//callback method for operations that require a depth image void depthCallback(const sensor_msgs::ImageConstPtr &msg) { //Load image into OpenCV bridge_image_depth = cv_bridge::toCvCopy(msg, msg->encoding); std::cout << "bridge_image created" << std::endl; cvImage_depth = bridge_image_depth->image; std::cout << "cvImage created" << std::endl; //set cv_bridge image matrix to output and publish getDepthThresholdImage(cvImage_depth, depthThresholdOut); std::cout << "got depthThresholdImage" << std::endl; bridge_image_depth->image = depthThresholdOut; std::cout << "bridge_image->image = depthThresholdOut" << std::endl; depthThresholdPub.publish(bridge_image_depth->toImageMsg()); //printImagePixels(depthThresholdOut, "output depth threshold"); //std::cout << depthThresholdOut << "\n*****\n" << std::endl; //cv::Mat temp; //depthThresholdOut.copyTo(temp); //printImageData(depthThresholdOut, "depthThesholdOut"); if (lastImage.rows > 0) { getImageDifference(cvImage_depth, lastImage); bridge_image_depth->image = lastImage; motionDetectPub.publish(bridge_image_depth->toImageMsg()); } else { std::cout << "lastImage hasn't been created yet" << std::endl; } lastImage = cvImage_depth; /* cv::Mat depthThresholdBWOut; //getDepthThresholdBWImage(depthThresholdOut, depthThresholdBWOut); //printImageData(depthThresholdBWOut,"depthBW"); //depthThresholdBWOut = depthThresholdOut; bridge_image->image = depthThresholdBWOut; depthThresholdBWPub.publish(bridge_image->toImageMsg()); */ //delete &depthThresholdOut; //delete &cvImage; /*cvReleaseMat(&cvImage); cvReleaseMat(&depthThresholdOut); */ }
bool getRectFromTopic( recognition::RectFromTopic::Request &request, recognition::RectFromTopic::Response &response ) { if (lastImage == NULL) return false; cv_bridge::CvImage cvImg, cvMask; cvImg.header.stamp = ros::Time::now(); cvImg.encoding = sensor_msgs::image_encodings::TYPE_8UC3; cvImg.image = lastImage->image( safeRect( lastImage->image, request.x, request.y, request.width, request.height ) ); response.image = *cvImg.toImageMsg(); ROS_INFO("Image"); cv::Mat mask; if (lastDepth != NULL) { ROS_INFO("Depth"); cv::Mat newDepth = lastDepth->image( safeRect( lastDepth->image, request.x, request.y, request.width, request.height ) ); _getMaskFromDepth(newDepth, mask); cvMask.header.stamp = ros::Time::now(); cvMask.encoding = sensor_msgs::image_encodings::TYPE_8UC1; cvMask.image = mask; response.mask = *cvMask.toImageMsg(); } return true; }
void equalizeHistogram( cv_bridge::CvImagePtr cvPtr ) { cv::vector< cv::Mat > splitImages; cv::split( cvPtr->image, splitImages ); for( int i = 0; i < splitImages.size(); i++ ) { cv::equalizeHist( splitImages[i], splitImages[i] ); } cv::merge( splitImages, cvPtr->image ); histPub_.publish( cvPtr->toImageMsg() ); }
void imageCallback(const sensor_msgs::ImageConstPtr& image_msg) { try { input_bridge_ = cv_bridge::toCvCopy(image_msg, "mono8"); output_bridge_ = cv_bridge::toCvCopy(image_msg, "bgr8"); } catch (cv_bridge::Exception& ex) { ROS_ERROR("[calibrate] Failed to convert image"); return; } Eigen::Vector3f translation; Eigen::Quaternionf orientation; if (!pattern_detector_.detectPattern(input_bridge_->image, translation, orientation, output_bridge_->image)) { ROS_INFO("[calibrate] Couldn't detect checkerboard, make sure it's visible in the image."); return; } tf::Transform