Example #1
0
bool CoreSolver::NotifyClass::eqNotifyTriggerTermEquality(TheoryId tag, TNode t1, TNode t2, bool value) {
  Debug("bitvector::core") << "NotifyClass::eqNotifyTriggerTermMerge(" << t1 << ", " << t2 << ")" << std::endl;
  if (value) {
    return d_solver.storePropagation(t1.eqNode(t2));
  } else {
    return d_solver.storePropagation(t1.eqNode(t2).notNode());
  }
}
Example #2
0
/** assert equality */
void TheoryModel::assertEquality(TNode a, TNode b, bool polarity ){
  if (a == b && polarity) {
    return;
  }
  Trace("model-builder-assertions") << "(assert " << (polarity ? "(= " : "(not (= ") << a << " " << b << (polarity ? "));" : ")));") << endl;
  d_equalityEngine.assertEquality( a.eqNode(b), polarity, Node::null() );
  Assert(d_equalityEngine.consistent());
}
Example #3
0
void TheoryUF::conflict(TNode a, TNode b) {
  if (a.getKind() == kind::CONST_BOOLEAN) {
    d_conflictNode = explain(a.iffNode(b));
  } else {
    d_conflictNode = explain(a.eqNode(b));
  }
  d_out->conflict(d_conflictNode);
  d_conflict = true;
}
Example #4
0
void TheoryUF::conflict(TNode a, TNode b) {
  //TODO: create EqProof at this level if d_proofEnabled = true
  if (a.getKind() == kind::CONST_BOOLEAN) {
    d_conflictNode = explain(a.iffNode(b));
  } else {
    d_conflictNode = explain(a.eqNode(b));
  }
  d_out->conflict(d_conflictNode);
  d_conflict = true;
}
Example #5
0
bool SharedTermsDatabase::propagateSharedEquality(TheoryId theory, TNode a, TNode b, bool value)
{
  Debug("shared-terms-database") << "SharedTermsDatabase::newEquality(" << theory << "," << a << "," << b << ", " << (value ? "true" : "false") << ")" << endl;

  if (d_inConflict) {
    return false;
  }

  // Propagate away
  Node equality = a.eqNode(b);
  if (value) {
    d_theoryEngine->assertToTheory(equality, equality, theory, THEORY_BUILTIN);
  } else {
    d_theoryEngine->assertToTheory(equality.notNode(), equality.notNode(), theory, THEORY_BUILTIN);
  }

  // As you were
  return true;
}
Example #6
0
void TheoryUFTim::registerTerm(TNode n) {

  Debug("uf") << "uf: begin registerTerm(" << n << ")" << std::endl;

  d_registered.push_back(n);

  ECData* ecN;

  if(n.getAttribute(ECAttr(), ecN)) {
    /* registerTerm(n) is only called when a node has not been seen in the
     * current context.  ECAttr() is not a context-dependent attribute.
     * When n.hasAttribute(ECAttr(),...) is true on a registerTerm(n) call,
     * then it must be the case that this attribute was created in a previous
     * and no longer valid context. Because of this we have to reregister the
     * predecessors lists.
     * Also we do not have to worry about duplicates because all of the Link*
     * setup before are removed when the context n was setup in was popped out
     * of. All we are going to do here are sanity checks.
     */

    /*
     * Consider the following chain of events:
     * 1) registerTerm(n) is called on node n where n : f(m) in context level X,
     * 2) A new ECData is created on the heap, ecN,
     * 3) n is added to the predessecor list of m in context level X,
     * 4) We pop out of X,
     * 5) n is removed from the predessecor list of m because this is context
     *    dependent, the Link* will be destroyed and pointers to the Link
     *    structs in the ECData objects will be updated.
     * 6) registerTerm(n) is called on node n in context level Y,
     * 7) If n.hasAttribute(ECAttr(), &ecN), then ecN is still around,
     *    but the predecessor list is not
     *
     * The above assumes that the code is working correctly.
     */
    Assert(ecN->getFirst() == NULL,
           "Equivalence class data exists for the node being registered.  "
           "Expected getFirst() == NULL.  "
           "This data is either already in use or was not properly maintained "
           "during backtracking");
    /*Assert(ecN->getLast() == NULL,
           "Equivalence class data exists for the node being registered.  "
           "Expected getLast() == NULL.  "
           "This data is either already in use or was not properly maintained "
           "during backtracking.");*/
    Assert(ecN->isClassRep(),
           "Equivalence class data exists for the node being registered.  "
           "Expected isClassRep() to be true.  "
           "This data is either already in use or was not properly maintained "
           "during backtracking");
    Assert(ecN->getWatchListSize() == 0,
           "Equivalence class data exists for the node being registered.  "
           "Expected getWatchListSize() == 0.  "
           "This data is either already in use or was not properly maintained "
           "during backtracking");
  } else {
    //The attribute does not exist, so it is created and set
    ecN = new (true) ECData(getContext(), n);
    n.setAttribute(ECAttr(), ecN);
  }

