Example #1
0
// We now define the matrix assembly function for the
// Biharmonic system.  We need to first compute element
// matrices and right-hand sides, and then take into
// account the boundary conditions, which will be handled
// via a penalty method.
void assemble_biharmonic(EquationSystems& es,
                         const std::string& system_name)
{
#ifdef LIBMESH_ENABLE_AMR
#ifdef LIBMESH_ENABLE_SECOND_DERIVATIVES

  // It is a good idea to make sure we are assembling
  // the proper system.
  libmesh_assert_equal_to (system_name, "Biharmonic");

  // Declare a performance log.  Give it a descriptive
  // string to identify what part of the code we are
  // logging, since there may be many PerfLogs in an
  // application.
  PerfLog perf_log ("Matrix Assembly",false);

  // Get a constant reference to the mesh object.
  const MeshBase& mesh = es.get_mesh();

  // The dimension that we are running
  const unsigned int dim = mesh.mesh_dimension();

  // Get a reference to the LinearImplicitSystem we are solving
  LinearImplicitSystem& system = es.get_system<LinearImplicitSystem>("Biharmonic");

  // A reference to the \p DofMap object for this system.  The \p DofMap
  // object handles the index translation from node and element numbers
  // to degree of freedom numbers.  We will talk more about the \p DofMap
  // in future examples.
  const DofMap& dof_map = system.get_dof_map();

  // Get a constant reference to the Finite Element type
  // for the first (and only) variable in the system.
  FEType fe_type = dof_map.variable_type(0);

  // Build a Finite Element object of the specified type.  Since the
  // \p FEBase::build() member dynamically creates memory we will
  // store the object as an \p UniquePtr<FEBase>.  This can be thought
  // of as a pointer that will clean up after itself.
  UniquePtr<FEBase> fe (FEBase::build(dim, fe_type));

  // Quadrature rule for numerical integration.
  // With 2D triangles, the Clough quadrature rule puts a Gaussian
  // quadrature rule on each of the 3 subelements
  UniquePtr<QBase> qrule(fe_type.default_quadrature_rule(dim));

  // Tell the finite element object to use our quadrature rule.
  fe->attach_quadrature_rule (qrule.get());

  // Declare a special finite element object for
  // boundary integration.
  UniquePtr<FEBase> fe_face (FEBase::build(dim, fe_type));

  // Boundary integration requires another quadraure rule,
  // with dimensionality one less than the dimensionality
  // of the element.
  // In 1D, the Clough and Gauss quadrature rules are identical.
  UniquePtr<QBase> qface(fe_type.default_quadrature_rule(dim-1));

  // Tell the finte element object to use our
  // quadrature rule.
  fe_face->attach_quadrature_rule (qface.get());

  // Here we define some references to cell-specific data that
  // will be used to assemble the linear system.
  // We begin with the element Jacobian * quadrature weight at each
  // integration point.
  const std::vector<Real>& JxW = fe->get_JxW();

  // The physical XY locations of the quadrature points on the element.
  // These might be useful for evaluating spatially varying material
  // properties at the quadrature points.
  const std::vector<Point>& q_point = fe->get_xyz();

  // The element shape functions evaluated at the quadrature points.
  const std::vector<std::vector<Real> >& phi = fe->get_phi();

  // The element shape function second derivatives evaluated at the
  // quadrature points.  Note that for the simple biharmonic, shape
  // function first derivatives are unnecessary.
  const std::vector<std::vector<RealTensor> >& d2phi = fe->get_d2phi();

  // For efficiency we will compute shape function laplacians n times,
  // not n^2
  std::vector<Real> shape_laplacian;

  // Define data structures to contain the element matrix
  // and right-hand-side vector contribution.  Following
  // basic finite element terminology we will denote these
  // "Ke" and "Fe". More detail is in example 3.
  DenseMatrix<Number> Ke;
  DenseVector<Number> Fe;

  // This vector will hold the degree of freedom indices for
  // the element.  These define where in the global system
  // the element degrees of freedom get mapped.
  std::vector<dof_id_type> dof_indices;

  // Now we will loop over all the elements in the mesh.  We will
  // compute the element matrix and right-hand-side contribution.  See
  // example 3 for a discussion of the element iterators.

  MeshBase::const_element_iterator       el     = mesh.active_local_elements_begin();
  const MeshBase::const_element_iterator end_el = mesh.active_local_elements_end();

  for ( ; el != end_el; ++el)
    {
      // Start logging the shape function initialization.
      // This is done through a simple function call with
      // the name of the event to log.
      perf_log.push("elem init");

      // Store a pointer to the element we are currently
      // working on.  This allows for nicer syntax later.
      const Elem* elem = *el;

      // Get the degree of freedom indices for the
      // current element.  These define where in the global
      // matrix and right-hand-side this element will
      // contribute to.
      dof_map.dof_indices (elem, dof_indices);

      // Compute the element-specific data for the current
      // element.  This involves computing the location of the
      // quadrature points (q_point) and the shape functions
      // (phi, dphi) for the current element.
      fe->reinit (elem);

      // Zero the element matrix and right-hand side before
      // summing them.
      Ke.resize (dof_indices.size(),
                 dof_indices.size());

      Fe.resize (dof_indices.size());

      // Make sure there is enough room in this cache
      shape_laplacian.resize(dof_indices.size());

      // Stop logging the shape function initialization.
      // If you forget to stop logging an event the PerfLog
      // object will probably catch the error and abort.
      perf_log.pop("elem init");

      // Now we will build the element matrix.  This involves
      // a double loop to integrate laplacians of the test funcions
      // (i) against laplacians of the trial functions (j).
      //
      // This step is why we need the Clough-Tocher elements -
      // these C1 differentiable elements have square-integrable
      // second derivatives.
      //
      // Now start logging the element matrix computation
      perf_log.push ("Ke");

      for (unsigned int qp=0; qp<qrule->n_points(); qp++)
        {
          for (unsigned int i=0; i<phi.size(); i++)
            {
              shape_laplacian[i] = d2phi[i][qp](0,0)+d2phi[i][qp](1,1);
              if (dim == 3)
                shape_laplacian[i] += d2phi[i][qp](2,2);
            }
          for (unsigned int i=0; i<phi.size(); i++)
            for (unsigned int j=0; j<phi.size(); j++)
              Ke(i,j) += JxW[qp]*
                shape_laplacian[i]*shape_laplacian[j];
        }

      // Stop logging the matrix computation
      perf_log.pop ("Ke");


