Example #1
0
    void set_candidates_and_demands
    (const Graph& g, Vertices& candidates, Vertices& demands,
     ExistedCenterMap existed_center_map, CandidateMap candidate_map)
    {
      using boost::vertices;
      const typename boost::graph_traits<Graph>::vertices_size_type
        num_v = num_vertices(g);

      candidates.reserve(num_v);
      demands.reserve(num_v);

      typename boost::graph_traits<Graph>::vertex_iterator vi, vi_end;
      for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) {
        if (get(candidate_map, *vi) != false &&
            get(existed_center_map, *vi) == false) {
          candidates.push_back(*vi);
        }
        demands.push_back(*vi);
      }

      // TODO copy_if or filter_iterator
      //
      if (candidates.empty()) {
        throw std::runtime_error("The number of candidate vertex is too small");
      }
    }
Example #2
0
std::string Rule::RightGraph::Vertex::printStereo(const graph::Printer &p) const {
	if(!r) throw LogicError("Can not get radical status on a null vertex.");
	const auto &graph = get_graph(get_labelled_right(r->getRule().getDPORule()));
	using boost::vertices;
	auto v = *std::next(vertices(graph).first, vId);
	return lib::IO::Stereo::Write::summary(r->getRule(), v, lib::Rules::Membership::Right, p.getOptions());
}
Example #3
0
    void add_middle_vertex_to_edges
    (const InputGraph& in_g, OutputGraph& out_g, WeightTag w_tag,
     IndexMap i_map, Orig2CopyMap orig_to_copy_map)
    {
      using boost::vertices;
      using boost::edges;
      using boost::num_edges;
      using boost::source;
      using boost::target;
      using boost::clear_vertex;
      using boost::add_vertex;
      using boost::add_edge;

      typedef typename boost::graph_traits<OutputGraph>::vertex_descriptor
        Vertex;
      typedef typename boost::property_map<OutputGraph, boost::edge_all_t>::type
        EdgePropertyMap;
      typedef typename boost::property_traits<EdgePropertyMap>::value_type
        EdgePropertyValue;
      typedef typename boost::property_map<OutputGraph, WeightTag>::type
        WeightMap;
      typedef typename boost::property_traits<WeightMap>::value_type
        WeightValue;
      typedef boost::tuple<Vertex, Vertex, EdgePropertyValue, WeightValue>
        EdgeTuple;
      typedef std::vector<EdgeTuple> EdgeTuples;

      boost::copy_graph(in_g, out_g,
          boost::vertex_index_map(i_map). orig_to_copy(orig_to_copy_map));

      WeightMap w_map = get(w_tag, out_g);
      EdgePropertyMap e_all_map = get(boost::edge_all, out_g);
      EdgeTuples edge_tuples;
      edge_tuples.reserve(num_edges(out_g));

      typename boost::graph_traits<OutputGraph>::edge_iterator ei, ei_end;
      for (boost::tie(ei, ei_end) = edges(out_g); ei != ei_end; ++ei) {
        edge_tuples.push_back
          (make_tuple(source(*ei, out_g), target(*ei, out_g),
                      get(e_all_map, *ei), get(w_map, *ei) / 2));
      }

      typename boost::graph_traits<OutputGraph>::vertex_iterator vi, vi_end;
      for (boost::tie(vi, vi_end) = vertices(out_g); vi != vi_end; ++vi) {
        clear_vertex(*vi, out_g);
      }