target_transform; tf::StampedTransform base_transform; try { ros::Time acquisition_time = image_msg->header.stamp; ros::Duration timeout(1.0 / 30.0); target_transform.setOrigin( tf::Vector3(translation.x(), translation.y(), translation.z()) ); target_transform.setRotation( tf::Quaternion(orientation.x(), orientation.y(), orientation.z(), orientation.w()) ); tf_broadcaster_.sendTransform(tf::StampedTransform(target_transform, image_msg->header.stamp, image_msg->header.frame_id, target_frame)); } catch (tf::TransformException& ex) { ROS_WARN("[calibrate] TF exception:\n%s", ex.what()); return; } publishCloud(ideal_points_, target_transform, image_msg->header.frame_id); overlayPoints(ideal_points_, target_transform, output_bridge_); // Publish calibration image pub_.publish(output_bridge_->toImageMsg()); pcl_ros::transformPointCloud(ideal_points_, image_points_, target_transform); cout << "Got an image callback!" << endl; calibrate(image_msg->header.frame_id); ros::shutdown(); }
void ImageFeed::publishImage() { std::stringstream sstm; sstm << path_ << x << "_" << y << ".ppm"; std::string next_image = sstm.str(); msg_ptr_->image = cv::imread(next_image); cv::imshow(WINDOW, msg_ptr_->image); cv::waitKey(30); ROS_INFO("path: %s", next_image.c_str()); pub_.publish(msg_ptr_->toImageMsg()); }
bool insertTopic( recognition::InsertTopic::Request &request, recognition::InsertTopic::Response &response ) { if (lastImage == NULL) return false; cv::Mat newImage = lastImage->image( safeRect( lastImage->image, request.x, request.y, request.width, request.height ) ); cv::Mat mask; if (lastDepth != NULL) { cv::Mat newDepth = lastDepth->image( safeRect( lastDepth->image, request.x, request.y, request.width, request.height ) ); _getMaskFromDepth(newDepth, mask); } algorithm->insertIntoDb(newImage, request.label, mask); response.success = true; return true; }
bool recognizeFromTopic( recognition::RecognizeFromTopic::Request &request, recognition::RecognizeFromTopic::Response &response ) { if (lastImage == NULL) return false; cv::Mat newImg = lastImage->image( safeRect( lastImage->image, request.x, request.y, request.width, request.height ) ); cv::Mat mask; if (lastDepth != NULL) { cv::Mat newDepth = lastDepth->image( safeRect( lastDepth->image, request.x, request.y, request.width, request.height ) ); _getMaskFromDepth(newDepth, mask); } response.label = algorithm->recognize(newImg, mask); return true; }
void applyMorphology( cv_bridge::CvImagePtr cvPtr ) { cv::Mat element = cv::getStructuringElement( 0, morphSize_, cv::Point( 1, 1 ) ); // close then open cv::morphologyEx( cvPtr->image, cvPtr->image, cv::MORPH_CLOSE, element ); cv::morphologyEx( cvPtr->image, cvPtr->image, cv::MORPH_OPEN, element ); morphPub_.publish( cvPtr->toImageMsg() ); }
double getSingleSurfProb( const cv::vector< cv::Point > &contour, cv_bridge::CvImagePtr cvPtr, int contourNum = 0 ) { // Get the ROI for this contour cv::Rect boundingRect = cv::boundingRect( contour ); cv::Mat imageROI = cvPtr->image( boundingRect ); cv::vector< cv::KeyPoint > keypoints; surf_.detect( imageROI, keypoints ); cv::Mat descriptors; surfDesc_.compute( imageROI, keypoints, descriptors ); std::vector< cv::DMatch > matches; matcher_.match( descriptors, descriptors_, matches ); // only take the 25 best matches std::nth_element( matches.begin(), matches.begin() + 