      // At this point the interior element integration has
      // been completed.  However, we have not yet addressed
      // boundary conditions.  For this example we will only
      // consider simple Dirichlet boundary conditions imposed
      // via the penalty method.  Note that this is a fourth-order
      // problem: Dirichlet boundary conditions include *both*
      // boundary values and boundary normal fluxes.
      {
        // Start logging the boundary condition computation
        perf_log.push ("BCs");

        // The penalty values, for solution boundary trace and flux.
        const Real penalty = 1e10;
        const Real penalty2 = 1e10;

        // The following loops over the sides of the element.
        // If the element has no neighbor on a side then that
        // side MUST live on a boundary of the domain.
        for (unsigned int s=0; s<elem->n_sides(); s++)
          if (elem->neighbor(s) == NULL)
            {
              // The value of the shape functions at the quadrature
              // points.
              const std::vector<std::vector<Real> >&  phi_face =
                fe_face->get_phi();

              // The value of the shape function derivatives at the
              // quadrature points.
              const std::vector<std::vector<RealGradient> >& dphi_face =
                fe_face->get_dphi();

              // The Jacobian * Quadrature Weight at the quadrature
              // points on the face.
              const std::vector<Real>& JxW_face = fe_face->get_JxW();

              // The XYZ locations (in physical space) of the
              // quadrature points on the face.  This is where
              // we will interpolate the boundary value function.
              const std::vector<Point>& qface_point = fe_face->get_xyz();

              const std::vector<Point>& face_normals =
                fe_face->get_normals();

              // Compute the shape function values on the element
              // face.
              fe_face->reinit(elem, s);

              // Loop over the face quagrature points for integration.
              for (unsigned int qp=0; qp<qface->n_points(); qp++)
                {
                  // The boundary value.
                  Number value = exact_solution(qface_point[qp],
                                                es.parameters, "null",
                                                "void");
                  Gradient flux = exact_2D_derivative(qface_point[qp],
                                                      es.parameters,
                                                      "null", "void");

                  // Matrix contribution of the L2 projection.
                  // Note that the basis function values are
                  // integrated against test function values while
                  // basis fluxes are integrated against test function
                  // fluxes.
                  for (unsigned int i=0; i<phi_face.size(); i++)
                    for (unsigned int j=0; j<phi_face.size(); j++)
                      Ke(i,j) += JxW_face[qp] *
                        (penalty * phi_face[i][qp] *
                         phi_face[j][qp] + penalty2
                         * (dphi_face[i][qp] *
                            face_normals[qp]) *
                         (dphi_face[j][qp] *
                          face_normals[qp]));

                  // Right-hand-side contribution of the L2
                  // projection.
                  for (unsigned int i=0; i<phi_face.size(); i++)
                    Fe(i) += JxW_face[qp] *
                      (penalty * value * phi_face[i][qp]
                       + penalty2 *
                       (flux * face_normals[qp])
                       * (dphi_face[i][qp]
                          * face_normals[qp]));

                }
            }

        // Stop logging the boundary condition computation
        perf_log.pop ("BCs");
      }

      for (unsigned int qp=0; qp<qrule->n_points(); qp++)
        for (unsigned int i=0; i<phi.size(); i++)
          Fe(i) += JxW[qp]*phi[i][qp]*forcing_function(q_point[qp]);

      // The element matrix and right-hand-side are now built
      // for this element.  Add them to the global matrix and
      // right-hand-side vector.  The \p SparseMatrix::add_matrix()
      // and \p NumericVector::add_vector() members do this for us.
      // Start logging the insertion of the local (element)
      // matrix and vector into the global matrix and vector
      perf_log.push ("matrix insertion");

      dof_map.constrain_element_matrix_and_vector(Ke, Fe, dof_indices);
      system.matrix->add_matrix (Ke, dof_indices);
      system.rhs->add_vector    (Fe, dof_indices);

      // Stop logging the insertion of the local (element)
      // matrix and vector into the global matrix and vector
      perf_log.pop ("matrix insertion");
    }

  // That's it.  We don't need to do anything else to the
  // PerfLog.  When it goes out of scope (at this function return)
  // it will print its log to the screen. Pretty easy, huh?

#else

#endif // #ifdef LIBMESH_ENABLE_SECOND_DERIVATIVES
#endif // #ifdef LIBMESH_ENABLE_AMR
}
Example #2
0
void Biharmonic::JR::residual_and_jacobian(const NumericVector<Number> & u,
                                           NumericVector<Number> * R,
                                           SparseMatrix<Number> * J,
                                           NonlinearImplicitSystem &)
{
#ifdef LIBMESH_ENABLE_SECOND_DERIVATIVES
  if (!R && !J)
    return;

  // Declare a performance log.  Give it a descriptive
  // string to identify what part of the code we are
  // logging, since there may be many PerfLogs in an
  // application.
  PerfLog perf_log ("Biharmonic Residual and Jacobian", false);

  // A reference to the DofMap object for this system.  The DofMap
  // object handles the index translation from node and element numbers
  // to degree of freedom numbers.  We will talk more about the DofMap
  // in future examples.
  const DofMap & dof_map = get_dof_map();

  // Get a constant reference to the Finite Element type
  // for the first (and only) variable in the system.
  FEType fe_type = dof_map.variable_type(0);

  // Build a Finite Element object of the specified type.  Since the
  // FEBase::build() member dynamically creates memory we will
  // store the object as a UniquePtr<FEBase>.  This can be thought
  // of as a pointer that will clean up after itself.
  UniquePtr<FEBase> fe (FEBase::build(_biharmonic._dim, fe_type));

  // Quadrature rule for numerical integration.
  // With 2D triangles, the Clough quadrature rule puts a Gaussian
  // quadrature rule on each of the 3 subelements
  UniquePtr<QBase> qrule(fe_type.default_quadrature_rule(_biharmonic._dim));

  // Tell the finite element object to use our quadrature rule.
  fe->attach_quadrature_rule (qrule.get());

  // Here we define some references to element-specific data that
  // will be used to assemble the linear system.
  // We begin with the element Jacobian * quadrature weight at each
  // integration point.
  const std::vector<Real> & JxW = fe->get_JxW();

  // The element shape functions evaluated at the quadrature points.
  const std::vector<std::vector<Real> > & phi = fe->get_phi();

  // The element shape functions' derivatives evaluated at the quadrature points.
  const std::vector<std::vector<RealGradient> > & dphi = fe->get_dphi();

  // The element shape functions'  second derivatives evaluated at the quadrature points.
  const std::vector<std::vector<RealTensor> > & d2phi = fe->get_d2phi();

  // For efficiency we will compute shape function laplacians n times,
  // not n^2
  std::vector<Real> Laplacian_phi_qp;

  // Define data structures to contain the element matrix
  // and right-hand-side vector contribution.  Following
  // basic finite element terminology we will denote these
  // "Je" and "Re". More detail is in example 3.
  DenseMatrix<Number> Je;
  DenseVector<Number> Re;

  // This vector will hold the degree of freedom indices for
  // the element.  These define where in the global system
  // the element degrees of freedom get mapped.
  std::vector<dof_id_type> dof_indices;

  // Old solution
  const NumericVector<Number> & u_old = *old_local_solution;

  // Now we will loop over all the elements in the mesh.  We will
  // compute the element matrix and right-hand-side contribution.  See
  // example 3 for a discussion of the element iterators.