      // add_vertex must not invalid vertex_descriptor
      for (typename EdgeTuples::const_iterator eti = edge_tuples.begin(),
          eti_end = edge_tuples.end(); eti != eti_end; ++eti) {
        const Vertex new_v = add_vertex(out_g);
        put(w_map,
            add_edge(get<0>(*eti), new_v, get<2>(*eti), out_g).first,
            get<3>(*eti));
        put(w_map,
            add_edge(new_v, get<1>(*eti), get<2>(*eti), out_g).first,
            get<3>(*eti));
      }
    }
Example #4
0
Rule::RightGraph::Edge Rule::Edge::getRight() const {
	if(isNull()) return RightGraph::Edge();
	const auto &dpoRule = r->getRule().getDPORule();
	const auto &graph = get_graph(dpoRule);
	using boost::vertices;
	const auto v = *(vertices(graph).first + vId);
	const auto e = *(out_edges(v, graph).first + eId);
	if(membership(dpoRule, e) != lib::Rules::Membership::Left) {
		const auto &vs = vertices(get_right(r->getRule().getDPORule()));
		auto iter = std::find(vs.first, vs.second, v);
		auto vSubId = std::distance(vs.first, iter);
		const auto &es = out_edges(v, get_right(r->getRule().getDPORule()));
		auto eIter = std::find(es.first, es.second, e);
		auto eSubId = std::distance(es.first, eIter);
		return RightGraph::Edge(r, vSubId, eSubId);
	} else return RightGraph::Edge();
}
  inline void
  parallel_dijkstra_shortest_paths_no_init
    (const Graph& g, RootVertexMap root_vertex_map,
     PredecessorMap predecessor_map, DistanceMap distance_map,
     WeightMap weight_map, IndexMap index_map,
     Compare compare, Combine combine, DistZero zero,
     DijkstraVisitor vis, ColorMap color_map)
  {
    using boost::vertices;
    using boost::num_vertices;
    // TODO VertexList and IncidentGraph CenceptCheck
    typedef
      typename boost::property_traits<RootVertexMap>::value_type
      RootVertex;
    typedef typename boost::graph_traits<Graph>::vertex_descriptor Vertex;
    boost::function_requires< boost::Convertible<RootVertex, Vertex> >();

    typedef boost::indirect_cmp<DistanceMap, Compare> IndirectCmp;
    IndirectCmp icmp(distance_map, compare);

#ifdef BOOST_GRAPH_DIJKSTRA_USE_RELAXED_HEAP
    typedef boost::relaxed_heap<Vertex, IndirectCmp, IndexMap> MutableQueue;
    MutableQueue Q(num_vertices(g), icmp, index_map);
#else // Now the default: use a d-ary heap
    boost::scoped_array<std::size_t> index_in_heap_map_holder;
    typedef
      boost::detail::vertex_property_map_generator<Graph, IndexMap, std::size_t>
      IndexInHeapMapHelper;
    typedef typename IndexInHeapMapHelper::type IndexInHeapMap;
    IndexInHeapMap index_in_heap =
      IndexInHeapMapHelper::build(g, index_map, index_in_heap_map_holder);
    typedef
      boost::d_ary_heap_indirect<Vertex, 4, IndexInHeapMap, DistanceMap, Compare>
      MutableQueue;
    MutableQueue Q(distance_map, index_in_heap, compare);
#endif // Relaxed heap

    typename boost::graph_traits<Graph>::vertex_iterator vi, vi_end;
    for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) {
      if (get(root_vertex_map, *vi) != false) {
        Q.push(*vi);
      }
    }
    if (Q.empty()) {
      // TODO
      throw std::runtime_error("not specified root vertices.");
    }

    boost::detail::dijkstra_bfs_visitor<DijkstraVisitor, MutableQueue,
      WeightMap, PredecessorMap, DistanceMap, Combine, Compare>
        bfs_vis(vis, Q, weight_map, predecessor_map, distance_map,
            combine, compare, zero);