  /* If the node is an APPLY_UF, we need to add it to the predecessor list
   * of its children.
   */
  if(n.getKind() == APPLY_UF) {
    TNode::iterator cIter = n.begin();

    for(; cIter != n.end(); ++cIter) {
      TNode child = *cIter;

      /* Because this can be called after nodes have been merged, we need
       * to lookup the representative in the UnionFind datastructure.
       */
      ECData* ecChild = ccFind(child.getAttribute(ECAttr()));

      /* Because this can be called after nodes have been merged we may need
       * to be merged with other predecessors of the equivalence class.
       */
      for(Link* Px = ecChild->getFirst(); Px != NULL; Px = Px->d_next ) {
        if(equiv(n, Px->d_data)) {
          Node pend = n.eqNode(Px->d_data);
          d_pending.push_back(pend);
        }
      }

      ecChild->addPredecessor(n);
    }
  }
  Debug("uf") << "uf: end registerTerm(" << n << ")" << std::endl;

}
Example #7
0
void TheoryUF::ppStaticLearn(TNode n, NodeBuilder<>& learned) {
  //TimerStat::CodeTimer codeTimer(d_staticLearningTimer);

  vector<TNode> workList;
  workList.push_back(n);
  __gnu_cxx::hash_set<TNode, TNodeHashFunction> processed;

  while(!workList.empty()) {
    n = workList.back();

    if(n.getKind() == kind::FORALL || n.getKind() == kind::EXISTS) {
      // unsafe to go under quantifiers; we might pull bound vars out of scope!
      processed.insert(n);
      workList.pop_back();
      continue;
    }

    bool unprocessedChildren = false;
    for(TNode::iterator i = n.begin(), iend = n.end(); i != iend; ++i) {
      if(processed.find(*i) == processed.end()) {
        // unprocessed child
        workList.push_back(*i);
        unprocessedChildren = true;
      }
    }

    if(unprocessedChildren) {
      continue;
    }

    workList.pop_back();
    // has node n been processed in the meantime ?
    if(processed.find(n) != processed.end()) {
      continue;
    }
    processed.insert(n);

    // == DIAMONDS ==

    Debug("diamonds") << "===================== looking at" << endl
                      << n << endl;

    // binary OR of binary ANDs of EQUALities
    if(n.getKind() == kind::OR && n.getNumChildren() == 2 &&
       n[0].getKind() == kind::AND && n[0].getNumChildren() == 2 &&
       n[1].getKind() == kind::AND && n[1].getNumChildren() == 2 &&
       (n[0][0].getKind() == kind::EQUAL || n[0][0].getKind() == kind::IFF) &&
       (n[0][1].getKind() == kind::EQUAL || n[0][1].getKind() == kind::IFF) &&
       (n[1][0].getKind() == kind::EQUAL || n[1][0].getKind() == kind::IFF) &&
       (n[1][1].getKind() == kind::EQUAL || n[1][1].getKind() == kind::IFF)) {
      // now we have (a = b && c = d) || (e = f && g = h)

      Debug("diamonds") << "has form of a diamond!" << endl;

      TNode
        a = n[0][0][0], b = n[0][0][1],
        c = n[0][1][0], d = n[0][1][1],
        e = n[1][0][0], f = n[1][0][1],
        g = n[1][1][0], h = n[1][1][1];