  MeshBase::const_element_iterator       el     = _biharmonic._mesh.active_local_elements_begin();
  const MeshBase::const_element_iterator end_el = _biharmonic._mesh.active_local_elements_end();

  for ( ; el != end_el; ++el)
    {
      // Store a pointer to the element we are currently
      // working on.  This allows for nicer syntax later.
      const Elem * elem = *el;

      // Get the degree of freedom indices for the
      // current element.  These define where in the global
      // matrix and right-hand-side this element will
      // contribute to.
      dof_map.dof_indices (elem, dof_indices);

      // Compute the element-specific data for the current
      // element.  This involves computing the location of the
      // quadrature points (q_point) and the shape function
      // values/derivatives (phi, dphi, d2phi) for the current element.
      fe->reinit (elem);

      // Zero the element matrix, the right-hand side and the Laplacian matrix
      // before summing them.
      if (J)
        Je.resize(dof_indices.size(), dof_indices.size());

      if (R)
        Re.resize(dof_indices.size());

      Laplacian_phi_qp.resize(dof_indices.size());

      for (unsigned int qp=0; qp<qrule->n_points(); qp++)
        {
          // AUXILIARY QUANTITIES:
          // Residual and Jacobian share a few calculations:
          // at the very least, in the case of interfacial energy only with a constant mobility,
          // both calculations use Laplacian_phi_qp; more is shared the case of a concentration-dependent
          // mobility and bulk potentials.
          Number
            u_qp = 0.0,
            u_old_qp = 0.0,
            Laplacian_u_qp = 0.0,
            Laplacian_u_old_qp = 0.0;

          Gradient
            grad_u_qp(0.0, 0.0, 0.0),
            grad_u_old_qp(0.0, 0.0, 0.0);

          Number
            M_qp = 1.0,
            M_old_qp = 1.0,
            M_prime_qp = 0.0,
            M_prime_old_qp = 0.0;

          for (unsigned int i=0; i<phi.size(); i++)
            {
              Laplacian_phi_qp[i] = d2phi[i][qp](0, 0);
              grad_u_qp(0) += u(dof_indices[i])*dphi[i][qp](0);
              grad_u_old_qp(0) += u_old(dof_indices[i])*dphi[i][qp](0);

              if (_biharmonic._dim > 1)
                {
                  Laplacian_phi_qp[i] += d2phi[i][qp](1, 1);
                  grad_u_qp(1) += u(dof_indices[i])*dphi[i][qp](1);
                  grad_u_old_qp(1) += u_old(dof_indices[i])*dphi[i][qp](1);
                }
              if (_biharmonic._dim > 2)
                {
                  Laplacian_phi_qp[i] += d2phi[i][qp](2, 2);
                  grad_u_qp(2) += u(dof_indices[i])*dphi[i][qp](2);
                  grad_u_old_qp(2) += u_old(dof_indices[i])*dphi[i][qp](2);
                }
              u_qp     += phi[i][qp]*u(dof_indices[i]);
              u_old_qp += phi[i][qp]*u_old(dof_indices[i]);
              Laplacian_u_qp     += Laplacian_phi_qp[i]*u(dof_indices[i]);
              Laplacian_u_old_qp += Laplacian_phi_qp[i]*u_old(dof_indices[i]);
            } // for i

          if (_biharmonic._degenerate)
            {
              M_qp           = 1.0 - u_qp*u_qp;
              M_old_qp       = 1.0 - u_old_qp*u_old_qp;
              M_prime_qp     = -2.0*u_qp;
              M_prime_old_qp = -2.0*u_old_qp;
            }

          // ELEMENT RESIDUAL AND JACOBIAN
          for (unsigned int i=0; i<phi.size(); i++)
            {
              // RESIDUAL
              if (R)
                {
                  Number ri = 0.0, ri_old = 0.0;
                  ri     -= Laplacian_phi_qp[i]*M_qp*_biharmonic._kappa*Laplacian_u_qp;
                  ri_old -= Laplacian_phi_qp[i]*M_old_qp*_biharmonic._kappa*Laplacian_u_old_qp;

                  if (_biharmonic._degenerate)
                    {
                      ri       -= (dphi[i][qp]*grad_u_qp)*M_prime_qp*(_biharmonic._kappa*Laplacian_u_qp);
                      ri_old   -= (dphi[i][qp]*grad_u_old_qp)*M_prime_old_qp*(_biharmonic._kappa*Laplacian_u_old_qp);
                    }

                  if (_biharmonic._cahn_hillard)
                    {
                      if (_biharmonic._energy == DOUBLE_WELL || _biharmonic._energy == LOG_DOUBLE_WELL)
                        {
                          ri += Laplacian_phi_qp[i]*M_qp*_biharmonic._theta_c*(u_qp*u_qp - 1.0)*u_qp;
                          ri_old += Laplacian_phi_qp[i]*M_old_qp*_biharmonic._theta_c*(u_old_qp*u_old_qp - 1.0)*u_old_qp;
                          if (_biharmonic._degenerate)
                            {
                              ri     += (dphi[i][qp]*grad_u_qp)*M_prime_qp*_biharmonic._theta_c*(u_qp*u_qp - 1.0)*u_qp;
                              ri_old += (dphi[i][qp]*grad_u_old_qp)*M_prime_old_qp*_biharmonic._theta_c*(u_old_qp*u_old_qp - 1.0)*u_old_qp;
                            }
                        }// if (_biharmonic._energy == DOUBLE_WELL || _biharmonic._energy == LOG_DOUBLE_WELL)