    const Vertex s = Q.top();
    Q.pop();
    boost::breadth_first_visit(g, s, Q, bfs_vis, color_map);
  }
Example #6
0
BondType Rule::RightGraph::Edge::getBondType() const {
	if(!r) throw LogicError("Can not get bond type on a null edge.");
	const auto &graph = get_right(r->getRule().getDPORule());
	using boost::vertices;
	auto iter = vertices(graph).first;
	std::advance(iter, vId);
	auto v = *iter;
	auto e = *std::next(out_edges(v, graph).first, eId);
	return r->getRule().getMoleculeState().getRight()[e];
}
Example #7
0
 void set_distance_matrix
 (const Graph& g, DistanceMatrix& d_matrix,
  IndexMap i_map, ExistedCenterMap e_c_map)
 {
   using boost::vertices;
   typedef typename boost::graph_traits<Graph>::vertex_iterator VIter;
   VIter vi, vi_end;
   for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) {
     if (get(e_c_map, *vi) != false) {
       VIter ui, ui_end;
       for (boost::tie(ui, ui_end) = vertices(g); ui != ui_end; ++ui) {
         const std::size_t i = get(i_map, *ui);
         const WeightValue dist = d_matrix[i][get(i_map, *vi)];
         std::replace_if(d_matrix[i].begin(), d_matrix[i].end(),
             dist < boost::lambda::_1, dist);
         // boost::replace_if(d_matrix[i], dist < boost::lambda::_1, dist);
       }
     }
   }
 }
Example #8
0
Rule::Edge Rule::RightGraph::Edge::getCore() const {
	if(isNull()) return Rule::Edge();
	const auto &graph = get_right(r->getRule().getDPORule());
	using boost::vertices;
	auto v = *std::next(vertices(graph).first, vId);
	auto vCoreId = get(boost::vertex_index_t(), graph, v);
	auto e = *std::next(out_edges(v, graph).first, eId);
	const auto &es = out_edges(v, get_graph(r->getRule().getDPORule()));
	auto eCoreId = std::distance(es.first, std::find(es.first, es.second, e));
	return Rule::Edge(r, vCoreId, eCoreId);
}
Example #9
0
Rule::RightGraph::Vertex Rule::Vertex::getRight() const {
	if(isNull()) return RightGraph::Vertex();
	const auto &dpoRule = r->getRule().getDPORule();
	const auto v = vertex(vId, get_graph(dpoRule));
	if(membership(dpoRule, v) != lib::Rules::Membership::Left) {
		using boost::vertices;
		const auto &vs = vertices(get_right(r->getRule().getDPORule()));
		auto iter = std::find(vs.first, vs.second, v);
		auto vSubId = std::distance(vs.first, iter);
		return RightGraph::Vertex(r, vSubId);
	} else return RightGraph::Vertex();
}
 inline typename boost::graph_traits<Graph>::vertex_descriptor
 get_start_vertex(const Graph& g)
 {
   using boost::vertices;
   using boost::out_degree;
   typename boost::graph_traits<Graph>::vertex_iterator vi, vi_end;
   for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) {
     if (out_degree(*vi, g) == 1) {
       return *vi;
     }
   }
   // TODO error process
   throw std::runtime_error("Graph is not linear.");
 }
Example #11
0
    void const_constraints(const G& cg) {
#ifdef BOOST_VECTOR_AS_GRAPH_GRAPH_ADL_HACK
      // dwa 2003/7/11 -- This clearly shouldn't be necessary, but if
      // you want to use vector_as_graph, it is!  I'm sure the graph
      // library leaves these out all over the place.  Probably a
      // redesign involving specializing a template with a static
      // member function is in order :(
      using boost::vertices;
#endif 
      
      p = vertices(cg);
      v = *p.first;
      V = num_vertices(cg);
    }
Example #12
0
    void constraints() {
      function_requires< GraphConcept<G> >();
      function_requires< MultiPassInputIteratorConcept<vertex_iterator> >();
      function_requires< ConvertibleConcept<traversal_category,
        vertex_list_graph_tag> >();

