Exemple #1
0
//=================================================================
// Methods for CollectNodesTEP
//
int CollectNodesTEP::callback(INode *node)
{
	INode *pnode = node; // Hungarian

	ASSERT_MBOX(!(pnode)->IsRootNode(), "Encountered a root node!");

	if (::FNodeMarkedToSkip(pnode))
		return TREE_CONTINUE;

	// Get pre-stored "index"
	int iNode = ::GetIndexOfINode(pnode);
	ASSERT_MBOX(iNode >= 0 && iNode <= m_phec->m_imaxnodeMac-1, "Bogus iNode");
	
	// Get name, store name in array
	TSTR strNodeName(pnode->GetName());
	strcpy(m_phec->m_rgmaxnode[iNode].szNodeName, (char*)strNodeName);

	// Get Node's time-zero Transformation Matrices
	m_phec->m_rgmaxnode[iNode].mat3NodeTM		= pnode->GetNodeTM(0/*TimeValue*/);
	m_phec->m_rgmaxnode[iNode].mat3ObjectTM		= pnode->GetObjectTM(0/*TimeValue*/);

	// I'll calculate this later
	m_phec->m_rgmaxnode[iNode].imaxnodeParent	= SmdExportClass::UNDESIRABLE_NODE_MARKER;

	return TREE_CONTINUE;
}
Exemple #2
0
//=================================================================
// Methods for DumpNodesTEP
//
int DumpNodesTEP::callback(INode *pnode)
{
	ASSERT_MBOX(!(pnode)->IsRootNode(), "Encountered a root node!");

	if (::FNodeMarkedToSkip(pnode))
		return TREE_CONTINUE;

	// Get node's parent
	INode *pnodeParent;
	pnodeParent = pnode->GetParentNode();
	
	// The model's root is a child of the real "scene root"
	TSTR strNodeName(pnode->GetName());
	BOOL fNodeIsRoot = pnodeParent->IsRootNode( );
	
	int iNode = ::GetIndexOfINode(pnode);
	int iNodeParent = ::GetIndexOfINode(pnodeParent, !fNodeIsRoot/*fAssertPropExists*/);

	// Convenient time to cache this
	m_phec->m_rgmaxnode[iNode].imaxnodeParent = fNodeIsRoot ? SmdExportClass::UNDESIRABLE_NODE_MARKER : iNodeParent;

	// Root node has no parent, thus no translation
	if (fNodeIsRoot)
		iNodeParent = -1;
		
	// Dump node description
	fprintf(m_pfile, "%3d \"%s\" %3d\n", 
		iNode, 
		strNodeName, 
		iNodeParent );

	return TREE_CONTINUE;
}
Exemple #3
0
int GetIndexOfINode(INode *pnode, BOOL fAssertPropExists)
{
	TSTR strNodeName(pnode->GetName());
	for (int inm = 0; inm < g_inmMac; inm++)
		if (FStrEq(g_rgnm[inm].szNodeName, (char*)strNodeName))
			return g_rgnm[inm].iNode;
	if (fAssertPropExists)
		ASSERT_MBOX(FALSE, "No NODEINDEXSTR property");
	return -7777;
}
Exemple #4
0
BOOL SmdExportClass::CollectNodes( ExpInterface *pexpiface)
{
	// Count total nodes in the model, so I can alloc array
	// Also "brands" each node with node index, or with "skip me" marker.
	CountNodesTEP procCountNodes;
	procCountNodes.m_cNodes = 0;
	(void) pexpiface->theScene->EnumTree(&procCountNodes);
	ASSERT_MBOX(procCountNodes.m_cNodes > 0, "No nodes!");

	// Alloc and fill array
	m_imaxnodeMac = procCountNodes.m_cNodes;
	m_rgmaxnode = new MaxNode[m_imaxnodeMac];
	ASSERT_MBOX(m_rgmaxnode != NULL, "new failed");


