void dLCP::transfer_i_to_C (int i) { { if (m_nC > 0) { // ell,Dell were computed by solve1(). note, ell = D \ L1solve (L,A(i,C)) { const int nC = m_nC; dReal *const Ltgt = m_L + nC*m_nskip, *ell = m_ell; for (int j=0; j<nC; ++j) Ltgt[j] = ell[j]; } const int nC = m_nC; m_d[nC] = dRecip (AROW(i)[i] - dDot(m_ell,m_Dell,nC)); } else { m_d[0] = dRecip (AROW(i)[i]); } swapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,m_n,m_nC,i,m_nskip,1); const int nC = m_nC; m_C[nC] = nC; m_nC = nC + 1; // nC value is outdated after this line } # ifdef DEBUG_LCP checkFactorization (m_A,m_L,m_d,m_nC,m_C,m_nskip); if (i < (m_n-1)) checkPermutations (i+1,m_n,m_nC,m_nN,m_p,m_C); # endif }
void dLCP::transfer_i_from_N_to_C (int i) { int j; if (nC > 0) { dReal *aptr = AROW(i); # ifdef NUB_OPTIMIZATIONS // if nub>0, initial part of aptr unpermuted for (j=0; j<nub; j++) Dell[j] = aptr[j]; for (j=nub; j<nC; j++) Dell[j] = aptr[C[j]]; # else for (j=0; j<nC; j++) Dell[j] = aptr[C[j]]; # endif dSolveL1 (L,Dell,nC,nskip); for (j=0; j<nC; j++) ell[j] = Dell[j] * d[j]; for (j=0; j<nC; j++) L[nC*nskip+j] = ell[j]; d[nC] = dRecip (AROW(i)[i] - dDot(ell,Dell,nC)); } else { d[0] = dRecip (AROW(i)[i]); } swapProblem (A,x,b,w,lo,hi,p,state,findex,n,nC,i,nskip,1); C[nC] = nC; nN--; nC++; // @@@ TO DO LATER // if we just finish here then we'll go back and re-solve for // delta_x. but actually we can be more efficient and incrementally // update delta_x here. but if we do this, we wont have ell and Dell // to use in updating the factorization later. # ifdef DEBUG_LCP checkFactorization (A,L,d,nC,C,nskip); # endif }
void dLCP::solve1 (dReal *a, int i, int dir, int only_transfer) { dReal *AA = (dReal*) ALLOCA (n*nskip*sizeof(dReal)); dReal *dd = (dReal*) ALLOCA (n*sizeof(dReal)); dReal *bb = (dReal*) ALLOCA (n*sizeof(dReal)); int ii,jj,AAi,AAj; last_i_for_solve1 = i; AAi = 0; for (ii=0; ii<n; ii++) if (C[ii]) { AAj = 0; for (jj=0; jj<n; jj++) if (C[jj]) { AA[AAi*nskip+AAj] = AROW(ii)[jj]; AAj++; } bb[AAi] = AROW(i)[ii]; AAi++; } if (AAi==0) return; dFactorLDLT (AA,dd,AAi,nskip); dSolveLDLT (AA,dd,bb,AAi,nskip); AAi=0; if (dir > 0) { for (ii=0; ii<n; ii++) if (C[ii]) a[ii] = -bb[AAi++]; } else { for (ii=0; ii<n; ii++) if (C[ii]) a[ii] = bb[AAi++]; } }
void dLCP::transfer_i_from_N_to_C (int i) { { if (m_nC > 0) { { dReal *const aptr = AROW(i); dReal *Dell = m_Dell; const int *C = m_C; # ifdef NUB_OPTIMIZATIONS // if nub>0, initial part of aptr unpermuted const int nub = m_nub; int j=0; for ( ; j<nub; ++j) Dell[j] = aptr[j]; const int nC = m_nC; for ( ; j<nC; ++j) Dell[j] = aptr[C[j]]; # else const int nC = m_nC; for (int j=0; j<nC; ++j) Dell[j] = aptr[C[j]]; # endif } dSolveL1 (m_L,m_Dell,m_nC,m_nskip); { const int nC = m_nC; dReal *const Ltgt = m_L + nC*m_nskip; dReal *ell = m_ell, *Dell = m_Dell, *d = m_d; for (int j=0; j<nC; ++j) Ltgt[j] = ell[j] = Dell[j] * d[j]; } const int nC = m_nC; dReal Aii_dDot = AROW(i)[i] - dDot(m_ell, m_Dell, nC); if(dFabs(Aii_dDot) < 1e-16) { Aii_dDot += 1e-6; } m_d[nC] = dRecip (Aii_dDot); } else { if(dFabs(AROW(i)[i]) < 1e-16) { AROW(i)[i] += 1e-6; } m_d[0] = dRecip (AROW(i)[i]); } swapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,m_n,m_nC,i,m_nskip,1); const int nC = m_nC; m_C[nC] = nC; m_nN--; m_nC = nC + 1; // nC value is outdated after this line } // @@@ TO DO LATER // if we just finish here then we'll go back and re-solve for // delta_x. but actually we can be more efficient and incrementally // update delta_x here. but if we do this, we wont have ell and Dell // to use in updating the factorization later. # ifdef DEBUG_LCP checkFactorization (m_A,m_L,m_d,m_nC,m_C,m_nskip); # endif }
void dLCP::pN_plusequals_ANi (dReal *p, int i, int sign) { int k; for (k=0; k<n; k++) if (N[k] && k >= i) dDebug (0,"N assumption violated"); if (sign > 0) { for (k=0; k<n; k++) if (N[k]) p[k] += AROW(i)[k]; } else { for (k=0; k<n; k++) if (N[k]) p[k] -= AROW(i)[k]; } }
dLCP::dLCP (int _n, int _nub, dReal *_Adata, dReal *_x, dReal *_b, dReal *_w, dReal *_lo, dReal *_hi, dReal *_L, dReal *_d, dReal *_Dell, dReal *_ell, dReal *_tmp, int *_state, int *_findex, int *_p, int *_C, dReal **Arows) { dUASSERT (_findex==0,"slow dLCP object does not support findex array"); n = _n; nub = _nub; Adata = _Adata; A = 0; x = _x; b = _b; w = _w; lo = _lo; hi = _hi; nskip = dPAD(n); dSetZero (x,n); last_i_for_solve1 = -1; int i,j; C.setSize (n); N.setSize (n); for (int i=0; i<n; i++) { C[i] = 0; N[i] = 0; } # ifdef ROWPTRS // make matrix row pointers A = Arows; for (i=0; i<n; i++) A[i] = Adata + i*nskip; # else A = Adata; # endif // lets make A symmetric for (i=0; i<n; i++) { for (j=i+1; j<n; j++) AROW(i)[j] = AROW(j)[i]; } // if nub>0, put all indexes 0..nub-1 into C and solve for x if (nub > 0) { for (i=0; i<nub; i++) memcpy (_L+i*nskip,AROW(i),(i+1)*sizeof(dReal)); dFactorLDLT (_L,_d,nub,nskip); memcpy (x,b,nub*sizeof(dReal)); dSolveLDLT (_L,_d,x,nub,nskip); dSetZero (_w,nub); for (i=0; i<nub; i++) C[i] = 1; } }
void dLCP::solve1 (dReal *a, int i, int dir, int only_transfer) { // the `Dell' and `ell' that are computed here are saved. if index i is // later added to the factorization then they can be reused. // // @@@ question: do we need to solve for entire delta_x??? yes, but // only if an x goes below 0 during the step. int j; if (nC > 0) { dReal *aptr = AROW(i); # ifdef NUB_OPTIMIZATIONS // if nub>0, initial part of aptr[] is guaranteed unpermuted for (j=0; j<nub; j++) Dell[j] = aptr[j]; for (j=nub; j<nC; j++) Dell[j] = aptr[C[j]]; # else for (j=0; j<nC; j++) Dell[j] = aptr[C[j]]; # endif dSolveL1 (L,Dell,nC,nskip); for (j=0; j<nC; j++) ell[j] = Dell[j] * d[j]; if (!only_transfer) { for (j=0; j<nC; j++) tmp[j] = ell[j]; dSolveL1T (L,tmp,nC,nskip); if (dir > 0) { for (j=0; j<nC; j++) a[C[j]] = -tmp[j]; } else { for (j=0; j<nC; j++) a[C[j]] = tmp[j]; } } } }