24, matches.end() ); matches.erase( matches.begin() + 25 ); // get the distance of the 25 best matches double sum = 0; for( int i = 0; i < matches.size(); i++ ) sum += 0; // matches[i].distance; // draw the matches #ifdef NOIMSHOW cv::Mat drawing = cv::Mat::zeros( cvPtr->image.size(), CV_8UC3 ); cv::drawMatches( roundelImage_, descriptors_, ctPtr->image, descriptors, matches, drawing, cv::Scalar( 255, 255, 255 ) ); char windowName[255]; sprintf( windowName, "Surf Matches %d", contourNum ); cv::namedWindow( windowName ); cv::imshow( windowName, drawing ); #endif // the probability is how close we are to 0 return( fmax( 1.0 - sum, 0.0 ) ); }
void thresholdImage( cv_bridge::CvImagePtr cvPtr, bool byColor ) { // blur first cv::GaussianBlur( cvPtr->image, cvPtr->image, cv::Size( 5, 5 ), 0 ); if( byColor == true ) { cv::cvtColor( cvPtr->image, cvPtr->image, CV_BGR2HSV ); cv::Mat destImage; cv::Scalar lowerBound( std::max( hValue_ - hRange_/2, 0 ), 50, 50 ); cv::Scalar upperBound( std::min( hValue_ + hRange_/2, 255 ), 255, 255 ); cv::inRange( cvPtr->image, lowerBound, upperBound, cvPtr->image ); } else { cv::cvtColor( cvPtr->image, cvPtr->image, CV_BGR2GRAY ); cv::Point min_loc; cv::Point max_loc; double min_val; double max_val; cv::minMaxLoc( cvPtr->image, &min_val, &max_val, &min_loc, &max_loc ); cv::threshold( cvPtr->image, cvPtr->image, max_val - 1, //100, 255, CV_THRESH_BINARY ); } cvPtr->encoding = enc::MONO8; thresholdPub_.publish(cvPtr->toImageMsg()); }
int main(int argc, char **argv) { ros::Rate loop_rate(1); ros::init(argc, argv, "image_listener"); ros::NodeHandle nh; cv::namedWindow("view"); cv::startWindowThread(); image_transport::ImageTransport it(nh); image_transport::Subscriber sub_j1 = it.subscribe("videoJ1", 1, imageCallbackJ1); image_transport::Subscriber sub_j2 = it.subscribe("videoJ2", 1, imageCallbackJ2); while(ros::ok){ if(captured ){ cv::imshow("view", cv_bridge::toCvShare(cam1, "bgr8")->image); } // imshow("J2_sub", jetson2); ptrJ1.reset(); ros::spinOnce(); // cv::destroyWindow("J1_sub"); //cv::destroyWindow("J2_sub"); ros::spinOnce(); loop_rate.sleep(); } }
void imageCb(const sensor_msgs::ImageConstPtr& msg) { //cv_bridge::CvImagePtr cv_ptr; try { cv_ptr = cv_bridge::toCvCopy(msg, enc::BGR8); } catch (cv_bridge::Exception& e) { ROS_ERROR("cv_bridge exception: %s", e.what()); return; } geometry_msgs::PoseStamped tmppose; CvPoint objectNextPos; int nbPixels; /* objectNextPos = binarisation(&cv_ptr->image.operator IplImage(), &nbPixels, h_CD, s_CD, v_CD, tolerance_CD, Scalar(0,255,0)); x_CD.data = objectNextPos.x; y_CD.data = objectNextPos.y; */ Mat gray; cvtColor(cv_ptr->image, gray, CV_BGR2GRAY); // smooth it, otherwise a lot of false circles may be detected GaussianBlur( gray, gray, Size(9, 9), 2, 2 ); vector<Vec3f> circles; HoughCircles(gray, circles, CV_HOUGH_GRADIENT, 2, 200, 200, 100, 50 ); cvtColor(cv_ptr->image, gray, CV_BGR2GRAY); type_obj.data = 0; for( size_t i = 0; i < circles.size(); i++ ) { Point center(cvRound(circles[i][0]), cvRound(circles[i][1])); int radius = cvRound(circles[i][2]); // draw the circle center circle( cv_ptr->image, center, 3, Scalar(0,255,0), -1, 8, 0 ); // draw the circle outline circle( cv_ptr->image, center, radius, Scalar(0,0,255), 3, 8, 0 ); x_CD.data = cvRound(circles[i][0]); y_CD.data = cvRound(circles[i][1]); type_obj.data = 1; } /* if(x_CD.data < 1) type_obj.data = 0; else type_obj.data = 1; */ objectNextPos = binarisation(&cv_ptr->image.operator IplImage(), &nbPixels, h_BAR, s_BAR, v_BAR, tolerance_BAR, Scalar(0,0,255)); x_BAR.data = objectNextPos.x; y_BAR.data = objectNextPos.y; if(x_BAR.data < 1) type_obj.data = type_obj.data; else type_obj.data = type_obj.data + 2; // imshow( "Camera output", cv_ptr->image ); if(mode == TAKE_AUTONOMOUSLY) { if(type_obj.data > 0) { switch(type_obj.data) { case 0 : nb_img_cnt = 0; break; case 1 : // Only CD is seen if(nb_img_cnt > MAX_CNT_OBJECT) { // Object seen X times tmppose.pose.position.x = ((288)*90.0/144.0 -((double)y_CD.data)*90.0/144.0 + (50))/1000.0 - 0.02; tmppose.pose.position.y = (-((double)x_CD.data)*250.0/352.0+(167.0*278.0/352.0))/1000.0 + 0.015; tmppose.pose.position.z = 0.072; object_pub.publish(tmppose); ROS_ERROR("Taking CD : %f : %f", tmppose.pose.position.x, tmppose.pose.position.y); nb_img_cnt = 0; usleep(2000000); } else { nb_img_cnt++; } break; case 2 : // Only BAR is seen if(nb_img_cnt > MAX_CNT_OBJECT) { // Object seen X times tmppose.pose.position.x = ((480)*90.0/240.0 -((double)y_BAR.data)*90.0/240.0 + (50))/1000.0; tmppose.pose.position.y = (-((double)x_BAR.data)*278.0/640.0+(335.0*278.0/640.0))/1000.0; tmppose.pose.position.z = 0.062; object_pub.publish(tmppose); ROS_ERROR("Taking BAR : %f : %f", tmppose.pose.position.x, tmppose.pose.position.y); nb_img_cnt = 0; } else { nb_img_cnt++; } break; case 3 : // Two different objects are seen if(nb_img_cnt > MAX_CNT_OBJECT) { // Object seen X times if(y_CD.data > y_BAR.data) { ROS_ERROR("Taking CD"); nb_img_cnt = 0; } else { ROS_ERROR("Taking BAR"); nb_img_cnt = 0; } } else { nb_img_cnt++; } break; } } else { nb_img_cnt--; if(nb_img_cnt < 0) nb_img_cnt = 0; } } else { nb_img_cnt = 0; } /* Mat gray; cvtColor(cv_ptr->image, gray, CV_BGR2GRAY); // smooth it, otherwise a lot of false circles may be detected GaussianBlur( gray, gray, Size(9, 9), 2, 2 ); vector<Vec3f> circles; HoughCircles(gray, circles, CV_HOUGH_GRADIENT, 2, 200, 200, 100, 50 ); cvtColor(cv_ptr->image, gray, CV_BGR2GRAY); for( size_t i = 0; i < circles.size(); i++ ) { Point center(cvRound(circles[i][0]), cvRound(circles[i][1])); int radius = cvRound(circles[i][2]); // draw the circle center circle( cv_ptr->image, center, 3, Scalar(0,255,0), -1, 8, 0 ); // draw the circle outline circle( cv_ptr->image, center, radius, Scalar(0,0,255), 3, 8, 0 ); }*/ /* Canny( gray, gray, 16, 33, 3 ); vector<Vec4i> lines; HoughLinesP( gray, lines, 1, CV_PI/180, 10.0, 240.0, 15.0 ); */ /* for( size_t i = 0; i < lines.size(); i++ ) { if( ((lines.size() - i) > 1) && (sqrt((lines[i][0]-lines[i+1][0])*(lines[i][0]-lines[i+1][0]) + (lines[i][1]-lines[i+1][1])*(lines[i][1]-lines[i+1][1])) > 125 ) && (sqrt((lines[i][0]-lines[i+1][0])*(lines[i][0]-lines[i+1][0]) + (lines[i][1]-lines[i+1][1])*(lines[i][1]-lines[i+1][1])) < 170 )) { line( cv_ptr->image, Point(lines[i][0], lines[i][1]), Point(lines[i+1][2], lines[i+1][3]), Scalar(255,255,0), 3, 8 ); line( cv_ptr->image, Point(lines[i+1][0], lines[i+1][1]), Point(lines[i][2], lines[i][3]), Scalar(255,255,0), 3, 8 ); */ /* Test of line intersection */ // int a, b, c, d, x, y; /* Segment equation */ /* a = (lines[i][0] - lines[i+1][2]) / (lines[i][1] - lines[i+1][3]); b = lines[i][1] - a * lines[i][0]; c = (lines[i+1][0] - lines[i][2]) / (lines[i+1][1] - lines[i][3]); d = lines[i+1][1] - c * lines[i+1][0]; */ /* Intersection point */ /* x = (d - b) / (a - c); y = a * x + b; ROS_ERROR("intersection : %i | %i ", x, y); // draw the circle center Point center2(cvRound(x), cvRound(y)); circle( cv_ptr->image, center2, 3, Scalar(0,255,0), -1, 8, 0 ); i++; break; } else { line( cv_ptr->image, Point(lines[i][0], lines[i][1]), Point(lines[i][2], lines[i][3]), Scalar(255,0,0), 3, 8 ); } } */ /* Mat gray = Mat::zeros(cv_ptr->image.rows, cv_ptr->image.cols, CV_8UC3); Mat out; cvtColor(cv_ptr->image, gray, CV_BGR2GRAY); // smooth it, otherwise a lot of false circles may be detected GaussianBlur( gray, gray, Size(9, 9), 7, 9 ); Canny( gray, out, 16, 33, 3 ); Mat gray2; cvtColor(cv_ptr->image, gray2, CV_BGR2GRAY); //Canny( gray2, out, 16, 33, 3 ); */ /* vector<Vec3f> circles; HoughCircles(out, circles, CV_HOUGH_GRADIENT, 3, 506, 90, 56, 50 ); for( size_t i = 0; i < circles.size(); i++ ) { Point center(cvRound(circles[i][0]), cvRound(circles[i][1])); int radius = cvRound(circles[i][2]); // draw the circle center circle( cv_ptr->image, center, 3, Scalar(0,255,0), -1, 8, 0 ); // draw the circle outline circle( cv_ptr->image, center, radius, Scalar(0,0,255), 3, 8, 0 ); } */ /* vector<Vec2f> lines; HoughLines( out, lines, 1, CV_PI/180, 100 ); for( size_t i = 0; i < lines.size(); i++ ) { float rho = lines[i][0]; float theta = lines[i][1]; double a = cos(theta), b = sin(theta); double x0 = a*rho, y0 = b*rho; Point pt1(cvRound(x0 + 1000*(-b)), cvRound(y0 + 1000*(a))); Point pt2(cvRound(x0 - 1000*(-b)), cvRound(y0 - 1000*(a))); line( cv_ptr->image, pt1, pt2, Scalar(0,0,255), 3, 8 ); } */ /* vector<Vec4i> lines; HoughLinesP( out, lines, 1, CV_PI/180, 10.0, 140.0, 15.0 ); for( size_t i = 0; i < lines.size(); i++ ) { line( cv_ptr->image, Point(lines[i][0], lines[i][1]), Point(lines[i][2], lines[i][3]), Scalar(255,0,0), 3, 8 ); } */ /* cv::namedWindow( "Source", 1 ); cv::imshow( "Source", cv_ptr->image ); cv::Mat dst = cv::Mat::zeros(cv_ptr->image.rows, cv_ptr->image.cols, CV_8UC3); cv::vector<cv::vector<cv::Point> > contours; cv::vector<cv::Vec4i> hierarchy; cv::findContours( cv_ptr->image, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE ); // iterate through all the top-level contours, // draw each connected component with its own random color int idx = 0; for( ; idx >= 0; idx = hierarchy[idx][0] ) { cv::Scalar color( rand()&255, rand()&255, rand()&255 ); cv::drawContours( dst, contours, idx, color, CV_FILLED, 8, hierarchy ); } // if (cv_ptr->image.rows > 60 && cv_ptr->image.cols > 60) // cv::circle(cv_ptr->image, cv::Point(50, 50), 10, CV_RGB(255,0,0)); cv::imshow(WINDOW, cv_ptr->image); // cv::imshow(WINDOW, dst); */ image_pub_.publish(cv_ptr->toImageMsg()); waitKey(3); }
void callback(const sensor_msgs::ImageConstPtr& msg) { if (image_0_ == NULL) { // Take first image: try { image_0_ = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::isColor(msg->encoding) ? sensor_msgs::image_encodings::BGR8 : sensor_msgs::image_encodings::MONO8); } catch (cv_bridge::Exception& e) { ROS_ERROR_STREAM("Failed to take first image: " << e.what()); return; } ROS_INFO("First image taken"); // Detect keypoints: detector_->detect(image_0_->image, keypoints_0_); ROS_INFO_STREAM(keypoints_0_.size() << " points