                      if (_biharmonic._energy == DOUBLE_OBSTACLE || _biharmonic._energy == LOG_DOUBLE_OBSTACLE)
                        {
                          ri -= Laplacian_phi_qp[i]*M_qp*_biharmonic._theta_c*u_qp;
                          ri_old -= Laplacian_phi_qp[i]*M_old_qp*_biharmonic._theta_c*u_old_qp;
                          if (_biharmonic._degenerate)
                            {
                              ri     -= (dphi[i][qp]*grad_u_qp)*M_prime_qp*_biharmonic._theta_c*u_qp;
                              ri_old -= (dphi[i][qp]*grad_u_old_qp)*M_prime_old_qp*_biharmonic._theta_c*u_old_qp;
                            }
                        } // if (_biharmonic._energy == DOUBLE_OBSTACLE || _biharmonic._energy == LOG_DOUBLE_OBSTACLE)

                      if (_biharmonic._energy == LOG_DOUBLE_WELL || _biharmonic._energy == LOG_DOUBLE_OBSTACLE)
                        {
                          switch(_biharmonic._log_truncation)
                            {
                            case 2:
                              break;
                            case 3:
                              break;
                            default:
                              break;
                            }// switch(_biharmonic._log_truncation)
                        }// if (_biharmonic._energy == LOG_DOUBLE_WELL || _biharmonic._energy == LOG_DOUBLE_OBSTACLE)
                    }// if (_biharmonic._cahn_hillard)
                  Re(i) += JxW[qp]*((u_qp-u_old_qp)*phi[i][qp]-_biharmonic._dt*0.5*((2.0-_biharmonic._cnWeight)*ri + _biharmonic._cnWeight*ri_old));
                } // if (R)

              // JACOBIAN
              if (J)
                {
                  Number M_prime_prime_qp = 0.0;
                  if (_biharmonic._degenerate) M_prime_prime_qp = -2.0;
                  for (unsigned int j=0; j<phi.size(); j++)
                    {
                      Number ri_j = 0.0;
                      ri_j -= Laplacian_phi_qp[i]*M_qp*_biharmonic._kappa*Laplacian_phi_qp[j];
                      if (_biharmonic._degenerate)
                        {
                          ri_j -=
                            Laplacian_phi_qp[i]*M_prime_qp*phi[j][qp]*_biharmonic._kappa*Laplacian_u_qp               +
                            (dphi[i][qp]*dphi[j][qp])*M_prime_qp*(_biharmonic._kappa*Laplacian_u_qp)                  +
                            (dphi[i][qp]*grad_u_qp)*(M_prime_prime_qp*phi[j][qp])*(_biharmonic._kappa*Laplacian_u_qp) +
                            (dphi[i][qp]*grad_u_qp)*(M_prime_qp)*(_biharmonic._kappa*Laplacian_phi_qp[j]);
                        }

                      if (_biharmonic._cahn_hillard)
                        {
                          if (_biharmonic._energy == DOUBLE_WELL || _biharmonic._energy == LOG_DOUBLE_WELL)
                            {
                              ri_j +=
                                Laplacian_phi_qp[i]*M_prime_qp*phi[j][qp]*_biharmonic._theta_c*(u_qp*u_qp - 1.0)*u_qp +
                                Laplacian_phi_qp[i]*M_qp*_biharmonic._theta_c*(3.0*u_qp*u_qp - 1.0)*phi[j][qp]        +
                                (dphi[i][qp]*dphi[j][qp])*M_prime_qp*_biharmonic._theta_c*(u_qp*u_qp - 1.0)*u_qp      +
                                (dphi[i][qp]*grad_u_qp)*M_prime_prime_qp*_biharmonic._theta_c*(u_qp*u_qp - 1.0)*u_qp  +
                                (dphi[i][qp]*grad_u_qp)*M_prime_qp*_biharmonic._theta_c*(3.0*u_qp*u_qp - 1.0)*phi[j][qp];
                            }// if (_biharmonic._energy == DOUBLE_WELL || _biharmonic._energy == LOG_DOUBLE_WELL)

                          if (_biharmonic._energy == DOUBLE_OBSTACLE || _biharmonic._energy == LOG_DOUBLE_OBSTACLE)
                            {
                              ri_j -=
                                Laplacian_phi_qp[i]*M_prime_qp*phi[j][qp]*_biharmonic._theta_c*u_qp                   +
                                Laplacian_phi_qp[i]*M_qp*_biharmonic._theta_c*phi[j][qp]                              +
                                (dphi[i][qp]*dphi[j][qp])*M_prime_qp*_biharmonic._theta_c*u_qp                        +
                                (dphi[i][qp]*grad_u_qp)*M_prime_prime_qp*_biharmonic._theta_c*u_qp                    +
                                (dphi[i][qp]*grad_u_qp)*M_prime_qp*_biharmonic._theta_c*phi[j][qp];
                            } // if (_biharmonic._energy == DOUBLE_OBSTACLE || _biharmonic._energy == LOG_DOUBLE_OBSTACLE)

                          if (_biharmonic._energy == LOG_DOUBLE_WELL || _biharmonic._energy == LOG_DOUBLE_OBSTACLE)
                            {
                              switch(_biharmonic._log_truncation)
                                {
                                case 2:
                                  break;
                                case 3:
                                  break;
                                default:
                                  break;
                                }// switch(_biharmonic._log_truncation)
                            }// if (_biharmonic._energy == LOG_DOUBLE_WELL || _biharmonic._energy == LOG_DOUBLE_OBSTACLE)
                        }// if (_biharmonic._cahn_hillard)
                      Je(i,j) += JxW[qp]*(phi[i][qp]*phi[j][qp] - 0.5*_biharmonic._dt*(2.0-_biharmonic._cnWeight)*ri_j);
                    } // for j
                } // if (J)
            } // for i
        } // for qp

      // The element matrix and right-hand-side are now built
      // for this element.  Add them to the global matrix and
      // right-hand-side vector.  The SparseMatrix::add_matrix()
      // and NumericVector::add_vector() members do this for us.
      // Start logging the insertion of the local (element)
      // matrix and vector into the global matrix and vector
      if (R)
        {
          // If the mesh has hanging nodes (e.g., as a result of refinement), those need to be constrained.
          dof_map.constrain_element_vector(Re, dof_indices);
          R->add_vector(Re, dof_indices);
        }

      if (J)
        {
          // If the mesh has hanging nodes (e.g., as a result of refinement), those need to be constrained.
          dof_map.constrain_element_matrix(Je, dof_indices);
          J->add_matrix(Je, dof_indices);
        }
    } // for el
#endif // LIBMESH_ENABLE_SECOND_DERIVATIVES
}
void ExactErrorEstimator::estimate_error (const System & system,
                                          ErrorVector & error_per_cell,
                                          const NumericVector<Number> * solution_vector,
                                          bool estimate_parent_error)
{
  // Ignore the fact that this variable is unused when !LIBMESH_ENABLE_AMR
  libmesh_ignore(estimate_parent_error);

