int main ( int argc, char **argv ) { int i, j, n, pid, t; double pix; double ir, ic; int req, task, value; char task_name[16]; log_start(); if ( argc < 2 ) { fprintf(stderr,"Usage: %s param_file\n", argv[0]); exit(1); } pe.mq = msgget ( getpid(), 0777|IPC_CREAT ); set_defaults(); p.read_file(argv[1]); GDALAllRegister(); east1 = p.dvalue("easting_left"); east2 = p.dvalue("easting_right"); north1 = p.dvalue("northing_bottom"); north2 = p.dvalue("northing_top"); wid = p.dvalue("output_cell_size"); pix = p.dvalue("input_cell_size"); ir = p.dvalue("input_rows"); ic = p.dvalue("input_columns"); input_rows = (int)ir; input_cols = (int)ic; max_dist = 1.2 * pix * sqrt(ir*ir+ic*ic) / wid; max_dist_2 = max_dist/2; max_dist = max_dist * max_dist; readers = p.ivalue("readers"); mappers = p.ivalue("mappers"); writers = p.ivalue("writers"); rows = int((north2 - north1) / wid); cols = int((east2 - east1) / wid); cindex = new int[cols]; dist.create(rows,cols); img.create(rows,cols); srand(time(NULL)); read_image_file(img); fill ( img, dist, 0, rows ); //spread_dist ( img, dist ); //if ( p.value("dist_file") != "" ) output_dist_geotiff ( dist, v ); //if ( p.value("blob_file") != "" ) output_pcolor_geotiff ( img, dist, v ); sort ( img_indices, img_indices+img_ct, comp_row ); valid_img = new int[max_img_id]; for ( i = 0; i < img_ct; i++ ) { j = img_indices[i]; valid_img[j] = 0; if ( xy[j][0]+max_dist_2 >= 0 && xy[j][0]-max_dist_2 < rows ) { pe.add_task ( "image", j ); } } read_dem_header(dem); pe.launch ( dem_reader ); out.create_image(rows,cols); for ( i = 0; i < out.rows; i += bs ) pe.add_task ( "mapper", i ); for ( i = 0; i < readers; i++ ) { pe.launch ( reader ); } for ( i = 0; i < mappers; i++ ) { pe.launch ( mapper ); } for ( i = 0; i < writers; i++ ) { pe.launch ( writer ); } while ( pe.children > 0 ) { t = msgrcv ( pe.mq, &pe.msg, MSG_SIZE, 1, 0 ); if ( t < 0 ) perror(""); sscanf(pe.msg.s,"%d %d %s %d", &req, &pid, task_name, &value ); switch ( req ) { case EXIT: log("exit %d",pid); pe.children--; break; case WAIT: if ( pe.ready(task_name,value) ) { sprintf(pe.msg.s,"1"); pe.msg.t = pid; //printf("Sending %d task %d\n",pid,task); log("wait %d %s %d",pid,task_name,value); t = msgsnd ( pe.mq, &pe.msg, MSG_SIZE, 0 ); } else { log("sleep %d %s %d",pid,task_name,value); pe.enqueue ( task_name, value, pid ); } break; case TASK: task = pe.fetch_task(task_name); log("task %d %s %d",pid,task_name,task); sprintf(pe.msg.s,"%d",task); pe.msg.t = pid; //printf("Sending %d task %d\n",pid,task); t = msgsnd ( pe.mq, &pe.msg, MSG_SIZE, 0 ); break; case REPORT: log("complete %d %s %d",pid,task_name,value); pe.complete ( task_name, value ); break; } } msgctl(pe.mq,IPC_RMID,NULL); dump_log(); return 0; }
void map_block ( int row1 ) { int current = -1; int j, r, c, dr, dc, jr, jc; int n=0; rgb_image rgb, *q; double max_north, north, min_east, east; double dt, db, dx, dy, ddx, ddy, elev; double it, ib, ix, iy, dix, diy; double scale; double row_offset, column_offset; char s[2]; int br, bc, brlim, bclim; vec3 pt, diff; img_map::iterator i; int block = -1; rgb.rows = 0; row_offset = p.dvalue("row_offset"); column_offset = p.dvalue("column_offset"); max_north = p.dvalue("northing_top"); min_east = p.dvalue("easting_left"); r = row1; brlim = r + bs; if ( brlim > img.rows ) brlim = img.rows; fill(img,dist,r,brlim); //printf("%d filled\n",getpid()); spread_dist(img,dist,r,brlim); //printf("%d spread\n",getpid()); for ( c = 0; c < img.cols; c += bs ) { for ( br = r; br < brlim; br++ ) { bclim = c + bs; if ( bclim > img.cols ) bclim = img.cols; north = max_north - br * wid; dy = (dem_north - north) / dem_wid; dr = int(dy + 0.5); ddy = dy - int(dy); if ( dr < 0 || dr >= dem.rows ) { //printf("dem north %g, wid %g; north %g, dy %g\n", //dem_north, dem_wid, north, dy ); fprintf(stderr,"Dem row %d out of range for row %d\n", dr, r ); exit(1); } for ( bc = c; bc < bclim; bc++ ) { if ( img[br][bc] < 1 ) continue; east = min_east + bc*wid; if ( img[br][bc] != current ) { current = img[br][bc]; //printf("%d %d switching to %d after %d pixels\n", //br, bc, current, n ); n = 1; rgb = imgs[current]; if ( !valid_img[current] ) { pe.wait_for ( "image", current ); valid_img[current] = 1; } rgb.used = 1; imgs[current] = rgb; } n++; dx = (east - dem_east) / dem_wid; dc = int(dx + 0.5); ddx = dx - int(dx); if ( dc < 0 || dc >= dem.cols ) { fprintf(stderr,"Dem column %d out of range for column %d\n", dc, c ); exit(1); } if ( dc == 0 || dr == 0 || dc == dem.cols-1 || dr == dem.rows-1 ) { elev = -rgb.alt + dem[dr][dc]; } else { dr = (int)dy; dc = (int)dx; dt = (1.0-ddx)*dem[dr][dc] + ddx*dem[dr][dc+1]; db = (1.0-ddx)*dem[dr+1][dc] + ddx*dem[dr+1][dc+1]; elev = -rgb.alt + (1.0-ddy)*dt + ddy*db; } pt[0] = east; pt[1] = north; pt[2] = elev; //diff = pt - rgb.cam; //printf("pt %8g %12.8g %g, cam %8g %12.8g %g, zrot %g %g %g\n", //pt[0], pt[1], pt[2], rgb.cam[0], rgb.cam[1], rgb.cam[2], //rgb.zrot[0], rgb.zrot[1], rgb.zrot[2] ); //dist = diff.length(); //dist = diff * rgb.zrot; //scale = rgb.alt / dist; //printf("%d %d %d %d, cam %g, elev %g, dist %gm scale %g\n", //br,bc,dr,dc, rgb.cam.n[2], elev, dist, scale); //pt = scale * pt + (1-scale)*rgb.cam; pt = rgb.MI * pt; scale = -rgb.unit_depth / pt[2]; pt = scale * pt; iy = rgb.rows - 1 - (pt[1]+rgb.rows/2+row_offset); jr = int(iy+0.5); ix = int(pt[0]+rgb.cols/2+column_offset+0.5); jc = int(ix+0.5); //printf("scale %g, jr %g, jc %g, %g\n", //scale, pt[1]+600, pt[0]+800, pt[2] ); if ( jr >= 0 && jr < rgb.rows && jc >= 0 && jc < rgb.cols){ if ( jr == 0 || jc == 0 || jr == rgb.rows - 1 || jc == rgb.cols - 1 ) { out.img[0][br][bc] = rgb.img[0][jr][jc]; out.img[1][br][bc] = rgb.img[1][jr][jc]; out.img[2][br][bc] = rgb.img[2][jr][jc]; } else { jr = int(iy); jc = int(ix); diy = iy - jr; dix = ix - jc; for ( j = 0; j < 3; j++ ) { it = (1.0-dix)*rgb.img[j][jr][jc] + dix * rgb.img[j][jr][jc+1]; ib = (1.0-dix)*rgb.img[j][jr+1][jc] + dix * rgb.img[j][jr+1][jc+1]; out.img[j][br][bc] = int((1.0-diy)*it + diy*ib + 0.5); } } } } } } rgb.rows = 0; rgb.img[0].data = 0; rgb.img[1].data = 0; rgb.img[2].data = 0; }
void output_dist_geotiff ( image<float> & dist, image<unsigned char> & v ) { int r, c; int val; OGRSpatialReference ref; GDALDataset *df; char *wkt = NULL; GDALRasterBand *bd; double trans[6]; GDALDriver *gt; char **options = NULL; int ov[] = { 2, 4, 8, 16, 32 }; int nov; int n; char file[1000]; options = CSLSetNameValue ( options, "TILED", "NO" ); options = CSLSetNameValue ( options, "COMPRESS", "LZW" ); gt = GetGDALDriverManager()->GetDriverByName("GTiff"); if ( !gt ) { fprintf(stderr,"Could not get GTiff driver\n"); exit(1); } strcpy ( file, p.value("dist_file").c_str() ); df = gt->Create( file, dist.cols, dist.rows, 1, GDT_Byte, options ); if( df == NULL ) { fprintf(stderr,"Could not create %s\n", file ); exit(1); } trans[0] = p.dvalue("easting_left"); trans[1] = p.dvalue("output_cell_size"); trans[2] = 0.0; trans[3] = p.dvalue("northing_top"); trans[4] = 0.0; trans[5] = -p.dvalue("output_cell_size"); df->SetGeoTransform ( trans ); ref.SetUTM ( p.ivalue("utm_zone") ); ref.SetWellKnownGeogCS ( "NAD27" ); ref.exportToWkt ( &wkt ); df->SetProjection(wkt); CPLFree ( wkt ); for ( r=0; r < dist.rows; r++ ) { for ( c=0; c < dist.cols; c++ ) { val = int(sqrt(dist[r][c])+0.5); if ( val > 255 ) val = 255; v[r][c] = val; } } bd = df->GetRasterBand(1); bd->RasterIO( GF_Write, 0, 0, v.cols, v.rows, v.data, v.cols, v.rows, GDT_Byte, 0, 0 ); delete df; df = (GDALDataset *)GDALOpen ( file, GA_Update ); if( df == NULL ) { fprintf(stderr,"Could not open for update %s\n", file ); exit(1); } nov = p.ivalue("overviews"); if ( nov > 5 ) nov = 5; if ( nov > 0 ) { n = 1; df->BuildOverviews("NEAREST", nov, ov, 1, &n, NULL, NULL ); } }