static void checkFactorization (ATYPE A, dReal *_L, dReal *_d, int nC, int *C, int nskip) { int i,j; if (nC==0) return; // get A1=A, copy the lower triangle to the upper triangle, get A2=A[C,C] dMatrix A1 (nC,nC); for (i=0; i<nC; i++) { for (j=0; j<=i; j++) A1(i,j) = A1(j,i) = AROW(i)[j]; } dMatrix A2 = A1.select (nC,C,nC,C); // printf ("A1=\n"); A1.print(); printf ("\n"); // printf ("A2=\n"); A2.print(); printf ("\n"); // compute A3 = L*D*L' dMatrix L (nC,nC,_L,nskip,1); dMatrix D (nC,nC); for (i=0; i<nC; i++) D(i,i) = 1/_d[i]; L.clearUpperTriangle(); for (i=0; i<nC; i++) L(i,i) = 1; dMatrix A3 = L * D * L.transpose(); // printf ("L=\n"); L.print(); printf ("\n"); // printf ("D=\n"); D.print(); printf ("\n"); // printf ("A3=\n"); A2.print(); printf ("\n"); // compare A2 and A3 dReal diff = A2.maxDifference (A3); if (diff > 1e-8) dDebug (0,"L*D*L' check, maximum difference = %.6e\n",diff); }
void dLCP::pN_equals_ANC_times_qC (dReal *p, dReal *q) { dReal sum; for (int ii=0; ii<n; ii++) if (N[ii]) { sum = 0; for (int jj=0; jj<n; jj++) if (C[jj]) sum += AROW(ii)[jj] * q[jj]; p[ii] = sum; } }
void dLCP::pN_equals_ANC_times_qC (dReal *p, dReal *q) { // we could try to make this matrix-vector multiplication faster using // outer product matrix tricks, e.g. with the dMultidotX() functions. // but i tried it and it actually made things slower on random 100x100 // problems because of the overhead involved. so we'll stick with the // simple method for now. for (int i=0; i<nN; i++) p[i+nC] = dDot (AROW(i+nC),q,nC); }
void dLCP::pN_plusequals_ANi (dReal *p, int i, int sign) { dReal *aptr = AROW(i)+nC; if (sign > 0) { for (int i=0; i<nN; i++) p[i+nC] += aptr[i]; } else { for (int i=0; i<nN; i++) p[i+nC] -= aptr[i]; } }
void dLCP::transfer_i_to_C (int i) { int j; if (nC > 0) { // ell,Dell were computed by solve1(). note, ell = D \ L1solve (L,A(i,C)) for (j=0; j<nC; j++) L[nC*nskip+j] = ell[j]; d[nC] = dRecip (AROW(i)[i] - dDot(ell,Dell,nC)); } else { d[0] = dRecip (AROW(i)[i]); } swapProblem (A,x,b,w,lo,hi,p,state,findex,n,nC,i,nskip,1); C[nC] = nC; nC++; # ifdef DEBUG_LCP checkFactorization (A,L,d,nC,C,nskip); if (i < (n-1)) checkPermutations (i+1,n,nC,nN,p,C); # endif }
