Exemple #1
0
//led0任务函数
void led0_task(void *p_arg)
{
	OS_ERR err;
	u8 test[20];
	u8 times = 0;
	CPU_SR_ALLOC();
	u8 temp;	
	p_arg = p_arg;
	while(1)
	{
		OS_CRITICAL_ENTER();
		temp = FloatTaskTCB.MsgQ.NbrEntriesSize - FloatTaskTCB.MsgQ.NbrEntries;
		printf("que remain %d.\r\n",temp);
		OS_CRITICAL_EXIT();	
		sprintf((char *)test,"led_send_que %d",times++);
		printf("led0 task send que.\r\n");
		OSTaskQPost((OS_TCB*	)&FloatTaskTCB,	//向任务Msgdis发送消息
					(void*		)test,
          (OS_MSG_SIZE)20,
          (OS_OPT		)OS_OPT_POST_FIFO,
					(OS_ERR*	)&err);
				
		OSTimeDlyHMSM(0,0,1,0,OS_OPT_TIME_HMSM_STRICT,&err); //延时1s	
			
	}
}
Exemple #2
0
void  *SerialOS_SemCreate (CPU_INT16U  cnt)
{
    OS_EVENT  *psem;
    INT8U      os_err;
    CPU_SR_ALLOC();


    CPU_CRITICAL_ENTER();
    if (OSEventObjIx < 1u) {
        CPU_CRITICAL_EXIT();
        return ((void *)0);
    }

    if (OSEventObjIx > SERIAL_OS_MAX_NBR_SEM) {
        CPU_CRITICAL_EXIT();
        return ((void *)0);
    }

                                                                /* -------------- GET OS EVENT FROM POOL -------------- */
    OSEventObjIx--;
    psem = OSEventObj[OSEventObjIx];
    CPU_CRITICAL_EXIT();

    OSSemSet(psem, cnt, &os_err);

    return ((void *)psem);
}
Exemple #3
0
void  OS_TLS_LockDel (void  *p_lock)
{
    OS_TLS_LOCK   *p_tls_lock;
    OS_ERR         os_err;
    CPU_SR_ALLOC();

    
    if (p_lock == (void *)0) {
        return;
    }
    
    p_tls_lock = (OS_TLS_LOCK *)p_lock;

    (void)OSMutexDel((OS_MUTEX *)&p_tls_lock->Mutex,
                     (OS_OPT    ) OS_OPT_DEL_ALWAYS,
                     (OS_ERR   *)&os_err);
    (void)&os_err;

    CPU_CRITICAL_ENTER();
                                                                  /* Return the OS_TLS_LOCK in front of the list      */
    if (OS_TLS_LockPoolListPtr == (OS_TLS_LOCK *)0) {
        p_tls_lock->NextPtr  = (OS_TLS_LOCK *)0;
    } else {
        p_tls_lock->NextPtr = OS_TLS_LockPoolListPtr;
    }
    OS_TLS_LockPoolListPtr = p_tls_lock;                      

    CPU_CRITICAL_EXIT();
}
Exemple #4
0
CPU_BOOLEAN  SerialBuf_WrOctet (SERIAL_BUF  *pbuf,
                                CPU_INT08U   datum)
{
    CPU_SIZE_T  empty_cnt;
    CPU_SIZE_T  ix_wr;
    CPU_SIZE_T  len;
    CPU_SR_ALLOC();


    CPU_CRITICAL_ENTER();
    empty_cnt = pbuf->EmptyCnt;

    if (empty_cnt == 0) {
        CPU_CRITICAL_EXIT();
        return (DEF_NO);
    }

    ix_wr                = pbuf->IxWr;
    pbuf->DataPtr[ix_wr] = datum;
    pbuf->EmptyCnt       = empty_cnt - 1;
    len                  = pbuf->Len;

    if (ix_wr + 1 == len) {
        pbuf->IxWr = 0;
    } else {
        pbuf->IxWr = ix_wr + 1;
    }
    CPU_CRITICAL_EXIT();

    return (DEF_YES);
}
Exemple #5
0
CPU_BOOLEAN  SerialBuf_RdOctet (SERIAL_BUF  *pbuf,
                                CPU_INT08U  *pdatum)
{
    CPU_SIZE_T  empty_cnt;
    CPU_SIZE_T  ix_rd;
    CPU_SIZE_T  len;
    CPU_SR_ALLOC();


    CPU_CRITICAL_ENTER();
    len       = pbuf->Len;
    empty_cnt = pbuf->EmptyCnt;

    if (empty_cnt == len) {
        CPU_CRITICAL_EXIT();
        return (DEF_NO);
    }

    ix_rd          = pbuf->IxRd;
   *pdatum         = pbuf->DataPtr[ix_rd];
    pbuf->EmptyCnt = empty_cnt + 1;

    if (ix_rd + 1 == len) {
        pbuf->IxRd = 0;
    } else {
        pbuf->IxRd = ix_rd + 1;
    }
    CPU_CRITICAL_EXIT();

    return (DEF_YES);
}
void  *OSMemGet (OS_MEM  *p_mem,
                 OS_ERR  *p_err)
{
    void    *p_blk;
    CPU_SR_ALLOC();



#ifdef OS_SAFETY_CRITICAL
    if (p_err == (OS_ERR *)0) {
        OS_SAFETY_CRITICAL_EXCEPTION();
        return ((void *)0);
    }
#endif

#if OS_CFG_ARG_CHK_EN > 0u
    if (p_mem == (OS_MEM *)0) {                             /* Must point to a valid memory partition                 */
       *p_err  = OS_ERR_MEM_INVALID_P_MEM;
        return ((void *)0);
    }
#endif