#ifdef BOOST_VECTOR_AS_GRAPH_GRAPH_ADL_HACK
      // dwa 2003/7/11 -- This clearly shouldn't be necessary, but if
      // you want to use vector_as_graph, it is!  I'm sure the graph
      // library leaves these out all over the place.  Probably a
      // redesign involving specializing a template with a static
      // member function is in order :(
      using boost::vertices;
#endif      
      p = vertices(g);
      v = *p.first;
      const_constraints(g);
    }
  inline void
  parallel_dijkstra_shortest_paths
    (const VertexListGraph& g,
     RootVertexMap root_vertex_map,
     PredecessorMap predecessor_map, DistanceMap distance_map,
     WeightMap weight_map, IndexMap index_map,
     Compare compare, Combine combine, DistInf inf, DistZero zero,
     DijkstraVisitor vis, ColorMap color_map)
  {
    using boost::vertices;
    // TODO VertexList and IncidentGraph CenceptCheck
    typedef
      typename boost::property_traits<RootVertexMap>::value_type
      RootVertex;
    typedef
      typename boost::graph_traits<VertexListGraph>::vertex_descriptor
      Vertex;
    boost::function_requires< boost::Convertible<RootVertex, Vertex> >();

    typedef typename boost::property_traits<ColorMap>::value_type ColorValue;
    typedef boost::color_traits<ColorValue> Color;
    typename boost::graph_traits<VertexListGraph>::vertex_iterator vi, vi_end;
    for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) {
      vis.initialize_vertex(*vi, g);
      if (get(root_vertex_map, *vi) != false) {
        put(distance_map, *vi, zero);
      }
      else {
        put(distance_map, *vi, inf);
      }
      put(predecessor_map, *vi, *vi);
      put(color_map, *vi, Color::white());
    }

    parallel_dijkstra_shortest_paths_no_init
      (g, root_vertex_map, predecessor_map, distance_map,
       weight_map, index_map, compare, combine, zero, vis, color_map);
  }
    typename AcyclicGraph<LinearGraph, WeightMap>::type
    convert_linear_graph_to_acyclic_graph
    (const LinearGraph& g, WeightMap weight, CandidateMap candidate,
     Combine combine, Multiple multiple)
    {
      using boost::vertices;
      using boost::out_edges;
      using boost::out_degree;
      using boost::target;
      typedef boost::graph_traits<LinearGraph> Traits;
      typedef typename Traits::vertex_descriptor Vertex;
      typedef typename Traits::vertex_iterator VIter;
      typedef
        typename boost::property_traits<WeightMap>::value_type
        WeightValue;
      typedef typename AcyclicGraph<LinearGraph, WeightMap>::type AcyclicGraph;

      const typename std::iterator_traits<VIter>::difference_type
        num_v = boost::distance(vertices(g));
      const Vertex s = detail::get_start_vertex(g);

      std::vector<Vertex> new_vertices;
      new_vertices.reserve(num_v);
      std::vector<WeightValue> e_weight;
      e_weight.reserve(num_v - 1);

      // Collect info about a linear graph
      new_vertices.push_back(s);
      Vertex prev = s, now = s;
      typename Traits::out_edge_iterator ei, ei_end;
      do {
        boost::tie(ei, ei_end) = out_edges(now, g);
        if (target(*ei, g) == prev) {
          ++ei;
        }
        const Vertex next = target(*ei, g);
        if (get(candidate, next) || out_degree(next, g) == 1) {
          new_vertices.push_back(next);
        }

        if (get(candidate, now) || out_degree(now, g) == 1) {
          e_weight.push_back(get(weight, *ei));
        }
        else {
          e_weight.back() = combine(e_weight.back(), get(weight, *ei));
        }
        prev = now;
        now = next;
      } while (out_degree(now, g) != 1);

      // create acyclic graph's edge info
      const std::vector< std::pair<std::size_t, std::size_t> >
        new_edges(detail::create_new_edges(new_vertices.size()));
      const std::vector<WeightValue>
        new_weight(detail::convert_edge_weight(e_weight, combine, multiple));

      AcyclicGraph acyclic_g(
          boost::edges_are_sorted,
          new_edges.begin(), new_edges.end(),
          new_weight.begin(), new_vertices.size());