void dLCP::solve1 (dReal *a, int i, int dir, int only_transfer) { // the `Dell' and `ell' that are computed here are saved. if index i is // later added to the factorization then they can be reused. // // @@@ question: do we need to solve for entire delta_x??? yes, but // only if an x goes below 0 during the step. if (m_nC > 0) { { dReal *Dell = m_Dell; int *C = m_C; dReal *aptr = AROW(i); # ifdef NUB_OPTIMIZATIONS // if nub>0, initial part of aptr[] is guaranteed unpermuted const int nub = m_nub; int j=0; for ( ; j<nub; ++j) Dell[j] = aptr[j]; const int nC = m_nC; for ( ; j<nC; ++j) Dell[j] = aptr[C[j]]; # else const int nC = m_nC; for (int j=0; j<nC; ++j) Dell[j] = aptr[C[j]]; # endif } dSolveL1 (m_L,m_Dell,m_nC,m_nskip); { dReal *ell = m_ell, *Dell = m_Dell, *d = m_d; const int nC = m_nC; for (int j=0; j<nC; ++j) ell[j] = Dell[j] * d[j]; } if (!only_transfer) { dReal *tmp = m_tmp, *ell = m_ell; { const int nC = m_nC; for (int j=0; j<nC; ++j) tmp[j] = ell[j]; } dSolveL1T (m_L,tmp,m_nC,m_nskip); if (dir > 0) { int *C = m_C; dReal *tmp = m_tmp; const int nC = m_nC; for (int j=0; j<nC; ++j) a[C[j]] = -tmp[j]; } else { int *C = m_C; dReal *tmp = m_tmp; const int nC = m_nC; for (int j=0; j<nC; ++j) a[C[j]] = tmp[j]; } } } }
void dLCP::pN_plusequals_ANi (dReal *p, int i, int sign) { const int nC = m_nC; dReal *aptr = AROW(i) + nC; dReal *ptgt = p + nC; if (sign > 0) { const int nN = m_nN; for (int j=0; j<nN; ++j) ptgt[j] += aptr[j]; } else { const int nN = m_nN; for (int j=0; j<nN; ++j) ptgt[j] -= aptr[j]; } }
dReal AiN_times_qN (int i, dReal *q) { return dDot (AROW(i)+nC,q+nC,nN); }
void _fastcall AMemLeaks(ParamBlk *parm) { char *pArrayName; Locator lArrayLoc; int nErrorNo; INTEGER(vMem); STRING(vMemInfo); char *pMemInfo; LPDBGALLOCINFO pDbg = gpDbgInfo; if (!pDbg) { RET_INTEGER(0); return; } if (!NULLTERMINATE(p1)) RAISEERROR(E_INSUFMEMORY); LOCKHAND(p1); pArrayName = HANDTOPTR(p1); if (!ALLOCHAND(vMemInfo,VFP2C_ERROR_MESSAGE_LEN)) { nErrorNo = E_INSUFMEMORY; goto ErrorOut; } LOCKHAND(vMemInfo); pMemInfo = HANDTOPTR(vMemInfo); if (nErrorNo = DimensionEx(pArrayName,&lArrayLoc,1,4)) goto ErrorOut; while (pDbg) { if (nErrorNo = Dimension(pArrayName,++AROW(lArrayLoc),4)) goto ErrorOut; vMem.ev_long = (int)pDbg->pPointer; ADIM(lArrayLoc) = 1; if (nErrorNo = STORE(lArrayLoc,vMem)) goto ErrorOut; vMem.ev_long = pDbg->nSize; ADIM(lArrayLoc) = 2; if (nErrorNo = STORE(lArrayLoc,vMem)) goto ErrorOut; if (pDbg->pProgInfo) vMemInfo.ev_length = strncpyex(pMemInfo,pDbg->pProgInfo,VFP2C_ERROR_MESSAGE_LEN); else vMemInfo.ev_length = 0; ADIM(lArrayLoc) = 3; if (nErrorNo = STORE(lArrayLoc,vMemInfo)) goto ErrorOut; vMemInfo.ev_length = min(pDbg->nSize,VFP2C_ERROR_MESSAGE_LEN); memcpy(pMemInfo,pDbg->pPointer,vMemInfo.ev_length); ADIM(lArrayLoc) = 4; if (nErrorNo = STORE(lArrayLoc,vMemInfo)) goto ErrorOut; pDbg = pDbg->next; } UNLOCKHAND(p1); UNLOCKHAND(vMemInfo); FREEHAND(vMemInfo); RET_AROWS(lArrayLoc); return; ErrorOut: UNLOCKHAND(p1); if (VALIDHAND(vMemInfo)) { UNLOCKHAND(vMemInfo); FREEHAND(vMemInfo); } RAISEERROR(nErrorNo); }
dReal AiN_times_qN (int i, dReal *q) const { return dDot (AROW(i)+m_nC, q+m_nC, m_nN); }