    CPU_CRITICAL_ENTER();
    if (p_mem->NbrFree == (OS_MEM_QTY)0) {                  /* See if there are any free memory blocks                */
        CPU_CRITICAL_EXIT();
       *p_err = OS_ERR_MEM_NO_FREE_BLKS;                    /* No,  Notify caller of empty memory partition           */
        return ((void *)0);                                 /*      Return NULL pointer to caller                     */
    }
    p_blk              = p_mem->FreeListPtr;                /* Yes, point to next free memory block                   */
    p_mem->FreeListPtr = *(void **)p_blk;                   /*      Adjust pointer to new free list                   */
    p_mem->NbrFree--;                                       /*      One less memory block in this partition           */
    CPU_CRITICAL_EXIT();
   *p_err = OS_ERR_NONE;                                    /*      No error                                          */
    return (p_blk);                                         /*      Return memory block to caller                     */
}
Exemple #7
0
void  OS_TLS_SetDestruct (OS_TLS_ID            id,
                          OS_TLS_DESTRUCT_PTR  p_destruct,
                          OS_ERR              *p_err)
{
    CPU_SR_ALLOC();


#ifdef OS_SAFETY_CRITICAL
    if (p_err == (OS_ERR *)0) {
        OS_SAFETY_CRITICAL_EXCEPTION();
        return;
    }
#endif

    if (id >= OS_TLS_NextAvailID) {                             /* See if we exceeded the number of TLS IDs available */
       *p_err = OS_ERR_TLS_ID_INVALID;
        return;
    }
     
    if (OS_TLS_DestructPtrTbl[id] != (OS_TLS_DESTRUCT_PTR)0) {  /* Can only assign a destructor once                  */
       *p_err = OS_ERR_TLS_DESTRUCT_ASSIGNED;
        return;
    }
     
    CPU_CRITICAL_ENTER();
    OS_TLS_DestructPtrTbl[id] = p_destruct;
    CPU_CRITICAL_EXIT();
   *p_err                     = OS_ERR_NONE;
}
Exemple #8
0
CPU_BOOLEAN  SerialBuf_Cmp (SERIAL_BUF  *pbuf,
                            CPU_INT08U   datum)
{
    CPU_SIZE_T   ix_rd;
    CPU_BOOLEAN  full;
    CPU_SR_ALLOC();


    CPU_CRITICAL_ENTER();
    full = SerialBuf_IsFull(pbuf);
    if (full == DEF_NO) {
        CPU_CRITICAL_EXIT();
        return (DEF_NO);
    }

    ix_rd = pbuf->IxRd;
    if(pbuf->DataPtr[ix_rd] != datum) {
        pbuf->IxRd = 0;                                         /* Reset comparison.                                    */
        CPU_CRITICAL_EXIT();
        return (DEF_NO);
    }

    ix_rd++;

    if (ix_rd == pbuf->Len) {
        pbuf->IxRd = 0;
        CPU_CRITICAL_EXIT();
        return (DEF_YES);
    }

    pbuf->IxRd = ix_rd;
    CPU_CRITICAL_EXIT();
    return (DEF_NO);
}
Exemple #9
0
/*********************************************************************
*
*       PngGetData
*
* Function description
*   This routine is called by GUI_PNG_DrawEx(). The routine is responsible
*   for setting the data pointer to a valid data location with at least
*   one valid byte.
*
* Parameters:
*   p           - Pointer to application defined data.
*   NumBytesReq - Number of bytes requested.
*   ppData      - Pointer to data pointer. This pointer should be set to
*                 a valid location.
*   StartOfFile - If this flag is 1, the data pointer should be set to the
*                 beginning of the data stream.
*
* Return value:
*   Number of data bytes available.
*/
static int PngGetData(void * p, const U8 ** ppData, unsigned NumBytesReq, U32 Off) 
{
	static int readaddress=0;
	FIL * phFile;
	U8 *pData;
	UINT NumBytesRead;
	#if SYSTEM_SUPPORT_OS
		CPU_SR_ALLOC();
	#endif
	
	pData = (U8*)*ppData;
	phFile = (FIL *)p;
	
	//移动指针到应该读取的位置
	if(Off == 1) readaddress = 0;
	else readaddress=Off;
	
	#if SYSTEM_SUPPORT_OS
		OS_CRITICAL_ENTER();	//临界区
	#endif
	f_lseek(phFile,readaddress); 
	
	//读取数据到缓冲区中
	f_read(phFile,pData,NumBytesReq,&NumBytesRead);
	
		
	#if SYSTEM_SUPPORT_OS
		OS_CRITICAL_EXIT();//退出临界区
	#endif
	return NumBytesRead;//返回读取到的字节数
}
Exemple #10
0
void  CSP_TmrInit (void)
{
    CSP_DEV_NBR  per_nbr;
    CSP_DEV_NBR  tmr_nbr;
    CSP_TMR_REG  *p_tmr_reg;
    CPU_SR_ALLOC();


    for (tmr_nbr = CSP_TMR_NBR_00; tmr_nbr <= CSP_TMR_NBR_03; tmr_nbr++) {
        p_tmr_reg = (CSP_TMR_REG *)CSP_TmrAddrTbl[tmr_nbr];
        per_nbr   = (CSP_DEV_NBR  )CSP_TmrPerTbl[tmr_nbr];
        
