Example #1
0
bool isChildofMain(TIntermNode *node, TIntermNode *root)
{
    TIntermNode *main = getFunctionBySignature(MAIN_FUNC_SIGNATURE, root);

    if (!main) {
        dbgPrint(DBGLVL_ERROR, "CodeTools - could not find main function\n");
        exit(1);
    }

    TIntermAggregate *aggregate;

    if (!(aggregate = main->getAsAggregate())) {
        dbgPrint(DBGLVL_ERROR, "CodeTools - main is not Aggregate\n");
        exit(1);
    }
    
    TIntermSequence sequence = aggregate->getSequence();
    TIntermSequence::iterator sit;

    for(sit = sequence.begin(); sit != sequence.end(); sit++) {
        if (*sit == node) {
            return true;
        }
    }

    return false;
}
Example #2
0
TIntermNode *ElseBlockRewriter::rewriteSelection(TIntermSelection *selection)
{
    ASSERT(selection->getFalseBlock() != NULL);

    TString temporaryName = "cond_" + str(mTemporaryIndex++);
    TIntermTyped *typedCondition = selection->getCondition()->getAsTyped();
    TType resultType(EbtBool, EbpUndefined);
    TIntermSymbol *conditionSymbolA = MakeNewTemporary(temporaryName, EbtBool);
    TIntermSymbol *conditionSymbolB = MakeNewTemporary(temporaryName, EbtBool);
    TIntermSymbol *conditionSymbolC = MakeNewTemporary(temporaryName, EbtBool);
    TIntermBinary *storeCondition = MakeNewBinary(EOpInitialize, conditionSymbolA,
                                                  typedCondition, resultType);
    TIntermUnary *negatedCondition = MakeNewUnary(EOpLogicalNot, conditionSymbolB);
    TIntermSelection *falseBlock = new TIntermSelection(negatedCondition,
                                                        selection->getFalseBlock(), NULL);
    TIntermSelection *newIfElse = new TIntermSelection(conditionSymbolC,
                                                       selection->getTrueBlock(), falseBlock);

    TIntermAggregate *declaration = new TIntermAggregate(EOpDeclaration);
    declaration->getSequence().push_back(storeCondition);

    TIntermAggregate *block = new TIntermAggregate(EOpSequence);
    block->getSequence().push_back(declaration);
    block->getSequence().push_back(newIfElse);

    return block;
}
Example #3
0
//
// This is the safe way to change the operator on an aggregate, as it
// does lots of error checking and fixing.  Especially for establishing
// a function call's operation on it's set of parameters.  Sequences
// of instructions are also aggregates, but they just direnctly set
// their operator to EOpSequence.
//
// Returns an aggregate node, which could be the one passed in if
// it was already an aggregate but no operator was set.
//
TIntermAggregate *TIntermediate::setAggregateOperator(
    TIntermNode *node, TOperator op, const TSourceLoc &line)
{
    TIntermAggregate *aggNode;

    //
    // Make sure we have an aggregate.  If not turn it into one.
    //
    if (node)
    {
        aggNode = node->getAsAggregate();
        if (aggNode == NULL || aggNode->getOp() != EOpNull)
        {
            //
            // Make an aggregate containing this node.
            //
            aggNode = new TIntermAggregate();
            aggNode->getSequence()->push_back(node);
        }
    }
    else
    {
        aggNode = new TIntermAggregate();
    }

    //
    // Set the operator.
    //
    aggNode->setOp(op);
    aggNode->setLine(line);

    return aggNode;
}
// This is the safe way to change the operator on an aggregate, as it
// does lots of error checking and fixing.  Especially for establishing
// a function call's operation on it's set of parameters.  Sequences
// of instructions are also aggregates, but they just direnctly set
// their operator to EOpSequence.
//
// Returns an aggregate node, which could be the one passed in if
// it was already an aggregate.
TIntermAggregate* ir_set_aggregate_op(TIntermNode* node, TOperator op, TSourceLoc line)
{
   TIntermAggregate* aggNode;

   //
   // Make sure we have an aggregate.  If not turn it into one.
   //
   if (node)
   {
      aggNode = node->getAsAggregate();
      if (aggNode == 0 || aggNode->getOp() != EOpNull)
      {
         //
         // Make an aggregate containing this node.
         //
         aggNode = new TIntermAggregate();
         aggNode->getNodes().push_back(node);
         if (line.line == 0)
            line = node->getLine();
      }
   }
   else
      aggNode = new TIntermAggregate();

   //
   // Set the operator.
   //
   aggNode->setOperator(op);
   if (line.line != 0)
      aggNode->setLine(line);

   return aggNode;
}
void TLValueTrackingTraverser::traverseFunctionDefinition(TIntermFunctionDefinition *node)
{
    TIntermAggregate *params = node->getFunctionParameters();
    ASSERT(params != nullptr);
    ASSERT(params->getOp() == EOpParameters);
    addToFunctionMap(node->getFunctionSymbolInfo()->getNameObj(), params->getSequence());

    TIntermTraverser::traverseFunctionDefinition(node);
}
Example #6
0
int ValidateLimitations::validateForLoopInit(TIntermLoop *node)
{
    TIntermNode *init = node->getInit();
    if (init == NULL)
    {
        error(node->getLine(), "Missing init declaration", "for");
        return -1;
    }