	CollectNodesTEP procCollectNodes;
	procCollectNodes.m_phec = this;
	(void) pexpiface->theScene->EnumTree(&procCollectNodes);
	
	return TRUE;
}
Exemple #5
0
//=================================================================
// Methods for DumpFrameRotationsTEP
//
int DumpFrameRotationsTEP::callback(INode *pnode)
{
	ASSERT_MBOX(!(pnode)->IsRootNode(), "Encountered a root node!");

	if (::FNodeMarkedToSkip(pnode))
		return TREE_CONTINUE;

	int iNode = ::GetIndexOfINode(pnode);

	TSTR strNodeName(pnode->GetName());

	// The model's root is a child of the real "scene root"
	INode *pnodeParent = pnode->GetParentNode();
	BOOL fNodeIsRoot = pnodeParent->IsRootNode( );

	// Get Node's "Local" Transformation Matrix
	Matrix3 mat3NodeTM		= pnode->GetNodeTM(m_tvToDump);
	Matrix3 mat3ParentTM	= pnodeParent->GetNodeTM(m_tvToDump);
	mat3NodeTM.NoScale();		// Clear these out because they apparently
	mat3ParentTM.NoScale();		// screw up the following calculation.
	Matrix3 mat3NodeLocalTM	= mat3NodeTM * Inverse(mat3ParentTM);
	Point3 rowTrans = mat3NodeLocalTM.GetTrans();

	// check to see if the parent bone was mirrored.  If so, mirror invert this bones position
	if (m_phec->m_rgmaxnode[iNode].imaxnodeParent >= 0 && m_phec->m_rgmaxnode[m_phec->m_rgmaxnode[iNode].imaxnodeParent].isMirrored)
	{
		rowTrans = rowTrans * -1.0f;
	}

	// Get the rotation (via decomposition into "affine parts", then quaternion-to-Euler)
	// Apparently the order of rotations returned by QuatToEuler() is X, then Y, then Z.
	AffineParts affparts;
	float rgflXYZRotations[3];

	decomp_affine(mat3NodeLocalTM, &affparts);
	QuatToEuler(affparts.q, rgflXYZRotations);

	float xRot = rgflXYZRotations[0];		// in radians
	float yRot = rgflXYZRotations[1];		// in radians
	float zRot = rgflXYZRotations[2];		// in radians

	// Get rotations in the -2pi...2pi range
	xRot = ::FlReduceRotation(xRot);
	yRot = ::FlReduceRotation(yRot);
	zRot = ::FlReduceRotation(zRot);
	
	// Print rotations
	fprintf(m_pfile, "%3d %f %f %f %f %f %f\n", 
		// Node:%-15s Rotation (x,y,z)\n",
		iNode, rowTrans.x, rowTrans.y, rowTrans.z, xRot, yRot, zRot);

	return TREE_CONTINUE;
}
Exemple #6
0
void SetIndexOfINode(INode *pnode, int inode)
{
	TSTR strNodeName(pnode->GetName());
	NAMEMAP *pnm;
	for (int inm = 0; inm < g_inmMac; inm++)
		if (FStrEq(g_rgnm[inm].szNodeName, (char*)strNodeName))
			break;
	if (inm < g_inmMac)
		pnm = &g_rgnm[inm];
	else
	{
		ASSERT_MBOX(g_inmMac < MAX_NAMEMAP, "NAMEMAP is full");
		pnm = &g_rgnm[g_inmMac++];
		strcpy(pnm->szNodeName, (char*)strNodeName);
	}
	pnm->iNode = inode;
}
Exemple #7
0
//=================================================================
// Methods for CountNodesTEP
//
int CountNodesTEP::callback( INode *node)
{
	INode *pnode = node; // Hungarian

	ASSERT_MBOX(!(pnode)->IsRootNode(), "Encountered a root node!");

	if (::FUndesirableNode(pnode))
	{
		// Mark as skippable
		::SetIndexOfINode(pnode, SmdExportClass::UNDESIRABLE_NODE_MARKER);
		return TREE_CONTINUE;
	}
	