        CPU_CRITICAL_ENTER();
        CSP_PM_PerClkEn(per_nbr);
        p_tmr_reg->MCR    = DEF_BIT_NONE;
        p_tmr_reg->MRx[0] = 0u;
        p_tmr_reg->MRx[1] = 0u;
        p_tmr_reg->MRx[2] = 0u;
        p_tmr_reg->IR     = DEF_BIT_FIELD(5u, 0u);
        p_tmr_reg->TCR    = DEF_BIT_NONE;        
        p_tmr_reg->MCR    = DEF_BIT_NONE;
        p_tmr_reg->EMR    = DEF_BIT_NONE;
        CSP_PM_PerClkDis(per_nbr);        
        CPU_CRITICAL_EXIT();
    }
}
Exemple #11
0
CPU_BOOLEAN  CSP_DMA_CH_FreeExt (CSP_DEV_NBR  ch_nbr)
                               
{
    CSP_DMA_REG     *p_dma_reg;    
    CSP_DMA_CH_REG  *p_dma_ch_reg;
    CSP_DMA_CH      *p_ch_tbl;
    
    CPU_SR_ALLOC();

#if (CSP_CFG_ARG_CHK_EN == DEF_ENABLED)         
    if (ch_nbr > CSP_DMA_CH_MAX_NBR - 1u) {
        return (DEF_FAIL);
    }
#endif    

    p_dma_reg    = (CSP_DMA_REG *)CSP_ADDR_DMA_REG;
    p_dma_ch_reg = &(p_dma_reg->CHx[ch_nbr]);
    p_ch_tbl     = &CSP_DMA_ChTbl[ch_nbr];
        
    CPU_CRITICAL_ENTER();
    p_dma_reg->IntTCClr    = DEF_BIT(ch_nbr);                   /* Clear all pending interrupts.                        */
    p_dma_reg->IntErrClr   = DEF_BIT(ch_nbr);    
    p_ch_tbl->State        = CSP_DMA_CH_STATE_FREE;             /* Free the channel.                                    */
    p_dma_ch_reg->SrcAddr  = DEF_BIT_NONE;                      /* Unitialize DMA channel cfg & ctrl registers.         */
    p_dma_ch_reg->DestAddr = DEF_BIT_NONE;
    p_dma_ch_reg->Cfg      = DEF_BIT_NONE;
    p_dma_ch_reg->Ctrl     = DEF_BIT_NONE;       
    CPU_CRITICAL_EXIT();

    return (DEF_OK);
}
void  OSTimeDly (OS_TICK   dly,
                 OS_OPT    opt,
                 OS_ERR   *p_err)
{
    CPU_SR_ALLOC();



#ifdef OS_SAFETY_CRITICAL
    if (p_err == (OS_ERR *)0) {
        OS_SAFETY_CRITICAL_EXCEPTION();
        return;
    }
#endif

#if OS_CFG_CALLED_FROM_ISR_CHK_EN > 0u
    if (OSIntNestingCtr > (OS_NESTING_CTR)0u) {             /* Not allowed to call from an ISR                        */
       *p_err = OS_ERR_TIME_DLY_ISR;
        return;
    }
#endif

    if (OSSchedLockNestingCtr > (OS_NESTING_CTR)0u) {       /* Can't delay when the scheduler is locked               */
       *p_err = OS_ERR_SCHED_LOCKED;
        return;
    }

    switch (opt) {
        case OS_OPT_TIME_DLY:
        case OS_OPT_TIME_TIMEOUT:
        case OS_OPT_TIME_PERIODIC:
             if (dly == (OS_TICK)0u) {                      /* 0 means no delay!                                      */
                *p_err = OS_ERR_TIME_ZERO_DLY;
                 return;
             }
             break;

        case OS_OPT_TIME_MATCH:
             break;

        default:
            *p_err = OS_ERR_OPT_INVALID;
             return;
    }

    OS_CRITICAL_ENTER();
    OSTCBCurPtr->TaskState = OS_TASK_STATE_DLY;
    OS_TickListInsert(OSTCBCurPtr,
                      dly,
                      opt,
                      p_err);
    if (*p_err != OS_ERR_NONE) {
         OS_CRITICAL_EXIT_NO_SCHED();
         return;
    }
    OS_RdyListRemove(OSTCBCurPtr);                          /* Remove current task from ready list                    */
    OS_CRITICAL_EXIT_NO_SCHED();
    OSSched();                                              /* Find next task to run!                                 */
   *p_err = OS_ERR_NONE;
}
Exemple #13
0
void  OS_TLS_LockCreate (void  **p_lock)
{
    OS_TLS_LOCK   *p_tls_lock;
    OS_ERR         os_err;
    CPU_SR_ALLOC();

    
    if (p_lock == (void **)0) {
        return;
    }

    if (OS_TLS_LockPoolListPtr == (OS_TLS_LOCK *)0) {             /* If 'OS_TLS_LOCK' object pool is empty?           */
        *p_lock = (void *)0;                                      /*   return a 'NULL' pointer.                       */
        return;
    }

    p_tls_lock = OS_TLS_LockPoolListPtr;                          /* Get the first object in the list.                */

    OSMutexCreate((OS_MUTEX *)&p_tls_lock->Mutex,                 /* Create the mutex in the kernel.                  */
                  (CPU_CHAR *) 0,				       
                  (OS_ERR   *)&os_err);			       
                             					       
    if (os_err != OS_ERR_NONE) {                                  /* If the mutex create funtion fail?                */
        *p_lock = (void *)0;                                      /* ... return a 'NULL' pointer.                     */
         return;        						       
    }											       

