Exemple #1
0
int
SparseGp_logLikeGrad (SparseGp *gp, HyperParam hp, int lengthInd, double *logLikeGrad)
{
    PetscErrorCode ierr;
    (void) ierr;
    /* compute t' inv(K) (dKdt inv(K) t) */
    /* 1. solve inv(K) t */
    PetscInt N = gp->trainLabels->size;
    Vec invKt;
    ierr = petsc_util_createVec (&invKt, gp->nlocal, N);
    SparseGp_solve (gp, gp->_trainLabels, &invKt);

    /* 2. multiply dKdt by invKt */
    Vec dKdtInvKt;
    ierr = petsc_util_createVec (&dKdtInvKt, gp->nlocal, N);
    SparseGp_KGradient (gp, hp, lengthInd);
    MatMult (gp->_KGradient, invKt, dKdtInvKt);

    /* 3. solve invK (vector from step 2.) */
    Vec invKDkdtInvKt;
    ierr = petsc_util_createVec (&invKDkdtInvKt, gp->nlocal, N);
    SparseGp_solve (gp, dKdtInvKt, &invKDkdtInvKt);

    /* 4. compute inner product */
    double dotProd;
    VecDot (gp->_trainLabels, invKDkdtInvKt, &dotProd);

    /* compute trace (invK dKdt) */
    /* 1. for each column in dKdt, solve */
    double myTrace = 0;

    Vec col, solution;
    petsc_util_createVec (&col, gp->nlocal, N);
    petsc_util_createVec (&solution, gp->nlocal, N);

    for (int i=0; i<N; i++) {
        /* IOU_ROOT_PRINT ("%d --- %d\n", i, N); */
        int row = i;

        ierr = MatGetColumnVector (gp->_KGradient, col, row);

        /* IOU_ROOT_PRINT ("solving...\n"); */
        SparseGp_solve (gp, col, &solution);
        /* IOU_ROOT_PRINT ("solved\n"); */

        if (row < gp->rend && row >= gp->rstart) {
            double ii;
            VecGetValues (solution, 1, &row, &ii);
            myTrace += ii;
        }

    }

    /* gather all trace terms */
    int numProcs;
    MPI_Comm_size (PETSC_COMM_WORLD, &numProcs);
    double diag[numProcs];

    int ret = MPI_Allgather (&myTrace, 1, MPI_DOUBLE, diag, 1, MPI_DOUBLE, PETSC_COMM_WORLD);
    (void) ret;

    double trace = 0;
    for (int i=0; i<numProcs; i++)
        trace += diag[i];

    /* IOU_ROOT_PRINT ("Cleaning up...\n"); */
    /* clean up */
    VecDestroy (&invKt);
    VecDestroy (&dKdtInvKt);
    VecDestroy (&invKDkdtInvKt);
    VecDestroy (&col);
    VecDestroy (&solution);
    /* IOU_ROOT_PRINT ("Done cleaning up...\n"); */

    *logLikeGrad = 0.5*dotProd + 0.5*trace;

    return EXIT_SUCCESS;
}
Exemple #2
0
static PetscErrorCode TaoSolve_BQPIP(Tao tao)
{
  TAO_BQPIP          *qp = (TAO_BQPIP*)tao->data;
  PetscErrorCode     ierr;
  PetscInt           iter=0,its;
  PetscReal          d1,d2,ksptol,sigma;
  PetscReal          sigmamu;
  PetscReal          dstep,pstep,step=0;
  PetscReal          gap[4];
  TaoConvergedReason reason;

  PetscFunctionBegin;
  qp->dobj           = 0.0;
  qp->pobj           = 1.0;
  qp->gap            = 10.0;
  qp->rgap           = 1.0;
  qp->mu             = 1.0;
  qp->sigma          = 1.0;
  qp->dinfeas        = 1.0;
  qp->psteplength    = 0.0;
  qp->dsteplength    = 0.0;

  /* Tighten infinite bounds, things break when we don't do this
    -- see test_bqpip.c
  */
  ierr = VecSet(qp->XU,1.0e20);CHKERRQ(ierr);
  ierr = VecSet(qp->XL,-1.0e20);CHKERRQ(ierr);
  ierr = VecPointwiseMax(qp->XL,qp->XL,tao->XL);CHKERRQ(ierr);
  ierr = VecPointwiseMin(qp->XU,qp->XU,tao->XU);CHKERRQ(ierr);

  ierr = TaoComputeObjectiveAndGradient(tao,tao->solution,&qp->c,qp->C0);CHKERRQ(ierr);
  ierr = TaoComputeHessian(tao,tao->solution,tao->hessian,tao->hessian_pre);CHKERRQ(ierr);
  ierr = MatMult(tao->hessian, tao->solution, qp->Work);CHKERRQ(ierr);
  ierr = VecDot(tao->solution, qp->Work, &d1);CHKERRQ(ierr);
  ierr = VecAXPY(qp->C0, -1.0, qp->Work);CHKERRQ(ierr);
  ierr = VecDot(qp->C0, tao->solution, &d2);CHKERRQ(ierr);
  qp->c -= (d1/2.0+d2);
  ierr = MatGetDiagonal(tao->hessian, qp->HDiag);CHKERRQ(ierr);

  ierr = QPIPSetInitialPoint(qp,tao);CHKERRQ(ierr);
  ierr = QPIPComputeResidual(qp,tao);CHKERRQ(ierr);

  /* Enter main loop */
  while (1){

    /* Check Stopping Condition      */
    ierr = TaoMonitor(tao,iter++,qp->pobj,PetscSqrtScalar(qp->gap + qp->dinfeas),
                            qp->pinfeas, step, &reason);CHKERRQ(ierr);
    if (reason != TAO_CONTINUE_ITERATING) break;

    /*
       Dual Infeasibility Direction should already be in the right
       hand side from computing the residuals
    */

    ierr = QPIPComputeNormFromCentralPath(qp,&d1);CHKERRQ(ierr);

    if (iter > 0 && (qp->rnorm>5*qp->mu || d1*d1>qp->m*qp->mu*qp->mu) ) {
      sigma=1.0;sigmamu=qp->mu;
      sigma=0.0;sigmamu=0;
    } else {
      sigma=0.0;sigmamu=0;
    }
    ierr = VecSet(qp->DZ, sigmamu);CHKERRQ(ierr);
    ierr = VecSet(qp->DS, sigmamu);CHKERRQ(ierr);

    if (sigmamu !=0){
      ierr = VecPointwiseDivide(qp->DZ, qp->DZ, qp->G);CHKERRQ(ierr);
      ierr = VecPointwiseDivide(qp->DS, qp->DS, qp->T);CHKERRQ(ierr);
      ierr = VecCopy(qp->DZ,qp->RHS2);CHKERRQ(ierr);
      ierr = VecAXPY(qp->RHS2, 1.0, qp->DS);CHKERRQ(ierr);
    } else {
      ierr = VecZeroEntries(qp->RHS2);CHKERRQ(ierr);
    }


    /*
       Compute the Primal Infeasiblitiy RHS and the
       Diagonal Matrix to be added to H and store in Work
    */
    ierr = VecPointwiseDivide(qp->DiagAxpy, qp->Z, qp->G);CHKERRQ(ierr);
    ierr = VecPointwiseMult(qp->GZwork, qp->DiagAxpy, qp->R3);CHKERRQ(ierr);
    ierr = VecAXPY(qp->RHS, -1.0, qp->GZwork);CHKERRQ(ierr);

    ierr = VecPointwiseDivide(qp->TSwork, qp->S, qp->T);CHKERRQ(ierr);
    ierr = VecAXPY(qp->DiagAxpy, 1.0, qp->TSwork);CHKERRQ(ierr);
    ierr = VecPointwiseMult(qp->TSwork, qp->TSwork, qp->R5);CHKERRQ(ierr);
    ierr = VecAXPY(qp->RHS, -1.0, qp->TSwork);CHKERRQ(ierr);
    ierr = VecAXPY(qp->RHS2, 1.0, qp->RHS);CHKERRQ(ierr);

    /*  Determine the solving tolerance */
    ksptol = qp->mu/10.0;
    ksptol = PetscMin(ksptol,0.001);

    ierr = MatDiagonalSet(tao->hessian, qp->DiagAxpy, ADD_VALUES);CHKERRQ(ierr);
    ierr = MatAssemblyBegin(tao->hessian,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
    ierr = MatAssemblyEnd(tao->hessian,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

    ierr = KSPSetOperators(tao->ksp, tao->hessian, tao->hessian_pre);CHKERRQ(ierr);
    ierr = KSPSolve(tao->ksp, qp->RHS, tao->stepdirection);CHKERRQ(ierr);
    ierr = KSPGetIterationNumber(tao->ksp,&its);CHKERRQ(ierr);
    tao->ksp_its+=its;

    ierr = VecScale(qp->DiagAxpy, -1.0);CHKERRQ(ierr);
    ierr = MatDiagonalSet(tao->hessian, qp->DiagAxpy, ADD_VALUES);CHKERRQ(ierr);
    ierr = MatAssemblyBegin(tao->hessian,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
    ierr = MatAssemblyEnd(tao->hessian,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
    ierr = VecScale(qp->DiagAxpy, -1.0);CHKERRQ(ierr);
    ierr = QPComputeStepDirection(qp,tao);CHKERRQ(ierr);
    ierr = QPStepLength(qp); CHKERRQ(ierr);

