/*
 * Converts a Watt Unit into the corresponding UnitDefinition
 * consisting only of SI units.
 * If the given unit does not have the correct kind, a NULL pointer is
 * returned.
 * It is up to the receiver to free the memory of the returned
 * UnitDefinition.
 * @param const Unit& unit
 * @return UnitDefinition* result
 */
LIBSBML_EXTERN
UnitDefinition* UnitConversionFactory::convertWattToSI(const Unit& unit)
{
    UnitKind_t uKind = unit.getKind();

    if (uKind != UNIT_KIND_WATT) return NULL;

    UnitDefinition* pUdef = new UnitDefinition(UnitConversionFactory::SBML_LEVEL, UnitConversionFactory::SBML_VERSION);
    Unit* pU = new Unit(unit);
    pU->setOffset(0.0);
    pU->setKind(UNIT_KIND_KILOGRAM);
    pU->setExponent(unit.getExponent());
    pUdef->addUnit(pU);
    delete pU;
    pU = new Unit(UnitConversionFactory::SBML_LEVEL, UnitConversionFactory::SBML_VERSION);
    pU->setKind(UNIT_KIND_METER);
    pU->setExponent(2*unit.getExponent());
    pUdef->addUnit(pU);
    delete pU;
    pU = new Unit(UnitConversionFactory::SBML_LEVEL, UnitConversionFactory::SBML_VERSION);
    pU->setKind(UNIT_KIND_SECOND);
    pU->setExponent(-3*unit.getExponent());
    pUdef->addUnit(pU);
    delete pU;
    return pUdef;
}
/*
 * Converts a frequency Unit into the corresponding UnitDefinition
 * consisting only of SI units. This could be e.g. a Hertz or Bequerel unit.
 * If the given unit does not have the correct kind, a NULL pointer is
 * returned.
 * It is up to the receiver to free the memory of the returned
 * UnitDefinition.
 * @param const Unit& unit
 * @return UnitDefinition* result
 */
LIBSBML_EXTERN
UnitDefinition* UnitConversionFactory::convertFrequencyToSI(const Unit& unit)
{
    UnitKind_t uKind = unit.getKind();

    if (uKind != UNIT_KIND_HERTZ && uKind != UNIT_KIND_BECQUEREL) return NULL;

    UnitDefinition* pUdef = new UnitDefinition(UnitConversionFactory::SBML_LEVEL, UnitConversionFactory::SBML_VERSION);
    Unit* pU = new Unit(unit);
    pU->setKind(UNIT_KIND_SECOND);
    pU->setOffset(0.0);
    pU->setExponent(-1*pU->getExponent());
    return pUdef;
}
Example #3
0
END_TEST


START_TEST (test_WriteL3SBML_Unit)
{
  const char* expected = "<unit kind=\"kilogram\" exponent=\"0.2\""
    " scale=\"-3\" multiplier=\"3.2\"/>";


  Unit* u = D->createModel()->createUnitDefinition()->createUnit();
  u->setKind(UNIT_KIND_KILOGRAM);
  double exp = 0.2;
  u->setExponent(exp);
  u->setScale(-3);
  u->setMultiplier(3.2);

  char* sbml = u->toSBML();
  fail_unless( equals(expected, sbml) );
  safe_free(sbml);
}
/*
 * Converts a Coulomb Unit into the corresponding UnitDefinition
 * consisting only of SI units.
 * If the given unit does not have the correct kind, a NULL pointer is
 * returned.
 * It is up to the receiver to free the memory of the returned
 * UnitDefinition.
 * @param const Unit& unit
 * @return UnitDefinition* result
 */
LIBSBML_EXTERN
UnitDefinition* UnitConversionFactory::convertCoulombToSI(const Unit& unit)
{
    UnitKind_t uKind = unit.getKind();

    if (uKind != UNIT_KIND_COULOMB) return NULL;

    UnitDefinition* pUdef = new UnitDefinition(UnitConversionFactory::SBML_LEVEL, UnitConversionFactory::SBML_VERSION);
    Unit* pU = new Unit(unit);
    pU->setKind(UNIT_KIND_AMPERE);
    pU->setOffset(0.0);
    pUdef->addUnit(pU);
    delete pU;
    pU = new Unit(UnitConversionFactory::SBML_LEVEL, UnitConversionFactory::SBML_VERSION);
    pU->setKind(UNIT_KIND_SECOND);
    pU->setExponent(unit.getExponent());
    pUdef->addUnit(pU);
    delete pU;
    return pUdef;
}
/**
 *
 * Creates an SBML model represented in "7.2 Example involving units"
 * in the SBML Level 2 Version 4 Specification.
 *
 */
SBMLDocument* createExampleInvolvingUnits()
{
  const unsigned int level   = Level;
  const unsigned int version = Version;

  //---------------------------------------------------------------------------
  //
  // Creates an SBMLDocument object 
  //
  //---------------------------------------------------------------------------

  SBMLDocument* sbmlDoc = new SBMLDocument(level,version);

  // Adds the namespace for XHTML to the SBMLDocument object.  We need this
  // because we will add notes to the model.  (By default, the SBML document
  // created by SBMLDocument only declares the SBML XML namespace.)

  sbmlDoc->getNamespaces()->add("http://www.w3.org/1999/xhtml", "xhtml");

  //---------------------------------------------------------------------------
  //
  // Creates a Model object inside the SBMLDocument object. 
  //
  //---------------------------------------------------------------------------

  Model* model = sbmlDoc->createModel();
  model->setId("unitsExample");

  //---------------------------------------------------------------------------
  //
  // Creates UnitDefinition objects inside the Model object.
  //
  //---------------------------------------------------------------------------

  // Temporary pointers (reused more than once below).