      // test that one of {a, b} = one of {c, d}, and make "b" the
      // shared node (i.e. put in the form (a = b && b = d))
      // note we don't actually care about the shared ones, so the
      // "swaps" below are one-sided, ignoring b and c
      if(a == c) {
        a = b;
      } else if(a == d) {
        a = b;
        d = c;
      } else if(b == c) {
        // nothing to do
      } else if(b == d) {
        d = c;
      } else {
        // condition not satisfied
        Debug("diamonds") << "+ A fails" << endl;
        continue;
      }

      Debug("diamonds") << "+ A holds" << endl;

      // same: one of {e, f} = one of {g, h}, and make "f" the
      // shared node (i.e. put in the form (e = f && f = h))
      if(e == g) {
        e = f;
      } else if(e == h) {
        e = f;
        h = g;
      } else if(f == g) {
        // nothing to do
      } else if(f == h) {
        h = g;
      } else {
        // condition not satisfied
        Debug("diamonds") << "+ B fails" << endl;
        continue;
      }

      Debug("diamonds") << "+ B holds" << endl;

      // now we have (a = b && b = d) || (e = f && f = h)
      // test that {a, d} == {e, h}
      if( (a == e && d == h) ||
          (a == h && d == e) ) {
        // learn: n implies a == d
        Debug("diamonds") << "+ C holds" << endl;
        Node newEquality = a.getType().isBoolean() ? a.iffNode(d) : a.eqNode(d);
        Debug("diamonds") << "  ==> " << newEquality << endl;
        learned << n.impNode(newEquality);
      } else {
        Debug("diamonds") << "+ C fails" << endl;
      }
    }
  }

  if(options::ufSymmetryBreaker()) {
    d_symb.assertFormula(n);
  }
}/* TheoryUF::ppStaticLearn() */
Example #8
0
void UnconstrainedSimplifier::processUnconstrained()
{
  TNodeSet::iterator it = d_unconstrained.begin(), iend = d_unconstrained.end();
  vector<TNode> workList;
  for ( ; it != iend; ++it) {
    workList.push_back(*it);
  }
  Node currentSub;
  TNode parent;
  bool swap;
  bool isSigned;
  bool strict;
  vector<TNode> delayQueueLeft;
  vector<Node> delayQueueRight;

  TNode current = workList.back();
  workList.pop_back();
  for (;;) {
    Assert(d_visitedOnce.find(current) != d_visitedOnce.end());
    parent = d_visitedOnce[current];
    if (!parent.isNull()) {
      swap = isSigned = strict = false;
      switch (parent.getKind()) {

        // If-then-else operator - any two unconstrained children makes the parent unconstrained
        case kind::ITE: {
          Assert(parent[0] == current || parent[1] == current || parent[2] == current);
          bool uCond = parent[0] == current || d_unconstrained.find(parent[0]) != d_unconstrained.end();
          bool uThen = parent[1] == current || d_unconstrained.find(parent[1]) != d_unconstrained.end();
          bool uElse = parent[2] == current || d_unconstrained.find(parent[2]) != d_unconstrained.end();
          if ((uCond && uThen) || (uCond && uElse) || (uThen && uElse)) {
            if (d_unconstrained.find(parent) == d_unconstrained.end() &&
                !d_substitutions.hasSubstitution(parent)) {
              ++d_numUnconstrainedElim;
              if (uThen) {
                if (parent[1] != current) {
                  if (parent[1].isVar()) {
                    currentSub = parent[1];
                  }
                  else {
                    Assert(d_substitutions.hasSubstitution(parent[1]));
                    currentSub = d_substitutions.apply(parent[1]);
                  }
                }
                else if (currentSub.isNull()) {
                  currentSub = current;
                }
              }
              else if (parent[2] != current) {
                if (parent[2].isVar()) {
                  currentSub = parent[2];
                }
                else {
                  Assert(d_substitutions.hasSubstitution(parent[2]));
                  currentSub = d_substitutions.apply(parent[2]);
                }
              }
              else if (currentSub.isNull()) {
                currentSub = current;
              }
              current = parent;
            }
            else {
              currentSub = Node();
            }
          }
          else if (uCond) {
            Cardinality card = parent.getType().getCardinality();
            if (card.isFinite() && !card.isLargeFinite() && card.getFiniteCardinality() == 2) {
              // Special case: condition is unconstrained, then and else are different, and total cardinality of the type is 2, then the result
              // is unconstrained
              Node test;
              if (parent.getType().isBoolean()) {
                test = Rewriter::rewrite(parent[1].iffNode(parent[2]));
              }
              else {
                test = Rewriter::rewrite(parent[1].eqNode(parent[2]));
              }
              if (test == NodeManager::currentNM()->mkConst<bool>(false)) {
                ++d_numUnconstrainedElim;
                if (currentSub.isNull()) {
                  currentSub = current;
                }
                currentSub = newUnconstrainedVar(parent.getType(), currentSub);
                current = parent;
              }
            }
          }
          break;
        }