	// Establish "node index"--just ascending ints
	::SetIndexOfINode(pnode, m_cNodes);

	m_cNodes++;
	
	return TREE_CONTINUE;
}
Exemple #8
0
Point3 DumpModelTEP::Pt3GetRVertexNormal(RVertex *prvertex, DWORD smGroupFace)
{
	// Lookup the appropriate vertex normal, based on smoothing group.
	int cNormals = prvertex->rFlags & NORCT_MASK;

	ASSERT_MBOX((cNormals == 1 && prvertex->ern == NULL) ||
				(cNormals > 1 && prvertex->ern != NULL), "BOGUS RVERTEX");
	
	if (cNormals == 1)
		return prvertex->rn.getNormal();
	else
	{
		for (int irn = 0; irn < cNormals; irn++)
			if (prvertex->ern[irn].getSmGroup() & smGroupFace)
				break;

		if (irn >= cNormals) 
		{
			irn = 0;
			// ASSERT_MBOX(irn < cNormals, "unknown smoothing group\n");
		}
		return prvertex->ern[irn].getNormal();
	}
}
Exemple #9
0
//=================================================================
// Methods for DumpModelTEP
//
int DumpModelTEP::callback(INode *pnode)
{
	Object*	pobj;
	int	fHasMat = TRUE;

	// clear physique export parameters
	m_mcExport = NULL;
	m_phyExport = NULL;
    m_phyMod = NULL;

	ASSERT_MBOX(!(pnode)->IsRootNode(), "Encountered a root node!");

	if (::FNodeMarkedToSkip(pnode))
		return TREE_CONTINUE;
	
	int iNode = ::GetIndexOfINode(pnode);
	TSTR strNodeName(pnode->GetName());
	
	// The Footsteps node apparently MUST have a dummy mesh attached!  Ignore it explicitly.
	if (FStrEq((char*)strNodeName, "Bip01 Footsteps"))
		return TREE_CONTINUE;

	// Helper nodes don't have meshes
	pobj = pnode->GetObjectRef();
	if (pobj->SuperClassID() == HELPER_CLASS_ID)
		return TREE_CONTINUE;

	// The model's root is a child of the real "scene root"
	INode *pnodeParent = pnode->GetParentNode();
	BOOL fNodeIsRoot = pnodeParent->IsRootNode( );

	// Get node's material: should be a multi/sub (if it has a material at all)
	Mtl *pmtlNode = pnode->GetMtl();
	if (pmtlNode == NULL)
	{
		return TREE_CONTINUE;
		fHasMat = FALSE;
	}
	else if (!(pmtlNode->ClassID() == Class_ID(MULTI_CLASS_ID, 0) && pmtlNode->IsMultiMtl()))
	{
		// sprintf(st_szDBG, "ERROR--Material on node %s isn't a Multi/Sub-Object", (char*)strNodeName);
		// ASSERT_AND_ABORT(FALSE, st_szDBG);
		fHasMat = FALSE;
	}
	
	// Get Node's object, convert to a triangle-mesh object, so I can access the Faces
	ObjectState os = pnode->EvalWorldState(m_tvToDump);
	pobj = os.obj;
	TriObject *ptriobj;
	BOOL fConvertedToTriObject = 
		pobj->CanConvertToType(triObjectClassID) &&
		(ptriobj = (TriObject*)pobj->ConvertToType(m_tvToDump, triObjectClassID)) != NULL;
	if (!fConvertedToTriObject)
		return TREE_CONTINUE;
	Mesh *pmesh = &ptriobj->mesh;

	// Shouldn't have gotten this far if it's a helper object
	if (pobj->SuperClassID() == HELPER_CLASS_ID)
	{
		sprintf(st_szDBG, "ERROR--Helper node %s has an attached mesh, and it shouldn't.", (char*)strNodeName);
		ASSERT_AND_ABORT(FALSE, st_szDBG);
	}

	// Ensure that the vertex normals are up-to-date
	pmesh->buildNormals();

	// We want the vertex coordinates in World-space, not object-space
	Matrix3 mat3ObjectTM = pnode->GetObjectTM(m_tvToDump);