    /* Calculate New Residual R1 in Work vector */
    ierr = MatMult(tao->hessian, tao->stepdirection, qp->RHS2);CHKERRQ(ierr);
    ierr = VecAXPY(qp->RHS2, 1.0, qp->DS);CHKERRQ(ierr);
    ierr = VecAXPY(qp->RHS2, -1.0, qp->DZ);CHKERRQ(ierr);
    ierr = VecAYPX(qp->RHS2, qp->dsteplength, tao->gradient);CHKERRQ(ierr);

    ierr = VecNorm(qp->RHS2, NORM_2, &qp->dinfeas);CHKERRQ(ierr);
    ierr = VecDot(qp->DZ, qp->DG, gap);CHKERRQ(ierr);
    ierr = VecDot(qp->DS, qp->DT, gap+1);CHKERRQ(ierr);

    qp->rnorm=(qp->dinfeas+qp->psteplength*qp->pinfeas)/(qp->m+qp->n);
    pstep = qp->psteplength; dstep = qp->dsteplength;
    step = PetscMin(qp->psteplength,qp->dsteplength);
    sigmamu= ( pstep*pstep*(gap[0]+gap[1]) +
               (1 - pstep + pstep*sigma)*qp->gap  )/qp->m;

    if (qp->predcorr && step < 0.9){
      if (sigmamu < qp->mu){
        sigmamu=sigmamu/qp->mu;
        sigmamu=sigmamu*sigmamu*sigmamu;
      } else {sigmamu = 1.0;}
      sigmamu = sigmamu*qp->mu;

      /* Compute Corrector Step */
      ierr = VecPointwiseMult(qp->DZ, qp->DG, qp->DZ);CHKERRQ(ierr);
      ierr = VecScale(qp->DZ, -1.0);CHKERRQ(ierr);
      ierr = VecShift(qp->DZ, sigmamu);CHKERRQ(ierr);
      ierr = VecPointwiseDivide(qp->DZ, qp->DZ, qp->G);CHKERRQ(ierr);

      ierr = VecPointwiseMult(qp->DS, qp->DS, qp->DT);CHKERRQ(ierr);
      ierr = VecScale(qp->DS, -1.0);CHKERRQ(ierr);
      ierr = VecShift(qp->DS, sigmamu);CHKERRQ(ierr);
      ierr = VecPointwiseDivide(qp->DS, qp->DS, qp->T);CHKERRQ(ierr);

      ierr = VecCopy(qp->DZ, qp->RHS2);CHKERRQ(ierr);
      ierr = VecAXPY(qp->RHS2, -1.0, qp->DS);CHKERRQ(ierr);
      ierr = VecAXPY(qp->RHS2, 1.0, qp->RHS);CHKERRQ(ierr);

      /* Approximately solve the linear system */
      ierr = MatDiagonalSet(tao->hessian, qp->DiagAxpy, ADD_VALUES);CHKERRQ(ierr);
      ierr = MatAssemblyBegin(tao->hessian,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
      ierr = MatAssemblyEnd(tao->hessian,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
      ierr = KSPSolve(tao->ksp, qp->RHS2, tao->stepdirection);CHKERRQ(ierr);
      ierr = KSPGetIterationNumber(tao->ksp,&its);CHKERRQ(ierr);
      tao->ksp_its+=its;

      ierr = MatDiagonalSet(tao->hessian, qp->HDiag, INSERT_VALUES);CHKERRQ(ierr);
      ierr = MatAssemblyBegin(tao->hessian,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
      ierr = MatAssemblyEnd(tao->hessian,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
      ierr = QPComputeStepDirection(qp,tao);CHKERRQ(ierr);
      ierr = QPStepLength(qp);CHKERRQ(ierr);

    }  /* End Corrector step */


    /* Take the step */
    pstep = qp->psteplength; dstep = qp->dsteplength;

    ierr = VecAXPY(qp->Z, dstep, qp->DZ);CHKERRQ(ierr);
    ierr = VecAXPY(qp->S, dstep, qp->DS);CHKERRQ(ierr);
    ierr = VecAXPY(tao->solution, dstep, tao->stepdirection);CHKERRQ(ierr);
    ierr = VecAXPY(qp->G, dstep, qp->DG);CHKERRQ(ierr);
    ierr = VecAXPY(qp->T, dstep, qp->DT);CHKERRQ(ierr);

    /* Compute Residuals */
    ierr = QPIPComputeResidual(qp,tao);CHKERRQ(ierr);

    /* Evaluate quadratic function */
    ierr = MatMult(tao->hessian, tao->solution, qp->Work);CHKERRQ(ierr);

    ierr = VecDot(tao->solution, qp->Work, &d1);CHKERRQ(ierr);
    ierr = VecDot(tao->solution, qp->C0, &d2);CHKERRQ(ierr);
    ierr = VecDot(qp->G, qp->Z, gap);CHKERRQ(ierr);
    ierr = VecDot(qp->T, qp->S, gap+1);CHKERRQ(ierr);

    qp->pobj=d1/2.0 + d2+qp->c;
    /* Compute the duality gap */
    qp->gap = (gap[0]+gap[1]);
    qp->dobj = qp->pobj - qp->gap;
    if (qp->m>0) qp->mu=qp->gap/(qp->m);
    qp->rgap=qp->gap/( PetscAbsReal(qp->dobj) + PetscAbsReal(qp->pobj) + 1.0 );
  }  /* END MAIN LOOP  */

  PetscFunctionReturn(0);
}
Exemple #3
0
int main(int argc,char **args)
{
  Vec            x,y,b,s1,s2;
  Mat            A;           /* linear system matrix */
  Mat            sA;         /* symmetric part of the matrices */
  PetscInt       n,mbs=16,bs=1,nz=3,prob=2,i,j,col[3],row,Ii,J,n1;
  const PetscInt *ip_ptr;
  PetscScalar    neg_one = -1.0,value[3],alpha=0.1;
  PetscMPIInt    size;
  PetscErrorCode ierr;
  IS             ip, isrow, iscol;
  PetscRandom    rdm;
  PetscBool      reorder=PETSC_FALSE;
  MatInfo        minfo1,minfo2;
  PetscReal      norm1,norm2,tol=1.e-10;

  ierr = PetscInitialize(&argc,&args,(char*)0,help);if (ierr) return ierr;
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  if (size != 1) SETERRQ(PETSC_COMM_WORLD,1,"This is a uniprocessor example only!");
  ierr = PetscOptionsGetInt(NULL,NULL,"-bs",&bs,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(NULL,NULL,"-mbs",&mbs,NULL);CHKERRQ(ierr);

  n   = mbs*bs;
  ierr=MatCreateSeqBAIJ(PETSC_COMM_WORLD,bs,n,n,nz,NULL, &A);CHKERRQ(ierr);
  ierr=MatCreateSeqSBAIJ(PETSC_COMM_WORLD,bs,n,n,nz,NULL, &sA);CHKERRQ(ierr);

  /* Test MatGetOwnershipRange() */
  ierr = MatGetOwnershipRange(A,&Ii,&J);CHKERRQ(ierr);
  ierr = MatGetOwnershipRange(sA,&i,&j);CHKERRQ(ierr);
  if (i-Ii || j-J) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatGetOwnershipRange() in MatSBAIJ format\n");CHKERRQ(ierr);
  }

  /* Assemble matrix */
  if (bs == 1) {
    ierr = PetscOptionsGetInt(NULL,NULL,"-test_problem",&prob,NULL);CHKERRQ(ierr);
    if (prob == 1) { /* tridiagonal matrix */
      value[0] = -1.0; value[1] = 2.0; value[2] = -1.0;
      for (i=1; i<n-1; i++) {
        col[0] = i-1; col[1] = i; col[2] = i+1;
        ierr   = MatSetValues(A,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);
        ierr   = MatSetValues(sA,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);
      }
      i = n - 1; col[0]=0; col[1] = n - 2; col[2] = n - 1;

      value[0]= 0.1; value[1]=-1; value[2]=2;
      ierr    = MatSetValues(A,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);
      ierr    = MatSetValues(sA,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);

      i = 0; col[0] = 0; col[1] = 1; col[2]=n-1;

      value[0] = 2.0; value[1] = -1.0; value[2]=0.1;
      ierr     = MatSetValues(A,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);
      ierr     = MatSetValues(sA,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);
    } else if (prob ==2) { /* matrix for the five point stencil */
      n1 = (PetscInt) (PetscSqrtReal((PetscReal)n) + 0.001);
      if (n1*n1 - n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"sqrt(n) must be a positive interger!");
      for (i=0; i<n1; i++) {
        for (j=0; j<n1; j++) {
          Ii = j + n1*i;
          if (i>0) {
            J    = Ii - n1;
            ierr = MatSetValues(A,1,&Ii,1,&J,&neg_one,INSERT_VALUES);CHKERRQ(ierr);
            ierr = MatSetValues(sA,1,&Ii,1,&J,&neg_one,INSERT_VALUES);CHKERRQ(ierr);
          }
          if (i<n1-1) {
            J    = Ii + n1;
            ierr = MatSetValues(A,1,&Ii,1,&J,&neg_one,INSERT_VALUES);CHKERRQ(ierr);
            ierr = MatSetValues(sA,1,&Ii,1,&J,&neg_one,INSERT_VALUES);CHKERRQ(ierr);
          }
          if (j>0) {
            J    = Ii - 1;
            ierr = MatSetValues(A,1,&Ii,1,&J,&neg_one,INSERT_VALUES);CHKERRQ(ierr);
            ierr = MatSetValues(sA,1,&Ii,1,&J,&neg_one,INSERT_VALUES);CHKERRQ(ierr);
          }
          if (j<n1-1) {
            J    = Ii + 1;
            ierr = MatSetValues(A,1,&Ii,1,&J,&neg_one,INSERT_VALUES);CHKERRQ(ierr);
            ierr = MatSetValues(sA,1,&Ii,1,&J,&neg_one,INSERT_VALUES);CHKERRQ(ierr);
          }
          /*
          ierr = MatSetValues(A,1,&I,1,&I,&four,INSERT_VALUES);CHKERRQ(ierr);
          ierr = MatSetValues(sA,1,&I,1,&I,&four,INSERT_VALUES);CHKERRQ(ierr);
          */
        }
      }
    }
  } else { /* bs > 1 */
#if defined(DIAGB)
    for (block=0; block<n/bs; block++) {
      /* diagonal blocks */
      value[0] = -1.0; value[1] = 4.0; value[2] = -1.0;
      for (i=1+block*bs; i<bs-1+block*bs; i++) {
        col[0] = i-1; col[1] = i; col[2] = i+1;
        ierr   = MatSetValues(A,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);
        ierr   = MatSetValues(sA,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);
      }
      i = bs - 1+block*bs; col[0] = bs - 2+block*bs; col[1] = bs - 1+block*bs;