    //
    // init-declaration has the form:
    //     type-specifier identifier = constant-expression
    //
    TIntermAggregate *decl = init->getAsAggregate();
    if ((decl == NULL) || (decl->getOp() != EOpDeclaration))
    {
        error(init->getLine(), "Invalid init declaration", "for");
        return -1;
    }
    // To keep things simple do not allow declaration list.
    TIntermSequence &declSeq = decl->getSequence();
    if (declSeq.size() != 1)
    {
        error(decl->getLine(), "Invalid init declaration", "for");
        return -1;
    }
    TIntermBinary *declInit = declSeq[0]->getAsBinaryNode();
    if ((declInit == NULL) || (declInit->getOp() != EOpInitialize))
    {
        error(decl->getLine(), "Invalid init declaration", "for");
        return -1;
    }
    TIntermSymbol *symbol = declInit->getLeft()->getAsSymbolNode();
    if (symbol == NULL)
    {
        error(declInit->getLine(), "Invalid init declaration", "for");
        return -1;
    }
    // The loop index has type int or float.
    TBasicType type = symbol->getBasicType();
    if ((type != EbtInt) && (type != EbtFloat))
    {
        error(symbol->getLine(),
              "Invalid type for loop index", getBasicString(type));
        return -1;
    }
    // The loop index is initialized with constant expression.
    if (!isConstExpr(declInit->getRight()))
    {
        error(declInit->getLine(),
              "Loop index cannot be initialized with non-constant expression",
              symbol->getSymbol().c_str());
        return -1;
    }

    return symbol->getId();
}
Example #7
0
bool TCompiler::pruneUnusedFunctions(TIntermNode *root)
{
    TIntermAggregate *rootNode = root->getAsAggregate();
    ASSERT(rootNode != nullptr);

    UnusedPredicate isUnused(&mCallDag, &functionMetadata);
    TIntermSequence *sequence = rootNode->getSequence();
    sequence->erase(std::remove_if(sequence->begin(), sequence->end(), isUnused), sequence->end());

    return true;
}
Example #8
0
//
// Turn an existing node into an aggregate.
//
// Returns an aggregate, unless 0 was passed in for the existing node.
//
TIntermAggregate* TIntermediate::makeAggregate(TIntermNode* node, const TSourceLoc& line)
{
    if (node == 0)
        return 0;

    TIntermAggregate* aggNode = new TIntermAggregate;
    aggNode->getSequence().push_back(node);
    aggNode->setLine(line);

    return aggNode;
}
TIntermAggregate *TIntermTraverser::createTempInitDeclaration(TIntermTyped *initializer, TQualifier qualifier)
{
    ASSERT(initializer != nullptr);
    TIntermSymbol *tempSymbol = createTempSymbol(initializer->getType(), qualifier);
    TIntermAggregate *tempDeclaration = new TIntermAggregate(EOpDeclaration);
    TIntermBinary *tempInit = new TIntermBinary(EOpInitialize);
    tempInit->setLeft(tempSymbol);
    tempInit->setRight(initializer);
    tempInit->setType(tempSymbol->getType());
    tempDeclaration->getSequence()->push_back(tempInit);
    return tempDeclaration;
}
Example #10
0
// If the input node is nullptr, return nullptr.
// If the input node is a sequence (block) node, return it.
// If the input node is not a sequence node, put it inside a sequence node and return that.
TIntermAggregate *TIntermediate::ensureSequence(TIntermNode *node)
{
    if (node == nullptr)
        return nullptr;
    TIntermAggregate *aggNode = node->getAsAggregate();
    if (aggNode != nullptr && aggNode->getOp() == EOpSequence)
        return aggNode;

    aggNode = makeAggregate(node, node->getLine());
    aggNode->setOp(EOpSequence);
    return aggNode;
}
Example #11
0
//
// This is to be executed once the final root is put on top by the parsing
// process.
//
bool TIntermediate::postProcess(TIntermNode *root)
{
    if (root == NULL)
        return true;

    //
    // First, finish off the top level sequence, if any
    //
    TIntermAggregate *aggRoot = root->getAsAggregate();
    if (aggRoot && aggRoot->getOp() == EOpNull)
        aggRoot->setOp(EOpSequence);

    return true;
}
TString ScalarizeVecAndMatConstructorArgs::createTempVariable(TIntermTyped *original)
{
    TString tempVarName = "_webgl_tmp_";
    if (original->isScalar())
    {
        tempVarName += "scalar_";
    }
    else if (original->isVector())
    {
        tempVarName += "vec_";
    }
    else
    {
        ASSERT(original->isMatrix());
        tempVarName += "mat_";
    }
    tempVarName += Str(mTempVarCount).c_str();
    mTempVarCount++;

    ASSERT(original);
    TType type = original->getType();
    type.setQualifier(EvqTemporary);

    if (mShaderType == GL_FRAGMENT_SHADER &&
        type.getBasicType() == EbtFloat &&
        type.getPrecision() == EbpUndefined)
    {
        // We use the highest available precision for the temporary variable
        // to avoid computing the actual precision using the rules defined
        // in GLSL ES 1.0 Section 4.5.2.
        type.setPrecision(mFragmentPrecisionHigh ? EbpHigh : EbpMedium);
    }

    TIntermBinary *init = new TIntermBinary(EOpInitialize);
    TIntermSymbol *symbolNode = new TIntermSymbol(-1, tempVarName, type);
    init->setLeft(symbolNode);
    init->setRight(original);
    init->setType(type);

    TIntermAggregate *decl = new TIntermAggregate(EOpDeclaration);
    decl->getSequence()->push_back(init);

    ASSERT(mSequenceStack.size() > 0);
    TIntermSequence &sequence = mSequenceStack.back();
    sequence.push_back(decl);

    return tempVarName;
}
Example #13
0
TIntermTyped* ir_add_swizzle(TVectorFields& fields, TSourceLoc line)
{
	TIntermAggregate* node = new TIntermAggregate(EOpSequence);

	node->setLine(line);
	TNodeArray& nodes = node->getNodes();

	for (int i = 0; i < fields.num; i++)
	{
		TIntermConstant* constant = ir_add_constant(TType(EbtInt, EbpUndefined, EvqConst), line);
		constant->setValue(fields.offsets[i]);
		nodes.push_back(constant);
	}

	return node;
}
Example #14
0
TIntermAggregate* ir_grow_declaration(TIntermTyped* declaration, TIntermSymbol *symbol, TIntermTyped *initializer, TParseContext& ctx)
{
	TIntermTyped* added_decl = ir_add_declaration (symbol, initializer, symbol->getLine(), ctx);

	if (declaration->getAsDeclaration()) {
		TIntermAggregate* aggregate = ir_make_aggregate(declaration, declaration->getLine());
		aggregate->setOperator(EOpSequence);
		declaration = aggregate;
	}
	assert (declaration->getAsAggregate());
		