	// initialize physique export parameters
    m_phyMod = FindPhysiqueModifier(pnode);
    if (m_phyMod)
	{
		// Physique Modifier exists for given Node
	    m_phyExport = (IPhysiqueExport *)m_phyMod->GetInterface(I_PHYINTERFACE);

        if (m_phyExport)
        {
            // create a ModContext Export Interface for the specific node of the Physique Modifier
           m_mcExport = (IPhyContextExport *)m_phyExport->GetContextInterface(pnode);

		   if (m_mcExport)
		   {
		       // convert all vertices to Rigid 
                m_mcExport->ConvertToRigid(TRUE);
		   }
		}
	}

	// Dump the triangle face info
	int cFaces = pmesh->getNumFaces();
	for (int iFace = 0; iFace < cFaces; iFace++)
	{
		Face*	pface		= &pmesh->faces[iFace];
		TVFace*	ptvface		= &pmesh->tvFace[iFace];
		DWORD	smGroupFace	= pface->getSmGroup();

		// Get face's 3 indexes into the Mesh's vertex array(s).
		DWORD iVertex0 = pface->getVert(0);
		DWORD iVertex1 = pface->getVert(1);
		DWORD iVertex2 = pface->getVert(2);
		ASSERT_AND_ABORT((int)iVertex0 < pmesh->getNumVerts(), "Bogus Vertex 0 index");
		ASSERT_AND_ABORT((int)iVertex1 < pmesh->getNumVerts(), "Bogus Vertex 1 index");
		ASSERT_AND_ABORT((int)iVertex2 < pmesh->getNumVerts(), "Bogus Vertex 2 index");
		
		// Get the 3 Vertex's for this face
		Point3 pt3Vertex0 = pmesh->getVert(iVertex0);
		Point3 pt3Vertex1 = pmesh->getVert(iVertex1);
		Point3 pt3Vertex2 = pmesh->getVert(iVertex2);

		// Get the 3 RVertex's for this face
		// NOTE: I'm using getRVertPtr instead of getRVert to work around a 3DSMax bug
		RVertex *prvertex0 = pmesh->getRVertPtr(iVertex0);
		RVertex *prvertex1 = pmesh->getRVertPtr(iVertex1);
		RVertex *prvertex2 = pmesh->getRVertPtr(iVertex2);
		
		// Find appropriate normals for each RVertex
		// A vertex can be part of multiple faces, so the "smoothing group"
		// is used to locate the normal for this face's use of the vertex.
		Point3 pt3Vertex0Normal;
		Point3 pt3Vertex1Normal;
		Point3 pt3Vertex2Normal;
		if (smGroupFace) 
		{
			pt3Vertex0Normal = Pt3GetRVertexNormal(prvertex0, smGroupFace);
			pt3Vertex1Normal = Pt3GetRVertexNormal(prvertex1, smGroupFace);
			pt3Vertex2Normal = Pt3GetRVertexNormal(prvertex2, smGroupFace);
		}
		else 
		{
			pt3Vertex0Normal = pmesh->getFaceNormal( iFace );
			pt3Vertex1Normal = pmesh->getFaceNormal( iFace );
			pt3Vertex2Normal = pmesh->getFaceNormal( iFace );
		}
		ASSERT_AND_ABORT( Length( pt3Vertex0Normal ) <= 1.1, "bogus orig normal 0" );
		ASSERT_AND_ABORT( Length( pt3Vertex1Normal ) <= 1.1, "bogus orig normal 1" );
		ASSERT_AND_ABORT( Length( pt3Vertex2Normal ) <= 1.1, "bogus orig normal 2" );
	