  // The current mesh
  const MeshBase & mesh = system.get_mesh();

  // The dimensionality of the mesh
  const unsigned int dim = mesh.mesh_dimension();

  // The number of variables in the system
  const unsigned int n_vars = system.n_vars();

  // The DofMap for this system
  const DofMap & dof_map = system.get_dof_map();

  // Resize the error_per_cell vector to be
  // the number of elements, initialize it to 0.
  error_per_cell.resize (mesh.max_elem_id());
  std::fill (error_per_cell.begin(), error_per_cell.end(), 0.);

  // Prepare current_local_solution to localize a non-standard
  // solution vector if necessary
  if (solution_vector && solution_vector != system.solution.get())
    {
      NumericVector<Number> * newsol =
        const_cast<NumericVector<Number> *>(solution_vector);
      System & sys = const_cast<System &>(system);
      newsol->swap(*sys.solution);
      sys.update();
    }

  // Loop over all the variables in the system
  for (unsigned int var=0; var<n_vars; var++)
    {
      // Possibly skip this variable
      if (error_norm.weight(var) == 0.0) continue;

      // The (string) name of this variable
      const std::string & var_name = system.variable_name(var);

      // The type of finite element to use for this variable
      const FEType & fe_type = dof_map.variable_type (var);

      UniquePtr<FEBase> fe (FEBase::build (dim, fe_type));

      // Build an appropriate Gaussian quadrature rule
      UniquePtr<QBase> qrule =
        fe_type.default_quadrature_rule (dim,
                                         _extra_order);

      fe->attach_quadrature_rule (qrule.get());

      // Prepare a global solution and a MeshFunction of the fine system if we need one
      UniquePtr<MeshFunction> fine_values;
      UniquePtr<NumericVector<Number> > fine_soln = NumericVector<Number>::build(system.comm());
      if (_equation_systems_fine)
        {
          const System & fine_system = _equation_systems_fine->get_system(system.name());

          std::vector<Number> global_soln;
          // FIXME - we're assuming that the fine system solution gets
          // used even when a different vector is used for the coarse
          // system
          fine_system.update_global_solution(global_soln);
          fine_soln->init
            (cast_int<numeric_index_type>(global_soln.size()), true,
             SERIAL);
          (*fine_soln) = global_soln;

          fine_values = UniquePtr<MeshFunction>
            (new MeshFunction(*_equation_systems_fine,
                              *fine_soln,
                              fine_system.get_dof_map(),
                              fine_system.variable_number(var_name)));
          fine_values->init();
        } else {
        // Initialize functors if we're using them
        for (unsigned int i=0; i != _exact_values.size(); ++i)
          if (_exact_values[i])
            _exact_values[i]->init();

        for (unsigned int i=0; i != _exact_derivs.size(); ++i)
          if (_exact_derivs[i])
            _exact_derivs[i]->init();

        for (unsigned int i=0; i != _exact_hessians.size(); ++i)
          if (_exact_hessians[i])
            _exact_hessians[i]->init();
      }

      // Request the data we'll need to compute with
      fe->get_JxW();
      fe->get_phi();
      fe->get_dphi();
#ifdef LIBMESH_ENABLE_SECOND_DERIVATIVES
      fe->get_d2phi();
#endif
      fe->get_xyz();

#ifdef LIBMESH_ENABLE_AMR
      // If we compute on parent elements, we'll want to do so only
      // once on each, so we need to keep track of which we've done.
      std::vector<bool> computed_var_on_parent;

      if (estimate_parent_error)
        computed_var_on_parent.resize(error_per_cell.size(), false);
#endif

      // TODO: this ought to be threaded (and using subordinate
      // MeshFunction objects in each thread rather than a single
      // master)

      // Iterate over all the active elements in the mesh
      // that live on this processor.
      MeshBase::const_element_iterator
        elem_it  = mesh.active_local_elements_begin();
      const MeshBase::const_element_iterator
        elem_end = mesh.active_local_elements_end();

      for (;elem_it != elem_end; ++elem_it)
        {
          // e is necessarily an active element on the local processor
          const Elem * elem = *elem_it;
          const dof_id_type e_id = elem->id();

#ifdef LIBMESH_ENABLE_AMR
          // See if the parent of element e has been examined yet;
          // if not, we may want to compute the estimator on it
          const Elem * parent = elem->parent();

          // We only can compute and only need to compute on
          // parents with all active children
          bool compute_on_parent = true;
          if (!parent || !estimate_parent_error)
            compute_on_parent = false;
          else
            for (unsigned int c=0; c != parent->n_children(); ++c)
              if (!parent->child_ptr(c)->active())
                compute_on_parent = false;

          if (compute_on_parent &&
              !computed_var_on_parent[parent->id()])
            {
              computed_var_on_parent[parent->id()] = true;

              // Compute a projection onto the parent
              DenseVector<Number> Uparent;
              FEBase::coarsened_dof_values(*(system.current_local_solution),
                                           dof_map, parent, Uparent,
                                           var, false);

              error_per_cell[parent->id()] +=
                static_cast<ErrorVectorReal>
                (find_squared_element_error(system, var_name,
                                            parent, Uparent,
                                            fe.get(),
                                            fine_values.get()));
            }
#endif

          // Get the local to global degree of freedom maps
          std::vector<dof_id_type> dof_indices;
          dof_map.dof_indices (elem, dof_indices, var);
          const unsigned int n_dofs =
            cast_int<unsigned int>(dof_indices.size());
          DenseVector<Number> Uelem(n_dofs);
          for (unsigned int i=0; i != n_dofs; ++i)
            Uelem(i) = system.current_solution(dof_indices[i]);

          error_per_cell[e_id] +=
            static_cast<ErrorVectorReal>
            (find_squared_element_error(system, var_name, elem,
                                        Uelem, fe.get(),
                                        fine_values.get()));

        } // End loop over active local elements
    } // End loop over variables



  // Each processor has now computed the error contribuions
  // for its local elements.  We need to sum the vector
  // and then take the square-root of each component.  Note
  // that we only need to sum if we are running on multiple
  // processors, and we only need to take the square-root
  // if the value is nonzero.  There will in general be many
  // zeros for the inactive elements.