      value[0]=-1.0; value[1]=4.0;
      ierr    = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);
      ierr    = MatSetValues(sA,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);

      i = 0+block*bs; col[0] = 0+block*bs; col[1] = 1+block*bs;

      value[0]=4.0; value[1] = -1.0;
      ierr    = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);
      ierr    = MatSetValues(sA,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);
    }
#endif
    /* off-diagonal blocks */
    value[0]=-1.0;
    for (i=0; i<(n/bs-1)*bs; i++) {
      col[0]=i+bs;
      ierr  = MatSetValues(A,1,&i,1,col,value,INSERT_VALUES);CHKERRQ(ierr);
      ierr  = MatSetValues(sA,1,&i,1,col,value,INSERT_VALUES);CHKERRQ(ierr);
      col[0]=i; row=i+bs;
      ierr  = MatSetValues(A,1,&row,1,col,value,INSERT_VALUES);CHKERRQ(ierr);
      ierr  = MatSetValues(sA,1,&row,1,col,value,INSERT_VALUES);CHKERRQ(ierr);
    }
  }
  ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  /* PetscPrintf(PETSC_COMM_SELF,"\n The Matrix: \n");
  MatView(A, VIEWER_DRAW_WORLD);
  MatView(A, VIEWER_STDOUT_WORLD); */

  ierr = MatAssemblyBegin(sA,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(sA,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  /* PetscPrintf(PETSC_COMM_SELF,"\n Symmetric Part of Matrix: \n");
  MatView(sA, VIEWER_DRAW_WORLD);
  MatView(sA, VIEWER_STDOUT_WORLD);
  */

  /* Test MatNorm() */
  ierr   = MatNorm(A,NORM_FROBENIUS,&norm1);CHKERRQ(ierr);
  ierr   = MatNorm(sA,NORM_FROBENIUS,&norm2);CHKERRQ(ierr);
  norm1 -= norm2;
  if (norm1<-tol || norm1>tol) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatNorm(), fnorm1-fnorm2=%16.14e\n",norm1);CHKERRQ(ierr);
  }
  ierr   = MatNorm(A,NORM_INFINITY,&norm1);CHKERRQ(ierr);
  ierr   = MatNorm(sA,NORM_INFINITY,&norm2);CHKERRQ(ierr);
  norm1 -= norm2;
  if (norm1<-tol || norm1>tol) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatNorm(), inf_norm1-inf_norm2=%16.14e\n",norm1);CHKERRQ(ierr);
  }

  /* Test MatGetInfo(), MatGetSize(), MatGetBlockSize() */
  ierr = MatGetInfo(A,MAT_LOCAL,&minfo1);CHKERRQ(ierr);
  ierr = MatGetInfo(sA,MAT_LOCAL,&minfo2);CHKERRQ(ierr);
  /*
  printf("matrix nonzeros (BAIJ format) = %d, allocated nonzeros= %d\n", (int)minfo1.nz_used,(int)minfo1.nz_allocated);
  printf("matrix nonzeros(SBAIJ format) = %d, allocated nonzeros= %d\n", (int)minfo2.nz_used,(int)minfo2.nz_allocated);
  */
  i = (int) (minfo1.nz_used - minfo2.nz_used);
  j = (int) (minfo1.nz_allocated - minfo2.nz_allocated);
  if (i<0 || j<0) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatGetInfo()\n");CHKERRQ(ierr);
  }

  ierr = MatGetSize(A,&Ii,&J);CHKERRQ(ierr);
  ierr = MatGetSize(sA,&i,&j);CHKERRQ(ierr);
  if (i-Ii || j-J) {
    PetscPrintf(PETSC_COMM_SELF,"Error: MatGetSize()\n");CHKERRQ(ierr);
  }

  ierr = MatGetBlockSize(A, &Ii);CHKERRQ(ierr);
  ierr = MatGetBlockSize(sA, &i);CHKERRQ(ierr);
  if (i-Ii) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatGetBlockSize()\n");CHKERRQ(ierr);
  }

  /* Test MatDiagonalScale(), MatGetDiagonal(), MatScale() */
  ierr = PetscRandomCreate(PETSC_COMM_SELF,&rdm);CHKERRQ(ierr);
  ierr = PetscRandomSetFromOptions(rdm);CHKERRQ(ierr);
  ierr = VecCreateSeq(PETSC_COMM_SELF,n,&x);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&s1);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&s2);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&y);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&b);CHKERRQ(ierr);

  ierr = VecSetRandom(x,rdm);CHKERRQ(ierr);

  ierr = MatDiagonalScale(A,x,x);CHKERRQ(ierr);
  ierr = MatDiagonalScale(sA,x,x);CHKERRQ(ierr);

  ierr   = MatGetDiagonal(A,s1);CHKERRQ(ierr);
  ierr   = MatGetDiagonal(sA,s2);CHKERRQ(ierr);
  ierr   = VecNorm(s1,NORM_1,&norm1);CHKERRQ(ierr);
  ierr   = VecNorm(s2,NORM_1,&norm2);CHKERRQ(ierr);
  norm1 -= norm2;
  if (norm1<-tol || norm1>tol) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error:MatGetDiagonal() \n");CHKERRQ(ierr);
  }

  ierr = MatScale(A,alpha);CHKERRQ(ierr);
  ierr = MatScale(sA,alpha);CHKERRQ(ierr);

  /* Test MatMult(), MatMultAdd() */
  for (i=0; i<40; i++) {
    ierr   = VecSetRandom(x,rdm);CHKERRQ(ierr);
    ierr   = MatMult(A,x,s1);CHKERRQ(ierr);
    ierr   = MatMult(sA,x,s2);CHKERRQ(ierr);
    ierr   = VecNorm(s1,NORM_1,&norm1);CHKERRQ(ierr);
    ierr   = VecNorm(s2,NORM_1,&norm2);CHKERRQ(ierr);
    norm1 -= norm2;
    if (norm1<-tol || norm1>tol) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatMult(), MatDiagonalScale() or MatScale()\n");CHKERRQ(ierr);
    }
  }

  for (i=0; i<40; i++) {
    ierr   = VecSetRandom(x,rdm);CHKERRQ(ierr);
    ierr   = VecSetRandom(y,rdm);CHKERRQ(ierr);
    ierr   = MatMultAdd(A,x,y,s1);CHKERRQ(ierr);
    ierr   = MatMultAdd(sA,x,y,s2);CHKERRQ(ierr);
    ierr   = VecNorm(s1,NORM_1,&norm1);CHKERRQ(ierr);
    ierr   = VecNorm(s2,NORM_1,&norm2);CHKERRQ(ierr);
    norm1 -= norm2;
    if (norm1<-tol || norm1>tol) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"Error:MatMultAdd(), MatDiagonalScale() or MatScale() \n");CHKERRQ(ierr);
    }
  }

  /* Test MatReordering() */
  ierr = MatGetOrdering(A,MATORDERINGNATURAL,&isrow,&iscol);CHKERRQ(ierr);
  ip   = isrow;

  if (reorder) {
    IS       nip;
    PetscInt *nip_ptr;
    ierr = PetscMalloc1(mbs,&nip_ptr);CHKERRQ(ierr);
    ierr = ISGetIndices(ip,&ip_ptr);CHKERRQ(ierr);
    ierr = PetscMemcpy(nip_ptr,ip_ptr,mbs*sizeof(PetscInt));CHKERRQ(ierr);
    i    = nip_ptr[1]; nip_ptr[1] = nip_ptr[mbs-2]; nip_ptr[mbs-2] = i;
    i    = nip_ptr[0]; nip_ptr[0] = nip_ptr[mbs-1]; nip_ptr[mbs-1] = i;
    ierr = ISRestoreIndices(ip,&ip_ptr);CHKERRQ(ierr);
    ierr = ISCreateGeneral(PETSC_COMM_SELF,mbs,nip_ptr,PETSC_COPY_VALUES,&nip);CHKERRQ(ierr);
    ierr = PetscFree(nip_ptr);CHKERRQ(ierr);

    ierr = MatReorderingSeqSBAIJ(sA, ip);CHKERRQ(ierr);
    ierr = ISDestroy(&nip);CHKERRQ(ierr);
    /* ierr = ISView(ip, VIEWER_STDOUT_SELF);CHKERRQ(ierr);
       ierr = MatView(sA,VIEWER_DRAW_SELF);CHKERRQ(ierr); */
  }

  ierr = ISDestroy(&iscol);CHKERRQ(ierr);
  /* ierr = ISDestroy(&isrow);CHKERRQ(ierr);*/

  ierr = ISDestroy(&isrow);CHKERRQ(ierr);
  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = MatDestroy(&sA);CHKERRQ(ierr);
  ierr = VecDestroy(&x);CHKERRQ(ierr);
  ierr = VecDestroy(&y);CHKERRQ(ierr);
  ierr = VecDestroy(&s1);CHKERRQ(ierr);
  ierr = VecDestroy(&s2);CHKERRQ(ierr);
  ierr = VecDestroy(&b);CHKERRQ(ierr);
  ierr = PetscRandomDestroy(&rdm);CHKERRQ(ierr);

  ierr = PetscFinalize();
  return ierr;
}
Exemple #4
0
int main(int argc,char **argv)
{
  PetscErrorCode ierr;
  KSP            ksp;
  PC             pc;
  Vec            x,b;
  DM             da;
  Mat            A,Atrans;
  PetscInt       dof=1,M=-8;
  PetscBool      flg,trans=PETSC_FALSE;