        // Comparisons that return a different type - assuming domains are larger than 1, any
        // unconstrained child makes parent unconstrained as well
        case kind::EQUAL:
          if (parent[0].getType() != parent[1].getType()) {
            TNode other = (parent[0] == current) ? parent[1] : parent[0];
            if (current.getType().isSubtypeOf(other.getType())) {
              break;
            }
          }
          if( parent[0].getType().isDatatype() ){
            TypeNode tn = parent[0].getType();
            const Datatype& dt = ((DatatypeType)(tn).toType()).getDatatype();
            if( dt.isRecursiveSingleton( tn.toType() ) ){
              //domain size may be 1
              break;
            }
          }
        case kind::BITVECTOR_COMP:
        case kind::LT:
        case kind::LEQ:
        case kind::GT:
        case kind::GEQ:
        {
          if (d_unconstrained.find(parent) == d_unconstrained.end() &&
              !d_substitutions.hasSubstitution(parent)) {
            ++d_numUnconstrainedElim;
            Assert(parent[0] != parent[1] &&
                   (parent[0] == current || parent[1] == current));
            if (currentSub.isNull()) {
              currentSub = current;
            }
            currentSub = newUnconstrainedVar(parent.getType(), currentSub);
            current = parent;
          }
          else {
            currentSub = Node();
          }
          break;
        }

        // Unary operators that propagate unconstrainedness
        case kind::NOT:
        case kind::BITVECTOR_NOT:
        case kind::BITVECTOR_NEG:
        case kind::UMINUS:
          ++d_numUnconstrainedElim;
          Assert(parent[0] == current);
          if (currentSub.isNull()) {
            currentSub = current;
          }
          current = parent;
          break;

        // Unary operators that propagate unconstrainedness and return a different type
        case kind::BITVECTOR_EXTRACT:
          ++d_numUnconstrainedElim;
          Assert(parent[0] == current);
          if (currentSub.isNull()) {
            currentSub = current;
          }
          currentSub = newUnconstrainedVar(parent.getType(), currentSub);
          current = parent;
          break;

        // Operators returning same type requiring all children to be unconstrained
        case kind::AND:
        case kind::OR:
        case kind::IMPLIES:
        case kind::BITVECTOR_AND:
        case kind::BITVECTOR_OR:
        case kind::BITVECTOR_NAND:
        case kind::BITVECTOR_NOR:
        {
          bool allUnconstrained = true;
          for(TNode::iterator child_it = parent.begin(); child_it != parent.end(); ++child_it) {
            if (d_unconstrained.find(*child_it) == d_unconstrained.end()) {
              allUnconstrained = false;
              break;
            }
          }
          if (allUnconstrained) {
            if (d_unconstrained.find(parent) == d_unconstrained.end() &&
                !d_substitutions.hasSubstitution(parent)) {
              ++d_numUnconstrainedElim;
              if (currentSub.isNull()) {
                currentSub = current;
              }
              current = parent;
            }
            else {
              currentSub = Node();
            }
          }
        }
        break;