  // First sum the vector of estimated error values
  this->reduce_error(error_per_cell, system.comm());

  // Compute the square-root of each component.
  {
    LOG_SCOPE("std::sqrt()", "ExactErrorEstimator");
    for (dof_id_type i=0; i<error_per_cell.size(); i++)
      if (error_per_cell[i] != 0.)
        {
          libmesh_assert_greater (error_per_cell[i], 0.);
          error_per_cell[i] = std::sqrt(error_per_cell[i]);
        }
  }

  // If we used a non-standard solution before, now is the time to fix
  // the current_local_solution
  if (solution_vector && solution_vector != system.solution.get())
    {
      NumericVector<Number> * newsol =
        const_cast<NumericVector<Number> *>(solution_vector);
      System & sys = const_cast<System &>(system);
      newsol->swap(*sys.solution);
      sys.update();
    }
}
Example #4
0
// We now define the matrix and rhs vector assembly function
// for the shell system.  This function implements the
// linear Kirchhoff-Love theory for thin shells.  At the
// end we also take into account the boundary conditions
// here, using the penalty method.
void assemble_shell (EquationSystems& es, const std::string& system_name)
{
  // It is a good idea to make sure we are assembling
  // the proper system.
  libmesh_assert_equal_to (system_name, "Shell");

  // Get a constant reference to the mesh object.
  const MeshBase& mesh = es.get_mesh();

  // Get a reference to the shell system object.
  LinearImplicitSystem & system = es.get_system<LinearImplicitSystem> ("Shell");

  // Get the shell parameters that we need during assembly.
  const Real h  = es.parameters.get<Real> ("thickness");
  const Real E  = es.parameters.get<Real> ("young's modulus");
  const Real nu = es.parameters.get<Real> ("poisson ratio");
  const Real q  = es.parameters.get<Real> ("uniform load");

  // Compute the membrane stiffness \p K and the bending
  // rigidity \p D from these parameters.
  const Real K = E * h     /     (1-nu*nu);
  const Real D = E * h*h*h / (12*(1-nu*nu));

  // Numeric ids corresponding to each variable in the system.
  const unsigned int u_var = system.variable_number ("u");
  const unsigned int v_var = system.variable_number ("v");
  const unsigned int w_var = system.variable_number ("w");

  // Get the Finite Element type for "u".  Note this will be
  // the same as the type for "v" and "w".
  FEType fe_type = system.variable_type (u_var);

  // Build a Finite Element object of the specified type.
  UniquePtr<FEBase> fe (FEBase::build(2, fe_type));

  // A Gauss quadrature rule for numerical integration.
  // For subdivision shell elements, a single Gauss point per
  // element is sufficient, hence we use extraorder = 0.
  const int extraorder = 0;
  UniquePtr<QBase> qrule (fe_type.default_quadrature_rule (2, extraorder));

  // Tell the finite element object to use our quadrature rule.
  fe->attach_quadrature_rule (qrule.get());

  // The element Jacobian * quadrature weight at each integration point.
  const std::vector<Real>& JxW = fe->get_JxW();

  // The surface tangents in both directions at the quadrature points.
  const std::vector<RealGradient>& dxyzdxi  = fe->get_dxyzdxi();
  const std::vector<RealGradient>& dxyzdeta = fe->get_dxyzdeta();

  // The second partial derivatives at the quadrature points.
  const std::vector<RealGradient>& d2xyzdxi2    = fe->get_d2xyzdxi2();
  const std::vector<RealGradient>& d2xyzdeta2   = fe->get_d2xyzdeta2();
  const std::vector<RealGradient>& d2xyzdxideta = fe->get_d2xyzdxideta();

  // The element shape function and its derivatives evaluated at the
  // quadrature points.
  const std::vector<std::vector<Real> >&          phi = fe->get_phi();
  const std::vector<std::vector<RealGradient> >& dphi = fe->get_dphi();
  const std::vector<std::vector<RealTensor> >&  d2phi = fe->get_d2phi();

  // A reference to the \p DofMap object for this system.  The \p DofMap
  // object handles the index translation from node and element numbers
  // to degree of freedom numbers.
  const DofMap & dof_map = system.get_dof_map();

  // Define data structures to contain the element stiffness matrix
  // and right-hand-side vector contribution.  Following
  // basic finite element terminology we will denote these
  // "Ke" and "Fe".
  DenseMatrix<Number> Ke;
  DenseVector<Number> Fe;

  DenseSubMatrix<Number>
    Kuu(Ke), Kuv(Ke), Kuw(Ke),
    Kvu(Ke), Kvv(Ke), Kvw(Ke),
    Kwu(Ke), Kwv(Ke), Kww(Ke);

  DenseSubVector<Number>
    Fu(Fe),
    Fv(Fe),
    Fw(Fe);

  // This vector will hold the degree of freedom indices for
  // the element.  These define where in the global system
  // the element degrees of freedom get mapped.
  std::vector<dof_id_type> dof_indices;
  std::vector<dof_id_type> dof_indices_u;
  std::vector<dof_id_type> dof_indices_v;
  std::vector<dof_id_type> dof_indices_w;

  // Now we will loop over all the elements in the mesh.  We will
  // compute the element matrix and right-hand-side contribution.
  MeshBase::const_element_iterator       el     = mesh.active_local_elements_begin();
  const MeshBase::const_element_iterator end_el = mesh.active_local_elements_end();

  for (; el != end_el; ++el)
  {
    // Store a pointer to the element we are currently
    // working on.  This allows for nicer syntax later.
    const Elem* elem = *el;

    // The ghost elements at the boundaries need to be excluded
    // here, as they don't belong to the physical shell,
    // but serve for a proper boundary treatment only.
    libmesh_assert_equal_to (elem->type(), TRI3SUBDIVISION);
    const Tri3Subdivision* sd_elem = static_cast<const Tri3Subdivision*> (elem);
    if (sd_elem->is_ghost())
      continue;