	TIntermAggregate* aggregate = ir_grow_aggregate(declaration, added_decl, added_decl->getLine(), EOpSequence);
	aggregate->setOperator(EOpSequence);
	
	return aggregate;
}
Example #15
0
// Turn an existing node into an aggregate.
TIntermAggregate* ir_make_aggregate(TIntermNode* node, TSourceLoc line)
{
	if (node == 0)
		return 0;

	TIntermAggregate* aggNode = new TIntermAggregate;
	if (node->getAsTyped())
		aggNode->setType(*node->getAsTyped()->getTypePointer());
	
	aggNode->getNodes().push_back(node);

	if (line.line != 0)
		aggNode->setLine(line);
	else
		aggNode->setLine(node->getLine());

	return aggNode;
}
Example #16
0
//
// Merge the function bodies and global-level initializers from unitGlobals into globals.
// Will error check duplication of function bodies for the same signature.
//
void TIntermediate::mergeBodies(TInfoSink& infoSink, TIntermSequence& globals, const TIntermSequence& unitGlobals)
{
    // TODO: link-time performance: Processing in alphabetical order will be faster

    // Error check the global objects, not including the linker objects
    for (unsigned int child = 0; child < globals.size() - 1; ++child) {
        for (unsigned int unitChild = 0; unitChild < unitGlobals.size() - 1; ++unitChild) {
            TIntermAggregate* body = globals[child]->getAsAggregate();
            TIntermAggregate* unitBody = unitGlobals[unitChild]->getAsAggregate();
            if (body && unitBody && body->getOp() == EOpFunction && unitBody->getOp() == EOpFunction && body->getName() == unitBody->getName()) {
                error(infoSink, "Multiple function bodies in multiple compilation units for the same signature in the same stage:");
                infoSink.info << "    " << globals[child]->getAsAggregate()->getName() << "\n";
            }
        }
    }

    // Merge the global objects, just in front of the linker objects
    globals.insert(globals.end() - 1, unitGlobals.begin(), unitGlobals.end() - 1);
}
TIntermTyped* TIntermediate::addSwizzle(TVectorFields& fields, TSourceLoc line)
{

    TIntermAggregate* node = new TIntermAggregate(EOpSequence);

    node->setLine(line);
    TIntermConstantUnion* constIntNode;
    TIntermSequence &sequenceVector = node->getSequence();
    ConstantUnion* unionArray;

    for (int i = 0; i < fields.num; i++) {
        unionArray = new ConstantUnion[1];
        unionArray->setIConst(fields.offsets[i]);
        constIntNode = addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), line);
        sequenceVector.push_back(constIntNode);
    }

    return node;
}
Example #18
0
TIntermDeclaration* ir_grow_declaration(TIntermDeclaration* declaration, TIntermSymbol *symbol, TIntermTyped *initializer, TInfoSink& infoSink)
{
	TIntermTyped* added_decl = symbol;
	if (initializer)
		added_decl = ir_add_assign(EOpAssign, symbol, initializer, symbol->getLine(), infoSink);
	
	if (declaration->isSingleDeclaration()) {
		TIntermTyped* current = declaration->getDeclaration();
		TIntermAggregate* aggregate = ir_make_aggregate(current, current->getLine());
		aggregate->setOperator(EOpComma);
		declaration->getDeclaration() = aggregate;
	}
		
	TIntermAggregate* aggregate = ir_grow_aggregate(declaration->getDeclaration(), added_decl, added_decl->getLine());
	aggregate->setOperator(EOpComma);
	declaration->getDeclaration() = aggregate;
	
	return declaration;
}
Example #19
0
ParsedHxsl Parser::parse(TIntermNode* e) {
    TIntermAggregate* aggregate = e->getAsAggregate();
    for (auto it = aggregate->getSequence().begin(); it != aggregate->getSequence().end(); ++it) {
        parseDecl(*it);
    }
    if (main == nullptr) error("Missing main function", e->getLine().first_line);
    allowReturn = false;
    ParsedCode s = buildShader(main);
    std::map<std::string, ParsedCode> help;
    allowReturn = true;
    for (auto it = helpers.begin(); it != helpers.end(); ++it) {
        help[it->first] = buildShader(it->second);
    }

    ParsedHxsl hxsl;
    hxsl.shader = s;
    hxsl.globals = globals;
    hxsl.pos = e->getLine().first_line;
    hxsl.helpers = help;
    return hxsl;
}
Example #20
0
//
// Safe way to combine two nodes into an aggregate.  Works with null pointers,
// a node that's not a aggregate yet, etc.
//
// Returns the resulting aggregate, unless 0 was passed in for
// both existing nodes.
//
TIntermAggregate* TIntermediate::growAggregate(TIntermNode* left, TIntermNode* right, const TSourceLoc& line)
{
    if (left == 0 && right == 0)
        return 0;

    TIntermAggregate* aggNode = 0;
    if (left)
        aggNode = left->getAsAggregate();
    if (!aggNode || aggNode->getOp() != EOpNull) {
        aggNode = new TIntermAggregate;
        if (left)
            aggNode->getSequence().push_back(left);
    }

    if (right)
        aggNode->getSequence().push_back(right);

    aggNode->setLine(line);

    return aggNode;
}
Example #21
0
TIntermNode* getFunctionBySignature(const char *sig, TIntermNode* root)
// Assumption: 1. roots hold all function definitions.
//                for single file shaders this should hold.
// Todo: Add solution for multiple files compiled in one shader.
{
	TIntermAggregate *aggregate;
	TIntermSequence sequence;
	TIntermSequence::iterator sit;