  UnitDefinition* unitdef;
  Unit *unit;

  //---------------------------------------------------------------------------  
  // (UnitDefinition1) Creates an UnitDefinition object ("substance").
  //
  // This has the effect of redefining the default unit of subtance for the
  // whole model.
  //---------------------------------------------------------------------------

  unitdef = model->createUnitDefinition();
  unitdef->setId("substance");

  //  Creates an Unit inside the UnitDefinition object 

  unit = unitdef->createUnit();
  unit->setKind(UNIT_KIND_MOLE);
  unit->setScale(-3);

  //--------------------------------------------------------------------------------
  // (UnitDefinition2) Creates an UnitDefinition object ("mmls") 
  //--------------------------------------------------------------------------------
    
  // Note that we can reuse the pointers 'unitdef' and 'unit' because the
  // actual UnitDefinition object (along with the Unit objects within it)
  // is already attached to the Model object.

  unitdef = model->createUnitDefinition();
  unitdef->setId("mmls");
    
  //  Creates an Unit inside the UnitDefinition object ("mmls")

  unit = unitdef->createUnit();
  unit->setKind(UNIT_KIND_MOLE);
  unit->setScale(-3);

  //  Creates an Unit inside the UnitDefinition object ("mmls")

  unit = unitdef->createUnit();
  unit->setKind(UNIT_KIND_LITRE);
  unit->setExponent(-1);

  //  Creates an Unit inside the UnitDefinition object ("mmls")

  unit = unitdef->createUnit();
  unit->setKind(UNIT_KIND_SECOND);
  unit->setExponent(-1);

  //--------------------------------------------------------------------------------
  // (UnitDefinition3) Creates an UnitDefinition object ("mml") 
  //--------------------------------------------------------------------------------
    
  unitdef = model->createUnitDefinition();
  unitdef->setId("mml");
    
  //  Creates an Unit inside the UnitDefinition object ("mml")

  unit = unitdef->createUnit();
  unit->setKind(UNIT_KIND_MOLE);
  unit->setScale(-3);

  //  Creates an Unit inside the UnitDefinition object ("mml")

  unit = unitdef->createUnit();
  unit->setKind(UNIT_KIND_LITRE);
  unit->setExponent(-1);


  //---------------------------------------------------------------------------
  //
  // Creates a Compartment object inside the Model object. 
  //
  //---------------------------------------------------------------------------

  Compartment* comp;
  const string compName = "cell";

  // Creates a Compartment object ("cell")

  comp = model->createCompartment();
  comp->setId(compName);
 
  // Sets the "size" attribute of the Compartment object.
  //
  //   The units of this Compartment object is the default SBML 
  //   units of volume (litre), and thus we don't have to explicitly invoke 
  //   setUnits("litre") function to set the default units.
  //
  comp->setSize(1);


  //---------------------------------------------------------------------------
  //
  // Creates Species objects inside the Model object. 
  //
  //---------------------------------------------------------------------------
  
  // Temporary pointer (reused more than once below).
  
  Species *sp;

  //---------------------------------------------------------------------------
  // (Species1) Creates a Species object ("x0")
  //---------------------------------------------------------------------------

  sp = model->createSpecies();
  sp->setId("x0");

  // Sets the "compartment" attribute of the Species object to identify the 
  // compartnet in which the Species object located.

  sp->setCompartment(compName);

  // Sets the "initialConcentration" attribute of the Species object.
  //
  //  The units of this Species object is determined by two attributes of this 
  //  Species object ("substanceUnits" and "hasOnlySubstanceUnits") and the
  //  "spatialDimensions" attribute of the Compartment object ("cytosol") in which 
  //  this species object is located.
  //  Since the default values are used for "substanceUnits" (substance (mole)) 
  //  and "hasOnlySubstanceUnits" (false) and the value of "spatialDimension" (3) 
  //  is greater than 0, the units of this Species object is  moles/liters . 
  //
  sp->setInitialConcentration(1);

  //---------------------------------------------------------------------------
  // (Species2) Creates a Species object ("x1")
  //---------------------------------------------------------------------------

  sp = model->createSpecies();
  sp->setId("x1");
  sp->setCompartment(compName);
  sp->setInitialConcentration(1);

  //---------------------------------------------------------------------------
  // (Species3) Creates a Species object ("s1")
  //---------------------------------------------------------------------------

  sp = model->createSpecies();
  sp->setCompartment(compName);
  sp->setId("s1");
  sp->setInitialConcentration(1);

  //---------------------------------------------------------------------------
  // (Species4) Creates a Species object ("s2")
  //---------------------------------------------------------------------------

  sp = model->createSpecies();
  sp->setCompartment(compName);
  sp->setId("s2");
  sp->setInitialConcentration(1);

  //---------------------------------------------------------------------------
  //
  // Creates global Parameter objects inside the Model object. 
  //
  //---------------------------------------------------------------------------

  Parameter* para;

  // Creates a Parameter ("vm")  

  para = model->createParameter();
  para->setId("vm");
  para->setValue(2);
  para->setUnits("mmls");

  // Creates a Parameter ("km")  

  para = model->createParameter();
  para->setId("km");
  para->setValue(2);
  para->setUnits("mml");


  //---------------------------------------------------------------------------
  //
  // Creates Reaction objects inside the Model object. 
  //
  //---------------------------------------------------------------------------
  
  // Temporary pointers.

  Reaction* reaction;
  SpeciesReference* spr;
  KineticLaw* kl;

  //---------------------------------------------------------------------------
  // (Reaction1) Creates a Reaction object ("v1").
  //---------------------------------------------------------------------------

  reaction = model->createReaction();
  reaction->setId("v1");

  //---------------------------------------------------------------------------
  // Creates Reactant objects inside the Reaction object ("v1"). 
  //---------------------------------------------------------------------------

  // (Reactant1) Creates a Reactant object that references Species "x0"
  // in the model.

  spr = reaction->createReactant();
  spr->setSpecies("x0");

  //---------------------------------------------------------------------------
  // Creates a Product object inside the Reaction object ("v1"). 
  //---------------------------------------------------------------------------

  // Creates a Product object that references Species "s1" in the model. 

  spr = reaction->createProduct();
  spr->setSpecies("s1");

  //---------------------------------------------------------------------------
  // Creates a KineticLaw object inside the Reaction object ("v1"). 
  //---------------------------------------------------------------------------
  
  kl = reaction->createKineticLaw();

  // Creates a <notes> element in the KineticLaw object.
  // Here we illustrate how to do it using a literal string.  This requires
  // known the required syntax of XHTML and the requirements for SBML <notes>
  // elements.  Later below, we show how to create notes using objects instead
  // of strings.

  string notesString = "<xhtml:p> ((vm * s1)/(km + s1)) * cell </xhtml:p>";
  kl->setNotes(notesString);