    // Get the degree of freedom indices for the
    // current element.  These define where in the global
    // matrix and right-hand-side this element will
    // contribute to.
    dof_map.dof_indices (elem, dof_indices);
    dof_map.dof_indices (elem, dof_indices_u, u_var);
    dof_map.dof_indices (elem, dof_indices_v, v_var);
    dof_map.dof_indices (elem, dof_indices_w, w_var);

    const std::size_t n_dofs   = dof_indices.size();
    const std::size_t n_u_dofs = dof_indices_u.size();
    const std::size_t n_v_dofs = dof_indices_v.size();
    const std::size_t n_w_dofs = dof_indices_w.size();

    // Compute the element-specific data for the current
    // element.  This involves computing the location of the
    // quadrature points and the shape functions
    // (phi, dphi, d2phi) for the current element.
    fe->reinit (elem);

    // Zero the element matrix and right-hand side before
    // summing them.  We use the resize member here because
    // the number of degrees of freedom might have changed from
    // the last element.
    Ke.resize (n_dofs, n_dofs);
    Fe.resize (n_dofs);

    // Reposition the submatrices...  The idea is this:
    //
    //         -           -          -  -
    //        | Kuu Kuv Kuw |        | Fu |
    //   Ke = | Kvu Kvv Kvw |;  Fe = | Fv |
    //        | Kwu Kwv Kww |        | Fw |
    //         -           -          -  -
    //
    // The \p DenseSubMatrix.repostition () member takes the
    // (row_offset, column_offset, row_size, column_size).
    //
    // Similarly, the \p DenseSubVector.reposition () member
    // takes the (row_offset, row_size)
    Kuu.reposition (u_var*n_u_dofs, u_var*n_u_dofs, n_u_dofs, n_u_dofs);
    Kuv.reposition (u_var*n_u_dofs, v_var*n_u_dofs, n_u_dofs, n_v_dofs);
    Kuw.reposition (u_var*n_u_dofs, w_var*n_u_dofs, n_u_dofs, n_w_dofs);

    Kvu.reposition (v_var*n_v_dofs, u_var*n_v_dofs, n_v_dofs, n_u_dofs);
    Kvv.reposition (v_var*n_v_dofs, v_var*n_v_dofs, n_v_dofs, n_v_dofs);
    Kvw.reposition (v_var*n_v_dofs, w_var*n_v_dofs, n_v_dofs, n_w_dofs);

    Kwu.reposition (w_var*n_w_dofs, u_var*n_w_dofs, n_w_dofs, n_u_dofs);
    Kwv.reposition (w_var*n_w_dofs, v_var*n_w_dofs, n_w_dofs, n_v_dofs);
    Kww.reposition (w_var*n_w_dofs, w_var*n_w_dofs, n_w_dofs, n_w_dofs);

    Fu.reposition (u_var*n_u_dofs, n_u_dofs);
    Fv.reposition (v_var*n_u_dofs, n_v_dofs);
    Fw.reposition (w_var*n_u_dofs, n_w_dofs);

    // Now we will build the element matrix and right-hand-side.
    for (unsigned int qp=0; qp<qrule->n_points(); ++qp)
    {
      // First, we compute the external force resulting
      // from a load q distributed uniformly across the plate.
      // Since the load is supposed to be transverse to the plate,
      // it affects the z-direction, i.e. the "w" variable.
      for (unsigned int i=0; i<n_u_dofs; ++i)
        Fw(i) += JxW[qp] * phi[i][qp] * q;

      // Next, we assemble the stiffness matrix.  This is only valid
      // for the linear theory, i.e., for small deformations, where
      // reference and deformed surface metrics are indistinguishable.

      // Get the three surface basis vectors.
      const RealVectorValue & a1 = dxyzdxi[qp];
      const RealVectorValue & a2 = dxyzdeta[qp];
            RealVectorValue   a3 = a1.cross(a2);
      const Real jac = a3.size(); // the surface Jacobian
      libmesh_assert_greater (jac, 0);
      a3 /= jac; // the shell director a3 is normalized to unit length

      // Get the derivatives of the surface tangents.
      const RealVectorValue & a11 = d2xyzdxi2[qp];
      const RealVectorValue & a22 = d2xyzdeta2[qp];
      const RealVectorValue & a12 = d2xyzdxideta[qp];

      // Compute the three covariant components of the first
      // fundamental form of the surface.
      const RealVectorValue a(a1*a1, a2*a2, a1*a2);

      // The elastic H matrix in Voigt's notation, computed from the
      // covariant components of the first fundamental form rather
      // than the contravariant components, exploiting that the
      // contravariant first fundamental form is the inverse of the
      // covatiant first fundamental form (hence the determinant etc.).
      RealTensorValue H;
      H(0,0)          =  a(1) * a(1);
      H(0,1) = H(1,0) =   nu  * a(1) * a(0) + (1-nu) * a(2) * a(2);
      H(0,2) = H(2,0) = -a(1) * a(2);
      H(1,1)          =  a(0) * a(0);
      H(1,2) = H(2,1) = -a(0) * a(2);
      H(2,2)          = 0.5 * ((1-nu) * a(1) * a(0) + (1+nu) * a(2) * a(2));
      const Real det = a(0) * a(1) - a(2) * a(2);
      libmesh_assert_not_equal_to (det * det, 0);
      H /= det * det;

      // Precompute come cross products for the bending part below.
      const RealVectorValue a11xa2 = a11.cross(a2);
      const RealVectorValue a22xa2 = a22.cross(a2);
      const RealVectorValue a12xa2 = a12.cross(a2);
      const RealVectorValue a1xa11 =  a1.cross(a11);
      const RealVectorValue a1xa22 =  a1.cross(a22);
      const RealVectorValue a1xa12 =  a1.cross(a12);
      const RealVectorValue a2xa3  =  a2.cross(a3);
      const RealVectorValue a3xa1  =  a3.cross(a1);

      // Loop over all pairs of nodes I,J.
      for (unsigned int i=0; i<n_u_dofs; ++i)
      {
        for (unsigned int j=0; j<n_u_dofs; ++j)
        {
          // The membrane strain matrices in Voigt's notation.
          RealTensorValue MI, MJ;
          for (unsigned int k=0; k<3; ++k)
          {
            MI(0,k) = dphi[i][qp](0) * a1(k);
            MI(1,k) = dphi[i][qp](1) * a2(k);
            MI(2,k) = dphi[i][qp](1) * a1(k)
                    + dphi[i][qp](0) * a2(k);

            MJ(0,k) = dphi[j][qp](0) * a1(k);
            MJ(1,k) = dphi[j][qp](1) * a2(k);
            MJ(2,k) = dphi[j][qp](1) * a1(k)
                    + dphi[j][qp](0) * a2(k);
          }