	// Root must be aggregate
	if (!(aggregate = root->getAsAggregate())) {
		return NULL;
	}
	if (aggregate->getOp() == EOpFunction) {
		// do not stop search at function prototypes
		if (aggregate->getSequence().size() != 0) {
			if (!strcmp(sig, aggregate->getName().c_str())) {
				return aggregate;
			}
		}
	} else {
		sequence = aggregate->getSequence();

		for (sit = sequence.begin(); sit != sequence.end(); sit++) {
			if ((*sit)->getAsAggregate()
					&& (*sit)->getAsAggregate()->getOp() == EOpFunction) {
				// do not stop search at function prototypes
				if ((*sit)->getAsAggregate()->getSequence().size() != 0) {
					if (!strcmp(sig,
							(*sit)->getAsAggregate()->getName().c_str())) {
						return *sit;
					}
				}
			}
		}
	}
	return NULL;
}
void ForLoopUnroll::FillLoopIndexInfo(TIntermLoop* node, TLoopIndexInfo& info)
{
    ASSERT(node->getType() == ELoopFor);
    ASSERT(node->getUnrollFlag());

    TIntermNode* init = node->getInit();
    ASSERT(init != NULL);
    TIntermAggregate* decl = init->getAsAggregate();
    ASSERT((decl != NULL) && (decl->getOp() == EOpDeclaration));
    TIntermSequence& declSeq = decl->getSequence();
    ASSERT(declSeq.size() == 1);
    TIntermBinary* declInit = declSeq[0]->getAsBinaryNode();
    ASSERT((declInit != NULL) && (declInit->getOp() == EOpInitialize));
    TIntermSymbol* symbol = declInit->getLeft()->getAsSymbolNode();
    ASSERT(symbol != NULL);
    ASSERT(symbol->getBasicType() == EbtInt);

    info.id = symbol->getId();

    ASSERT(declInit->getRight() != NULL);
    TIntermConstantUnion* initNode = declInit->getRight()->getAsConstantUnion();
    ASSERT(initNode != NULL);

    info.initValue = evaluateIntConstant(initNode);
    info.currentValue = info.initValue;

    TIntermNode* cond = node->getCondition();
    ASSERT(cond != NULL);
    TIntermBinary* binOp = cond->getAsBinaryNode();
    ASSERT(binOp != NULL);
    ASSERT(binOp->getRight() != NULL);
    ASSERT(binOp->getRight()->getAsConstantUnion() != NULL);

    info.incrementValue = getLoopIncrement(node);
    info.stopValue = evaluateIntConstant(
        binOp->getRight()->getAsConstantUnion());
    info.op = binOp->getOp();
}
Example #23
0
// Safe way to combine two nodes into an aggregate.  Works with null pointers, 
// a node that's not a aggregate yet, etc.
//
// Returns the resulting aggregate, unless 0 was passed in for
// both existing nodes.
TIntermAggregate* ir_grow_aggregate(TIntermNode* left, TIntermNode* right, TSourceLoc line, TOperator expectedOp)
{
   if (left == 0 && right == 0)
      return 0;

   TIntermAggregate* aggNode = 0;
   if (left)
      aggNode = left->getAsAggregate();
   if (!aggNode || aggNode->getOp() != expectedOp)
   {
      aggNode = new TIntermAggregate;
      if (left)
         aggNode->getNodes().push_back(left);
   }

   if (right)
      aggNode->getNodes().push_back(right);

   if (line.line != 0)
      aggNode->setLine(line);

   return aggNode;
}
bool InitializeVariables::visitAggregate(Visit visit, TIntermAggregate *node)
{
    bool visitChildren = !mCodeInserted;
    switch (node->getOp())
    {
      case EOpSequence:
        break;
      case EOpFunction:
      {
        // Function definition.
        ASSERT(visit == PreVisit);
        if (node->getName() == "main(")
        {
            TIntermSequence *sequence = node->getSequence();
            ASSERT((sequence->size() == 1) || (sequence->size() == 2));
            TIntermAggregate *body = NULL;
            if (sequence->size() == 1)
            {
                body = new TIntermAggregate(EOpSequence);
                sequence->push_back(body);
            }
            else
            {
                body = (*sequence)[1]->getAsAggregate();
            }
            ASSERT(body);
            insertInitCode(body->getSequence());
            mCodeInserted = true;
        }
        break;
      }
      default:
        visitChildren = false;
        break;
    }
    return visitChildren;
}
Example #25
0
// constructor
//      : type argument_list
//
bool HlslGrammar::acceptConstructor(TIntermTyped*& node)
{
    // type
    TType type;
    if (acceptType(type)) {
        TFunction* constructorFunction = parseContext.handleConstructorCall(token.loc, type);
        if (constructorFunction == nullptr)
            return false;

        // arguments
        TIntermAggregate* arguments = nullptr;
        if (! acceptArguments(constructorFunction, arguments)) {
            expected("constructor arguments");
            return false;
        }

        // hook it up
        node = parseContext.handleFunctionCall(arguments->getLoc(), constructorFunction, arguments);

        return true;
    }

    return false;
}
Example #26
0
bool TIntermSelection::promoteTernary(TInfoSink& infoSink)
{
	if (!condition->isVector())
		return true;
	
	int size = condition->getRowsCount();
	TIntermTyped* trueb = trueBlock->getAsTyped();
	TIntermTyped* falseb = falseBlock->getAsTyped();
	if (!trueb || !falseb)
		return false;
	
	if (trueb->getRowsCount() == size && falseb->getRowsCount() == size)
		return true;
	
	// Base assumption: just make the type a float vector
	TPrecision higherPrecision = GetHigherPrecision(trueb->getPrecision(), falseb->getPrecision());
	setType(TType(EbtFloat, higherPrecision, EvqTemporary, 1, size, condition->isMatrix()));
	
	TOperator convert = EOpNull;	
	{
		convert = TOperator( EOpConstructVec2 + size - 2);
		TIntermAggregate *node = new TIntermAggregate(convert);
		node->setLine(trueb->getLine());
		node->setType(TType(condition->getBasicType(), higherPrecision, trueb->getQualifier() == EvqConst ? EvqConst : EvqTemporary, 1, size, condition->isMatrix()));
		node->getNodes().push_back(trueb);
		trueBlock = node;
	}
	{
		convert = TOperator( EOpConstructVec2 + size - 2);
		TIntermAggregate *node = new TIntermAggregate(convert);
		node->setLine(falseb->getLine());
		node->setType(TType(condition->getBasicType(), higherPrecision, falseb->getQualifier() == EvqConst ? EvqConst : EvqTemporary, 1, size, condition->isMatrix()));
		node->getNodes().push_back(falseb);
		falseBlock = node;
	}
	
	return true;
}
Example #27
0
//
// This is to be executed once the final root is put on top by the parsing
// process.
//
TIntermAggregate *TIntermediate::postProcess(TIntermNode *root)
{
    if (root == nullptr)
        return nullptr;