  //---------------------------------------------------------------------------
  // Creates an ASTNode object which represents the following KineticLaw object.
  //
  //  <math xmlns=\"http://www.w3.org/1998/Math/MathML\">
  //   <apply>
  //     <times/>
  //     <apply>
  //       <divide/>
  //       <apply>
  //         <times/>
  //           <ci> vm </ci>
  //           <ci> s1 </ci>
  //       </apply>
  //       <apply>
  //         <plus/>
  //           <ci> km </ci>
  //           <ci> s1 </ci>
  //       </apply>
  //     </apply>
  //     <ci> cell </ci>
  //    </apply>
  //  </math>
  //---------------------------------------------------------------------------

  //
  // In the following code, ASTNode objects, which construct an ASTNode tree 
  // of the above math, are created and added in the order of preorder traversal 
  // of the tree (i.e. the order corresponds to the nested structure of the above 
  // MathML elements), and thus the following code maybe a bit more efficient but 
  // maybe a bit difficult to read.
  //

  ASTNode* astMath = new ASTNode(AST_TIMES);

  astMath->addChild(new ASTNode(AST_DIVIDE));
  ASTNode* astDivide = astMath->getLeftChild();

  astDivide->addChild(new ASTNode(AST_TIMES));
  ASTNode* astTimes = astDivide->getLeftChild();

  astTimes->addChild(new ASTNode(AST_NAME));
  astTimes->getLeftChild()->setName("vm");

  astTimes->addChild(new ASTNode(AST_NAME));
  astTimes->getRightChild()->setName("s1");

  astDivide->addChild(new ASTNode(AST_PLUS));
  ASTNode* astPlus = astDivide->getRightChild();

  astPlus->addChild(new ASTNode(AST_NAME));
  astPlus->getLeftChild()->setName("km");

  astPlus->addChild(new ASTNode(AST_NAME));
  astPlus->getRightChild()->setName("s1");


  astMath->addChild(new ASTNode(AST_NAME));
  astMath->getRightChild()->setName("cell");

  //---------------------------------------------
  //
  // set the Math element
  //
  //------------------------------------------------

  kl->setMath(astMath);
  delete astMath;


  //---------------------------------------------------------------------------
  // (Reaction2) Creates a Reaction object ("v2").
  //---------------------------------------------------------------------------

  reaction = model->createReaction();
  reaction->setId("v2");

  //---------------------------------------------------------------------------
  // Creates Reactant objects inside the Reaction object ("v2"). 
  //---------------------------------------------------------------------------

  // (Reactant2) Creates a Reactant object that references Species "s1"
  // in the model.

  spr = reaction->createReactant();
  spr->setSpecies("s1");

  //---------------------------------------------------------------------------
  // Creates a Product object inside the Reaction object ("v2"). 
  //---------------------------------------------------------------------------

  // Creates a Product object that references Species "s2" in the model. 

  spr = reaction->createProduct();
  spr->setSpecies("s2");

  //---------------------------------------------------------------------------
  // Creates a KineticLaw object inside the Reaction object ("v2"). 
  //---------------------------------------------------------------------------
  
  kl = reaction->createKineticLaw();

  // Sets a notes (by XMLNode) to the KineticLaw object.
  //
  // The following code is an alternative to using setNotes(const string&).
  // The equivalent code would be like this:
  //   
  //     notesString = "<xhtml:p>((vm * s2)/(km + s2))*cell</xhtml:p>";
  //     kl->setNotes(notesString);

  // Creates an XMLNode of start element (<xhtml:p>) without attributes.

  XMLNode notesXMLNode(XMLTriple("p", "", "xhtml"), XMLAttributes());

  // Adds a text element to the start element.

  notesXMLNode.addChild(XMLNode(" ((vm * s2)/(km + s2)) * cell ")); 

  // Adds it to the kineticLaw object.

  kl->setNotes(&notesXMLNode);

  //---------------------------------------------------------------------------
  // Sets a math (ASTNode object) to the KineticLaw object.
  //---------------------------------------------------------------------------

  // To create mathematical expressions, one would typically construct
  // an ASTNode tree as the above example code which creates a math of another
  // KineticLaw object.  Here, to save some space and illustrate another approach 
  // of doing it, we will write out the formula in MathML form and then use a 
  // libSBML convenience function to create the ASTNode tree for us.  
  // (This is a bit dangerous; it's very easy to make mistakes when writing MathML 
  // by hand, so in a real program, we would not really want to do it this way.)

  string mathXMLString = "<math xmlns=\"http://www.w3.org/1998/Math/MathML\">"
                         "  <apply>"
                         "    <times/>"
                         "    <apply>"
                         "      <divide/>"
                         "      <apply>"
                         "        <times/>"
                         "        <ci> vm </ci>"
                         "        <ci> s2 </ci>"
                         "      </apply>"
                         "      <apply>"
                         "        <plus/>"
                         "          <ci> km </ci>"
                         "          <ci> s2 </ci>"
                         "      </apply>"
                         "    </apply>"
                         "    <ci> cell </ci>"
                         "  </apply>"
                         "</math>";

  astMath = readMathMLFromString(mathXMLString.c_str());
  kl->setMath(astMath);
  delete astMath;


  //---------------------------------------------------------------------------
  // (Reaction3) Creates a Reaction object ("v3").
  //---------------------------------------------------------------------------

  reaction = model->createReaction();
  reaction->setId("v3");

  //---------------------------------------------------------------------------
  // Creates Reactant objects inside the Reaction object ("v3"). 
  //---------------------------------------------------------------------------

  // (Reactant2) Creates a Reactant object that references Species "s2"
  // in the model.

  spr = reaction->createReactant();
  spr->setSpecies("s2");

  //---------------------------------------------------------------------------
  // Creates a Product object inside the Reaction object ("v3"). 
  //---------------------------------------------------------------------------

  // Creates a Product object that references Species "x1" in the model. 

  spr = reaction->createProduct();
  spr->setSpecies("x1");


  //---------------------------------------------------------------------------
  // Creates a KineticLaw object inside the Reaction object ("v3"). 
  //---------------------------------------------------------------------------
  
  kl = reaction->createKineticLaw();

  // Sets a notes (by string) to the KineticLaw object.

  notesString = "<xhtml:p> ((vm * x1)/(km + x1)) * cell </xhtml:p>";
  kl->setNotes(notesString);