        // Require all children to be unconstrained and different
        case kind::BITVECTOR_SHL:
        case kind::BITVECTOR_LSHR:
        case kind::BITVECTOR_ASHR:
        case kind::BITVECTOR_UDIV_TOTAL:
        case kind::BITVECTOR_UREM_TOTAL:
        case kind::BITVECTOR_SDIV:
        case kind::BITVECTOR_SREM:
        case kind::BITVECTOR_SMOD: {
          bool allUnconstrained = true;
          bool allDifferent = true;
          for(TNode::iterator child_it = parent.begin(); child_it != parent.end(); ++child_it) {
            if (d_unconstrained.find(*child_it) == d_unconstrained.end()) {
              allUnconstrained = false;
              break;
            }
            for(TNode::iterator child_it2 = child_it + 1; child_it2 != parent.end(); ++child_it2) {
              if (*child_it == *child_it2) {
                allDifferent = false;
                break;
              }
            }
          }
          if (allUnconstrained && allDifferent) {
            if (d_unconstrained.find(parent) == d_unconstrained.end() &&
                !d_substitutions.hasSubstitution(parent)) {
              ++d_numUnconstrainedElim;
              if (currentSub.isNull()) {
                currentSub = current;
              }
              current = parent;
            }
            else {
              currentSub = Node();
            }
          }
          break;
        }

        // Requires all children to be unconstrained and different, and returns a different type
        case kind::BITVECTOR_CONCAT:
        {
          bool allUnconstrained = true;
          bool allDifferent = true;
          for(TNode::iterator child_it = parent.begin(); child_it != parent.end(); ++child_it) {
            if (d_unconstrained.find(*child_it) == d_unconstrained.end()) {
              allUnconstrained = false;
              break;
            }
            for(TNode::iterator child_it2 = child_it + 1; child_it2 != parent.end(); ++child_it2) {
              if (*child_it == *child_it2) {
                allDifferent = false;
                break;
              }
            }
          }
          if (allUnconstrained && allDifferent) {
            if (d_unconstrained.find(parent) == d_unconstrained.end() &&
                !d_substitutions.hasSubstitution(parent)) {
              ++d_numUnconstrainedElim;
              if (currentSub.isNull()) {
                currentSub = current;
              }
              currentSub = newUnconstrainedVar(parent.getType(), currentSub);
              current = parent;
            }
            else {
              currentSub = Node();
            }
          }
        }
        break;

        // N-ary operators returning same type requiring at least one child to be unconstrained
        case kind::PLUS:
        case kind::MINUS:
          if (current.getType().isInteger() &&
              !parent.getType().isInteger()) {
            break;
          }
        case kind::IFF:
        case kind::XOR:
        case kind::BITVECTOR_XOR:
        case kind::BITVECTOR_XNOR:
        case kind::BITVECTOR_PLUS:
        case kind::BITVECTOR_SUB:
          if (d_unconstrained.find(parent) == d_unconstrained.end() &&
              !d_substitutions.hasSubstitution(parent)) {
            ++d_numUnconstrainedElim;
            if (currentSub.isNull()) {
              currentSub = current;
            }
            current = parent;
          }
          else {
            currentSub = Node();
          }
          break;

        // Multiplication/division: must be non-integer and other operand must be non-zero
        case kind::MULT: {
        case kind::DIVISION:
          Assert(parent.getNumChildren() == 2);
          TNode other;
          if (parent[0] == current) {
            other = parent[1];
          }
          else {
            Assert(parent[1] == current);
            other = parent[0];
          }
          if (d_unconstrained.find(other) != d_unconstrained.end()) {
            if (d_unconstrained.find(parent) == d_unconstrained.end() &&
                !d_substitutions.hasSubstitution(parent)) {
              if (current.getType().isInteger() && other.getType().isInteger()) {
                Assert(parent.getKind() == kind::DIVISION || parent.getType().isInteger());
                if (parent.getKind() == kind::DIVISION) {
                  break;
                }
              }
              ++d_numUnconstrainedElim;
              if (currentSub.isNull()) {
                currentSub = current;
              }
              current = parent;
            }
            else {
              currentSub = Node();
            }
          }
          else {
            // if only the denominator of a division is unconstrained, can't set it to 0 so the result is not unconstrained
            if (parent.getKind() == kind::DIVISION && current == parent[1]) {
              break;
            }
            NodeManager* nm = NodeManager::currentNM();
            // if we are an integer, the only way we are unconstrained is if we are a MULT by -1
            if (current.getType().isInteger()) {
              // div/mult by 1 should have been simplified
              Assert(other != nm->mkConst<Rational>(1));
              if (other == nm->mkConst<Rational>(-1)) {
                // div by -1 should have been simplified
                Assert(parent.getKind() == kind::MULT);
                Assert(parent.getType().isInteger());
              }
              else {
                break;
              }
            }
            else {
              // TODO: could build ITE here
              Node test = other.eqNode(nm->mkConst<Rational>(0));
              if (Rewriter::rewrite(test) != nm->mkConst<bool>(false)) {
                break;
              }
            }
            ++d_numUnconstrainedElim;
            if (currentSub.isNull()) {
              currentSub = current;
            }
            current = parent;
          }
          break;
        }