    //
    // Finish off the top level sequence, if any
    //
    TIntermAggregate *aggRoot = root->getAsAggregate();
    if (aggRoot != nullptr && aggRoot->getOp() == EOpNull)
    {
        aggRoot->setOp(EOpSequence);
    }
    else if (aggRoot == nullptr || aggRoot->getOp() != EOpSequence)
    {
        aggRoot = new TIntermAggregate(EOpSequence);
        aggRoot->setLine(root->getLine());
        aggRoot->getSequence()->push_back(root);
    }

    return aggRoot;
}
Example #28
0
bool TOutputGLSLBase::visitAggregate(Visit visit, TIntermAggregate* node)
{
    bool visitChildren = true;
    TInfoSinkBase& out = objSink();
    TString preString;
    bool delayedWrite = false;
    switch (node->getOp())
    {
        case EOpSequence: {
            // Scope the sequences except when at the global scope.
            if (depth > 0) out << "{\n";

            incrementDepth();
            const TIntermSequence& sequence = node->getSequence();
            for (TIntermSequence::const_iterator iter = sequence.begin();
                 iter != sequence.end(); ++iter)
            {
                TIntermNode* node = *iter;
                ASSERT(node != NULL);
                node->traverse(this);

                if (isSingleStatement(node))
                    out << ";\n";
            }
            decrementDepth();

            // Scope the sequences except when at the global scope.
            if (depth > 0) out << "}\n";
            visitChildren = false;
            break;
        }
        case EOpPrototype: {
            // Function declaration.
            ASSERT(visit == PreVisit);
            writeVariableType(node->getType());
            out << " " << node->getName();

            out << "(";
            writeFunctionParameters(node->getSequence());
            out << ")";

            visitChildren = false;
            break;
        }
        case EOpFunction: {
            // Function definition.
            ASSERT(visit == PreVisit);
            writeVariableType(node->getType());
            out << " " << TFunction::unmangleName(node->getName());

            incrementDepth();
            // Function definition node contains one or two children nodes
            // representing function parameters and function body. The latter
            // is not present in case of empty function bodies.
            const TIntermSequence& sequence = node->getSequence();
            ASSERT((sequence.size() == 1) || (sequence.size() == 2));
            TIntermSequence::const_iterator seqIter = sequence.begin();

            // Traverse function parameters.
            TIntermAggregate* params = (*seqIter)->getAsAggregate();
            ASSERT(params != NULL);
            ASSERT(params->getOp() == EOpParameters);
            params->traverse(this);

            // Traverse function body.
            TIntermAggregate* body = ++seqIter != sequence.end() ?
                (*seqIter)->getAsAggregate() : NULL;
            visitCodeBlock(body);
            decrementDepth();
 
            // Fully processed; no need to visit children.
            visitChildren = false;
            break;
        }
        case EOpFunctionCall:
            // Function call.
            if (visit == PreVisit)
            {
                TString functionName = TFunction::unmangleName(node->getName());
                out << functionName << "(";
            }
            else if (visit == InVisit)
            {
                out << ", ";
            }
            else
            {
                out << ")";
            }
            break;
        case EOpParameters: {
            // Function parameters.
            ASSERT(visit == PreVisit);
            out << "(";
            writeFunctionParameters(node->getSequence());
            out << ")";
            visitChildren = false;
            break;
        }
        case EOpDeclaration: {
            // Variable declaration.
            if (visit == PreVisit)
            {
                const TIntermSequence& sequence = node->getSequence();
                const TIntermTyped* variable = sequence.front()->getAsTyped();
                writeVariableType(variable->getType());
                out << " ";
                mDeclaringVariables = true;
            }
            else if (visit == InVisit)
            {
                out << ", ";
                mDeclaringVariables = true;
            }
            else
            {
                mDeclaringVariables = false;
            }
            break;
        }
        case EOpConstructFloat: writeTriplet(visit, "float(", NULL, ")"); break;
        case EOpConstructVec2: writeTriplet(visit, "vec2(", ", ", ")"); break;
        case EOpConstructVec3: writeTriplet(visit, "vec3(", ", ", ")"); break;
        case EOpConstructVec4: writeTriplet(visit, "vec4(", ", ", ")"); break;
        case EOpConstructBool: writeTriplet(visit, "bool(", NULL, ")"); break;
        case EOpConstructBVec2: writeTriplet(visit, "bvec2(", ", ", ")"); break;
        case EOpConstructBVec3: writeTriplet(visit, "bvec3(", ", ", ")"); break;
        case EOpConstructBVec4: writeTriplet(visit, "bvec4(", ", ", ")"); break;
        case EOpConstructInt: writeTriplet(visit, "int(", NULL, ")"); break;
        case EOpConstructIVec2: writeTriplet(visit, "ivec2(", ", ", ")"); break;
        case EOpConstructIVec3: writeTriplet(visit, "ivec3(", ", ", ")"); break;
        case EOpConstructIVec4: writeTriplet(visit, "ivec4(", ", ", ")"); break;
        case EOpConstructMat2: writeTriplet(visit, "mat2(", ", ", ")"); break;
        case EOpConstructMat3: writeTriplet(visit, "mat3(", ", ", ")"); break;
        case EOpConstructMat4: writeTriplet(visit, "mat4(", ", ", ")"); break;
        case EOpConstructStruct:
            if (visit == PreVisit)
            {
                const TType& type = node->getType();
                ASSERT(type.getBasicType() == EbtStruct);
                out << type.getTypeName() << "(";
            }
            else if (visit == InVisit)
            {
                out << ", ";
            }
            else
            {
                out << ")";
            }
            break;