          // The bending strain matrices in Voigt's notation.
          RealTensorValue BI, BJ;
          for (unsigned int k=0; k<3; ++k)
          {
            const Real term_ik = dphi[i][qp](0) * a2xa3(k)
                               + dphi[i][qp](1) * a3xa1(k);
            BI(0,k) = -d2phi[i][qp](0,0) * a3(k)
                      +(dphi[i][qp](0) * a11xa2(k)
                      + dphi[i][qp](1) * a1xa11(k)
                      + (a3*a11) * term_ik) / jac;
            BI(1,k) = -d2phi[i][qp](1,1) * a3(k)
                      +(dphi[i][qp](0) * a22xa2(k)
                      + dphi[i][qp](1) * a1xa22(k)
                      + (a3*a22) * term_ik) / jac;
            BI(2,k) = 2 * (-d2phi[i][qp](0,1) * a3(k)
                           +(dphi[i][qp](0) * a12xa2(k)
                           + dphi[i][qp](1) * a1xa12(k)
                           + (a3*a12) * term_ik) / jac);

            const Real term_jk = dphi[j][qp](0) * a2xa3(k)
                               + dphi[j][qp](1) * a3xa1(k);
            BJ(0,k) = -d2phi[j][qp](0,0) * a3(k)
                      +(dphi[j][qp](0) * a11xa2(k)
                      + dphi[j][qp](1) * a1xa11(k)
                      + (a3*a11) * term_jk) / jac;
            BJ(1,k) = -d2phi[j][qp](1,1) * a3(k)
                      +(dphi[j][qp](0) * a22xa2(k)
                      + dphi[j][qp](1) * a1xa22(k)
                      + (a3*a22) * term_jk) / jac;
            BJ(2,k) = 2 * (-d2phi[j][qp](0,1) * a3(k)
                           +(dphi[j][qp](0) * a12xa2(k)
                           + dphi[j][qp](1) * a1xa12(k)
                           + (a3*a12) * term_jk) / jac);
          }

          // The total stiffness matrix coupling the nodes
          // I and J is a sum of membrane and bending
          // contributions according to the following formula.
          const RealTensorValue KIJ = JxW[qp] * K * MI.transpose() * H * MJ
                                    + JxW[qp] * D * BI.transpose() * H * BJ;

          // Insert the components of the coupling stiffness
          // matrix \p KIJ into the corresponding directional
          // submatrices.
          Kuu(i,j) += KIJ(0,0);
          Kuv(i,j) += KIJ(0,1);
          Kuw(i,j) += KIJ(0,2);

          Kvu(i,j) += KIJ(1,0);
          Kvv(i,j) += KIJ(1,1);
          Kvw(i,j) += KIJ(1,2);

          Kwu(i,j) += KIJ(2,0);
          Kwv(i,j) += KIJ(2,1);
          Kww(i,j) += KIJ(2,2);
        }
      }

    } // end of the quadrature point qp-loop

    // The element matrix and right-hand-side are now built
    // for this element.  Add them to the global matrix and
    // right-hand-side vector.  The \p NumericMatrix::add_matrix()
    // and \p NumericVector::add_vector() members do this for us.
    system.matrix->add_matrix (Ke, dof_indices);
    system.rhs->add_vector    (Fe, dof_indices);
  } // end of non-ghost element loop

  // Next, we apply the boundary conditions.  In this case,
  // all boundaries are clamped by the penalty method, using
  // the special "ghost" nodes along the boundaries.  Note
  // that there are better ways to implement boundary conditions
  // for subdivision shells.  We use the simplest way here,
  // which is known to be overly restrictive and will lead to
  // a slightly too small deformation of the plate.
  el = mesh.active_local_elements_begin();

  for (; el != end_el; ++el)
  {
    // Store a pointer to the element we are currently
    // working on.  This allows for nicer syntax later.
    const Elem* elem = *el;

    // For the boundary conditions, we only need to loop over
    // the ghost elements.
    libmesh_assert_equal_to (elem->type(), TRI3SUBDIVISION);
    const Tri3Subdivision* gh_elem = static_cast<const Tri3Subdivision*> (elem);
    if (!gh_elem->is_ghost())
      continue;

    // Find the side which is part of the physical plate boundary,
    // that is, the boundary of the original mesh without ghosts.
    for (unsigned int s=0; s<elem->n_sides(); ++s)
    {
      const Tri3Subdivision* nb_elem = static_cast<const Tri3Subdivision*> (elem->neighbor(s));
      if (nb_elem == NULL || nb_elem->is_ghost())
        continue;

      /*
       * Determine the four nodes involved in the boundary
       * condition treatment of this side.  The \p MeshTools::Subdiv
       * namespace provides lookup tables \p next and \p prev
       * for an efficient determination of the next and previous
       * nodes of an element, respectively.
       *
       *      n4
       *     /  \
       *    / gh \
       *  n2 ---- n3
       *    \ nb /
       *     \  /
       *      n1
       */
      Node* nodes [4]; // n1, n2, n3, n4
      nodes[1] = gh_elem->get_node(s); // n2
      nodes[2] = gh_elem->get_node(MeshTools::Subdivision::next[s]); // n3
      nodes[3] = gh_elem->get_node(MeshTools::Subdivision::prev[s]); // n4

      // The node in the interior of the domain, \p n1, is the
      // hardest to find.  Walk along the edges of element \p nb until
      // we have identified it.
      unsigned int n_int = 0;
      nodes[0] = nb_elem->get_node(0);
      while (nodes[0]->id() == nodes[1]->id() || nodes[0]->id() == nodes[2]->id())
        nodes[0] = nb_elem->get_node(++n_int);

      // The penalty value.  \f$ \frac{1}{\epsilon} \f$
      const Real penalty = 1.e10;

      // With this simple method, clamped boundary conditions are
      // obtained by penalizing the displacements of all four nodes.
      // This ensures that the displacement field vanishes on the
      // boundary side \p s.
      for (unsigned int n=0; n<4; ++n)
      {
        const dof_id_type u_dof = nodes[n]->dof_number (system.number(), u_var, 0);
        const dof_id_type v_dof = nodes[n]->dof_number (system.number(), v_var, 0);
        const dof_id_type w_dof = nodes[n]->dof_number (system.number(), w_var, 0);
        system.matrix->add (u_dof, u_dof, penalty);
        system.matrix->add (v_dof, v_dof, penalty);
        system.matrix->add (w_dof, w_dof, penalty);
      }
    }
  } // end of ghost element loop
}