  PetscInitialize(&argc,&argv,(char *)0,help);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-dof",&dof,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-M",&M,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetBool(PETSC_NULL,"-trans",&trans,PETSC_NULL);CHKERRQ(ierr);

  ierr = DMDACreate(PETSC_COMM_WORLD,&da);CHKERRQ(ierr);
  ierr = DMDASetDim(da,3);CHKERRQ(ierr);
  ierr = DMDASetBoundaryType(da,DMDA_BOUNDARY_NONE,DMDA_BOUNDARY_NONE,DMDA_BOUNDARY_NONE);CHKERRQ(ierr);
  ierr = DMDASetStencilType(da,DMDA_STENCIL_STAR);CHKERRQ(ierr);
  ierr = DMDASetSizes(da,M,M,M);CHKERRQ(ierr);
  ierr = DMDASetNumProcs(da,PETSC_DECIDE,PETSC_DECIDE,PETSC_DECIDE);CHKERRQ(ierr);
  ierr = DMDASetDof(da,dof);CHKERRQ(ierr);
  ierr = DMDASetStencilWidth(da,1);CHKERRQ(ierr);
  ierr = DMDASetOwnershipRanges(da,PETSC_NULL,PETSC_NULL,PETSC_NULL);CHKERRQ(ierr);
  ierr = DMSetFromOptions(da);CHKERRQ(ierr);
  ierr = DMSetUp(da);CHKERRQ(ierr);

  ierr = DMCreateGlobalVector(da,&x);CHKERRQ(ierr);
  ierr = DMCreateGlobalVector(da,&b);CHKERRQ(ierr);
  ierr = ComputeRHS(da,b);CHKERRQ(ierr);
  ierr = DMCreateMatrix(da,MATBAIJ,&A);CHKERRQ(ierr);
  ierr = ComputeMatrix(da,A);CHKERRQ(ierr);


  /* A is non-symmetric. Make A = 0.5*(A + Atrans) symmetric for testing icc and cholesky */
  ierr = MatTranspose(A,MAT_INITIAL_MATRIX,&Atrans);CHKERRQ(ierr);
  ierr = MatAXPY(A,1.0,Atrans,DIFFERENT_NONZERO_PATTERN);CHKERRQ(ierr);
  ierr = MatScale(A,0.5);CHKERRQ(ierr);
  ierr = MatDestroy(&Atrans);CHKERRQ(ierr);

  /* Test sbaij matrix */
  flg  = PETSC_FALSE;
  ierr = PetscOptionsGetBool(PETSC_NULL, "-test_sbaij1", &flg,PETSC_NULL);CHKERRQ(ierr);
  if (flg){
    Mat sA;
    PetscBool issymm;
    ierr = MatIsTranspose(A,A,0.0,&issymm);CHKERRQ(ierr);
    if (issymm) {
      ierr = MatSetOption(A,MAT_SYMMETRIC,PETSC_TRUE);CHKERRQ(ierr);
    } else {
      printf("Warning: A is non-symmetric\n");
    }
    ierr = MatConvert(A,MATSBAIJ,MAT_INITIAL_MATRIX,&sA);CHKERRQ(ierr);
    ierr = MatDestroy(&A);CHKERRQ(ierr);
    A = sA;
  }

  ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);
  ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);
  ierr = KSPSetOperators(ksp,A,A,SAME_NONZERO_PATTERN);CHKERRQ(ierr);
  ierr = KSPGetPC(ksp,&pc);CHKERRQ(ierr);
  ierr = PCSetDM(pc,(DM)da);CHKERRQ(ierr);
 
  if (trans) {
    ierr = KSPSolveTranspose(ksp,b,x);CHKERRQ(ierr);
  } else {
    ierr = KSPSolve(ksp,b,x);CHKERRQ(ierr);
  }

  /* check final residual */
  flg  = PETSC_FALSE;
  ierr = PetscOptionsGetBool(PETSC_NULL, "-check_final_residual", &flg,PETSC_NULL);CHKERRQ(ierr);
  if (flg){
    Vec            b1;
    PetscReal      norm;
    ierr = KSPGetSolution(ksp,&x);CHKERRQ(ierr);
    ierr = VecDuplicate(b,&b1);CHKERRQ(ierr);
    ierr = MatMult(A,x,b1);CHKERRQ(ierr);
    ierr = VecAXPY(b1,-1.0,b);CHKERRQ(ierr);
    ierr = VecNorm(b1,NORM_2,&norm);CHKERRQ(ierr);
    ierr = PetscPrintf(PETSC_COMM_WORLD,"Final residual %g\n",norm);CHKERRQ(ierr);
    ierr = VecDestroy(&b1);CHKERRQ(ierr);
  }
   
  ierr = KSPDestroy(&ksp);CHKERRQ(ierr);
  ierr = VecDestroy(&x);CHKERRQ(ierr);
  ierr = VecDestroy(&b);CHKERRQ(ierr);
  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = DMDestroy(&da);CHKERRQ(ierr);
  ierr = PetscFinalize();
  return 0;
}
Exemple #5
0
PetscInt main(PetscInt argc,char **args)
{
  typedef enum {RANDOM, CONSTANT, TANH, NUM_FUNCS} FuncType;
  const char    *funcNames[NUM_FUNCS] = {"random", "constant", "tanh"};
  Mat            A, AA;    
  PetscMPIInt    size;
  PetscInt       N,i, stencil=1,dof=3;
  PetscInt       dim[3] = {10,10,10}, ndim = 3;
  Vec            coords,x,y,z,xx, yy, zz;
  Vec            xxsplit[DOF], yysplit[DOF], zzsplit[DOF];
  PetscReal      h[3];
  PetscScalar    s;  
  PetscRandom    rdm;
  PetscReal      norm, enorm;
  PetscInt       func;
  FuncType       function = TANH;
  DM             da, da1, coordsda;
  PetscBool      view_x = PETSC_FALSE, view_y = PETSC_FALSE, view_z = PETSC_FALSE;
  PetscErrorCode ierr;

  ierr = PetscInitialize(&argc,&args,(char *)0,help);CHKERRQ(ierr);
#if !defined(PETSC_USE_COMPLEX)
  SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP, "This example requires complex numbers");
#endif
  ierr = MPI_Comm_size(PETSC_COMM_WORLD, &size);CHKERRQ(ierr);
  if (size != 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP, "This is a uniprocessor example only!");
  ierr = PetscOptionsBegin(PETSC_COMM_WORLD, PETSC_NULL, "USFFT Options", "ex27");CHKERRQ(ierr);
    ierr = PetscOptionsEList("-function", "Function type", "ex27", funcNames, NUM_FUNCS, funcNames[function], &func, PETSC_NULL);CHKERRQ(ierr);
    function = (FuncType) func;
  ierr = PetscOptionsEnd();CHKERRQ(ierr);
  ierr = PetscOptionsGetBool(PETSC_NULL,"-view_x",&view_x,PETSC_NULL);CHKERRQ(ierr); 
  ierr = PetscOptionsGetBool(PETSC_NULL,"-view_y",&view_y,PETSC_NULL);CHKERRQ(ierr); 
  ierr = PetscOptionsGetBool(PETSC_NULL,"-view_z",&view_z,PETSC_NULL);CHKERRQ(ierr); 
  ierr = PetscOptionsGetIntArray(PETSC_NULL,"-dim",dim,&ndim,PETSC_NULL);CHKERRQ(ierr); 

  // DMDA with the correct fiber dimension
  ierr = DMDACreate3d(PETSC_COMM_SELF,DMDA_BOUNDARY_NONE,DMDA_BOUNDARY_NONE,DMDA_BOUNDARY_NONE,DMDA_STENCIL_STAR, 
                    dim[0], dim[1], dim[2], 
                    PETSC_DECIDE, PETSC_DECIDE, PETSC_DECIDE, 
                    dof, stencil,
                    PETSC_NULL, PETSC_NULL, PETSC_NULL,
                    &da); 
 CHKERRQ(ierr);
  // DMDA with fiber dimension 1 for split fields
  ierr = DMDACreate3d(PETSC_COMM_SELF,DMDA_BOUNDARY_NONE,DMDA_BOUNDARY_NONE,DMDA_BOUNDARY_NONE,DMDA_STENCIL_STAR, 
                    dim[0], dim[1], dim[2], 
                    PETSC_DECIDE, PETSC_DECIDE, PETSC_DECIDE, 
                    1, stencil,
                    PETSC_NULL, PETSC_NULL, PETSC_NULL,
                    &da1); 
 CHKERRQ(ierr);
  
  // Coordinates
  ierr = DMDAGetCoordinateDA(da, &coordsda);
  ierr = DMGetGlobalVector(coordsda, &coords);CHKERRQ(ierr);
  ierr = PetscObjectSetName((PetscObject) coords, "Grid coordinates");CHKERRQ(ierr);  
  for(i = 0, N = 1; i < 3; i++) {
    h[i] = 1.0/dim[i];
    PetscScalar *a;
    ierr = VecGetArray(coords, &a);CHKERRQ(ierr);
    PetscInt j,k,n = 0;
    for(i = 0; i < 3; ++i) {
      for(j = 0; j < dim[i]; ++j){
        for(k = 0; k < 3; ++k) {
          a[n] = j*h[i]; // coordinate along the j-th point in the i-th dimension
          ++n;
        }
      }
    }
    ierr = VecRestoreArray(coords, &a);CHKERRQ(ierr);

  }
  ierr = DMDASetCoordinates(da, coords);CHKERRQ(ierr);
  ierr = VecDestroy(&coords);CHKERRQ(ierr);