      // set vertex prop;
      typename boost::graph_traits<AcyclicGraph>::vertex_iterator vi, vi_end;
      for (boost::tie(vi, vi_end) = vertices(acyclic_g); vi != vi_end; ++vi) {
        acyclic_g[*vi] = new_vertices[get(boost::vertex_index, acyclic_g, *vi)];
      }

      return acyclic_g;
    }
Example #15
0
    typename boost::property_traits<WeightMap>::value_type
    uneven_dist_center
    (const Graph& g, std::size_t k, CenterMap center_map,
     WeightMap weight_map, EdgeColorMap color_map,
     ExistedCenterMap existed_center_map, CandidateMap candidate_map,
     Compare compare, Combine combine, Multiple multiple, DistZero zero)
    {
      using boost::vertices;
      using boost::source;
      using boost::target;
      typedef linear_graphs<Graph> LinearGraphs;
      typedef typename LinearGraphs::value_type LinearGraph;
      typedef typename AcyclicGraph<LinearGraph, WeightMap>::type AcyclicGraph;
      typedef
        typename boost::property_map<AcyclicGraph, boost::edge_bundle_t>::type
        AcyclicWeightMap;
      typedef
        detail::graph_info<AcyclicGraph, AcyclicWeightMap, Compare, Combine>
        GraphInfo;
      typedef std::vector<GraphInfo> GraphInfos;

      const LinearGraphs lgraphs
        = split_to_linear_graphs(g, color_map, existed_center_map);

      /* TODO
      if (std::accumulate(lgraphs.begin(), lgraphs.end(), 0) < k) {
        throw std::runtime_error("The number of center is too large");
      }
      */

      // convert linear graph to acyclic graph
      GraphInfos graph_infos;
      graph_infos.reserve(lgraphs.size());
      typename GraphInfo::OptimalSolutions optimal_solutions;
      typename GraphInfo::OptimalResouceContainers optimal_resource_containers;
      std::priority_queue<
          GraphInfo*, std::vector<GraphInfo*>, indirected_less<GraphInfo>
        > que;
      for (typename LinearGraphs::const_iterator
          it = lgraphs.begin(); it != lgraphs.end(); ++it) {
#ifndef __GXX_EXPERIMENTAL_CXX0X__
        graph_infos.push_back(
            GraphInfo(
              convert_linear_graph_to_acyclic_graph(
                *it, weight_map, candidate_map, combine, multiple),
              compare, combine, zero,
              optimal_solutions, optimal_resource_containers));
#else
        graph_infos.emplace_back(
            convert_linear_graph_to_acyclic_graph(
              *it, weight_map, candidate_map, combine, multiple),
            compare, combine, zero,
            optimal_solutions, optimal_resource_containers);
#endif
        if (graph_infos.back().is_allocable()) {
          que.push(&graph_infos.back());
        }
      }

      // allocate center number
      for (std::size_t i = 0; i < k; ++i) {
        if (que.empty()) {
          throw std::runtime_error("The number of center is too large");
        }
        GraphInfo& info = *(que.top());
        que.pop();
        info.update();
        if (info.is_allocable()) {
          que.push(&info);
        }
      }

      // set center_map
      // TODO Exclude existed center?
      typedef typename boost::graph_traits<Graph>::vertex_descriptor Vertex;
      typename boost::graph_traits<Graph>::vertex_iterator vi, vi_end;
      boost::fill(
          vertices(g) | Canard::adaptors::mapped(center_map), false);
      for (typename GraphInfos::const_iterator
          it = graph_infos.begin(); it != graph_infos.end(); ++it) {
        const AcyclicGraph& graph = it->graph;
        typename GraphInfo::EdgeVector::const_iterator
          first = it->prev_solution.begin(), last = it->prev_solution.end();
        put(center_map, graph[target(*first, graph)], true);
        for (; first != last; ++first) {
          put(center_map, graph[source(*first, graph)], true);
        }
      }

      return boost::accumulate(
          graph_infos | boost::adaptors::transformed(
            std::mem_fun_ref(&GraphInfo::get_value)),
          zero);
    }