void output_geotiff ( rgb_image & out ) { int i, r, c; int val; char s[2]; OGRSpatialReference ref; GDALDataset *df; char *wkt = NULL; GDALRasterBand *bd; double trans[6]; GDALDriver *gt; char **options = NULL; int ov[] = { 2, 4, 8, 16, 32 }; int nov; int n; int bands[] = { 1, 2, 3 }; char file[1000]; int block, ir, rows; options = CSLSetNameValue ( options, "TILED", "NO" ); options = CSLSetNameValue ( options, "BLOCKXSIZE", "256" ); options = CSLSetNameValue ( options, "BLOCKYSIZE", "256" ); options = CSLSetNameValue ( options, "COMPRESS", "LZW" ); gt = GetGDALDriverManager()->GetDriverByName("GTiff"); if ( !gt ) { fprintf(stderr,"Could not get GTiff driver\n"); exit(1); } strcpy ( file, p.value("output_file").c_str() ); df = gt->Create( file, out.cols, out.rows, 3, GDT_Byte, options ); if( df == NULL ) { fprintf(stderr,"Could not create %s\n", file ); exit(1); } trans[0] = p.dvalue("easting_left"); trans[1] = p.dvalue("output_cell_size"); trans[2] = 0.0; trans[3] = p.dvalue("northing_top"); trans[4] = 0.0; trans[5] = -p.dvalue("output_cell_size"); df->SetGeoTransform ( trans ); ref.SetUTM ( p.ivalue("utm_zone") ); ref.SetWellKnownGeogCS ( "NAD27" ); ref.exportToWkt ( &wkt ); df->SetProjection(wkt); CPLFree ( wkt ); for ( ir = 0; ir < out.rows; ir += bs ) { rows = out.rows - ir; if ( rows > bs ) rows = bs; //printf("Writer waiting for %d\n",ir ); pe.wait_for("data",ir); for ( i = 0; i < 3; i++ ) { bd = df->GetRasterBand(i+1); bd->RasterIO( GF_Write, 0, ir, out.cols, rows, out.img[i].data+ir*out.cols, out.cols, rows, GDT_Byte, 0, 0 ); } } delete df; df = (GDALDataset *)GDALOpen ( file, GA_Update ); if( df == NULL ) { fprintf(stderr,"Could not open for update %s\n", file ); exit(1); } nov = p.ivalue("overviews"); if ( nov > 5 ) nov = 5; if ( nov > 0 ) { df->BuildOverviews("NEAREST", nov, ov, 3, bands, NULL, NULL ); } }
void read_image_file(image<short> & img) { double camera_roll, camera_pitch, camera_yaw; FILE *fp; rgb_image rgb, *q; double east, north, alt; img_map::iterator i; vec3 utm(0,0,0), x(1,0,0), y(0,1,0), z(0,0,1); mat4 trans, roll, pitch, yaw; camera_roll = p.dvalue("camera_roll"); camera_pitch = p.dvalue("camera_pitch"); camera_yaw = p.dvalue("camera_yaw"); fp = fopen ( p.value("images_file").c_str(), "r" ); if ( !fp ) { fprintf(stderr,"Could not open images file: %s\n", p.value("images_file").c_str() ); exit(1); } xy[0][0] = -2*img.rows; xy[0][1] = -2*img.cols; while ( rgb.read_params(fp) ) { if ( rgb.id > max_img_id ) max_img_id = rgb.id; imgs[rgb.id] = rgb; } fclose(fp); img_indices = new int[max_img_id+1]; sea_level = p.dvalue("sea_level"); i = imgs.begin(); while ( i != imgs.end() ) { q = &i->second; q->create_image(input_rows,input_cols); //printf("%s\n", q->pathname.c_str()); //printf("%d %10.2f %10.2f %7.2f %7.2f %7.2f %7.2f\n",p->id, //p->east, p->north, p->alt, //p->omega, p->phi, p->kappa ); img_indices[img_ct] = q->id; img_ct++; utm[0]=q->east; utm[1]=q->north; trans = translation3D(utm); pitch = rotation3D ( x, q->omega); roll = rotation3D ( y, q->phi); yaw = rotation3D ( z, q->kappa); q->M = pitch; q->M = q->M * roll; q->M = q->M * yaw; q->zrot = -1.0 * z; q->zrot = q->M * q->zrot; q->M = trans; q->M = q->M * pitch; q->M = q->M * roll; q->M = q->M * yaw; q->MI = q->M.inverse(); q->unit_depth = p.dvalue("focal_length")*1000.0/p.dvalue("pixel_size"); q->cam = utm; q->cam[2] = 0; i++; } }