  // Work vectors
  ierr = DMGetGlobalVector(da, &x);CHKERRQ(ierr);
  ierr = PetscObjectSetName((PetscObject) x, "Real space vector");CHKERRQ(ierr);
  ierr = DMGetGlobalVector(da, &xx);CHKERRQ(ierr);
  ierr = PetscObjectSetName((PetscObject) xx, "Real space vector");CHKERRQ(ierr);
  ierr = DMGetGlobalVector(da, &y);CHKERRQ(ierr);
  ierr = PetscObjectSetName((PetscObject) y, "USFFT frequency space vector");CHKERRQ(ierr);
  ierr = DMGetGlobalVector(da, &yy);CHKERRQ(ierr);
  ierr = PetscObjectSetName((PetscObject) yy, "FFTW frequency space vector");CHKERRQ(ierr);
  ierr = DMGetGlobalVector(da, &z);CHKERRQ(ierr);
  ierr = PetscObjectSetName((PetscObject) z, "USFFT reconstructed vector");CHKERRQ(ierr);
  ierr = DMGetGlobalVector(da, &zz);CHKERRQ(ierr);
  ierr = PetscObjectSetName((PetscObject) zz, "FFTW reconstructed vector");CHKERRQ(ierr);
  // Split vectors for FFTW
  for(int ii = 0; ii < 3; ++ii) {
    ierr = DMGetGlobalVector(da1, &xxsplit[ii]);CHKERRQ(ierr);
    ierr = PetscObjectSetName((PetscObject) xxsplit[ii], "Real space split vector");CHKERRQ(ierr);
    ierr = DMGetGlobalVector(da1, &yysplit[ii]);CHKERRQ(ierr);
    ierr = PetscObjectSetName((PetscObject) yysplit[ii], "FFTW frequency space split vector");CHKERRQ(ierr);
    ierr = DMGetGlobalVector(da1, &zzsplit[ii]);CHKERRQ(ierr);
    ierr = PetscObjectSetName((PetscObject) zzsplit[ii], "FFTW reconstructed split vector");CHKERRQ(ierr);
  }


  ierr = PetscPrintf(PETSC_COMM_SELF, "%3-D: USFFT on vector of ");CHKERRQ(ierr);
  for(i = 0, N = 1; i < 3; i++) {
    ierr = PetscPrintf(PETSC_COMM_SELF, "dim[%d] = %d ",i,dim[i]);CHKERRQ(ierr);
    N *= dim[i];
  }
  ierr = PetscPrintf(PETSC_COMM_SELF, "; total size %d \n",N);CHKERRQ(ierr);

  
  if (function == RANDOM) {
    ierr = PetscRandomCreate(PETSC_COMM_SELF, &rdm);CHKERRQ(ierr);
    ierr = PetscRandomSetFromOptions(rdm);CHKERRQ(ierr);
    ierr = VecSetRandom(x, rdm);CHKERRQ(ierr);
    ierr = PetscRandomDestroy(&rdm);CHKERRQ(ierr);
  } 
  else if (function == CONSTANT) {
    ierr = VecSet(x, 1.0);CHKERRQ(ierr);
  } 
  else if (function == TANH) {
    PetscScalar *a;
    ierr = VecGetArray(x, &a);CHKERRQ(ierr);
    PetscInt j,k = 0;
    for(i = 0; i < 3; ++i) {
      for(j = 0; j < dim[i]; ++j) {
        a[k] = tanh((j - dim[i]/2.0)*(10.0/dim[i]));
        ++k;
      }
    }
    ierr = VecRestoreArray(x, &a);CHKERRQ(ierr);
  }
  if(view_x) {
    ierr = VecView(x, PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  }
  ierr = VecCopy(x,xx);CHKERRQ(ierr);
  // Split xx
  ierr = VecStrideGatherAll(xx,xxsplit, INSERT_VALUES);CHKERRQ(ierr); //YES! 'Gather' means 'split' (or maybe 'scatter'?)! 

  ierr = VecNorm(x,NORM_2,&norm);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_SELF, "|x|_2 = %g\n",norm);CHKERRQ(ierr);
  
  /* create USFFT object */
  ierr = MatCreateSeqUSFFT(da,da,&A);CHKERRQ(ierr);
  /* create FFTW object */
  ierr = MatCreateSeqFFTW(PETSC_COMM_SELF,3,dim,&AA);CHKERRQ(ierr);
  
  /* apply USFFT and FFTW FORWARD "preemptively", so the fftw_plans can be reused on different vectors */
  ierr = MatMult(A,x,z);CHKERRQ(ierr);
  for(int ii = 0; ii < 3; ++ii) {
    ierr = MatMult(AA,xxsplit[ii],zzsplit[ii]);CHKERRQ(ierr);
  }
  // Now apply USFFT and FFTW forward several (3) times
  for (i=0; i<3; ++i){
    ierr = MatMult(A,x,y);CHKERRQ(ierr); 
    for(int ii = 0; ii < 3; ++ii) {
      ierr = MatMult(AA,xxsplit[ii],yysplit[ii]);CHKERRQ(ierr);
    }
    ierr = MatMultTranspose(A,y,z);CHKERRQ(ierr);
    for(int ii = 0; ii < 3; ++ii) {
      ierr = MatMult(AA,yysplit[ii],zzsplit[ii]);CHKERRQ(ierr);
    }
  }
  // Unsplit yy
  ierr = VecStrideScatterAll(yysplit, yy, INSERT_VALUES);CHKERRQ(ierr); //YES! 'Scatter' means 'collect' (or maybe 'gather'?)! 
  // Unsplit zz
  ierr = VecStrideScatterAll(zzsplit, zz, INSERT_VALUES);CHKERRQ(ierr); //YES! 'Scatter' means 'collect' (or maybe 'gather'?)! 

  if(view_y) {
    ierr = PetscPrintf(PETSC_COMM_WORLD, "y = \n");CHKERRQ(ierr);
    ierr = VecView(y, PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
    ierr = PetscPrintf(PETSC_COMM_WORLD, "yy = \n");CHKERRQ(ierr);
    ierr = VecView(yy, PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  }
  
  if(view_z) {
    ierr = PetscPrintf(PETSC_COMM_WORLD, "z = \n");CHKERRQ(ierr);
    ierr = VecView(z, PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
    ierr = PetscPrintf(PETSC_COMM_WORLD, "zz = \n");CHKERRQ(ierr);
    ierr = VecView(zz, PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  }
  
  /* compare x and z. USFFT computes an unnormalized DFT, thus z = N*x */
  s = 1.0/(PetscReal)N;
  ierr = VecScale(z,s);CHKERRQ(ierr);
  ierr = VecAXPY(x,-1.0,z);CHKERRQ(ierr);
  ierr = VecNorm(x,NORM_1,&enorm);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_SELF, "|x-z| = %g\n",enorm);CHKERRQ(ierr);

  /* compare xx and zz. FFTW computes an unnormalized DFT, thus zz = N*x */
  s = 1.0/(PetscReal)N;
  ierr = VecScale(zz,s);CHKERRQ(ierr);
  ierr = VecAXPY(xx,-1.0,zz);CHKERRQ(ierr);
  ierr = VecNorm(xx,NORM_1,&enorm);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_SELF, "|xx-zz| = %g\n",enorm);CHKERRQ(ierr);

  /* compare y and yy: USFFT and FFTW results*/
  ierr = VecNorm(y,NORM_2,&norm);CHKERRQ(ierr);
  ierr = VecAXPY(y,-1.0,yy);CHKERRQ(ierr);
  ierr = VecNorm(y,NORM_1,&enorm);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_SELF, "|y|_2 = %g\n",norm);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_SELF, "|y-yy| = %g\n",enorm);CHKERRQ(ierr);
  
  /* compare z and zz: USFFT and FFTW results*/
  ierr = VecNorm(z,NORM_2,&norm);CHKERRQ(ierr);
  ierr = VecAXPY(z,-1.0,zz);CHKERRQ(ierr);
  ierr = VecNorm(z,NORM_1,&enorm);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_SELF, "|z|_2 = %g\n",norm);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_SELF, "|z-zz| = %g\n",enorm);CHKERRQ(ierr);
  

  /* free spaces */
  ierr = DMRestoreGlobalVector(da,&x);CHKERRQ(ierr);
  ierr = DMRestoreGlobalVector(da,&xx);CHKERRQ(ierr);
  ierr = DMRestoreGlobalVector(da,&y);CHKERRQ(ierr);
  ierr = DMRestoreGlobalVector(da,&yy);CHKERRQ(ierr);
  ierr = DMRestoreGlobalVector(da,&z);CHKERRQ(ierr);
  ierr = DMRestoreGlobalVector(da,&zz);CHKERRQ(ierr);

  ierr = PetscFinalize();
  return 0;
}
Exemple #6
0
/*@
   MatNullSpaceTest  - Tests if the claimed null space is really a
     null space of a matrix

   Collective on MatNullSpace

   Input Parameters:
+  sp - the null space context
-  mat - the matrix

   Output Parameters:
.  isNull - PETSC_TRUE if the nullspace is valid for this matrix

   Level: advanced

.keywords: PC, null space, remove

.seealso: MatNullSpaceCreate(), MatNullSpaceDestroy(), MatNullSpaceSetFunction()
@*/
PetscErrorCode  MatNullSpaceTest(MatNullSpace sp,Mat mat,PetscBool  *isNull)
{
  PetscScalar    sum;
  PetscReal      nrm,tol = 10. * PETSC_SQRT_MACHINE_EPSILON;
  PetscInt       j,n,N;
  PetscErrorCode ierr;
  Vec            l,r;
  PetscBool      flg1 = PETSC_FALSE,flg2 = PETSC_FALSE,consistent = PETSC_TRUE;
  PetscViewer    viewer;