        case EOpLessThan: preString = "lessThan("; delayedWrite = true; break;
        case EOpGreaterThan: preString = "greaterThan("; delayedWrite = true; break;
        case EOpLessThanEqual: preString = "lessThanEqual("; delayedWrite = true; break;
        case EOpGreaterThanEqual: preString = "greaterThanEqual("; delayedWrite = true; break;
        case EOpVectorEqual: preString = "equal("; delayedWrite = true; break;
        case EOpVectorNotEqual: preString = "notEqual("; delayedWrite = true; break;
        case EOpComma: writeTriplet(visit, NULL, ", ", NULL); break;

        case EOpMod: preString = "mod("; delayedWrite = true; break;
        case EOpPow: preString = "pow("; delayedWrite = true; break;
        case EOpAtan: preString = "atan("; delayedWrite = true; break;
        case EOpMin: preString = "min("; delayedWrite = true; break;
        case EOpMax: preString = "max("; delayedWrite = true; break;
        case EOpClamp: preString = "clamp("; delayedWrite = true; break;
        case EOpMix: preString = "mix("; delayedWrite = true; break;
        case EOpStep: preString = "step("; delayedWrite = true; break;
        case EOpSmoothStep: preString = "smoothstep("; delayedWrite = true; break;

        case EOpDistance: preString = "distance("; delayedWrite = true; break;
        case EOpDot: preString = "dot("; delayedWrite = true; break;
        case EOpCross: preString = "cross("; delayedWrite = true; break;
        case EOpFaceForward: preString = "faceforward("; delayedWrite = true; break;
        case EOpReflect: preString = "reflect("; delayedWrite = true; break;
        case EOpRefract: preString = "refract("; delayedWrite = true; break;
        case EOpMul: preString = "matrixCompMult("; delayedWrite = true; break;

        default: UNREACHABLE(); break;
    }
    if (delayedWrite && visit == PreVisit && node->getUseEmulatedFunction())
        preString = BuiltInFunctionEmulator::GetEmulatedFunctionName(preString);
    if (delayedWrite)
        writeTriplet(visit, preString.c_str(), ", ", ")");
    return visitChildren;
}
Example #29
0
bool TOutputGLSLBase::visitBinary(Visit visit, TIntermBinary* node)
{
    bool visitChildren = true;
    TInfoSinkBase& out = objSink();
    switch (node->getOp())
    {
        case EOpInitialize:
            if (visit == InVisit)
            {
                out << " = ";
                // RHS of initialize is not being declared.
                mDeclaringVariables = false;
            }
            break;
        case EOpAssign: writeTriplet(visit, "(", " = ", ")"); break;
        case EOpAddAssign: writeTriplet(visit, "(", " += ", ")"); break;
        case EOpSubAssign: writeTriplet(visit, "(", " -= ", ")"); break;
        case EOpDivAssign: writeTriplet(visit, "(", " /= ", ")"); break;
        // Notice the fall-through.
        case EOpMulAssign: 
        case EOpVectorTimesMatrixAssign:
        case EOpVectorTimesScalarAssign:
        case EOpMatrixTimesScalarAssign:
        case EOpMatrixTimesMatrixAssign:
            writeTriplet(visit, "(", " *= ", ")");
            break;

        case EOpIndexDirect:
        case EOpIndexIndirect:
            writeTriplet(visit, NULL, "[", "]");
            break;
        case EOpIndexDirectStruct:
            if (visit == InVisit)
            {
                out << ".";
                // TODO(alokp): ASSERT
                out << node->getType().getFieldName();
                visitChildren = false;
            }
            break;
        case EOpVectorSwizzle:
            if (visit == InVisit)
            {
                out << ".";
                TIntermAggregate* rightChild = node->getRight()->getAsAggregate();
                TIntermSequence& sequence = rightChild->getSequence();
                for (TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); ++sit)
                {
                    TIntermConstantUnion* element = (*sit)->getAsConstantUnion();
                    ASSERT(element->getBasicType() == EbtInt);
                    ASSERT(element->getNominalSize() == 1);
                    const ConstantUnion& data = element->getUnionArrayPointer()[0];
                    ASSERT(data.getType() == EbtInt);
                    switch (data.getIConst())
                    {
                        case 0: out << "x"; break;
                        case 1: out << "y"; break;
                        case 2: out << "z"; break;
                        case 3: out << "w"; break;
                        default: UNREACHABLE(); break;
                    }
                }
                visitChildren = false;
            }
            break;

        case EOpAdd: writeTriplet(visit, "(", " + ", ")"); break;
        case EOpSub: writeTriplet(visit, "(", " - ", ")"); break;
        case EOpMul: writeTriplet(visit, "(", " * ", ")"); break;
        case EOpDiv: writeTriplet(visit, "(", " / ", ")"); break;
        case EOpMod: UNIMPLEMENTED(); break;
        case EOpEqual: writeTriplet(visit, "(", " == ", ")"); break;
        case EOpNotEqual: writeTriplet(visit, "(", " != ", ")"); break;
        case EOpLessThan: writeTriplet(visit, "(", " < ", ")"); break;
        case EOpGreaterThan: writeTriplet(visit, "(", " > ", ")"); break;
        case EOpLessThanEqual: writeTriplet(visit, "(", " <= ", ")"); break;
        case EOpGreaterThanEqual: writeTriplet(visit, "(", " >= ", ")"); break;

        // Notice the fall-through.
        case EOpVectorTimesScalar:
        case EOpVectorTimesMatrix:
        case EOpMatrixTimesVector:
        case EOpMatrixTimesScalar:
        case EOpMatrixTimesMatrix:
            writeTriplet(visit, "(", " * ", ")");
            break;

        case EOpLogicalOr: writeTriplet(visit, "(", " || ", ")"); break;
        case EOpLogicalXor: writeTriplet(visit, "(", " ^^ ", ")"); break;
        case EOpLogicalAnd: writeTriplet(visit, "(", " && ", ")"); break;
        default: UNREACHABLE(); break;
    }

    return visitChildren;
}
Example #30
0
//
// Establishes the type of the resultant operation, as well as
// makes the operator the correct one for the operands.
//
// Returns false if operator can't work on operands.
//
bool TIntermBinary::promote(TParseContext& ctx)
{
   TBasicType type = left->getBasicType();