        // Bitvector MULT - current must only appear once in the children:
        // all other children must be unconstrained or odd
        case kind::BITVECTOR_MULT:
        {
          bool found = false;
          bool done = false;
          for(TNode::iterator child_it = parent.begin(); child_it != parent.end(); ++child_it) {
            if ((*child_it) == current) {
              if (found) {
                done = true;
                break;
              }
              found = true;
              continue;
            }
            else if (d_unconstrained.find(*child_it) != d_unconstrained.end()) {
              continue;
            }
            else {
              NodeManager* nm = NodeManager::currentNM();
              Node extractOp = nm->mkConst<BitVectorExtract>(BitVectorExtract(0,0));
              vector<Node> children;
              children.push_back(*child_it);
              Node test = nm->mkNode(extractOp, children);
              BitVector one(1,unsigned(1));
              test = test.eqNode(nm->mkConst<BitVector>(one));
              if (Rewriter::rewrite(test) != nm->mkConst<bool>(true)) {
                done = true;
                break;
              }
            }
          }
          if (done) {
            break;
          }
          if (d_unconstrained.find(parent) == d_unconstrained.end() &&
              !d_substitutions.hasSubstitution(parent)) {
            ++d_numUnconstrainedElim;
            if (currentSub.isNull()) {
              currentSub = current;
            }
            current = parent;
          }
          else {
            currentSub = Node();
          }
          break;
        }

        // Uninterpreted function - if domain is infinite, no quantifiers are used, and any child is unconstrained, result is unconstrained
        case kind::APPLY_UF:
          if (d_logicInfo.isQuantified() || !current.getType().getCardinality().isInfinite()) {
            break;
          }
          if (d_unconstrained.find(parent) == d_unconstrained.end() &&
              !d_substitutions.hasSubstitution(parent)) {
            ++d_numUnconstrainedElim;
            if (currentSub.isNull()) {
              currentSub = current;
            }
            if (parent.getType() != current.getType()) {
              currentSub = newUnconstrainedVar(parent.getType(), currentSub);
            }
            current = parent;
          }
          else {
            currentSub = Node();
          }
          break;

        // Array select - if array is unconstrained, so is result
        case kind::SELECT:
          if (parent[0] == current) {
            ++d_numUnconstrainedElim;
            Assert(current.getType().isArray());
            if (currentSub.isNull()) {
              currentSub = current;
            }
            currentSub = newUnconstrainedVar(current.getType().getArrayConstituentType(), currentSub);
            current = parent;
          }
          break;

        // Array store - if both store and value are unconstrained, so is resulting store
        case kind::STORE:
          if (((parent[0] == current &&
                d_unconstrained.find(parent[2]) != d_unconstrained.end()) ||
               (parent[2] == current &&
                d_unconstrained.find(parent[0]) != d_unconstrained.end()))) {
            if (d_unconstrained.find(parent) == d_unconstrained.end() &&
                !d_substitutions.hasSubstitution(parent)) {
              ++d_numUnconstrainedElim;
              if (parent[0] != current) {
                if (parent[0].isVar()) {
                  currentSub = parent[0];
                }
                else {
                  Assert(d_substitutions.hasSubstitution(parent[0]));
                  currentSub = d_substitutions.apply(parent[0]);
                }
              }
              else if (currentSub.isNull()) {
                currentSub = current;
              }
              current = parent;
            }
            else {
              currentSub = Node();
            }
          }
          break;