  PetscFunctionBegin;
  PetscValidHeaderSpecific(sp,MAT_NULLSPACE_CLASSID,1);
  PetscValidHeaderSpecific(mat,MAT_CLASSID,2);
  n    = sp->n;
  ierr = PetscOptionsGetBool(((PetscObject)sp)->options,NULL,"-mat_null_space_test_view",&flg1,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetBool(((PetscObject)sp)->options,NULL,"-mat_null_space_test_view_draw",&flg2,NULL);CHKERRQ(ierr);

  if (n) {
    ierr = VecDuplicate(sp->vecs[0],&l);CHKERRQ(ierr);
  } else {
    ierr = MatCreateVecs(mat,&l,NULL);CHKERRQ(ierr);
  }

  ierr = PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)sp),&viewer);CHKERRQ(ierr);
  if (sp->has_cnst) {
    ierr = VecDuplicate(l,&r);CHKERRQ(ierr);
    ierr = VecGetSize(l,&N);CHKERRQ(ierr);
    sum  = 1.0/N;
    ierr = VecSet(l,sum);CHKERRQ(ierr);
    ierr = MatMult(mat,l,r);CHKERRQ(ierr);
    ierr = VecNorm(r,NORM_2,&nrm);CHKERRQ(ierr);
    if (nrm >= tol) consistent = PETSC_FALSE;
    if (flg1) {
      if (consistent) {
        ierr = PetscPrintf(PetscObjectComm((PetscObject)sp),"Constants are likely null vector");CHKERRQ(ierr);
      } else {
        ierr = PetscPrintf(PetscObjectComm((PetscObject)sp),"Constants are unlikely null vector ");CHKERRQ(ierr);
      }
      ierr = PetscPrintf(PetscObjectComm((PetscObject)sp),"|| A * 1/N || = %g\n",(double)nrm);CHKERRQ(ierr);
    }
    if (!consistent && flg1) {ierr = VecView(r,viewer);CHKERRQ(ierr);}
    if (!consistent && flg2) {ierr = VecView(r,viewer);CHKERRQ(ierr);}
    ierr = VecDestroy(&r);CHKERRQ(ierr);
  }

  for (j=0; j<n; j++) {
    ierr = (*mat->ops->mult)(mat,sp->vecs[j],l);CHKERRQ(ierr);
    ierr = VecNorm(l,NORM_2,&nrm);CHKERRQ(ierr);
    if (nrm >= tol) consistent = PETSC_FALSE;
    if (flg1) {
      if (consistent) {
        ierr = PetscPrintf(PetscObjectComm((PetscObject)sp),"Null vector %D is likely null vector",j);CHKERRQ(ierr);
      } else {
        ierr       = PetscPrintf(PetscObjectComm((PetscObject)sp),"Null vector %D unlikely null vector ",j);CHKERRQ(ierr);
        consistent = PETSC_FALSE;
      }
      ierr = PetscPrintf(PetscObjectComm((PetscObject)sp),"|| A * v[%D] || = %g\n",j,(double)nrm);CHKERRQ(ierr);
    }
    if (!consistent && flg1) {ierr = VecView(l,viewer);CHKERRQ(ierr);}
    if (!consistent && flg2) {ierr = VecView(l,viewer);CHKERRQ(ierr);}
  }

  if (sp->remove) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Cannot test a null space provided as a function with MatNullSpaceSetFunction()");
  ierr = VecDestroy(&l);CHKERRQ(ierr);
  if (isNull) *isNull = consistent;
  PetscFunctionReturn(0);
}
Exemple #7
0
void bsscr_summary(KSP_BSSCR * bsscrp_self, KSP ksp_S, KSP ksp_inner,
		   Mat K,Mat K2,Mat D,Mat G,Mat C,Vec u,Vec p,Vec f,Vec h,Vec t,
		   double penaltyNumber,PetscTruth KisJustK,double mgSetupTime,double scrSolveTime,double a11SingleSolveTime){
    PetscTruth flg, found;
    PetscInt   uSize, pSize, lmax, lmin, iterations;
    PetscReal  rNorm, fNorm, uNorm, uNormInf, pNorm, pNormInf, p_sum, min, max;
    Vec q, qq, t2, t3;
    double solutionAnalysisTime;

      PetscPrintf( PETSC_COMM_WORLD,  "\n\nSCR Solver Summary:\n\n");
      if(bsscrp_self->mg)
	    PetscPrintf( PETSC_COMM_WORLD, "  Multigrid setup:        = %.4g secs \n", mgSetupTime);

      KSPGetIterationNumber( ksp_S, &iterations);
      bsscrp_self->solver->stats.pressure_its = iterations;
      PetscPrintf( PETSC_COMM_WORLD,     "  Pressure Solve:         = %.4g secs / %d its\n", scrSolveTime, iterations);
      KSPGetIterationNumber( ksp_inner, &iterations);
      bsscrp_self->solver->stats.velocity_backsolve_its = iterations;
      PetscPrintf( PETSC_COMM_WORLD,     "  Final V Solve:          = %.4g secs / %d its\n\n", a11SingleSolveTime, iterations);

      /***************************************************************************************************************/

      flg = PETSC_FALSE; /* Off by default */
	  PetscOptionsGetTruth( PETSC_NULL, "-scr_ksp_solution_summary", &flg, &found );

      if(flg) {
	    PetscScalar KuNorm;
	    solutionAnalysisTime = MPI_Wtime();
	    VecGetSize( u, &uSize );
	    VecGetSize( p, &pSize );
	    VecDuplicate( u, &t2 );
	    VecDuplicate( u, &t3 );
	    MatMult( K, u, t3); VecNorm( t3, NORM_2, &KuNorm );
	    double angle, kdot;
	    if(penaltyNumber > 1e-10){/* should change this to ifK2built maybe */
          MatMult( K2, u, t2); VecNorm( t2, NORM_2, &rNorm );
          VecDot(t2,t3,&kdot);
          angle = (kdot/(rNorm*KuNorm));
          PetscPrintf( PETSC_COMM_WORLD,  "  <K u, K2 u>/(|K u| |K2 u|)    = %.6e\n", angle);
	    }
	    VecNorm( t, NORM_2, &rNorm ); /* t = f- G p  should be the formal residual vector, calculated on line 267 in auglag-driver-DGTGD.c */
	    VecDot(t3,t,&kdot);
	    angle = (kdot/(rNorm*KuNorm));
            PetscPrintf( PETSC_COMM_WORLD,  "  <K u, (f-G p)>/(|K u| |f- G p|)    = %.6e\n\n", angle);

	    MatMult( K, u, t2); VecNorm(t2, NORM_2, &KuNorm);
	    VecAYPX( t2, -1.0, t ); /* t2 <- -t2 + t  : t = f- G p  should be the formal residual vector, calculated on line 267 in auglag-driver-DGTGD.c*/
	    VecNorm( t2, NORM_2, &rNorm );
	    VecNorm( f,  NORM_2, &fNorm );
	    if(KisJustK){
          PetscPrintf( PETSC_COMM_WORLD,"Velocity back-solve with original K matrix\n");
          PetscPrintf( PETSC_COMM_WORLD,"Solved    K u = G p -f\n");
          PetscPrintf( PETSC_COMM_WORLD,"Residual with original K matrix\n");
          PetscPrintf( PETSC_COMM_WORLD,  "  |f - K u - G p|                       = %.12e\n", rNorm);
          PetscPrintf( PETSC_COMM_WORLD,  "  |f - K u - G p|/|f|                   = %.12e\n", rNorm/fNorm);
          if(penaltyNumber > 1e-10){/* means the restore_K flag was used */
            //if(K2 && f2){
            MatAXPY(K,penaltyNumber,K2,DIFFERENT_NONZERO_PATTERN);/* Computes K = penaltyNumber*K2 + K */
            //VecAXPY(f,penaltyNumber,f2); /* f = penaltyNumber*f2 + f */
            KisJustK=PETSC_FALSE;
            MatMult( K, u, t2);
            MatMult( G, p, t);
            VecAYPX( t, -1.0, f ); /* t <- -t + f */
            VecAYPX( t2, -1.0, t ); /* t2 <- -t2 + t */
            VecNorm( t2, NORM_2, &rNorm );
            PetscPrintf( PETSC_COMM_WORLD,"Residual with K+K2 matrix and f rhs vector\n");
            PetscPrintf( PETSC_COMM_WORLD,  "  |(f) - (K + K2) u - G p|         = %.12e\n", rNorm);
            //}
          }
	    }
	    else{
          PetscPrintf( PETSC_COMM_WORLD,"Velocity back-solve with K+K2 matrix\n");
          PetscPrintf( PETSC_COMM_WORLD,"Solved    (K + K2) u = G p - (f)\n");
          PetscPrintf( PETSC_COMM_WORLD,"Residual with K+K2 matrix and f rhs vector\n");
          PetscPrintf( PETSC_COMM_WORLD,  "  |(f) - (K + K2) u - G p|         = %.12e\n", rNorm);
          PetscReal KK2Norm,KK2Normf;
          MatNorm(K,NORM_1,&KK2Norm);
          MatNorm(K,NORM_FROBENIUS,&KK2Normf);
          penaltyNumber = -penaltyNumber;
          MatAXPY(K,penaltyNumber,K2,DIFFERENT_NONZERO_PATTERN);/* Computes K = penaltyNumber*K2 + K */
          //VecAXPY(f,penaltyNumber,f2); /* f = penaltyNumber*f2 + f */
          KisJustK=PETSC_FALSE;
          MatMult( K, u, t2);    /* t2 = K*u  */
          MatMult( G, p, t);     /* t  = G*p  */
          VecAYPX( t, -1.0, f ); /* t <- f - t ; t = f - G*p  */
          VecAYPX( t2, -1.0, t ); /* t2 <- t - t2; t2 = f - G*p - K*u  */
          VecNorm( t2, NORM_2, &rNorm );
          PetscPrintf( PETSC_COMM_WORLD,"Residual with original K matrix\n");
          PetscPrintf( PETSC_COMM_WORLD,  "  |f - K u - G p|                       = %.12e\n", rNorm);
          PetscPrintf( PETSC_COMM_WORLD,  "  |f - K u - G p|/|f|                   = %.12e\n", rNorm/fNorm);
          PetscReal KNorm, K2Norm;
          MatNorm(K,NORM_1,&KNorm);	  MatNorm(K2,NORM_1,&K2Norm);
          PetscPrintf( PETSC_COMM_WORLD,"K and K2 norm_1    %.12e %.12e   ratio %.12e\n",KNorm,K2Norm,K2Norm/KNorm);
          MatNorm(K,NORM_INFINITY,&KNorm);  MatNorm(K2,NORM_INFINITY,&K2Norm);
          PetscPrintf( PETSC_COMM_WORLD,"K and K2 norm_inf  %.12e %.12e   ratio %.12e\n",KNorm,K2Norm,K2Norm/KNorm);
          MatNorm(K,NORM_FROBENIUS,&KNorm); MatNorm(K2,NORM_FROBENIUS,&K2Norm);
          PetscPrintf( PETSC_COMM_WORLD,"K and K2 norm_frob %.12e %.12e   ratio %.12e\n",KNorm,K2Norm,K2Norm/KNorm);
          PetscPrintf( PETSC_COMM_WORLD,"K+r*K2 norm_1    %.12e\n",KK2Norm);
          PetscPrintf( PETSC_COMM_WORLD,"K+r*K2 norm_frob %.12e\n",KK2Normf);
          penaltyNumber = -penaltyNumber;
          MatAXPY(K,penaltyNumber,K2,DIFFERENT_NONZERO_PATTERN);/* Computes K = penaltyNumber*K2 + K */
        }
        PetscPrintf( PETSC_COMM_WORLD,"\n");
        PetscPrintf( PETSC_COMM_WORLD,  "  |K u|    = %.12e\n", KuNorm);
        if(penaltyNumber > 1e-10){
          MatMult( K2, u, t2); VecNorm( t2, NORM_2, &rNorm );
          PetscPrintf( PETSC_COMM_WORLD,  "  |K2 u|   = %.12e\n", rNorm);
          PetscPrintf( PETSC_COMM_WORLD,"\n");
	    }