		// Get Face's sub-material from node's material, to get the bitmap name.
		// And no, there isn't a simpler way to get the bitmap name, you have to
		// dig down through all these levels.
		TCHAR szBitmapName[256] = "null.bmp";
		if (fHasMat)
		{
			MtlID mtlidFace = pface->getMatID();
			if (mtlidFace >= pmtlNode->NumSubMtls())
			{
				sprintf(st_szDBG, "ERROR--Bogus sub-material index %d in node %s; highest valid index is %d",
					mtlidFace, (char*)strNodeName, pmtlNode->NumSubMtls()-1);
				// ASSERT_AND_ABORT(FALSE, st_szDBG);
				mtlidFace = 0;
			}
			Mtl *pmtlFace = pmtlNode->GetSubMtl(mtlidFace);
			ASSERT_AND_ABORT(pmtlFace != NULL, "NULL Sub-material returned");
 
			if ((pmtlFace->ClassID() == Class_ID(MULTI_CLASS_ID, 0) && pmtlFace->IsMultiMtl()))
			{
				// it's a sub-sub material.  Gads.
				pmtlFace = pmtlFace->GetSubMtl(mtlidFace);			
				ASSERT_AND_ABORT(pmtlFace != NULL, "NULL Sub-material returned");
			}

			if (!(pmtlFace->ClassID() == Class_ID(DMTL_CLASS_ID, 0)))
			{

				sprintf(st_szDBG,
					"ERROR--Sub-material with index %d (used in node %s) isn't a 'default/standard' material [%x].",
					mtlidFace, (char*)strNodeName, pmtlFace->ClassID());
				ASSERT_AND_ABORT(FALSE, st_szDBG);
			}
			StdMat *pstdmtlFace = (StdMat*)pmtlFace;
			Texmap *ptexmap = pstdmtlFace->GetSubTexmap(ID_DI);
			// ASSERT_AND_ABORT(ptexmap != NULL, "NULL diffuse texture")
			if (ptexmap != NULL) 
			{
				if (!(ptexmap->ClassID() == Class_ID(BMTEX_CLASS_ID, 0)))
				{
					sprintf(st_szDBG,
						"ERROR--Sub-material with index %d (used in node %s) doesn't have a bitmap as its diffuse texture.",
						mtlidFace, (char*)strNodeName);
					ASSERT_AND_ABORT(FALSE, st_szDBG);
				}
				BitmapTex *pbmptex = (BitmapTex*)ptexmap;
				strcpy(szBitmapName, pbmptex->GetMapName());
				TSTR strPath, strFile;
				SplitPathFile(TSTR(szBitmapName), &strPath, &strFile);
				strcpy(szBitmapName,strFile);
			}
		}

		UVVert UVvertex0( 0, 0, 0 );
		UVVert UVvertex1( 1, 0, 0 );
		UVVert UVvertex2( 0, 1, 0 );
		
		// All faces must have textures assigned to them
		if (pface->flags & HAS_TVERTS)
		{
			// Get TVface's 3 indexes into the Mesh's TVertex array(s).
			DWORD iTVertex0 = ptvface->getTVert(0);
			DWORD iTVertex1 = ptvface->getTVert(1);
			DWORD iTVertex2 = ptvface->getTVert(2);
			ASSERT_AND_ABORT((int)iTVertex0 < pmesh->getNumTVerts(), "Bogus TVertex 0 index");
			ASSERT_AND_ABORT((int)iTVertex1 < pmesh->getNumTVerts(), "Bogus TVertex 1 index");
			ASSERT_AND_ABORT((int)iTVertex2 < pmesh->getNumTVerts(), "Bogus TVertex 2 index");

			// Get the 3 TVertex's for this TVFace
			// NOTE: I'm using getRVertPtr instead of getRVert to work around a 3DSMax bug
			UVvertex0 = pmesh->getTVert(iTVertex0);
			UVvertex1 = pmesh->getTVert(iTVertex1);
			UVvertex2 = pmesh->getTVert(iTVertex2);
		}
		else 
		{
			//sprintf(st_szDBG, "ERROR--Node %s has a textureless face.  All faces must have an applied texture.", (char*)strNodeName);
			//ASSERT_AND_ABORT(FALSE, st_szDBG);
		}
		