        // Bit-vector comparisons: replace with new Boolean variable, but have
        // to also conjoin with a side condition as there is always one case
        // when the comparison is forced to be false
        case kind::BITVECTOR_ULT:
        case kind::BITVECTOR_UGE:
        case kind::BITVECTOR_UGT:
        case kind::BITVECTOR_ULE:
        case kind::BITVECTOR_SLT:
        case kind::BITVECTOR_SGE:
        case kind::BITVECTOR_SGT:
        case kind::BITVECTOR_SLE: {
          // Tuples over (signed, swap, strict).
          switch (parent.getKind()) {
            case kind::BITVECTOR_UGE:
              break;
            case kind::BITVECTOR_ULT:
              strict = true;
              break;
            case kind::BITVECTOR_ULE:
              swap = true;
              break;
            case kind::BITVECTOR_UGT:
              swap = true;
              strict = true;
              break;
            case kind::BITVECTOR_SGE:
              isSigned = true;
              break;
            case kind::BITVECTOR_SLT:
              isSigned = true;
              strict = true;
              break;
            case kind::BITVECTOR_SLE:
              isSigned = true;
              swap = true;
              break;
            case kind::BITVECTOR_SGT:
              isSigned = true;
              swap = true;
              strict = true;
              break;
            default:
              Unreachable();
          }
          TNode other;
          bool left = false;
          if (parent[0] == current) {
            other = parent[1];
            left = true;
          } else {
            Assert(parent[1] == current);
            other = parent[0];
          }
          if (d_unconstrained.find(other) != d_unconstrained.end()) {
            if (d_unconstrained.find(parent) == d_unconstrained.end() &&
                !d_substitutions.hasSubstitution(parent)) {
              ++d_numUnconstrainedElim;
              if (currentSub.isNull()) {
                currentSub = current;
              }
              currentSub = newUnconstrainedVar(parent.getType(), currentSub);
              current = parent;
            } else {
              currentSub = Node();
            }
          } else {
            unsigned size = current.getType().getBitVectorSize();
            BitVector bv =
                isSigned ? BitVector(size, Integer(1).multiplyByPow2(size - 1))
                         : BitVector(size, unsigned(0));
            if (swap == left) {
              bv = ~bv;
            }
            if (currentSub.isNull()) {
              currentSub = current;
            }
            currentSub = newUnconstrainedVar(parent.getType(), currentSub);
            current = parent;
            NodeManager* nm = NodeManager::currentNM();
            Node test =
                Rewriter::rewrite(other.eqNode(nm->mkConst<BitVector>(bv)));
            if (test == nm->mkConst<bool>(false)) {
              break;
            }
            if (strict) {
              currentSub = currentSub.andNode(test.notNode());
            } else {
              currentSub = currentSub.orNode(test);
            }
            // Delay adding this substitution - see comment at end of function
            delayQueueLeft.push_back(current);
            delayQueueRight.push_back(currentSub);
            currentSub = Node();
            parent = TNode();
          }
          break;
        }

        // Do nothing 
        case kind::BITVECTOR_SIGN_EXTEND:
        case kind::BITVECTOR_ZERO_EXTEND:
        case kind::BITVECTOR_REPEAT:
        case kind::BITVECTOR_ROTATE_LEFT:
        case kind::BITVECTOR_ROTATE_RIGHT:

        default:
          break;
      }
      if (current == parent && d_visited[parent] == 1) {
        d_unconstrained.insert(parent);
        continue;
      }
    }
    if (!currentSub.isNull()) {
      Assert(currentSub.isVar());
      d_substitutions.addSubstitution(current, currentSub, false);
    }
    if (workList.empty()) {
      break;
    }
    current = workList.back();
    currentSub = Node();
    workList.pop_back();
  }
  TNode left;
  Node right;
  // All substitutions except those arising from bitvector comparisons are
  // substitutions t -> x where x is a variable.  This allows us to build the
  // substitution very quickly (never invalidating the substitution cache).
  // Bitvector comparisons are more complicated and may require
  // back-substitution and cache-invalidation.  So we do these last.
  while (!delayQueueLeft.empty()) {
    left = delayQueueLeft.back();
    if (!d_substitutions.hasSubstitution(left)) {
      right = d_substitutions.apply(delayQueueRight.back());
      d_substitutions.addSubstitution(delayQueueLeft.back(), right);
    }
    delayQueueLeft.pop_back();
    delayQueueRight.pop_back();
  }
}