    CPU_CRITICAL_ENTER();
    OS_TLS_LockPoolListPtr = p_tls_lock->NextPtr;                 /* Move HEAD pointer to the next object in the list.*/
    CPU_CRITICAL_EXIT();
    
    *p_lock = (void *)p_tls_lock;                                 /* Return the new 'OS_TLS_LOCK' object pointer.     */
}
Exemple #14
0
void  OS_TLS_Init (OS_ERR *p_err)
{
    CPU_INT16U    ix;
    OS_TLS_LOCK  *p_lock;
    CPU_SR_ALLOC();



    OS_TLS_NextAvailID = 0u;
    OS_TLS_LibID       = OS_TLS_GetID(p_err);
    
    CPU_CRITICAL_ENTER();    
                                                                   /* Create the link list of OS_TLS_LOCK objects.    */
    for (ix = 0u; ix < (OS_TLS_LOCK_MAX - 1u); ix++) {
        p_lock             = &OS_TLS_LockPoolTbl[ix];
        p_lock->NextPtr    = &OS_TLS_LockPoolTbl[ix + 1u];
    }
    
    p_lock                 = &OS_TLS_LockPoolTbl[OS_TLS_LOCK_MAX - 1u];
    p_lock->NextPtr        = (OS_TLS_LOCK *)0;                     /* Last node points to 'NULL'                      */

    OS_TLS_LockPoolListPtr = &OS_TLS_LockPoolTbl[0];               /* Initialize the list head pointer.               */

    CPU_CRITICAL_EXIT();    
}
Exemple #15
0
void  OS_TickTask (void  *p_arg)
{
    OS_ERR  err;
    CPU_TS  ts_delta;
    CPU_TS  ts_delta_dly;
    CPU_TS  ts_delta_timeout;
    CPU_SR_ALLOC();


    (void)&p_arg;                                               /* Prevent compiler warning                             */

    while (DEF_ON) {
        (void)OSTaskSemPend((OS_TICK  )0,
                            (OS_OPT   )OS_OPT_PEND_BLOCKING,
                            (CPU_TS  *)0,
                            (OS_ERR  *)&err);                   /* Wait for signal from tick interrupt                  */
        if (err == OS_ERR_NONE) {
            OS_CRITICAL_ENTER();
            OSTickCtr++;                                        /* Keep track of the number of ticks                    */
#if (defined(TRACE_CFG_EN) && (TRACE_CFG_EN > 0u))
            TRACE_OS_TICK_INCREMENT(OSTickCtr);                 /* Record the event.                                    */
#endif
            OS_CRITICAL_EXIT();
            ts_delta_dly     = OS_TickListUpdateDly();
            ts_delta_timeout = OS_TickListUpdateTimeout();
            ts_delta         = ts_delta_dly + ts_delta_timeout; /* Compute total execution time of list updates         */
            if (OSTickTaskTimeMax < ts_delta) {
                OSTickTaskTimeMax = ts_delta;
            }
        }
    }
}
Exemple #16
0
OS_TLS_ID  OS_TLS_GetID (OS_ERR  *p_err)
{
    OS_TLS_ID  id;
    CPU_SR_ALLOC();



#ifdef OS_SAFETY_CRITICAL
    if (p_err == (OS_ERR *)0) {
        OS_SAFETY_CRITICAL_EXCEPTION();
        return ((OS_TLS_ID)OS_CFG_TLS_TBL_SIZE);
    }
#endif

    CPU_CRITICAL_ENTER();
    if (OS_TLS_NextAvailID >= OS_CFG_TLS_TBL_SIZE) {              /* See if we exceeded the number of IDs available   */
       *p_err = OS_ERR_TLS_NO_MORE_AVAIL;                         /* Yes, cannot allocate more TLS                    */
        CPU_CRITICAL_EXIT();
        return ((OS_TLS_ID)OS_CFG_TLS_TBL_SIZE);
    }
     
    id    = OS_TLS_NextAvailID;									  /* Assign the next available ID                     */
    OS_TLS_NextAvailID++;										  /* Increment available ID for next request          */
    CPU_CRITICAL_EXIT();
   *p_err = OS_ERR_NONE;
    return (id);
}
Exemple #17
0
//浮点测试任务
void float_task(void *p_arg)
{
	OS_ERR err;
	CPU_SR_ALLOC();
	static float float_num = 0.01;
	//uint32_t temp = &float_num;
	while(1)
	{
		float_num+=0.01f;
		OS_CRITICAL_ENTER();	//进入临界区
		//printf("float_num的值为: %.4f\r\n",float_num);
		OS_CRITICAL_EXIT();		//退出临界区
		if(float_num > 0.901f && float_num < 0.919f)
		{
				OSTaskSuspend((OS_TCB*)&Led0TaskTCB,&err);
				printf("挂起LED任务\n\r");
		}
		if(float_num > 1.991f && float_num < 2.001f)
		{
				OSTaskResume((OS_TCB*)&Led0TaskTCB,&err);
				printf("恢复LED任务\n\r");
				float_num = 0.0f;
		}
		OSTimeDlyHMSM(0,0,0,300,OS_OPT_TIME_HMSM_STRICT,&err); //延时300ms	
	}
}
Exemple #18
0
void  SerialOS_SemDel (void  *psem)
{
    INT8U       os_err;
#if (SERIAL_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)
    CPU_SIZE_T  i;
#endif
    CPU_SR_ALLOC();


    OSSemPendAbort((OS_EVENT *) psem,
                   (INT8U     ) OS_PEND_OPT_BROADCAST,
                   (INT8U    *)&os_err);

