GURLS_EXPORT void eig(const gMat2D<float>& A, gVec<float>& Wr, gVec<float>& Wi) { if (A.cols() != A.rows()) throw gException("The input matrix A must be squared"); float* Atmp = new float[A.getSize()]; copy(Atmp, A.getData(), A.getSize()); char jobvl = 'N', jobvr = 'N'; int n = A.cols(), lda = A.cols(), ldvl = 1, ldvr = 1; int info, lwork = 4*n; float* work = new float[lwork]; sgeev_(&jobvl, &jobvr, &n, Atmp, &lda, Wr.getData(), Wi.getData(), NULL, &ldvl, NULL, &ldvr, work, &lwork, &info); delete[] Atmp; delete[] work; if(info != 0) { std::stringstream str; str << "Eigenvalues/eigenVectors computation failed, error code " << info << ";" << std::endl; throw gException(str.str()); } }
GURLS_EXPORT float dot(const gVec<float>& x, const gVec<float>& y) { if ( x.getSize() != y.getSize() ) throw gException(gurls::Exception_Inconsistent_Size); int n = x.getSize(); int incr = 1; return sdot_(&n, const_cast<float*>(x.getData()), &incr, const_cast<float*>(y.getData()), &incr); }
GURLS_EXPORT double dot(const gVec<double>& x, const gVec<double>& y) { if ( x.getSize() != y.getSize() ) { throw gException(gurls::Exception_Inconsistent_Size); } int n = x.getSize(); int incr = 1; return ddot_(&n, const_cast<double*>(x.getData()), &incr, const_cast<double*>(y.getData()), &incr); }
GURLS_EXPORT void svd(const gMat2D<float>& A, gMat2D<float>& U, gVec<float>& W, gMat2D<float>& Vt) { float* Ubuf; float* Sbuf; float* Vtbuf; int Urows, Ucols; int Slen; int Vtrows, Vtcols; gurls::svd(A.getData(), Ubuf, Sbuf, Vtbuf, A.rows(), A.cols(), Urows, Ucols, Slen, Vtrows, Vtcols); U.resize(Urows, Ucols); copy(U.getData(), Ubuf, U.getSize()); W.resize(Slen); copy(W.getData(), Sbuf, Slen); Vt.resize(Vtrows, Vtcols); copy(Vt.getData(), Vtbuf, Vt.getSize()); delete [] Ubuf; delete [] Sbuf; delete [] Vtbuf; }
GURLS_EXPORT void eig(const gMat2D<float>& A, gMat2D<float>& V, gVec<float>& Wr, gVec<float>& Wi) { if (A.cols() != A.rows()) { throw gException("The input matrix A must be squared"); } char jobvl = 'N', jobvr = 'V'; int n = A.cols(), lda = A.cols(), ldvl = 1, ldvr = A.cols(); int info, lwork = 4*n; float* work = new float[lwork]; gMat2D<float> Atmp = A; gMat2D<float> Vtmp = V; sgeev_(&jobvl, &jobvr, &n, Atmp.getData(), &lda, Wr.getData(), Wi.getData(), NULL, &ldvl, Vtmp.getData(), &ldvr, work, &lwork, &info); Vtmp.transpose(V); delete[] work; }
GURLS_EXPORT void svd(const gMat2D<float>& A, gMat2D<float>& U, gVec<float>& W, gMat2D<float>& Vt) { char jobu = 'S', jobvt = 'S'; int m = A.rows(); int n = A.cols(); int k = std::min<int>(m, n); if ((int)W.getSize() < k) { throw gException("The length of vector W must be at least equal to the minimum dimension of the input matrix A"); } if ((int)U.rows() < m || (int)U.cols() < k) { throw gException("Please check the dimensions of the matrix U where to store the singular vectors"); } if ((int)Vt.rows() < k || (int)Vt.cols() < n) { throw gException("Please check the dimensions of the matrix Vt where to store the rigth singular vectors"); } int lda = A.cols(); int ldu = U.cols(); int ldvt = Vt.cols(); int info, lwork = std::max<int>(3*k+std::max<int>(m,n), 5*k); float* work = new float[lwork]; float* copy = new float[m*n]; A.asarray(copy, m*n); sgesvd_(&jobu, &jobvt, &n, &m, copy, &lda, W.getData(), Vt.getData(), &ldvt, U.getData(), &ldu, work, &lwork, &info); delete[] work; delete[] copy; }
void BigArray<T>::setRow(unsigned long row, const gVec<T>& value) { if(row >= this->numrows) throw gException(Exception_Index_Out_of_Bound); if(value.getSize() != this->numcols) throw gException(Exception_Inconsistent_Size); setMatrix(row, 0, value.getData(), 1, this->numcols); }
void BigArray<T>::setColumn(unsigned long col, const gVec<T>& value) { if(col >= this->numcols) throw gException(Exception_Index_Out_of_Bound); if(value.getSize() != this->numrows) throw gException(Exception_Inconsistent_Size); setMatrix(0, col, value.getData(), this->numrows, 1); }
GURLS_EXPORT void dot(const gMat2D<float>& A, const gVec<float>& x, gVec<float>& y) { if ( (A.cols() != x.getSize()) || (A.rows() != y.getSize())) throw gException(Exception_Inconsistent_Size); // y = alpha*A*x + beta*y float alpha = 1.0f; float beta = 0.0f; char transA = 'N'; int m = A.rows(); int n = A.cols(); int lda = m; int inc = 1; sgemv_(&transA, &m, &n, &alpha, const_cast<float*>(A.getData()), &lda, const_cast<float*>(x.getData()), &inc, &beta, y.getData(), &inc); }
