Example #1
0
void KMEANS<T>::print()
{
	ofstream fout;
	fout.open("res.txt");
	if (!fout)
	{
		cout << "file res.txt open failed" << endl;
		exit(0);
	}

	typename vector< vector<T> >::iterator it = dataSet.begin();
	typename vector< tNode >::iterator itt = clusterAssignment.begin();
	for (int i = 0; i < rowLen; ++i)
	{
		typename vector<T>::iterator it2 = it->begin();
		while ( it2 != it->end() )
		{
			fout << *it2 << "\t";
			++it2;
		}
		fout << (*itt).minIndex << endl;
		++itt;
		++it;
	}
}
IGL_INLINE void igl::polygon_mesh_to_triangle_mesh(
  const std::vector<std::vector<Index> > & vF,
  Eigen::PlainObjectBase<DerivedF>& F)
{
  using namespace std;
  using namespace Eigen;
  int m = 0;
  // estimate of size
  for(typename vector<vector<Index > >::const_iterator fit = vF.begin();
    fit!=vF.end();
    fit++)
  {
    if(fit->size() >= 3)
    {
      m += fit->size() - 2;
    }
  }
  // Resize output
  F.resize(m,3);
  {
    int k = 0;
    for(typename vector<vector<Index > >::const_iterator fit = vF.begin();
      fit!=vF.end();
      fit++)
    {
      if(fit->size() >= 3)
      {
        typename vector<Index >::const_iterator cit = fit->begin();
        cit++;
        typename vector<Index >::const_iterator pit = cit++;
        for(;
          cit!=fit->end();
          cit++,pit++)
        {
          F(k,0) = *(fit->begin());
          F(k,1) = *pit;
          F(k,2) = *cit;
          k++;
        }
      }
    }
    assert(k==m);
  }

}
Example #3
0
void test_createFilters(const Kernel& f)
{
    using namespace MatchedFilter;

    if (os_) *os_ << "test_createFilters() " << typeid(f).name() << endl;

    int sampleRadius = 2;
    int subsampleFactor = 4;
    double dx = 1;

    typedef typename KernelTraits<Kernel>::filter_type filter_type;
    typedef typename KernelTraits<Kernel>::ordinate_type ordinate_type;
    vector<filter_type> filters = details::createFilters(f, 
                                                         sampleRadius, 
                                                         subsampleFactor, 
                                                         dx);
    
    // verify filter count
    unit_assert((int)filters.size() == subsampleFactor);

    for (typename vector<filter_type>::const_iterator it=filters.begin(); it!=filters.end(); ++it)
    {
        if (os_)
        {
            copy(it->begin(), it->end(), ostream_iterator<ordinate_type>(*os_, " "));
            *os_ << endl;
        }

        // verify filter size
        unit_assert((int)it->size() == sampleRadius*2 + 1);
    
        // verify filter normalization
        double sum = 0;
        for (typename filter_type::const_iterator jt=it->begin(); jt!=it->end(); ++jt)
            sum += norm(complex<double>(*jt));
        unit_assert_equal(sum, 1, 1e-14);
    }

    if (os_) *os_ << endl;
}
template<class T> void printArray2D(vector< vector<T> > &I)
{
    // This is how we iterate using an iterator for 2d vectors
    typename vector< vector<T> >::iterator row; // Iterator for row of 2d vector
    typename vector<T>::iterator col; // Iterator for columns of 2d vector

    cout << "Matrix size: " << "[" << I.size() << "x" << I[0].size() << "]" << endl; // print the row and columns

    for(row = I.begin(); row !=I.end(); row++)
    {
        for(col = row->begin(); col != row->end(); col++)
        {
            cout << *col << ","; // print the value contained in each row of our 2d vector.
        }

        cout << endl;
    }
}