dLCP::dLCP (int _n, int _nskip, int _nub, dReal *_Adata, dReal *_x, dReal *_b, dReal *_w, dReal *_lo, dReal *_hi, dReal *_L, dReal *_d, dReal *_Dell, dReal *_ell, dReal *_tmp, bool *_state, int *_findex, int *_p, int *_C, dReal **Arows): m_n(_n), m_nskip(_nskip), m_nub(_nub), m_nC(0), m_nN(0), # ifdef ROWPTRS m_A(Arows), #else m_A(_Adata), #endif m_x(_x), m_b(_b), m_w(_w), m_lo(_lo), m_hi(_hi), m_L(_L), m_d(_d), m_Dell(_Dell), m_ell(_ell), m_tmp(_tmp), m_state(_state), m_findex(_findex), m_p(_p), m_C(_C) { { dSetZero (m_x,m_n); } { # ifdef ROWPTRS // make matrix row pointers dReal *aptr = _Adata; ATYPE A = m_A; const int n = m_n, nskip = m_nskip; for (int k=0; k<n; aptr+=nskip, ++k) A[k] = aptr; # endif } { int *p = m_p; const int n = m_n; for (int k=0; k<n; ++k) p[k]=k; // initially unpermuted } /* // for testing, we can do some random swaps in the area i > nub { const int n = m_n; const int nub = m_nub; if (nub < n) { for (int k=0; k<100; k++) { int i1,i2; do { i1 = dRandInt(n-nub)+nub; i2 = dRandInt(n-nub)+nub; } while (i1 > i2); //printf ("--> %d %d\n",i1,i2); swapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,n,i1,i2,m_nskip,0); } } */ // permute the problem so that *all* the unbounded variables are at the // start, i.e. look for unbounded variables not included in `nub'. we can // potentially push up `nub' this way and get a bigger initial factorization. // note that when we swap rows/cols here we must not just swap row pointers, // as the initial factorization relies on the data being all in one chunk. // variables that have findex >= 0 are *not* considered to be unbounded even // if lo=-inf and hi=inf - this is because these limits may change during the // solution process. { int *findex = m_findex; dReal *lo = m_lo, *hi = m_hi; const int n = m_n; for (int k = m_nub; k<n; ++k) { if (findex && findex[k] >= 0) continue; if (lo[k]==-dInfinity && hi[k]==dInfinity) { swapProblem (m_A,m_x,m_b,m_w,lo,hi,m_p,m_state,findex,n,m_nub,k,m_nskip,0); m_nub++; } } } // if there are unbounded variables at the start, factorize A up to that // point and solve for x. this puts all indexes 0..nub-1 into C. if (m_nub > 0) { const int nub = m_nub; { dReal *Lrow = m_L; const int nskip = m_nskip; for (int j=0; j<nub; Lrow+=nskip, ++j) memcpy(Lrow,AROW(j),(j+1)*sizeof(dReal)); } dFactorLDLT (m_L,m_d,nub,m_nskip); memcpy (m_x,m_b,nub*sizeof(dReal)); dSolveLDLT (m_L,m_d,m_x,nub,m_nskip); dSetZero (m_w,nub); { int *C = m_C; for (int k=0; k<nub; ++k) C[k] = k; } m_nC = nub; } // permute the indexes > nub such that all findex variables are at the end if (m_findex) { const int nub = m_nub; int *findex = m_findex; int num_at_end = 0; for (int k=m_n-1; k >= nub; k--) { if (findex[k] >= 0) { swapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,findex,m_n,k,m_n-1-num_at_end,m_nskip,1); num_at_end++; } } } // print info about indexes /* { const int n = m_n; const int nub = m_nub; for (int k=0; k<n; k++) { if (k<nub) printf ("C"); else if (m_lo[k]==-dInfinity && m_hi[k]==dInfinity) printf ("c"); else printf ("."); } printf ("\n"); } */ }
