OutContext, OutStreamer,
                                                  *MAI));

  // FIXME: It would be nice if we can avoid createing a new instance of
  // MCSubtargetInfo here given TargetSubtargetInfo is available. However,
  // we have to watch out for asm directives which can change subtarget
  // state. e.g. .code 16, .code 32.
  OwningPtr<MCSubtargetInfo>
    STI(TM.getTarget().createMCSubtargetInfo(TM.getTargetTriple(),
                                             TM.getTargetCPU(),
                                             TM.getTargetFeatureString()));
  OwningPtr<MCTargetAsmParser>
    TAP(TM.getTarget().createMCAsmParser(*STI, *Parser, *MII));
  if (!TAP)
    report_fatal_error("Inline asm not supported by this streamer because"
                       " we don't have an asm parser for this target\n");
  Parser->setAssemblerDialect(Dialect);
  Parser->setTargetParser(*TAP.get());

  // Don't implicitly switch to the text section before the asm.
  int Res = Parser->Run(/*NoInitialTextSection*/ true,
                        /*NoFinalize*/ true);
  if (Res && !HasDiagHandler)
    report_fatal_error("Error parsing inline asm\n");
}
Example #29
0
/// CopyStringRef - Copies contents of a StringRef into a block of memory and
/// null-terminates it.
static void CopyStringRef(char *Memory, StringRef Data) {
  memcpy(Memory, Data.data(), Data.size());
  Memory[Data.size()] = 0; // Null terminate string.
}
Example #30
0
static int writeStringRef(StringRef &Str, raw_ostream &OS) {
  encodeULEB128(Str.size(), OS);
  OS << Str;
  return 0;
}