   //
   // Arrays have to be exact matches.
   //
   if ((left->isArray() || right->isArray()) && (left->getType() != right->getType()))
      return false;

   //
   // Base assumption:  just make the type the same as the left
   // operand.  Then only deviations from this need be coded.
   //
   setType(TType(type, left->getPrecision(), EvqTemporary, left->getColsCount(), left->getRowsCount(), left->isMatrix()));

   // The result gets promoted to the highest precision.
   TPrecision higherPrecision = GetHigherPrecision(left->getPrecision(), right->getPrecision());
   getTypePointer()->setPrecision(higherPrecision);


   //
   // Array operations.
   //
   if (left->isArray())
   {

      switch (op)
      {

      //
      // Promote to conditional
      //
      case EOpEqual:
      case EOpNotEqual:
         setType(TType(EbtBool, EbpUndefined));
         break;

         //
         // Set array information.
         //
      case EOpAssign:
         getType().setArraySize(left->getType().getArraySize());
         getType().setArrayInformationType(left->getType().getArrayInformationType());
         break;

      default:
         return false;
      }

      return true;
   }

   //
   // All scalars.  Code after this test assumes this case is removed!
   //
   if (left->isScalar() && right->isScalar())
   {

      switch (op)
      {

      //
      // Promote to conditional
      //
      case EOpEqual:
      case EOpNotEqual:
      case EOpLessThan:
      case EOpGreaterThan:
      case EOpLessThanEqual:
      case EOpGreaterThanEqual:
         setType(TType(EbtBool, EbpUndefined));
         break;

         //
         // And and Or operate on conditionals
         //
      case EOpLogicalAnd:
      case EOpLogicalOr:
         if (left->getBasicType() != EbtBool || right->getBasicType() != EbtBool)
            return false;
         setType(TType(EbtBool, EbpUndefined));
         break;

         //
         // Check for integer only operands.
         //
      case EOpRightShift:
      case EOpLeftShift:
      case EOpAnd:
      case EOpInclusiveOr:
      case EOpExclusiveOr:
         if (left->getBasicType() != EbtInt || right->getBasicType() != EbtInt)
            return false;
         break;
      case EOpModAssign:
      case EOpAndAssign:
      case EOpInclusiveOrAssign:
      case EOpExclusiveOrAssign:
      case EOpLeftShiftAssign:
      case EOpRightShiftAssign:
         if (left->getBasicType() != EbtInt || right->getBasicType() != EbtInt)
            return false;
         // fall through

         //
         // Everything else should have matching types
         //
      default:
         if (left->getBasicType() != right->getBasicType() ||
             left->isMatrix()     != right->isMatrix())
            return false;
      }

      return true;
   }

   // this is not an allowed promotion : float3x4 * float4x3
   if (left->getRowsCount() != right->getRowsCount() && left->getColsCount() != right->getColsCount() &&
       (left->getRowsCount() > right->getRowsCount()) != (left->getColsCount() > right->getColsCount()))
       return false;

   //determine if this is an assignment
   bool assignment = ( op >= EOpAssign && op <= EOpRightShiftAssign) ? true : false;

   // find size of the resulting value
   int cols = 0;
   int rows = 0;

   if (!left->isScalar() && !right->isScalar()) // no scalars, so downcast of the larger type
   {
       cols = std::min(left->getColsCount(), right->getColsCount());
       rows = std::min(left->getRowsCount(), right->getRowsCount());
   }
   else
   {
       cols = std::max(left->getColsCount(), right->getColsCount());
       rows = std::max(left->getRowsCount(), right->getRowsCount());
   }
   assert(cols > 0);
   assert(rows > 0);

   //
   // Downcast needed ?
   //
   if ( left->getColsCount() > cols || left->getRowsCount() > rows)
   {
       if (assignment)
           return false; //can't promote the destination

       //down convert left to match right
       TOperator convert = EOpNull;
       if (left->getTypePointer()->isMatrix())
       {
           convert = getMatrixConstructOp(*right, ctx);
		   if (convert == EOpNull)
			   return false;
       }
       else if (left->getTypePointer()->isVector())
       {
           switch (right->getTypePointer()->getBasicType())
           {
           case EbtBool:  convert = TOperator( EOpConstructBVec2 + rows - 2); break;
           case EbtInt:   convert = TOperator( EOpConstructIVec2 + rows - 2); break;
           case EbtFloat: convert = TOperator( EOpConstructVec2 +  rows - 2); break;
           default: break;
           }
       }
       else
       {
           assert(0); //size 1 case should have been handled
       }
       TIntermAggregate *node = new TIntermAggregate(convert);
       node->setLine(left->getLine());
       node->setType(TType(left->getBasicType(), left->getPrecision(), EvqTemporary,
                           right->getColsCount(), right->getRowsCount(), left->isMatrix()));
       node->getNodes().push_back(left);
       left = node;
       //now reset this node's type
       setType(TType(left->getBasicType(), left->getPrecision(), EvqTemporary,
                     right->getColsCount(), right->getRowsCount(), left->isMatrix()));
   }
   else if ( right->getColsCount() > cols || right->getRowsCount() > rows)
   {
       //down convert right to match left
       TOperator convert = EOpNull;
       if (right->getTypePointer()->isMatrix())
       {
           convert = getMatrixConstructOp(*left, ctx);
		   if (convert == EOpNull)
			   return false;
       }
       else if (right->getTypePointer()->isVector())
       {
           switch (left->getTypePointer()->getBasicType())
           {
           case EbtBool:  convert = TOperator( EOpConstructBVec2 + rows - 2); break;
           case EbtInt:   convert = TOperator( EOpConstructIVec2 + rows - 2); break;
           case EbtFloat: convert = TOperator( EOpConstructVec2  + rows - 2); break;
           default: break;
           }
       }
       else
       {
           assert(0); //size 1 case should have been handled
       }
       TIntermAggregate *node = new TIntermAggregate(convert);
       node->setLine(right->getLine());
       node->setType(TType(right->getBasicType(), right->getPrecision(), EvqTemporary,
                           left->getColsCount(), left->getRowsCount(), right->isMatrix()));
       node->getNodes().push_back(right);
       right = node;
   }