	    VecDuplicate( p, &q );
	    MatMult( D, u, q );   /* q = G'*u = D*u */
	    VecNorm( u, NORM_2, &uNorm );
	    VecNorm( q, NORM_2, &rNorm );

	    PetscPrintf( PETSC_COMM_WORLD,  "  |G^T u|_2               = %.6e\n", rNorm );
	    PetscPrintf( PETSC_COMM_WORLD,  "  |G^T u|_2/|u|_2         = %.6e\n", sqrt( (double) uSize / (double) pSize ) * rNorm / uNorm);

	    VecDuplicate( p, &qq );
	    MatMultTranspose( G, u, qq );
	    VecNorm( qq, NORM_2, &rNorm );
	    PetscPrintf( PETSC_COMM_WORLD,  "  |G^T u|/|u|             = %.8e\n", rNorm/uNorm ); /* to compare directly with Uzawa */

	    VecNorm( q, NORM_INFINITY, &rNorm );
	    PetscPrintf( PETSC_COMM_WORLD,  "  |G^T u|_infty/|u|_2     = %.6e\n", sqrt( (double) uSize ) * rNorm / uNorm);
	    /* create G'*u+C*p-h to check on this constraint */
	    /* already have q = D*u */
	    VecZeroEntries(qq);
	    if(C){
          MatMult( C, p, qq );
	    }
	    VecAYPX( q, 1.0, qq ); /* q = q+qq; G'*u + C*p*/
	    VecAXPY( q, -1.0, h ); /* q = q-h;  G'*u + C*p - h  */
	    VecNorm( q, NORM_2, &rNorm );
	    PetscPrintf( PETSC_COMM_WORLD,  "  |G^T u + C p - h|        = %.8e  :constraint\n", rNorm );

	    VecNorm( u, NORM_INFINITY, &uNormInf );
	    VecNorm( u, NORM_2,        &uNorm );
	    VecGetSize( u, &uSize );

	    VecNorm( p, NORM_INFINITY, &pNormInf );
	    VecNorm( p, NORM_2,        &pNorm );

	    PetscPrintf( PETSC_COMM_WORLD,  "  |u|_{\\infty}  = %.6e , u_rms = %.6e\n",
	                 uNormInf, uNorm / sqrt( (double) uSize ) );

	    PetscPrintf( PETSC_COMM_WORLD,  "  |p|_{\\infty}  = %.6e , p_rms = %.6e\n",
	                 pNormInf, pNorm / sqrt( (double) pSize ) );

	    VecMax( u, &lmax, &max );
	    VecMin( u, &lmin, &min );
	    PetscPrintf( PETSC_COMM_WORLD,  "  min/max(u)    = %.6e [%d] / %.6e [%d]\n",min,lmin,max,lmax);
        bsscrp_self->solver->stats.vmin = min;
        bsscrp_self->solver->stats.vmax = max;

	    VecMax( p, &lmax, &max );
	    VecMin( p, &lmin, &min );
	    PetscPrintf( PETSC_COMM_WORLD,  "  min/max(p)    = %.6e [%d] / %.6e [%d]\n",min,lmin,max,lmax);
        bsscrp_self->solver->stats.pmin = min;
        bsscrp_self->solver->stats.pmax = max;

	    VecSum( p, &p_sum );
	    PetscPrintf( PETSC_COMM_WORLD,  "  \\sum_i p_i    = %.6e \n", p_sum );
        bsscrp_self->solver->stats.p_sum=p_sum;

	    solutionAnalysisTime = MPI_Wtime() - solutionAnalysisTime;

	    PetscPrintf( PETSC_COMM_WORLD,  "\n  Time for this analysis  = %.4g secs\n\n",solutionAnalysisTime);

	    Stg_VecDestroy(&t2 );
	    Stg_VecDestroy(&t3 );
	    Stg_VecDestroy(&q );
	    Stg_VecDestroy(&qq );
      }

}
Exemple #8
0
int main(int argc,char **args)
{
  PetscMPIInt    size;
  PetscErrorCode ierr;
  Vec            x,y,b,s1,s2;
  Mat            A;                    /* linear system matrix */
  Mat            sA,sB,sFactor;        /* symmetric matrices */
  PetscInt       n,mbs=16,bs=1,nz=3,prob=1,i,j,k1,k2,col[3],lf,block, row,Ii,J,n1,inc;
  PetscReal      norm1,norm2,rnorm,tol=PETSC_SMALL;
  PetscScalar    neg_one = -1.0,four=4.0,value[3];
  IS             perm, iscol;
  PetscRandom    rdm;
  PetscBool      doIcc=PETSC_TRUE,equal;
  MatInfo        minfo1,minfo2;
  MatFactorInfo  factinfo;
  MatType        type;

  ierr = PetscInitialize(&argc,&args,(char*)0,help);if (ierr) return ierr;
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  if (size != 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"This is a uniprocessor example only!");
  ierr = PetscOptionsGetInt(NULL,NULL,"-bs",&bs,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(NULL,NULL,"-mbs",&mbs,NULL);CHKERRQ(ierr);

  n    = mbs*bs;
  ierr = MatCreate(PETSC_COMM_SELF,&A);CHKERRQ(ierr);
  ierr = MatSetSizes(A,n,n,PETSC_DETERMINE,PETSC_DETERMINE);CHKERRQ(ierr);
  ierr = MatSetType(A,MATSEQBAIJ);CHKERRQ(ierr);
  ierr = MatSetFromOptions(A);CHKERRQ(ierr);
  ierr = MatSeqBAIJSetPreallocation(A,bs,nz,NULL);CHKERRQ(ierr);

  ierr = MatCreate(PETSC_COMM_SELF,&sA);CHKERRQ(ierr);
  ierr = MatSetSizes(sA,n,n,PETSC_DETERMINE,PETSC_DETERMINE);CHKERRQ(ierr);
  ierr = MatSetType(sA,MATSEQSBAIJ);CHKERRQ(ierr);
  ierr = MatSetFromOptions(sA);CHKERRQ(ierr);
  ierr = MatGetType(sA,&type);CHKERRQ(ierr);
  ierr = PetscObjectTypeCompare((PetscObject)sA,MATSEQSBAIJ,&doIcc);CHKERRQ(ierr);
  ierr = MatSeqSBAIJSetPreallocation(sA,bs,nz,NULL);CHKERRQ(ierr);
  ierr = MatSetOption(sA,MAT_IGNORE_LOWER_TRIANGULAR,PETSC_TRUE);CHKERRQ(ierr);

  /* Test MatGetOwnershipRange() */
  ierr = MatGetOwnershipRange(A,&Ii,&J);CHKERRQ(ierr);
  ierr = MatGetOwnershipRange(sA,&i,&j);CHKERRQ(ierr);
  if (i-Ii || j-J) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatGetOwnershipRange() in MatSBAIJ format\n");CHKERRQ(ierr);
  }

  /* Assemble matrix */
  if (bs == 1) {
    ierr = PetscOptionsGetInt(NULL,NULL,"-test_problem",&prob,NULL);CHKERRQ(ierr);
    if (prob == 1) { /* tridiagonal matrix */
      value[0] = -1.0; value[1] = 2.0; value[2] = -1.0;
      for (i=1; i<n-1; i++) {
        col[0] = i-1; col[1] = i; col[2] = i+1;
        ierr   = MatSetValues(A,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);
        ierr   = MatSetValues(sA,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);
      }
      i = n - 1; col[0]=0; col[1] = n - 2; col[2] = n - 1;

      value[0]= 0.1; value[1]=-1; value[2]=2;

      ierr = MatSetValues(A,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);
      ierr = MatSetValues(sA,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);

      i        = 0;
      col[0]   = n-1;   col[1] = 1;      col[2] = 0;
      value[0] = 0.1; value[1] = -1.0; value[2] = 2;

      ierr = MatSetValues(A,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);
      ierr = MatSetValues(sA,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);