dReal Aii (int i) const { return AROW(i)[i]; }
dReal AiC_times_qC (int i, dReal *q) const { return dDot (AROW(i), q, m_nC); }
dReal dLCP::Aii (int i) { return AROW(i)[i]; }
void _fastcall AMemBlocks(ParamBlk *parm) { char *pArrayName; Locator lArrayLoc; int nErrorNo; PROCESS_HEAP_ENTRY pEntry; INTEGER(vAddress); INTEGER(vSize); INTEGER(vOverhead); DWORD nLastError; if (!fpHeapWalk) RAISEERROR(E_NOENTRYPOINT); if (!NULLTERMINATE(p1)) RAISEERROR(E_INSUFMEMORY); LOCKHAND(p1); pArrayName = HANDTOPTR(p1); if (nErrorNo = DimensionEx(pArrayName,&lArrayLoc,1,3)) goto ErrorOut; pEntry.lpData = NULL; if (!fpHeapWalk(ghHeap,&pEntry)) { nLastError = GetLastError(); UNLOCKHAND(p1); if (nLastError == ERROR_NO_MORE_ITEMS) { RET_INTEGER(0); return; } else { SAVEWIN32ERROR(HeapWalk,nLastError); RET_INTEGER(-1); } } do { AROW(lArrayLoc)++; if ((nErrorNo = Dimension(pArrayName,AROW(lArrayLoc),3))) break; ADIM(lArrayLoc) = 1; vAddress.ev_long = (long)pEntry.lpData; if (nErrorNo = STORE(lArrayLoc,vAddress)) break; ADIM(lArrayLoc) = 2; vSize.ev_long = pEntry.cbData; if (nErrorNo = STORE(lArrayLoc,vSize)) break; ADIM(lArrayLoc) = 3; vOverhead.ev_long = pEntry.cbOverhead; if (nErrorNo = STORE(lArrayLoc,vOverhead)) break; } while (fpHeapWalk(ghHeap,&pEntry)); nLastError = GetLastError(); if (nErrorNo) goto ErrorOut; UNLOCKHAND(p1); if (nLastError == ERROR_NO_MORE_ITEMS) { RET_AROWS(lArrayLoc); return; } else { SAVEWIN32ERROR(HeapWalk,nLastError); RET_INTEGER(-1); return; } ErrorOut: UNLOCKHAND(p1); RAISEERROR(nErrorNo); }
dReal dLCP::AiN_times_qN (int i, dReal *q) { dReal sum = 0; for (int k=0; k<n; k++) if (N[k]) sum += AROW(i)[k] * q[k]; return sum; }
void dLCP::solve1 (dReal *a, int i, int dir, int only_transfer) { ALLOCA (dReal,AA,n*nskip*sizeof(dReal)); #ifdef dUSE_MALLOC_FOR_ALLOCA if (AA == NULL) { dMemoryFlag = d_MEMORY_OUT_OF_MEMORY; return; } #endif ALLOCA (dReal,dd,n*sizeof(dReal)); #ifdef dUSE_MALLOC_FOR_ALLOCA if (dd == NULL) { UNALLOCA(AA); dMemoryFlag = d_MEMORY_OUT_OF_MEMORY; return; } #endif ALLOCA (dReal,bb,n*sizeof(dReal)); #ifdef dUSE_MALLOC_FOR_ALLOCA if (bb == NULL) { UNALLOCA(AA); UNALLOCA(dd); dMemoryFlag = d_MEMORY_OUT_OF_MEMORY; return; } #endif int ii,jj,AAi,AAj; last_i_for_solve1 = i; AAi = 0; for (ii=0; ii<n; ii++) if (C[ii]) { AAj = 0; for (jj=0; jj<n; jj++) if (C[jj]) { AA[AAi*nskip+AAj] = AROW(ii)[jj]; AAj++; } bb[AAi] = AROW(i)[ii]; AAi++; } if (AAi==0) { UNALLOCA (AA); UNALLOCA (dd); UNALLOCA (bb); return; } dFactorLDLT (AA,dd,AAi,nskip); dSolveLDLT (AA,dd,bb,AAi,nskip); AAi=0; if (dir > 0) { for (ii=0; ii<n; ii++) if (C[ii]) a[ii] = -bb[AAi++]; } else { for (ii=0; ii<n; ii++) if (C[ii]) a[ii] = bb[AAi++]; } UNALLOCA (AA); UNALLOCA (dd); UNALLOCA (bb); }