		/*
		const char *szExpectedExtension = ".bmp";
		if (stricmp(szBitmapName+strlen(szBitmapName)-strlen(szExpectedExtension), szExpectedExtension) != 0)
			{
			sprintf(st_szDBG, "Node %s uses %s, which is not a %s file", (char*)strNodeName, szBitmapName, szExpectedExtension);
			ASSERT_AND_ABORT(FALSE, st_szDBG);
			}
		*/

		// Determine owning bones for the vertices.
		int iNodeV0, iNodeV1, iNodeV2;
		if (m_mcExport)
		{
			// The Physique add-in allows vertices to be assigned to bones arbitrarily
			iNodeV0 = InodeOfPhyVectex( iVertex0 );
			iNodeV1 = InodeOfPhyVectex( iVertex1 );
			iNodeV2 = InodeOfPhyVectex( iVertex2 );
		}
		else
		{
			// Simple 3dsMax model: the vertices are owned by the object, and hence the node
			iNodeV0 = iNode;
			iNodeV1 = iNode;
			iNodeV2 = iNode;
		}
		
		// Rotate the face vertices out of object-space, and into world-space space
		Point3 v0 = pt3Vertex0 * mat3ObjectTM;
		Point3 v1 = pt3Vertex1 * mat3ObjectTM;
		Point3 v2 = pt3Vertex2 * mat3ObjectTM;


		Matrix3 mat3ObjectNTM = mat3ObjectTM;
		mat3ObjectNTM.NoScale( );
		ASSERT_AND_ABORT( Length( pt3Vertex0Normal ) <= 1.1, "bogus pre normal 0" );
		pt3Vertex0Normal = VectorTransform(mat3ObjectNTM, pt3Vertex0Normal);
		ASSERT_AND_ABORT( Length( pt3Vertex0Normal ) <= 1.1, "bogus post normal 0" );
		ASSERT_AND_ABORT( Length( pt3Vertex1Normal ) <= 1.1, "bogus pre normal 1" );
		pt3Vertex1Normal = VectorTransform(mat3ObjectNTM, pt3Vertex1Normal);
		ASSERT_AND_ABORT( Length( pt3Vertex1Normal ) <= 1.1, "bogus post normal 1" );
		ASSERT_AND_ABORT( Length( pt3Vertex2Normal ) <= 1.1, "bogus pre normal 2" );
		pt3Vertex2Normal = VectorTransform(mat3ObjectNTM, pt3Vertex2Normal);
		ASSERT_AND_ABORT( Length( pt3Vertex2Normal ) <= 1.1, "bogus post normal 2" );

		// Finally dump the bitmap name and 3 lines of face info
		fprintf(m_pfile, "%s\n", szBitmapName);
		fprintf(m_pfile, "%3d %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f\n",
				iNodeV0, v0.x, v0.y, v0.z,
				pt3Vertex0Normal.x, pt3Vertex0Normal.y, pt3Vertex0Normal.z,
				UVvertex0.x, UVvertex0.y);
		fprintf(m_pfile, "%3d %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f\n",
				iNodeV1, v1.x, v1.y, v1.z,
				pt3Vertex1Normal.x, pt3Vertex1Normal.y, pt3Vertex1Normal.z,
				UVvertex1.x, UVvertex1.y);
		fprintf(m_pfile, "%3d %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f\n",
				iNodeV2, v2.x, v2.y, v2.z,
				pt3Vertex2Normal.x, pt3Vertex2Normal.y, pt3Vertex2Normal.z,
				UVvertex2.x, UVvertex2.y);
	}

	cleanup( );	
	return TREE_CONTINUE;
}
//=================================================================
// Methods for CollectModelTEP
//
int CollectModelTEP::callback(INode *pnode)
{
	if (::FNodeMarkedToSkip(pnode))
		return TREE_CONTINUE;

	if ( !pnode->Selected())
		return TREE_CONTINUE;

	// clear physique export parameters
	m_mcExport = NULL;
	m_phyExport = NULL;
    m_phyMod = NULL;
    m_bonesProMod = NULL;