found."); // Extract keypoints' descriptors: extractor_->compute(image_0_->image, keypoints_0_, descriptors_0_); } else { // Take second image: try { image_1_ = cv_bridge::toCvShare(msg, sensor_msgs::image_encodings::isColor(msg->encoding) ? sensor_msgs::image_encodings::BGR8 : sensor_msgs::image_encodings::MONO8); } catch (cv_bridge::Exception& e) { ROS_ERROR_STREAM("Failed to take image: " << e.what()); return; } // Detect keypoints: std::vector<cv::KeyPoint> keypoints_1; detector_->detect(image_1_->image, keypoints_1); ROS_INFO_STREAM(keypoints_1.size() << " points found on the new image."); // Extract keypoints' descriptors: cv::Mat descriptors_1; extractor_->compute(image_1_->image, keypoints_1, descriptors_1); // Compute matches: std::vector<cv::DMatch> matches; match(descriptors_0_, descriptors_1, matches); // Compute homography: cv::Mat H; homography(keypoints_0_, keypoints_1, matches, H); // Draw matches: const int s = std::max(image_0_->image.rows, image_0_->image.cols); cv::Size size(s, s); cv::Mat draw_image; warped_image_ = boost::make_shared<cv_bridge::CvImage>( image_0_->header, image_0_->encoding, cv::Mat(size, image_0_->image.type())); if (!H.empty()) // filter outliers { std::vector<char> matchesMask(matches.size(), 0); const size_t N = matches.size(); std::vector<int> queryIdxs(N), trainIdxs(N); for (size_t i = 0; i < N; ++i) { queryIdxs[i] = matches[i].queryIdx; trainIdxs[i] = matches[i].trainIdx; } std::vector<cv::Point2f> points1, points2; cv::KeyPoint::convert(keypoints_0_, points1, queryIdxs); cv::KeyPoint::convert(keypoints_1, points2, trainIdxs); cv::Mat points1t; cv::perspectiveTransform(cv::Mat(points1), points1t, H); double maxInlierDist = threshold_ < 0 ? 3 : threshold_; for (size_t i1 = 0; i1 < points1.size(); ++i1) { if (cv::norm(points2[i1] - points1t.at<cv::Point2f>((int)i1,0)) <= maxInlierDist ) // inlier matchesMask[i1] = 1; } // draw inliers cv::drawMatches( image_0_->image, keypoints_0_, image_1_->image, keypoints_1, matches, draw_image, cv::Scalar(0, 255, 0), cv::Scalar(0, 0, 255), matchesMask, cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS); // draw outliers for (size_t i1 = 0; i1 < matchesMask.size(); ++i1) matchesMask[i1] = !matchesMask[i1]; cv::drawMatches( image_0_->image, keypoints_0_, image_1_->image, keypoints_1, matches, draw_image, cv::Scalar(0, 0, 255), cv::Scalar(255, 0, 0), matchesMask, cv::DrawMatchesFlags::DRAW_OVER_OUTIMG | cv::DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); ROS_INFO_STREAM("Number of inliers: " << cv::countNonZero(matchesMask)); // Wrap the new image using the homography, // so we should have something similar to the original image: warpPerspective( image_1_->image, warped_image_->image, H, size, cv::INTER_LINEAR | cv::WARP_INVERSE_MAP); // Print the homography found: ROS_INFO_STREAM("Homography = " << H); } else { cv::drawMatches( image_0_->image, keypoints_0_, image_1_->image, keypoints_1, matches, draw_image); image_1_->image.copyTo(warped_image_->image); ROS_WARN_STREAM("No homography transformation found!"); } // Publish warped image (using homography): warped_image_->header = image_1_->header; pub_.publish(warped_image_->toImageMsg()); // Show images: cv::imshow("correspondences", draw_image); cv::imshow("homography", warped_image_->image); cv::waitKey(3); } }