  //---------------------------------------------------------------------------
  // Sets a math (ASTNode object) to the KineticLaw object.
  //---------------------------------------------------------------------------

  mathXMLString = "<math xmlns=\"http://www.w3.org/1998/Math/MathML\">"
                  "  <apply>"
                  "    <times/>"
                  "    <apply>"
                  "      <divide/>"
                  "      <apply>"
                  "        <times/>"
                  "        <ci> vm </ci>"
                  "        <ci> x1 </ci>"
                  "      </apply>"
                  "      <apply>"
                  "        <plus/>"
                  "          <ci> km </ci>"
                  "          <ci> x1 </ci>"
                  "      </apply>"
                  "    </apply>"
                  "    <ci> cell </ci>"
                  "  </apply>"
                  "</math>";

  astMath = readMathMLFromString(mathXMLString.c_str());
  kl->setMath(astMath);
  delete astMath;


  // Returns the created SBMLDocument object.
  // The returned object must be explicitly deleted by the caller,
  // otherwise memory leak will happen.

  return sbmlDoc;

}
/**
 *
 * Creates an SBML model represented in "7.1 A Simple example application of SBML"
 * in the SBML Level 2 Version 4 Specification.
 *
 */
SBMLDocument* createExampleEnzymaticReaction()
{
  const unsigned int level   = Level;
  const unsigned int version = Version;

  //---------------------------------------------------------------------------
  //
  // Creates an SBMLDocument object 
  //
  //---------------------------------------------------------------------------

  SBMLDocument* sbmlDoc = new SBMLDocument(level,version);

  //---------------------------------------------------------------------------
  //
  // Creates a Model object inside the SBMLDocument object. 
  //
  //---------------------------------------------------------------------------

  Model* model = sbmlDoc->createModel();
  model->setId("EnzymaticReaction");

  //---------------------------------------------------------------------------
  //
  // Creates UnitDefinition objects inside the Model object.
  //
  //---------------------------------------------------------------------------

  // Temporary pointers (reused more than once below).

  UnitDefinition* unitdef;
  Unit* unit;

  //---------------------------------------------------------------------------  
  // (UnitDefinition1) Creates an UnitDefinition object ("per_second")
  //---------------------------------------------------------------------------

  unitdef = model->createUnitDefinition();
  unitdef->setId("per_second");

  //  Creates an Unit inside the UnitDefinition object 

  unit = unitdef->createUnit();
  unit->setKind(UNIT_KIND_SECOND);
  unit->setExponent(-1);

  //--------------------------------------------------------------------------------
  // (UnitDefinition2) Creates an UnitDefinition object ("litre_per_mole_per_second") 
  //--------------------------------------------------------------------------------
    
  // Note that we can reuse the pointers 'unitdef' and 'unit' because the
  // actual UnitDefinition object (along with the Unit objects within it)
  // is already attached to the Model object.

  unitdef = model->createUnitDefinition();
  unitdef->setId("litre_per_mole_per_second");
    
  //  Creates an Unit inside the UnitDefinition object ("litre_per_mole_per_second")

  unit = unitdef->createUnit();
  unit->setKind(UNIT_KIND_MOLE);
  unit->setExponent(-1);

  //  Creates an Unit inside the UnitDefinition object ("litre_per_mole_per_second")

  unit = unitdef->createUnit();
  unit->setKind(UNIT_KIND_LITRE);
  unit->setExponent(1);

  //  Creates an Unit inside the UnitDefinition object ("litre_per_mole_per_second")

  unit = unitdef->createUnit();
  unit->setKind(UNIT_KIND_SECOND);
  unit->setExponent(-1);


  //---------------------------------------------------------------------------
  //
  // Creates a Compartment object inside the Model object. 
  //
  //---------------------------------------------------------------------------

  Compartment* comp;
  const string compName = "cytosol";

  // Creates a Compartment object ("cytosol")

  comp = model->createCompartment();
  comp->setId(compName);
 
  // Sets the "size" attribute of the Compartment object.
  //
  // We are not setting the units on the compartment size explicitly, so
  // the units of this Compartment object will be the default SBML units of
  // volume, which are liters.
  //
  comp->setSize(1e-14);


  //---------------------------------------------------------------------------
  //
  // Creates Species objects inside the Model object. 
  //
  //---------------------------------------------------------------------------
  
  // Temporary pointer (reused more than once below).
  
  Species *sp;

  //---------------------------------------------------------------------------
  // (Species1) Creates a Species object ("ES")
  //---------------------------------------------------------------------------

  // Create the Species objects inside the Model object. 

  sp = model->createSpecies();
  sp->setId("ES");
  sp->setName("ES");

  // Sets the "compartment" attribute of the Species object to identify the 
  // compartment in which the Species object is located.

  sp->setCompartment(compName);

  // Sets the "initialAmount" attribute of the Species object.
  //
  //  In SBML, the units of a Species object's initial quantity are
  //  determined by two attributes, "substanceUnits" and
  //  "hasOnlySubstanceUnits", and the "spatialDimensions" attribute
  //  of the Compartment object ("cytosol") in which the species
  //  object is located.  Here, we are using the default values for
  //  "substanceUnits" (which is "mole") and "hasOnlySubstanceUnits"
  //  (which is "false").  The compartment in which the species is
  //  located uses volume units of liters, so the units of these
  //  species (when the species appear in numerical formulas in the
  //  model) will be moles/liters.  
  //
  sp->setInitialAmount(0);

  //---------------------------------------------------------------------------
  // (Species2) Creates a Species object ("P")
  //---------------------------------------------------------------------------

  sp = model->createSpecies();
  sp->setCompartment(compName);
  sp->setId("P");
  sp->setName("P");
  sp->setInitialAmount(0);

  //---------------------------------------------------------------------------
  // (Species3) Creates a Species object ("S")
  //---------------------------------------------------------------------------

  sp = model->createSpecies();
  sp->setCompartment(compName);
  sp->setId("S");
  sp->setName("S");
  sp->setInitialAmount(1e-20);

  //---------------------------------------------------------------------------
  // (Species4) Creates a Species object ("E")
  //---------------------------------------------------------------------------

  sp = model->createSpecies();
  sp->setCompartment(compName);
  sp->setId("E");
  sp->setName("E");
  sp->setInitialAmount(5e-21);

  
  //---------------------------------------------------------------------------
  //
  // Creates Reaction objects inside the Model object. 
  //
  //---------------------------------------------------------------------------
  
  // Temporary pointers.