	ASSERT_MBOX(!(pnode)->IsRootNode(), "Encountered a root node!");

	int iNode = ::GetIndexOfINode(pnode);
	TSTR strNodeName(pnode->GetName());
	
	// The Footsteps node apparently MUST have a dummy mesh attached!  Ignore it explicitly.
	if (FStrEq((char*)strNodeName, "Bip01 Footsteps"))
		return TREE_CONTINUE;

	// Helper nodes don't have meshes
	Object *pobj = pnode->GetObjectRef();
	if (pobj->SuperClassID() == HELPER_CLASS_ID)
		return TREE_CONTINUE;

	// Get Node's object, convert to a triangle-mesh object, so I can access the Faces
	ObjectState os = pnode->EvalWorldState(m_tvToDump);
	pobj = os.obj;

	// Shouldn't have gotten this far if it's a helper object
	if (pobj->SuperClassID() == HELPER_CLASS_ID)
	{
		sprintf(st_szDBG, "ERROR--Helper node %s has an attached mesh, and it shouldn't.", (char*)strNodeName);
		ASSERT_AND_ABORT(FALSE, st_szDBG);
	}

	// convert mesh to triobject
	if (!pobj->CanConvertToType(triObjectClassID))
		return TREE_CONTINUE;
	TriObject *ptriobj = (TriObject*)pobj->ConvertToType(m_tvToDump, triObjectClassID);

	if (ptriobj == NULL)
		return TREE_CONTINUE;

	Mesh *pmesh = &ptriobj->mesh;

	// We want the vertex coordinates in World-space, not object-space
	Matrix3 mat3ObjectTM = pnode->GetObjectTM(m_tvToDump);

	// initialize physique export parameters
    m_phyMod = FindPhysiqueModifier(pnode);
    if (m_phyMod)
	{
		// Physique Modifier exists for given Node
	    m_phyExport = (IPhysiqueExport *)m_phyMod->GetInterface(I_PHYINTERFACE);

        if (m_phyExport)
        {
            // create a ModContext Export Interface for the specific node of the Physique Modifier
           m_mcExport = (IPhyContextExport *)m_phyExport->GetContextInterface(pnode);

		   if (m_mcExport)
		   {
		       // convert all vertices to Rigid 
                m_mcExport->ConvertToRigid(TRUE);
		   }
		}
	}

	// initialize bones pro export parameters
	m_wa  = NULL;
	m_bonesProMod = FindBonesProModifier(pnode);
	if (m_bonesProMod)
	{
		m_bonesProMod->SetProperty( BP_PROPID_GET_WEIGHTS, &m_wa );
	}


	int cVerts = pmesh->getNumVerts();

	// Dump the triangle face info
	int cFaces = pmesh->getNumFaces();

	int *iUsed = new int[cVerts];

	for (int iVert = 0; iVert < cVerts; iVert++)
	{
		iUsed[iVert] = 0;
	}

	for (int iFace = 0; iFace < cFaces; iFace++)
	{
		if (pmesh->faces[iFace].flags & HAS_TVERTS)
		{
			iUsed[pmesh->faces[iFace].getVert(0)] = 1;
			iUsed[pmesh->faces[iFace].getVert(1)] = 1;
			iUsed[pmesh->faces[iFace].getVert(2)] = 1;
		}
	}

	for (iVert = 0; iVert < cVerts; iVert++)
	{
		MaxVertWeight *pweight = m_phec->m_MaxVertex[m_phec->m_cMaxVertex] = new MaxVertWeight [m_phec->m_cMaxNode];

		Point3 pt3Vertex1 = pmesh->getVert(iVert);
		Point3 v1 = pt3Vertex1 * mat3ObjectTM;

		GetUnifiedCoord( v1, pweight, m_phec->m_MaxNode, m_phec->m_cMaxNode );

		if (CollectWeights( iVert, pweight ))
		{
			m_phec->m_cMaxVertex++;
		}
	}	

	// fflush( m_pfile );

	return TREE_CONTINUE;
}