GURLS_EXPORT void eig(const gMat2D<float>& A, gVec<float>& Wr, gVec<float>& Wi) { if (A.cols() != A.rows()) { throw gException("The input matrix A must be squared"); } char jobvl = 'N', jobvr = 'N'; int n = A.cols(), lda = A.cols(), ldvl = 1, ldvr = 1; int info, lwork = 4*n; float* work = new float[lwork]; sgeev_(&jobvl, &jobvr, &n, const_cast<gMat2D<float>&>(A).getData(), &lda, Wr.getData(), Wi.getData(), NULL, &ldvl, NULL, &ldvr, work, &lwork, &info); delete[] work; }
GURLS_EXPORT void lu(gMat2D<float>& A, gVec<int>& pv) { unsigned int k = std::min<unsigned int>(A.cols(), A.rows()); if (pv.getSize() != k) { throw gException("The lenghth of pv must be equal to the minimun dimension of A"); } int info; int m = A.rows(); int n = A.cols(); int lda = A.cols(); sgetrf_(&m, &n, A.getData(), &lda, pv.getData(), &info); }
GURLS_EXPORT void dot(const gMat2D<double>& A, const gVec<double>& x, gVec<double>& y){ if ( (A.cols() != x.getSize()) || (A.rows() != y.getSize())) throw gException(Exception_Inconsistent_Size); // y = alpha*A*x + beta*y double alpha = 1.0f; double beta = 0.0f; char transA = 'T'; // row major matrix int m = A.cols(); // row major matrix int n = A.rows(); // row major matrix int lda = m; // row major matrix int inc = 1; dgemv_(&transA, &m, &n, &alpha, const_cast<double*>(A.getData()), &lda, const_cast<double*>(x.getData()), &inc, &beta, y.getData(), &inc); }
T GurlsWrapper<T>::eval(const gVec<T> &X, unsigned long *index) { if(!trainedModel()) throw gException("Error, Train Model First"); gMat2D<T>X_mat(1, X.getSize()); copy(X_mat.getData(), X.getData(), X.getSize()); gMat2D<T>* pred_mat = eval(X_mat); const T* pred = pred_mat->getData(); const unsigned long size = pred_mat->getSize(); const T* max = std::max_element(pred, pred+size); T ret = *max; if(index != NULL) *index = max-pred; delete pred_mat; return ret; }
void RecursiveRLSWrapper<T>::update(const gVec<T> &X, const gVec<T> &y) { if(!this->trainedModel()) throw gException("Error, Train Model First"); RLSPrimalRecUpdate<T> optimizer; const unsigned long d = X.getSize(); const unsigned long t = y.getSize(); gMat2D<T>X_mat(1, d); copy(X_mat.getData(), X.getData(), d); gMat2D<T>y_mat(1, t); copy(y_mat.getData(), y.getData(), t); GurlsOptionsList* ret = optimizer.execute(X_mat, y_mat, *(this->opt)); this->opt->removeOpt("optimizer"); this->opt->addOpt("optimizer", ret); ++nTot; gMat2D<T>* xtx = new gMat2D<T>(d,d); gMat2D<T>* xty = new gMat2D<T>(d,t); dot(X.getData(), X.getData(), xtx->getData(), 1, d, 1, d, d, d, CblasTrans, CblasNoTrans, CblasColMajor); dot(X.getData(), y.getData(), xty->getData(), 1, d, 1, t, d, t, CblasTrans, CblasNoTrans, CblasColMajor); GurlsOptionsList* kernel = this->opt->template getOptAs<GurlsOptionsList>("kernel"); const gMat2D<T>& XtX = kernel->getOptValue<OptMatrix<gMat2D<T> > >("XtX"); const gMat2D<T>& Xty = kernel->getOptValue<OptMatrix<gMat2D<T> > >("Xty"); axpy(d*d, (T)1.0, XtX.getData(), 1, xtx->getData(), 1); axpy(d*t, (T)1.0, Xty.getData(), 1, xty->getData(), 1); kernel->removeOpt("XtX"); kernel->addOpt("XtX", new OptMatrix<gMat2D<T> >(*xtx)); kernel->removeOpt("Xty"); kernel->addOpt("Xty", new OptMatrix<gMat2D<T> >(*xty)); unsigned long proportion = static_cast<unsigned long>(gurls::round(1.0/this->opt->getOptAsNumber("hoproportion"))); if(nTot % proportion == 0) { const gMat2D<T>& Xva = kernel->getOptValue<OptMatrix<gMat2D<T> > >("Xva"); const gMat2D<T>& yva = kernel->getOptValue<OptMatrix<gMat2D<T> > >("yva"); const unsigned long nva = Xva.rows(); const unsigned long nva_new = nva+1; gMat2D<T>* Xva_new = new gMat2D<T>(nva_new, d); const T* old_it = Xva.getData(); T* new_it = Xva_new->getData(); for(const T* end = new_it+(nva_new*d); new_it< end; old_it+=nva, new_it +=nva_new) copy(new_it, old_it, nva); copy(Xva_new->getData()+nva, X.getData(), d, nva_new, 1); kernel->removeOpt("Xva"); kernel->addOpt("Xva", new OptMatrix<gMat2D<T> >(*Xva_new)); gMat2D<T>* yva_new = new gMat2D<T>(nva_new, t); old_it = yva.getData(); new_it = yva_new->getData(); for(const T* end = new_it+(nva_new*t); new_it< end; old_it+=nva, new_it +=nva_new) copy(new_it, old_it, nva); copy(yva_new->getData()+nva, y.getData(), t, nva_new, 1); kernel->removeOpt("yva"); kernel->addOpt("yva", new OptMatrix<gMat2D<T> >(*yva_new)); } }