  Reaction* reaction;
  SpeciesReference* spr;
  KineticLaw* kl;

  //---------------------------------------------------------------------------
  // (Reaction1) Creates a Reaction object ("veq").
  //---------------------------------------------------------------------------

  reaction = model->createReaction();
  reaction->setId("veq");

  // (Reactant1) Creates a Reactant object that references Species "E"
  // in the model.  The object will be created within the reaction in the
  // SBML <listOfReactants>.

  spr = reaction->createReactant();
  spr->setSpecies("E");

  // (Reactant2) Creates a Reactant object that references Species "S"
  // in the model.

  spr = reaction->createReactant();
  spr->setSpecies("S");

  //---------------------------------------------------------------------------
  // (Product1) Creates a Product object that references Species "ES" in
  // the model.
  //---------------------------------------------------------------------------

  spr = reaction->createProduct();
  spr->setSpecies("ES");

  //---------------------------------------------------------------------------
  // Creates a KineticLaw object inside the Reaction object ("veq"). 
  //---------------------------------------------------------------------------

  kl = reaction->createKineticLaw();

 //---------------------------------------------------------------------------
   // Creates an ASTNode object which represents the following math of the
   // KineticLaw.
   //
   //      <math xmlns="http://www.w3.org/1998/Math/MathML">
   //        <apply>
   //          <times/>
   //          <ci> cytosol </ci>
   //          <apply>
   //            <minus/>
   //            <apply>
   //              <times/>
   //              <ci> kon </ci>
   //              <ci> E </ci>
   //              <ci> S </ci>
   //            </apply>
   //            <apply>
   //              <times/>
   //              <ci> koff </ci>
   //              <ci> ES </ci>
   //            </apply>
   //          </apply>
   //        </apply>
   //      </math>
   //
 //---------------------------------------------------------------------------

   //------------------------------------------
   //
   // create nodes representing the variables
   //
   //------------------------------------------

   ASTNode* astCytosol = new ASTNode(AST_NAME);
   astCytosol->setName("cytosol");

   ASTNode* astKon = new ASTNode(AST_NAME);
   astKon->setName("kon");

   ASTNode* astKoff = new ASTNode(AST_NAME);
   astKoff->setName("koff");

   ASTNode* astE = new ASTNode(AST_NAME);
   astE->setName("E");

   ASTNode* astS = new ASTNode(AST_NAME);
   astS->setName("S");

   ASTNode* astES = new ASTNode(AST_NAME);
   astES->setName("ES");


   //--------------------------------------------
   //
   // create node representing
   //            <apply>
   //              <times/>
   //              <ci> koff </ci>
   //              <ci> ES </ci>
   //            </apply>
   //
   //--------------------------------------------

   ASTNode *astTimes1 = new ASTNode(AST_TIMES);
   astTimes1->addChild(astKoff);
   astTimes1->addChild(astES);

   //--------------------------------------------
   //
   // create node representing
   //            <apply>
   //              <times/>
   //              <ci> kon </ci>
   //              <ci> E </ci>
   //              <ci> S </ci>
   //            </apply>
   //
   //
   // (NOTES)
   //
   //  Since there is a restriction with an ASTNode of "<times/>" operation
   //  such that the ASTNode is a binary class and thus only two operands can
   //  be directly added, the following code in this comment block is invalid
   //  because the code directly adds three <ci> ASTNodes to <times/> ASTNode.
   //
   //    ASTNode *astTimes = new ASTNode(AST_TIMES);
   //    astTimes->addChild(astKon);
   //    astTimes->addChild(astE);
   //    astTimes->addChild(astS);
   //
   // The following valid code after this comment block creates the ASTNode
   // as a binary tree.
   //
   // Please see "Converting between ASTs and text strings" described
   // at http://sbml.org/Software/libSBML/docs/cpp-api/class_a_s_t_node.html
   // for the detailed information.
   //
   //--------------------------------------------

   ASTNode *astTimes2 = new ASTNode(AST_TIMES);
   astTimes2->addChild(astE);
   astTimes2->addChild(astS);

   ASTNode *astTimes = new ASTNode(AST_TIMES);
   astTimes->addChild(astKon);
   astTimes->addChild(astTimes2);

   //--------------------------------------------
   //
   // create node representing
   //          <apply>
   //            <minus/>
   //            <apply>
   //              <times/>
   //              <ci> kon </ci>
   //              <ci> E </ci>
   //              <ci> S </ci>
   //            </apply>
   //            <apply>
   //              <times/>
   //              <ci> koff </ci>
   //              <ci> ES </ci>
   //            </apply>
   //          </apply>
   //
   //--------------------------------------------

   ASTNode *astMinus = new ASTNode(AST_MINUS);
   astMinus->addChild(astTimes);
   astMinus->addChild(astTimes1);


   //--------------------------------------------
   //
   // create node representing
   //        <apply>
   //          <times/>
   //          <ci> cytosol </ci>
   //          <apply>
   //            <minus/>
   //            <apply>
   //              <times/>
   //              <ci> kon </ci>
   //              <ci> E </ci>
   //              <ci> S </ci>
   //            </apply>
   //            <apply>
   //              <times/>
   //              <ci> koff </ci>
   //              <ci> ES </ci>
   //            </apply>
   //          </apply>
   //        </apply>
   //
   //--------------------------------------------

   ASTNode* astMath = new ASTNode(AST_TIMES);
   astMath->addChild(astCytosol);
   astMath->addChild(astMinus);

   //---------------------------------------------
   //
   // set the Math element
   //
   //------------------------------------------------

   kl->setMath(astMath);

  // KineticLaw::setMath(const ASTNode*) sets the math of the KineticLaw object
  // to a copy of the given ASTNode, and thus basically the caller should delete 
  // the original ASTNode object if the caller has the ownership of the object to 
  // avoid memory leak.

   delete astMath;


  //---------------------------------------------------------------------------
  // Creates local Parameter objects inside the KineticLaw object.
  //---------------------------------------------------------------------------

  // Creates a Parameter ("kon")

  Parameter* para = kl->createParameter();
  para->setId("kon");
  para->setValue(1000000);
  para->setUnits("litre_per_mole_per_second");

  // Creates a Parameter ("koff")

  para = kl->createParameter();
  para->setId("koff");
  para->setValue(0.2);
  para->setUnits("per_second");