dReal Aii (int i) { return AROW(i)[i]; }
dLCP::dLCP (int _n, int _nub, dReal *_Adata, dReal *_x, dReal *_b, dReal *_w, dReal *_lo, dReal *_hi, dReal *_L, dReal *_d, dReal *_Dell, dReal *_ell, dReal *_tmp, int *_state, int *_findex, int *_p, int *_C, dReal **Arows) { n = _n; nub = _nub; Adata = _Adata; A = 0; x = _x; b = _b; w = _w; lo = _lo; hi = _hi; L = _L; d = _d; Dell = _Dell; ell = _ell; tmp = _tmp; state = _state; findex = _findex; p = _p; C = _C; nskip = dPAD(n); dSetZero (x,n); int k; # ifdef ROWPTRS // make matrix row pointers A = Arows; for (k=0; k<n; k++) A[k] = Adata + k*nskip; # else A = Adata; # endif nC = 0; nN = 0; for (k=0; k<n; k++) p[k]=k; // initially unpermuted /* // for testing, we can do some random swaps in the area i > nub if (nub < n) { for (k=0; k<100; k++) { int i1,i2; do { i1 = dRandInt(n-nub)+nub; i2 = dRandInt(n-nub)+nub; } while (i1 > i2); //printf ("--> %d %d\n",i1,i2); swapProblem (A,x,b,w,lo,hi,p,state,findex,n,i1,i2,nskip,0); } } */ // permute the problem so that *all* the unbounded variables are at the // start, i.e. look for unbounded variables not included in `nub'. we can // potentially push up `nub' this way and get a bigger initial factorization. // note that when we swap rows/cols here we must not just swap row pointers, // as the initial factorization relies on the data being all in one chunk. // variables that have findex >= 0 are *not* considered to be unbounded even // if lo=-inf and hi=inf - this is because these limits may change during the // solution process. for (k=nub; k<n; k++) { if (findex && findex[k] >= 0) continue; if (lo[k]==-dInfinity && hi[k]==dInfinity) { swapProblem (A,x,b,w,lo,hi,p,state,findex,n,nub,k,nskip,0); nub++; } } // if there are unbounded variables at the start, factorize A up to that // point and solve for x. this puts all indexes 0..nub-1 into C. if (nub > 0) { for (k=0; k<nub; k++) memcpy (L+k*nskip,AROW(k),(k+1)*sizeof(dReal)); dFactorLDLT (L,d,nub,nskip); memcpy (x,b,nub*sizeof(dReal)); dSolveLDLT (L,d,x,nub,nskip); dSetZero (w,nub); for (k=0; k<nub; k++) C[k] = k; nC = nub; } // permute the indexes > nub such that all findex variables are at the end if (findex) { int num_at_end = 0; for (k=n-1; k >= nub; k--) { if (findex[k] >= 0) { swapProblem (A,x,b,w,lo,hi,p,state,findex,n,k,n-1-num_at_end,nskip,1); num_at_end++; } } } // print info about indexes /* for (k=0; k<n; k++) { if (k<nub) printf ("C"); else if (lo[k]==-dInfinity && hi[k]==dInfinity) printf ("c"); else printf ("."); } printf ("\n"); */ }
dReal AiC_times_qC (int i, dReal *q) { return dDot (AROW(i),q,nC); }