   //
   // Can these two operands be combined?
   //
   switch (op)
   {
   case EOpMul:
      if (!left->isMatrix() && right->isMatrix())
      {
         if (left->isVector())
            op = EOpVectorTimesMatrix;
         else
         {
            op = EOpMatrixTimesScalar;
            setType(TType(type, higherPrecision, EvqTemporary, cols, rows, true));
         }
      }
      else if (left->isMatrix() && !right->isMatrix())
      {
         if (right->isVector())
         {
            op = EOpMatrixTimesVector;
            setType(TType(type, higherPrecision, EvqTemporary, cols, rows, false));
         }
         else
         {
            op = EOpMatrixTimesScalar;
         }
      }
      else if (left->isMatrix() && right->isMatrix())
      {
         op = EOpMatrixTimesMatrix;
      }
      else if (!left->isMatrix() && !right->isMatrix())
      {
         if (left->isVector() && right->isVector())
         {
            // leave as component product
         }
         else if (left->isVector() || right->isVector())
         {
            op = EOpVectorTimesScalar;
            setType(TType(type, higherPrecision, EvqTemporary, cols, rows, false));
         }
      }
      else
      {
         ctx.infoSink.info.message(EPrefixInternalError, "Missing elses", getLine());
         return false;
      }
      break;
   case EOpMulAssign:
      if (!left->isMatrix() && right->isMatrix())
      {
         if (left->isVector())
            op = EOpVectorTimesMatrixAssign;
         else
         {
            return false;
         }
      }
      else if (left->isMatrix() && !right->isMatrix())
      {
         if (right->isVector())
         {
            return false;
         }
         else
         {
            op = EOpMatrixTimesScalarAssign;
         }
      }
      else if (left->isMatrix() && right->isMatrix())
      {
         op = EOpMatrixTimesMatrixAssign;
      }
      else if (!left->isMatrix() && !right->isMatrix())
      {
         if (left->isVector() && right->isVector())
         {
            // leave as component product
         }
         else if (left->isVector() || right->isVector())
         {
            if (! left->isVector())
               return false;
            op = EOpVectorTimesScalarAssign;
            setType(TType(type, higherPrecision, EvqTemporary, cols, rows, false));
         }
      }
      else
      {
         ctx.infoSink.info.message(EPrefixInternalError, "Missing elses", getLine());
         return false;
      }
      break;
   case EOpAssign:
      if ( left->getColsCount() != right->getColsCount() ||
           left->getRowsCount() != right->getRowsCount())
      {
         //right needs to be forced to match left
         TOperator convert = EOpNull;

         if (left->isMatrix() )
         {
             convert = getMatrixConstructOp(*left, ctx);
			 if (convert == EOpNull)
				 return false;
         }
         else if (left->isVector() )
         {
            switch (left->getTypePointer()->getBasicType())
            {
            case EbtBool:  convert = TOperator( EOpConstructBVec2 + left->getRowsCount() - 2); break;
            case EbtInt:   convert = TOperator( EOpConstructIVec2 + left->getRowsCount() - 2); break;
            case EbtFloat: convert = TOperator( EOpConstructVec2  + left->getRowsCount() - 2); break;
            default: break;
            }
         }
         else
         {
            switch (left->getTypePointer()->getBasicType())
            {
            case EbtBool:  convert = EOpConstructBool; break;
            case EbtInt:   convert = EOpConstructInt; break;
            case EbtFloat: convert = EOpConstructFloat; break;
            default: break;
            }
         }

         assert( convert != EOpNull);
         TIntermAggregate *node = new TIntermAggregate(convert);
         node->setLine(right->getLine());
         node->setType(TType(left->getBasicType(), left->getPrecision(), right->getQualifier() == EvqConst ? EvqConst : EvqTemporary,
                             left->getColsCount(), left->getRowsCount(), left->isMatrix()));
         node->getNodes().push_back(right);
         right = node;
         cols = right->getColsCount();
         rows = right->getRowsCount();
      }
      // fall through
   case EOpMod:
   case EOpAdd:
   case EOpSub:
   case EOpDiv:
   case EOpAddAssign:
   case EOpSubAssign:
   case EOpDivAssign:
   case EOpModAssign:
      if (op == EOpMod)
		  type = EbtFloat;
      if ((left->isMatrix() && right->isVector()) ||
          (left->isVector() && right->isMatrix()) ||
          left->getBasicType() != right->getBasicType())
         return false;
      setType(TType(type, left->getPrecision(), EvqTemporary, cols, rows, left->isMatrix() || right->isMatrix()));
      break;

   case EOpEqual:
   case EOpNotEqual:
   case EOpLessThan:
   case EOpGreaterThan:
   case EOpLessThanEqual:
   case EOpGreaterThanEqual:
      if ((left->isMatrix() && right->isVector()) ||
          (left->isVector() && right->isMatrix()) ||
          left->getBasicType() != right->getBasicType())
         return false;
      setType(TType(EbtBool, higherPrecision, EvqTemporary, cols, rows, false));
      break;

   default:
      return false;
   }

   //
   // One more check for assignment.  The Resulting type has to match the left operand.
   //
   switch (op)
   {
   case EOpAssign:
   case EOpAddAssign:
   case EOpSubAssign:
   case EOpMulAssign:
   case EOpDivAssign:
   case EOpModAssign:
   case EOpAndAssign:
   case EOpInclusiveOrAssign:
   case EOpExclusiveOrAssign:
   case EOpLeftShiftAssign:
   case EOpRightShiftAssign:
      if (getType() != left->getType())
         return false;
      break;
   default:
      break;
   }

   return true;
}