    CPU_CRITICAL_ENTER();
    if (OSEventObjIx >= SERIAL_OS_MAX_NBR_SEM) {
        CPU_CRITICAL_EXIT();
        return;
    }

#if (SERIAL_CFG_ARG_CHK_EXT_EN == DEF_ENABLED)                  /* ----------------- VALIDATE OS EVENT ---------------- */
    for (i = 0u; i < OSEventObjIx; i++) {
        if (OSEventObj[i] == (OS_EVENT *)psem) {
            CPU_CRITICAL_EXIT();
            return;
        }
    }
#endif
                                                                /* --------------- FREE OS EVENT TO POOL -------------- */
    OSEventObj[OSEventObjIx] = (OS_EVENT *)psem;
    OSEventObjIx++;

    CPU_CRITICAL_EXIT();
}
Exemple #19
0
//主函数
int main(void)
{
	OS_ERR err;
	CPU_SR_ALLOC();
	
	delay_init(168);  //时钟初始化
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);//中断分组配置
	uart_init(115200);   //串口初始化
	LED_Init();         //LED初始化	
	LCD_Init();			//LCD初始化	
	KEY_Init();			//按键初始化
	BEEP_Init();		//初始化蜂鸣器
	FSMC_SRAM_Init();	//初始化SRAM
	my_mem_init(SRAMIN);//初始化内部RAM
	ucos_load_main_ui();//加载主UI
	
	OSInit(&err);		    //初始化UCOSIII
	OS_CRITICAL_ENTER();	//进入临界区			 
	//创建开始任务
	OSTaskCreate((OS_TCB 	* )&StartTaskTCB,		//任务控制块
				 (CPU_CHAR	* )"start task", 		//任务名字
                 (OS_TASK_PTR )start_task, 			//任务函数
                 (void		* )0,					//传递给任务函数的参数
                 (OS_PRIO	  )START_TASK_PRIO,     //任务优先级
                 (CPU_STK   * )&START_TASK_STK[0],	//任务堆栈基地址
                 (CPU_STK_SIZE)START_STK_SIZE/10,	//任务堆栈深度限位
                 (CPU_STK_SIZE)START_STK_SIZE,		//任务堆栈大小
                 (OS_MSG_QTY  )0,					//任务内部消息队列能够接收的最大消息数目,为0时禁止接收消息
                 (OS_TICK	  )0,					//当使能时间片轮转时的时间片长度,为0时为默认长度,
                 (void   	* )0,					//用户补充的存储区
                 (OS_OPT      )OS_OPT_TASK_STK_CHK|OS_OPT_TASK_STK_CLR, //任务选项
                 (OS_ERR 	* )&err);				//存放该函数错误时的返回值
	OS_CRITICAL_EXIT();	//退出临界区	 
	OSStart(&err);      //开启UCOSIII
}
Exemple #20
0
CPU_BOOLEAN  CSP_DMA_XferStartExt (CSP_DEV_NBR     ch_nbr,
                                   void           *p_dest,
                                   void           *p_src,                                   
                                   CPU_SIZE_T      xfer_size,
                                   CSP_OPT_FLAGS   opt)

{   
    CSP_DMA_REG     *p_dma_reg;
    CSP_DMA_CH_REG  *p_dma_ch_reg;
    CPU_INT32U       reg_ctrl;    
    CPU_SR_ALLOC();

                                                                /* ------------------ ARGUMENTS CHECKING -------------- */
#if (CSP_CFG_ARG_CHK_EN == DEF_ENABLED)             
    if (ch_nbr > CSP_DMA_CH_MAX_NBR - 1u) {                     /* Invalid channel number?                              */
        return (DEF_FAIL);
    }
                                                                /* Channel not available?                               */
    if (CSP_DMA_ChTbl[ch_nbr].State != CSP_DMA_CH_STATE_ALLOC) {
        return (DEF_FAIL);
    }

    if ((p_dest == (void *)0) ||                                /* Null pointers?                                        */
        (p_src  == (void *)0)) {
        return (DEF_FAIL);
    }    
#endif    

    p_dma_reg    = (CSP_DMA_REG *)CSP_ADDR_DMA_REG;                  
    p_dma_ch_reg = &(p_dma_reg->CHx[ch_nbr]);
    reg_ctrl     = p_dma_ch_reg->Ctrl;

    DEF_BIT_CLR(reg_ctrl, CSP_DMA_MSK_CH_CTRL_XFER_SIZE |
                          CSP_DMA_BIT_CH_CTRL_SI        |
                          CSP_DMA_BIT_CH_CTRL_DI        |
                          CSP_DMA_BIT_CH_CTRL_I);

    DEF_BIT_SET(reg_ctrl, (xfer_size & CSP_DMA_MSK_CH_CTRL_XFER_SIZE));

    if (DEF_BIT_IS_SET(opt, CSP_DMA_OPT_FLAG_XFER_SRC_INC)) {
        DEF_BIT_SET(reg_ctrl, CSP_DMA_BIT_CH_CTRL_SI);
    }
    
    if (DEF_BIT_IS_SET(opt, CSP_DMA_OPT_FLAG_XFER_DEST_INC)) {
        DEF_BIT_SET(reg_ctrl, CSP_DMA_BIT_CH_CTRL_DI);        
    }        
    