  //---------------------------------------------------------------------------
  // (Reaction2) Creates a Reaction object ("vcat") .
  //---------------------------------------------------------------------------
  
  reaction = model->createReaction();
  reaction->setId("vcat");
  reaction->setReversible(false);

  //---------------------------------------------------------------------------
  // Creates Reactant objects inside the Reaction object ("vcat"). 
  //---------------------------------------------------------------------------

  // (Reactant1) Creates a Reactant object that references Species "ES" in the
  // model.

  spr = reaction->createReactant();
  spr->setSpecies("ES");

  //---------------------------------------------------------------------------
  // Creates a Product object inside the Reaction object ("vcat"). 
  //---------------------------------------------------------------------------
  
  // (Product1) Creates a Product object that references Species "E" in the model.

  spr = reaction->createProduct();
  spr->setSpecies("E");

  // (Product2) Creates a Product object that references Species "P" in the model.

  spr = reaction->createProduct();
  spr->setSpecies("P");

  //---------------------------------------------------------------------------
  // Creates a KineticLaw object inside the Reaction object ("vcat"). 
  //---------------------------------------------------------------------------
  
  kl = reaction->createKineticLaw();

  //---------------------------------------------------------------------------
  // Sets a math (ASTNode object) to the KineticLaw object.
  //---------------------------------------------------------------------------

  // To create mathematical expressions, one would typically construct
  // an ASTNode tree as the above example code which creates a math of another
  // KineticLaw object.  Here, to save some space and illustrate another approach 
  // of doing it, we will write out the formula in MathML form and then use a 
  // libSBML convenience function to create the ASTNode tree for us.  
  // (This is a bit dangerous; it's very easy to make mistakes when writing MathML 
  // by hand, so in a real program, we would not really want to do it this way.)

  string mathXMLString = "<math xmlns=\"http://www.w3.org/1998/Math/MathML\">"
                         "  <apply>"
                         "    <times/>"
                         "    <ci> cytosol </ci>"
                         "    <ci> kcat </ci>"
                         "    <ci> ES </ci>"
                         "  </apply>"
                         "</math>";

  astMath = readMathMLFromString(mathXMLString.c_str());
  kl->setMath(astMath);
  delete astMath;

  //---------------------------------------------------------------------------
  // Creates local Parameter objects inside the KineticLaw object.
  //---------------------------------------------------------------------------

  // Creates a Parameter ("kcat")

  para = kl->createParameter();
  para->setId("kcat");
  para->setValue(0.1);
  para->setUnits("per_second");


  // Returns the created SBMLDocument object.
  // The returned object must be explicitly deleted by the caller,
  // otherwise a memory leak will happen.

  return sbmlDoc;

}
Example #7
0
/* in L1 and L2 there were built in values for key units
 * such as 'volume', 'length', 'area', 'substance' and 'time'
 * In L3 these have been removed - thus if a model uses one of these
 * it needs a unitDefinition to define it
 */
void
Model::addDefinitionsForDefaultUnits()
{
  /* create a list of unit values */
  IdList unitsUsed;
  unsigned int n;
  bool implicitVolume = false;
  bool implicitArea = false;
  bool implicitLength = false;
  bool implicitSubstance = false;

  for (n = 0; n < getNumCompartments(); n++)
  {
    if (getCompartment(n)->isSetUnits())
    {
      unitsUsed.append(getCompartment(n)->getUnits());
    }
    else
    {
      if (getCompartment(n)->getSpatialDimensions() == 3)
      {
        implicitVolume = true;
        getCompartment(n)->setUnits("volume");
      }
      else if (getCompartment(n)->getSpatialDimensions() == 2)
      {
        implicitArea = true;
        getCompartment(n)->setUnits("area");
      }
      else if (getCompartment(n)->getSpatialDimensions() == 1)
      {
        implicitLength = true;
        getCompartment(n)->setUnits("length");
      }
    }
  }

  for (n = 0; n < getNumSpecies(); n++)
  {
    if (getSpecies(n)->isSetSubstanceUnits())
    {
      unitsUsed.append(getSpecies(n)->getSubstanceUnits());
    }
    else
    {
      implicitSubstance = true;
      getSpecies(n)->setSubstanceUnits("substance");
    }
 
    if (getSpecies(n)->isSetSpatialSizeUnits())
      unitsUsed.append(getSpecies(n)->getSpatialSizeUnits());
  }

  for (n = 0; n < getNumParameters(); n++)
  {
    if (getParameter(n)->isSetUnits())
      unitsUsed.append(getParameter(n)->getUnits());
  }

  if (getUnitDefinition("volume") == NULL)
  {
    if (unitsUsed.contains("volume") || implicitVolume)
    {
      UnitDefinition * ud = createUnitDefinition();
      ud->setId("volume");
      Unit * u = ud->createUnit();
      u->setKind(UnitKind_forName("litre"));
      u->setScale(0);
      u->setExponent(1.0);
      u->setMultiplier(1.0);
      setVolumeUnits("volume");
    }
    else
    {
      setVolumeUnits("litre");
    }
  }
  else
  {
    setVolumeUnits("volume");
  }


  if (getUnitDefinition("substance") == NULL)
  {
    if (unitsUsed.contains("substance") || implicitSubstance)
    {
      UnitDefinition * ud = createUnitDefinition();
      ud->setId("substance");
      Unit * u = ud->createUnit();
      u->setKind(UnitKind_forName("mole"));
      u->setScale(0);
      u->setExponent(1.0);
      u->setMultiplier(1.0);
      setSubstanceUnits("substance");
      setExtentUnits("substance");
    }
    else
    {
      setSubstanceUnits("mole");
      setExtentUnits("mole");
    }
  }
  else
  {
    setSubstanceUnits("substance");
    setExtentUnits("substance");
  }

  if (getUnitDefinition("area") == NULL)
  {
    UnitDefinition * ud = createUnitDefinition();
    ud->setId("area");
    Unit * u = ud->createUnit();
    u->setKind(UnitKind_forName("metre"));
    u->setScale(0);
    u->setExponent(2.0);
    u->setMultiplier(1.0);
    setAreaUnits("area");
  }
  else
  {
    setAreaUnits("area");
  }

  if (getUnitDefinition("length") == NULL)
  {
    if (unitsUsed.contains("length") || implicitLength)
    {
      UnitDefinition * ud = createUnitDefinition();
      ud->setId("length");
      Unit * u = ud->createUnit();
      u->setKind(UnitKind_forName("metre"));
      u->setScale(0);
      u->setExponent(1.0);
      u->setMultiplier(1.0);
      setLengthUnits("length");
    }
    else
    {
      setLengthUnits("metre");
    }
  }
  else
  {
    setLengthUnits("length");
  }

  if (getUnitDefinition("time") == NULL)
  {
    setTimeUnits("second");
  }
  else
  {
    setTimeUnits("time");
  }

}
Example #8
0
void
Model::assignRequiredValues()
{
  // when converting to L3 some attributes which have default values in L1/L2
  // but are required in L3 are not present or set
  unsigned int i, n;

  if (getNumUnitDefinitions() > 0)
  {
    for (i = 0; i < getNumUnitDefinitions(); i++)
    {
      for (n = 0; n < getUnitDefinition(i)->getNumUnits(); n++)
      {
        Unit *u = getUnitDefinition(i)->getUnit(n);
        if (!u->isSetExponent())
          u->setExponent(1.0);
        if (!u->isSetScale())
          u->setScale(0);
        if (!u->isSetMultiplier())
          u->setMultiplier(1.0);
      }
    }
  }
  
  if (getNumCompartments() > 0)
  {
    for (i = 0; i < getNumCompartments(); i++)
    {
      Compartment *c = getCompartment(i);
      c->setConstant(c->getConstant());
    }
  }
  if (getNumSpecies() > 0)
  {
    for (i = 0; i < getNumSpecies(); i++)
    {
      Species * s = getSpecies(i);
      s->setBoundaryCondition(s->getBoundaryCondition());
      s->setHasOnlySubstanceUnits(s->getHasOnlySubstanceUnits());
      s->setConstant(s->getConstant());
    }
  }
  if (getNumParameters() > 0)
  {
    for (i = 0; i < getNumParameters(); i++)
    {
      Parameter * p = getParameter(i);
      p->setConstant(p->getConstant());
    }
  }
  if (getNumReactions() > 0)
  {
    for (i = 0; i < getNumReactions(); i++)
    {
      Reaction * r = getReaction(i);
      r->setFast(r->getFast());
      r->setReversible(r->getReversible());
      if (r->getNumReactants() > 0)
      {
        for (n = 0; n < r->getNumReactants(); n++)
        {
          SpeciesReference *sr = r->getReactant(n);
          if (sr->isSetStoichiometryMath())
          {
            sr->setConstant(false);
          }
          else
          {
            sr->setConstant(true);
          }
        }
      }
      if (r->getNumProducts() > 0)
      {
        for (n = 0; n < r->getNumProducts(); n++)
        {
          SpeciesReference *sr = r->getProduct(n);
          if (sr->isSetStoichiometryMath())
          {
            sr->setConstant(false);
          }
          else
          {
            sr->setConstant(true);
          }
        }
      }
    }
  }
  if (getNumEvents() > 0)
  {
    for (i = 0; i < getNumEvents(); i++)
    {
      Event * e = getEvent(i);
      e->setUseValuesFromTriggerTime(e->getUseValuesFromTriggerTime());

      if (e->isSetTrigger())
      {
        Trigger *t = e->getTrigger();
        t->setPersistent(true);
        t->setInitialValue(true);
      }
    }
  }

}
/*
 * Converts a Unit into the corresponding UnitDefinition that consists
 * only of SI units.
 * Possible offsets are ignored.
 * Freeing the memory for the returned UnitDefinition is up to the
 * receiver.
 * On failure a NULL pointer is returned.
 * @param const Unit& unit
 * @return UnitDefinition* result
 */
LIBSBML_EXTERN
UnitDefinition* UnitConversionFactory::convertToSI(const Unit& unit)
{
    UnitDefinition* pUdef = NULL;
    Unit* pU = NULL;

    if (!unit.isSetKind()) return pUdef;

    UnitKind_t uKind = unit.getKind();

    switch (uKind)
    {
    case UNIT_KIND_AMPERE:
        pUdef = convertAmpereToSI(unit);
        break;

    case UNIT_KIND_BECQUEREL:
    case UNIT_KIND_HERTZ:
        pUdef = convertFrequencyToSI(unit);
        break;

    case UNIT_KIND_CANDELA:
        pUdef = convertCandelaToSI(unit);
        break;

    case UNIT_KIND_CELSIUS:
        pUdef = convertCelsiusToSI(unit);
        break;

    case UNIT_KIND_COULOMB:
        pUdef = convertCoulombToSI(unit);
        break;

    case UNIT_KIND_DIMENSIONLESS:
    case UNIT_KIND_ITEM:
    case UNIT_KIND_RADIAN:
    case UNIT_KIND_STERADIAN:
        pUdef = convertDimensionlessToSI(unit);
        break;

    case UNIT_KIND_FARAD:
        pUdef = convertFaradToSI(unit);
        break;

    case UNIT_KIND_GRAM:
        pU = new Unit(unit);
        pU->setScale(pU->getScale() - 3);
        pU->setKind(UNIT_KIND_KILOGRAM);
        pUdef = convertKilogramToSI(*pU);
        delete pU;
        break;

    case UNIT_KIND_GRAY:
    case UNIT_KIND_SIEVERT:
        pUdef = convertDoseToSI(unit);
        break;

    case UNIT_KIND_HENRY:
        pUdef = convertHenryToSI(unit);
        break;

    case UNIT_KIND_JOULE:
        pUdef = convertJouleToSI(unit);
        break;

    case UNIT_KIND_KATAL:
        pUdef = convertKatalToSI(unit);
        break;

    case UNIT_KIND_KELVIN:
        pUdef = convertKelvinToSI(unit);
        break;

    case UNIT_KIND_KILOGRAM:
        pUdef = convertKilogramToSI(unit);
        break;

    case UNIT_KIND_LITER:
    case UNIT_KIND_LITRE:
        pU = new Unit(unit);
        pU->setKind(UNIT_KIND_METER);
        pU->setExponent(pU->getExponent()*3);
        pU->setScale(pU->getScale() - 3);
        pUdef = convertMeterToSI(*pU);
        delete pU;
        break;

    case UNIT_KIND_LUMEN:
        pUdef = convertLumenToSI(unit);
        break;