    
    CPU_CRITICAL_ENTER();
    p_dma_ch_reg->SrcAddr     = (CPU_INT32U )p_src;
    p_dma_ch_reg->DestAddr    = (CPU_INT32U )p_dest;       
    p_dma_ch_reg->Ctrl        = reg_ctrl;
    DEF_BIT_CLR(p_dma_ch_reg->Cfg, CSP_DMA_BIT_CH_CFG_ITC   | 
                                   CSP_DMA_BIT_CH_CFG_IE);
    DEF_BIT_SET(p_dma_ch_reg->Cfg, CSP_DMA_BIT_CH_CFG_CH_EN); 
    CPU_CRITICAL_EXIT();

    return (DEF_OK);
}
void  OSMemPut (OS_MEM  *p_mem,
                void    *p_blk,
                OS_ERR  *p_err)
{
    CPU_SR_ALLOC();



#ifdef OS_SAFETY_CRITICAL
    if (p_err == DEF_NULL) {
        OS_SAFETY_CRITICAL_EXCEPTION();
        return;
    }
#endif

#if (OS_CFG_ARG_CHK_EN == DEF_ENABLED)
    if (p_mem == DEF_NULL) {                                    /* Must point to a valid memory partition               */
#if (defined(TRACE_CFG_EN) && (TRACE_CFG_EN == DEF_ENABLED))
        TRACE_OS_MEM_PUT_FAILED(p_mem);                         /* Record the event.                                    */
#endif
       *p_err  = OS_ERR_MEM_INVALID_P_MEM;
        return;
    }
    if (p_blk == DEF_NULL) {                                    /* Must release a valid block                           */
#if (defined(TRACE_CFG_EN) && (TRACE_CFG_EN == DEF_ENABLED))
        TRACE_OS_MEM_PUT_FAILED(p_mem);                         /* Record the event.                                    */
#endif
       *p_err  = OS_ERR_MEM_INVALID_P_BLK;
        return;
    }
#endif

#if (OS_CFG_OBJ_TYPE_CHK_EN == DEF_ENABLED)
    if (p_mem->Type != OS_OBJ_TYPE_MEM) {                       /* Make sure the memory block was created               */
       *p_err = OS_ERR_OBJ_TYPE;
        return;
    }
#endif


    CPU_CRITICAL_ENTER();
    if (p_mem->NbrFree >= p_mem->NbrMax) {                      /* Make sure all blocks not already returned            */
        CPU_CRITICAL_EXIT();
#if (defined(TRACE_CFG_EN) && (TRACE_CFG_EN == DEF_ENABLED))
        TRACE_OS_MEM_PUT_FAILED(p_mem);                         /* Record the event.                                    */
#endif
       *p_err = OS_ERR_MEM_FULL;
        return;
    }
    *(void **)p_blk    = p_mem->FreeListPtr;                    /* Insert released block into free block list           */
    p_mem->FreeListPtr = p_blk;
    p_mem->NbrFree++;                                           /* One more memory block in this partition              */
    CPU_CRITICAL_EXIT();
#if (defined(TRACE_CFG_EN) && (TRACE_CFG_EN == DEF_ENABLED))
    TRACE_OS_MEM_PUT(p_mem);                                    /* Record the event.                                    */
#endif
   *p_err              = OS_ERR_NONE;                           /* Notify caller that memory block was released         */
}
Exemple #22
0
void  OS_QPost (OS_Q         *p_q,
                void         *p_void,
                OS_MSG_SIZE   msg_size,
                OS_OPT        opt,
                CPU_TS        ts,
                OS_ERR       *p_err)
{
    OS_OBJ_QTY     cnt;
    OS_OPT         post_type;
    OS_PEND_LIST  *p_pend_list;
    OS_PEND_DATA  *p_pend_data;
    OS_PEND_DATA  *p_pend_data_next;
    OS_TCB        *p_tcb;
    CPU_SR_ALLOC();



    OS_CRITICAL_ENTER();
    p_pend_list = &p_q->PendList;
    if (p_pend_list->NbrEntries == (OS_OBJ_QTY)0) {         /* Any task waiting on message queue?                     */
        if ((opt & OS_OPT_POST_LIFO) == (OS_OPT)0) {        /* Determine whether we post FIFO or LIFO                 */
            post_type = OS_OPT_POST_FIFO;
        } else {
            post_type = OS_OPT_POST_LIFO;
        }
        OS_MsgQPut(&p_q->MsgQ,                              /* Place message in the message queue                     */
                   p_void,
                   msg_size,
                   post_type,
                   ts,
                   p_err);
        OS_CRITICAL_EXIT();
        return;
    }

    if ((opt & OS_OPT_POST_ALL) != (OS_OPT)0) {             /* Post message to all tasks waiting?                     */
        cnt = p_pend_list->NbrEntries;                      /* Yes                                                    */
    } else {
        cnt = (OS_OBJ_QTY)1;                                /* No                                                     */
    }
    p_pend_data = p_pend_list->HeadPtr;
    while (cnt > 0u) {
        p_tcb            = p_pend_data->TCBPtr;
        p_pend_data_next = p_pend_data->NextPtr;
        OS_Post((OS_PEND_OBJ *)((void *)p_q),
                p_tcb,
                p_void,
                msg_size,
                ts);
        p_pend_data = p_pend_data_next;
        cnt--;
    }
    OS_CRITICAL_EXIT_NO_SCHED();
    if ((opt & OS_OPT_POST_NO_SCHED) == (OS_OPT)0) {
        OSSched();                                          /* Run the scheduler                                      */
    }
   *p_err = OS_ERR_NONE;
}
Exemple #23
0
void  OSQCreate (OS_Q        *p_q,
                 CPU_CHAR    *p_name,
                 OS_MSG_QTY   max_qty,
                 OS_ERR      *p_err)

{
    CPU_SR_ALLOC();