    case UNIT_KIND_LUX:
        pUdef = convertLuxToSI(unit);
        break;

    case UNIT_KIND_METER:
    case UNIT_KIND_METRE:
        pUdef = convertMeterToSI(unit);
        break;

    case UNIT_KIND_MOLE:
#if LIBSBML_VERSION >= 40100
    // this may be not totally correct, but this is the way we currently intend to
    // handle it in COPASI
    case UNIT_KIND_AVOGADRO:
#endif // LIBSBML_VERSION
        pUdef = convertMoleToSI(unit);
        break;

    case UNIT_KIND_NEWTON:
        pUdef = convertNewtonToSI(unit);
        break;

    case UNIT_KIND_OHM:
        pUdef = convertOhmToSI(unit);
        break;

    case UNIT_KIND_PASCAL:
        pUdef = convertPascalToSI(unit);
        break;

    case UNIT_KIND_SECOND:
        pUdef = convertSecondToSI(unit);
        break;

    case UNIT_KIND_SIEMENS:
        pUdef = convertSiemensToSI(unit);
        break;

    case UNIT_KIND_TESLA:
        pUdef = convertTeslaToSI(unit);
        break;

    case UNIT_KIND_VOLT:
        pUdef = convertVoltToSI(unit);
        break;

    case UNIT_KIND_WATT:
        pUdef = convertWattToSI(unit);
        break;

    case UNIT_KIND_WEBER:
        pUdef = convertWeberToSI(unit);
        break;

    case UNIT_KIND_INVALID:
        delete pUdef;
        pUdef = NULL;
        break;
    }

    if (pUdef != NULL)
    {
        unsigned int num = 1;
        std::stringstream ss;
        ss << "UnitDefinition_" << num;

        while (!UnitConversionFactory::isIdUnused(ss.str()))
        {
            ++num;
            ss.str("");
            ss << "UnitDefinition_" << num;
        }

        std::string id = ss.str();
        usedIds.push_back(id);
        pUdef->setId(id);
        UnitKind_t uKind = unit.getKind();
        pUdef->setName(UnitKind_toString(uKind));
    }

    return pUdef;
}
Example #10
0
/*
 * Combines two UnitDefinitions by combining the equivalent units from
 * both UnitDefinitions.
 * A new UnitDefinition containing the combination is returned.
 * If two eqivalent units have a different offset, the function returns a
 * NULL pointer.
 * It is up to the receiver to free the memory of the returned UnitDefinition.
 * @param const UnitDefinition& uDef1
 * @param const UnitDefinition& uDef2
 * @return UnitDefinition* result
 */
LIBSBML_EXTERN
UnitDefinition* UnitConversionFactory::combine(const UnitDefinition& uDef1, const UnitDefinition& uDef2)
{
    // take all Units from the first UnitDefinition make copies and put them into the new UnitDefinition
    // go through all Units in the second UnitDefinition, if the same unit already exists in the new
    // UnitDefinition combine them, else add a copy of the Unit to the new UnitDefinition
    UnitDefinition* pResult = new UnitDefinition(UnitConversionFactory::SBML_LEVEL, UnitConversionFactory::SBML_VERSION);
    unsigned int maxUnits = uDef1.getNumUnits();
    unsigned int i;

    for (i = 0; i < maxUnits; ++i)
    {
        const Unit* pSrcUnit = uDef1.getUnit(i);
        unsigned int maxUnits2 = pResult->getNumUnits();
        unsigned int j;
        bool exists = false;

        for (j = 0; j < maxUnits2; ++j)
        {
            Unit* pResultUnit = pResult->getUnit(j);

            if (pResultUnit->getKind() == pSrcUnit->getKind())
            {
                exists = true;

                // if the offsets are different, we can not combine the units
                if (pResultUnit->getOffset() != pSrcUnit->getOffset())
                {
                    delete pResult;
                    return NULL;
                }

                pResultUnit->setMultiplier(pResultUnit->getMultiplier()*pSrcUnit->getMultiplier()*pow(10.0, pResultUnit->getScale() - pSrcUnit->getScale()));
                pResultUnit->setExponent(pResultUnit->getExponent() + pSrcUnit->getExponent());

                // if the resulting scale is 0, the units have canceled each other out
                // and we set the kind to dimensionless so that it can be eliminated
                // later on
                if (pResultUnit->getExponent() == 0)
                {
                    pResultUnit->setKind(UNIT_KIND_DIMENSIONLESS);
                }
            }
        }

        if (!exists)
        {
            Unit* tmpUnit = new Unit(*pSrcUnit);
            pResult->addUnit(tmpUnit);
            delete tmpUnit;
        }
    }

    maxUnits = uDef2.getNumUnits();

    for (i = 0; i < maxUnits; ++i)
    {
        const Unit* pSrcUnit = uDef2.getUnit(i);
        unsigned int maxUnits2 = pResult->getNumUnits();
        unsigned int j;
        bool exists = false;

        for (j = 0; j < maxUnits2; ++j)
        {
            Unit* pResultUnit = pResult->getUnit(j);

            if (pResultUnit->getKind() == pSrcUnit->getKind())
            {
                exists = true;

                // if the offsets are different, we can not combine the units
                if (pResultUnit->getOffset() != pSrcUnit->getOffset())
                {
                    delete pResult;
                    return NULL;
                }

                pResultUnit->setMultiplier(pResultUnit->getMultiplier()*pSrcUnit->getMultiplier()*pow(10.0, pResultUnit->getScale() - pSrcUnit->getScale()));
                pResultUnit->setExponent(pResultUnit->getExponent() + pSrcUnit->getExponent());

                // if the resulting scale is 0, the units have canceled each other out
                // and we set the kind to dimensionless so that it can be eliminated
                // later on
                if (pResultUnit->getExponent() == 0)
                {
                    pResultUnit->setKind(UNIT_KIND_DIMENSIONLESS);
                }
            }
        }

        if (!exists)
        {
            Unit* tmpUnit = new Unit(*pSrcUnit);
            pResult->addUnit(tmpUnit);
            delete tmpUnit;
        }
    }

    UnitDefinition* pTmp = UnitConversionFactory::eliminateDimensionless(pResult);

    if (pTmp)
    {
        delete pResult;
        pResult = pTmp;
    }

    return pResult;
}