#ifdef OS_SAFETY_CRITICAL
    if (p_err == (OS_ERR *)0) {
        OS_SAFETY_CRITICAL_EXCEPTION();
        return;
    }
#endif

#ifdef OS_SAFETY_CRITICAL_IEC61508
    if (OSSafetyCriticalStartFlag == DEF_TRUE) {
       *p_err = OS_ERR_ILLEGAL_CREATE_RUN_TIME;
        return;
    }
#endif

#if OS_CFG_CALLED_FROM_ISR_CHK_EN > 0u
    if (OSIntNestingCtr > (OS_NESTING_CTR)0) {              /* Not allowed to be called from an ISR                   */
       *p_err = OS_ERR_CREATE_ISR;
        return;
    }
#endif

#if OS_CFG_ARG_CHK_EN > 0u
    if (p_q == (OS_Q *)0) {                                 /* Validate arguments                                     */
       *p_err = OS_ERR_OBJ_PTR_NULL;
        return;
    }
    if (max_qty == (OS_MSG_QTY)0) {                         /* Cannot specify a zero size queue                       */
       *p_err = OS_ERR_Q_SIZE;
        return;
    }
#endif

    OS_CRITICAL_ENTER();
    p_q->Type    = OS_OBJ_TYPE_Q;                           /* Mark the data structure as a message queue             */
    p_q->NamePtr = p_name;
    OS_MsgQInit(&p_q->MsgQ,                                 /* Initialize the queue                                   */
                max_qty);
    OS_PendListInit(&p_q->PendList);                        /* Initialize the waiting list                            */

#if OS_CFG_DBG_EN > 0u
    OS_QDbgListAdd(p_q);
#endif
    OSQQty++;                                               /* One more queue created                                 */

    OS_CRITICAL_EXIT_NO_SCHED();
   *p_err = OS_ERR_NONE;
}
Exemple #24
0
void  OS_MsgQEntriesPeakReset (OS_MSG_Q  *p_msg_q)
{
    CPU_SR_ALLOC();


    CPU_CRITICAL_ENTER();
    p_msg_q->NbrEntriesMax = (OS_MSG_QTY)0;
    CPU_CRITICAL_EXIT();
}
Exemple #25
0
void  Math_RandSetSeed (RAND_NBR  seed)
{
    CPU_SR_ALLOC();


    CPU_CRITICAL_ENTER();
    Math_RandSeedCur = seed;
    CPU_CRITICAL_EXIT();
}
Exemple #26
0
static  CPU_TS  OS_TickListUpdateDly (void)
{
    OS_TCB       *p_tcb;
    OS_TICK_LIST *p_list;
    CPU_TS        ts_start;
    CPU_TS        ts_delta_dly;
#if OS_CFG_DBG_EN > 0u
    OS_OBJ_QTY    nbr_updated;
#endif
    CPU_SR_ALLOC();

                                                              
                                                                        
    OS_CRITICAL_ENTER();
    ts_start    = OS_TS_GET();
#if OS_CFG_DBG_EN > 0u
    nbr_updated = (OS_OBJ_QTY)0u;
#endif
    p_list      = &OSTickListDly;
    p_tcb       = p_list->TCB_Ptr;                                      
    if (p_tcb != (OS_TCB *)0) {
        p_tcb->TickRemain--;
        while (p_tcb->TickRemain == 0u) {
#if OS_CFG_DBG_EN > 0u
            nbr_updated++;											    /* Keep track of the number of TCBs updated          */
#endif
            if (p_tcb->TaskState == OS_TASK_STATE_DLY) {
                p_tcb->TaskState = OS_TASK_STATE_RDY;
                OS_RdyListInsert(p_tcb);                                /* Insert the task in the ready list                 */
            } else if (p_tcb->TaskState == OS_TASK_STATE_DLY_SUSPENDED) {
                p_tcb->TaskState = OS_TASK_STATE_SUSPENDED;
            }

            p_list->TCB_Ptr = p_tcb->TickNextPtr;
            p_tcb           = p_list->TCB_Ptr;                          /* Get 'p_tcb' again for loop                        */
            if (p_tcb == (OS_TCB *)0) {
#if OS_CFG_DBG_EN > 0u
                p_list->NbrEntries = (OS_OBJ_QTY)0u;
#endif
                break;
            } else {
#if OS_CFG_DBG_EN > 0u
                p_list->NbrEntries--;
#endif
                p_tcb->TickPrevPtr = (OS_TCB *)0;
            }
        }
    }
#if OS_CFG_DBG_EN > 0u
    p_list->NbrUpdated = nbr_updated;
#endif
    ts_delta_dly       = OS_TS_GET() - ts_start;                        /* Measure execution time of the update              */
    OS_CRITICAL_EXIT();

    return (ts_delta_dly);
}
Exemple #27
0
static  void  BSP_PLL_Init (void)
{
    CPU_REG32   reg_val;
    CPU_SR_ALLOC();


    CPU_CRITICAL_ENTER();

                                                                /* System clock divider configuration.                  */
    BSP_REG_SIM_CLKDIV1 = (BSP_SIM_CLKDIV1_OUTDIV1_DIV2 |       /* Clock 1 divide by 2.                                 */
                           BSP_SIM_CLKDIV1_OUTDIV4_DIV2);       /* Clock 4 divide by 2.                                 */

                                                                /* Multipurpose clock generator configuration.          */
    BSP_REG_MCG_C2 = (BSP_MCG_C2_LOCRE0          |              /* Generate a reset request on a loss of ext ref clk.   */
                      BSP_MCG_C2_RANGE_HIGH_FREQ |              /* Select high freq range for the crystal oscillator.   */
                      BSP_MCG_C2_EREFS0);                       /* Select oscillator as the source for the ext ref clk. */

    BSP_REG_MCG_C1 = (BSP_MCG_C1_CLKS_EXT_CLK    |              /* Selects the ext ref clk as the clk source for MCG.   */
                      BSP_MCG_C1_FRDIV_8);                      /* Divide the ext ref clk by 256 for the FLL.           */

    while (DEF_BIT_IS_SET(BSP_REG_MCG_S, BSP_MCG_S_IREFST)) {   /* Wait for Reference clock Status bit to clear.        */
        ;
    }

    do {                                                        /* Wait for clock status bits to show clock.            */
        reg_val = (BSP_REG_MCG_S & BSP_MCG_S_CLKST_MASK) >> 2u; /* source is ext ref clk.                               */
    } while (reg_val != 0x2);


                                                                /* --------------------- PLL0 CFG --------------------- */
    BSP_REG_MCG_C5  = BSP_MCG_C5_PRDIV0_4;                      /* Select PLL0 external reference divider.              */

    BSP_REG_MCG_C6 = (BSP_MCG_C6_PLLS    |                      /* Select the PLL output.                               */
                      BSP_MCG_C6_CME0    |                      /* Enable the loss of clock monitoring circuit.         */
                      BSP_MCG_C6_VDIV0_MUL_48);


    while (DEF_BIT_IS_CLR(BSP_REG_MCG_S, BSP_MCG_S_PLLST)) {    /* Wait for PLL status bit to set.                      */
        ;
    }

    while (DEF_BIT_IS_CLR(BSP_REG_MCG_S, BSP_MCG_S_LOCK0)) {    /* Wait for LOCK bit to set.                            */
        ;
    }

    DEF_BIT_CLR(BSP_REG_MCG_C1, BSP_MCG_C1_CLKS_MASK);          /* Clear CLKS to switch CLKS mux to PLL as MCG_OUT.     */

    do {
        reg_val = (BSP_REG_MCG_S & BSP_MCG_S_CLKST_MASK) >> 2u;
    } while (reg_val != 0x3);                                   /* Wait for clock status bits to update.                */


    SIM_SOPT2 |= SIM_SOPT2_PLLFLLSEL_MASK;                      /* Set PLLFLLSEL to select the PLL for this clk src.    */

    CPU_CRITICAL_EXIT();
}
Exemple #28
0
void bus_send_string(char *buf)
{
	u16 i;
	CPU_SR_ALLOC();
	
	OS_CRITICAL_ENTER_CPU_CRITICAL_EXIT();
	for (i = 0; buf[i] != '\0'; i++)
		bus_send(&buf[i], 1);
	OS_CRITICAL_EXIT();
}
Exemple #29
0
/*******************************************************************************
函 数 名:	USART1_IRQHandler
功能说明:	串口中断处理
参	  数:	无
返 回 值:	无
*******************************************************************************/
void USART2_IRQHandler(void)
{
    if(USART2->SR&(1<<5))//接收到数据
    {
        CPU_SR_ALLOC();
        ENTER_CRITICAL();
        fifo_putc(&phy_rcvUsartfifo, USART2->DR);
        EXIT_CRITICAL();
    }
    USART2->SR &=~(1<<5);
}
Exemple #30
0
void  CSP_IntVectDeref (CSP_INT_VECT  *p_vect)
{
#if (CSP_CFG_INT_ISR_ARG_EN == DEF_ENABLED)
    void          *p_int_arg;
#endif
    CPU_FNCT_PTR   int_isr_fnct;
#if (CSP_CFG_INT_ISR_EXEC_MEAS_EN == DEF_ENABLED) && \
    (CPU_CFG_TS_EN               == DEF_ENABLED)
    CPU_TS         ts;
    CPU_SR_ALLOC();
#endif


    int_isr_fnct =  p_vect->FnctPtr;
#if (CSP_CFG_INT_ISR_ARG_EN == DEF_ENABLED)
    p_int_arg    =  p_vect->ArgPtr;
#endif

   if (int_isr_fnct != (CPU_FNCT_PTR)0) {
#if (CSP_CFG_INT_ISR_EXEC_MEAS_EN == DEF_ENABLED) && \
    (CPU_CFG_TS_EN                == DEF_ENABLED)
        ts = CPU_TS_Get32();                                    /* Get current time stamp.                              */
#endif

#if (CSP_CFG_INT_NESTING_EN == DEF_ENABLED)
        CPU_IntEn();
#endif

#if (CSP_CFG_INT_ISR_ARG_EN == DEF_ENABLED)
        (*int_isr_fnct)(p_int_arg);                             /* Call interrupt handler                               */
#else
        (*int_isr_fnct)((void *)0);                             /* Call interrupt handler (default argument)            */
#endif

#if (CSP_CFG_INT_NESTING_EN == DEF_ENABLED)
        CPU_IntDis();
#endif

#if (CSP_CFG_INT_ISR_EXEC_MEAS_EN == DEF_ENABLED) && \
    (CPU_CFG_TS_EN                == DEF_ENABLED)
        ts = CPU_TS_Get32() - ts;                               /* Compute delta time between start and end.            */
                                                                /* Detect peak value                                    */
        CPU_CRITICAL_ENTER();

        if (p_vect->TimeMax < ts) {
            p_vect->TimeMax = ts;
        }

        p_vect->TimeCur = ts;

        CPU_CRITICAL_EXIT();
#endif
   }
}