    } else if (prob ==2) { /* matrix for the five point stencil */
      n1 = (PetscInt) (PetscSqrtReal((PetscReal)n) + 0.001);
      if (n1*n1 - n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"sqrt(n) must be a positive interger!");
      for (i=0; i<n1; i++) {
        for (j=0; j<n1; j++) {
          Ii = j + n1*i;
          if (i>0) {
            J    = Ii - n1;
            ierr = MatSetValues(A,1,&Ii,1,&J,&neg_one,INSERT_VALUES);CHKERRQ(ierr);
            ierr = MatSetValues(sA,1,&Ii,1,&J,&neg_one,INSERT_VALUES);CHKERRQ(ierr);
          }
          if (i<n1-1) {
            J    = Ii + n1;
            ierr = MatSetValues(A,1,&Ii,1,&J,&neg_one,INSERT_VALUES);CHKERRQ(ierr);
            ierr = MatSetValues(sA,1,&Ii,1,&J,&neg_one,INSERT_VALUES);CHKERRQ(ierr);
          }
          if (j>0) {
            J    = Ii - 1;
            ierr = MatSetValues(A,1,&Ii,1,&J,&neg_one,INSERT_VALUES);CHKERRQ(ierr);
            ierr = MatSetValues(sA,1,&Ii,1,&J,&neg_one,INSERT_VALUES);CHKERRQ(ierr);
          }
          if (j<n1-1) {
            J    = Ii + 1;
            ierr = MatSetValues(A,1,&Ii,1,&J,&neg_one,INSERT_VALUES);CHKERRQ(ierr);
            ierr = MatSetValues(sA,1,&Ii,1,&J,&neg_one,INSERT_VALUES);CHKERRQ(ierr);
          }
          ierr = MatSetValues(A,1,&Ii,1,&Ii,&four,INSERT_VALUES);CHKERRQ(ierr);
          ierr = MatSetValues(sA,1,&Ii,1,&Ii,&four,INSERT_VALUES);CHKERRQ(ierr);
        }
      }
    }

  } else { /* bs > 1 */
    for (block=0; block<n/bs; block++) {
      /* diagonal blocks */
      value[0] = -1.0; value[1] = 4.0; value[2] = -1.0;
      for (i=1+block*bs; i<bs-1+block*bs; i++) {
        col[0] = i-1; col[1] = i; col[2] = i+1;
        ierr   = MatSetValues(A,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);
        ierr   = MatSetValues(sA,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);
      }
      i = bs - 1+block*bs; col[0] = bs - 2+block*bs; col[1] = bs - 1+block*bs;

      value[0]=-1.0; value[1]=4.0;

      ierr = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);
      ierr = MatSetValues(sA,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);

      i = 0+block*bs; col[0] = 0+block*bs; col[1] = 1+block*bs;

      value[0]=4.0; value[1] = -1.0;

      ierr = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);
      ierr = MatSetValues(sA,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);
    }
    /* off-diagonal blocks */
    value[0]=-1.0;
    for (i=0; i<(n/bs-1)*bs; i++) {
      col[0]=i+bs;

      ierr = MatSetValues(A,1,&i,1,col,value,INSERT_VALUES);CHKERRQ(ierr);
      ierr = MatSetValues(sA,1,&i,1,col,value,INSERT_VALUES);CHKERRQ(ierr);

      col[0]=i; row=i+bs;

      ierr = MatSetValues(A,1,&row,1,col,value,INSERT_VALUES);CHKERRQ(ierr);
      ierr = MatSetValues(sA,1,&row,1,col,value,INSERT_VALUES);CHKERRQ(ierr);
    }
  }
  ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

  ierr = MatAssemblyBegin(sA,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(sA,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

  /* Test MatGetInfo() of A and sA */
  ierr = MatGetInfo(A,MAT_LOCAL,&minfo1);CHKERRQ(ierr);
  ierr = MatGetInfo(sA,MAT_LOCAL,&minfo2);CHKERRQ(ierr);
  /*
  printf("A matrix nonzeros (BAIJ format) = %d, allocated nonzeros= %d\n", (int)minfo1.nz_used,(int)minfo1.nz_allocated);
  printf("sA matrix nonzeros(SBAIJ format) = %d, allocated nonzeros= %d\n", (int)minfo2.nz_used,(int)minfo2.nz_allocated);
  */
  i  = (int) (minfo1.nz_used - minfo2.nz_used);
  j  = (int) (minfo1.nz_allocated - minfo2.nz_allocated);
  k1 = (int) (minfo1.nz_allocated - minfo1.nz_used);
  k2 = (int) (minfo2.nz_allocated - minfo2.nz_used);
  if (i < 0 || j < 0 || k1 < 0 || k2 < 0) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error (compare A and sA): MatGetInfo()\n");CHKERRQ(ierr);
  }

  /* Test MatDuplicate() */
  ierr = MatNorm(A,NORM_FROBENIUS,&norm1);CHKERRQ(ierr);
  ierr = MatDuplicate(sA,MAT_COPY_VALUES,&sB);CHKERRQ(ierr);
  ierr = MatEqual(sA,sB,&equal);CHKERRQ(ierr);
  if (!equal) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NOTSAMETYPE,"Error in MatDuplicate()");

  /* Test MatNorm() */
  ierr  = MatNorm(A,NORM_FROBENIUS,&norm1);CHKERRQ(ierr);
  ierr  = MatNorm(sB,NORM_FROBENIUS,&norm2);CHKERRQ(ierr);
  rnorm = PetscAbsReal(norm1-norm2)/norm2;
  if (rnorm > tol) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatNorm_FROBENIUS, NormA=%16.14e NormsB=%16.14e\n",norm1,norm2);CHKERRQ(ierr);
  }
  ierr  = MatNorm(A,NORM_INFINITY,&norm1);CHKERRQ(ierr);
  ierr  = MatNorm(sB,NORM_INFINITY,&norm2);CHKERRQ(ierr);
  rnorm = PetscAbsReal(norm1-norm2)/norm2;
  if (rnorm > tol) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatNorm_INFINITY(), NormA=%16.14e NormsB=%16.14e\n",norm1,norm2);CHKERRQ(ierr);
  }
  ierr  = MatNorm(A,NORM_1,&norm1);CHKERRQ(ierr);
  ierr  = MatNorm(sB,NORM_1,&norm2);CHKERRQ(ierr);
  rnorm = PetscAbsReal(norm1-norm2)/norm2;
  if (rnorm > tol) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatNorm_INFINITY(), NormA=%16.14e NormsB=%16.14e\n",norm1,norm2);CHKERRQ(ierr);
  }

  /* Test MatGetInfo(), MatGetSize(), MatGetBlockSize() */
  ierr = MatGetInfo(A,MAT_LOCAL,&minfo1);CHKERRQ(ierr);
  ierr = MatGetInfo(sB,MAT_LOCAL,&minfo2);CHKERRQ(ierr);
  /*
  printf("matrix nonzeros (BAIJ format) = %d, allocated nonzeros= %d\n", (int)minfo1.nz_used,(int)minfo1.nz_allocated);
  printf("matrix nonzeros(SBAIJ format) = %d, allocated nonzeros= %d\n", (int)minfo2.nz_used,(int)minfo2.nz_allocated);
  */
  i  = (int) (minfo1.nz_used - minfo2.nz_used);
  j  = (int) (minfo1.nz_allocated - minfo2.nz_allocated);
  k1 = (int) (minfo1.nz_allocated - minfo1.nz_used);
  k2 = (int) (minfo2.nz_allocated - minfo2.nz_used);
  if (i < 0 || j < 0 || k1 < 0 || k2 < 0) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error(compare A and sB): MatGetInfo()\n");CHKERRQ(ierr);
  }

  ierr = MatGetSize(A,&Ii,&J);CHKERRQ(ierr);
  ierr = MatGetSize(sB,&i,&j);CHKERRQ(ierr);
  if (i-Ii || j-J) {
    PetscPrintf(PETSC_COMM_SELF,"Error: MatGetSize()\n");CHKERRQ(ierr);
  }

  ierr = MatGetBlockSize(A, &Ii);CHKERRQ(ierr);
  ierr = MatGetBlockSize(sB, &i);CHKERRQ(ierr);
  if (i-Ii) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatGetBlockSize()\n");CHKERRQ(ierr);
  }

  ierr = PetscRandomCreate(PETSC_COMM_SELF,&rdm);CHKERRQ(ierr);
  ierr = PetscRandomSetFromOptions(rdm);CHKERRQ(ierr);
  ierr = VecCreateSeq(PETSC_COMM_SELF,n,&x);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&s1);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&s2);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&y);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&b);CHKERRQ(ierr);
  ierr = VecSetRandom(x,rdm);CHKERRQ(ierr);

  /* Test MatDiagonalScale(), MatGetDiagonal(), MatScale() */
#if !defined(PETSC_USE_COMPLEX)
  /* Scaling matrix with complex numbers results non-spd matrix,
     causing crash of MatForwardSolve() and MatBackwardSolve() */
  ierr = MatDiagonalScale(A,x,x);CHKERRQ(ierr);
  ierr = MatDiagonalScale(sB,x,x);CHKERRQ(ierr);
  ierr = MatMultEqual(A,sB,10,&equal);CHKERRQ(ierr);
  if (!equal) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NOTSAMETYPE,"Error in MatDiagonalScale");

  ierr = MatGetDiagonal(A,s1);CHKERRQ(ierr);
  ierr = MatGetDiagonal(sB,s2);CHKERRQ(ierr);
  ierr = VecAXPY(s2,neg_one,s1);CHKERRQ(ierr);
  ierr = VecNorm(s2,NORM_1,&norm1);CHKERRQ(ierr);
  if (norm1>tol) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error:MatGetDiagonal(), ||s1-s2||=%g\n",(double)norm1);CHKERRQ(ierr);
  }

  {
    PetscScalar alpha=0.1;
    ierr = MatScale(A,alpha);CHKERRQ(ierr);
    ierr = MatScale(sB,alpha);CHKERRQ(ierr);
  }
#endif

  /* Test MatGetRowMaxAbs() */
  ierr   = MatGetRowMaxAbs(A,s1,NULL);CHKERRQ(ierr);
  ierr   = MatGetRowMaxAbs(sB,s2,NULL);CHKERRQ(ierr);
  ierr   = VecNorm(s1,NORM_1,&norm1);CHKERRQ(ierr);
  ierr   = VecNorm(s2,NORM_1,&norm2);CHKERRQ(ierr);
  norm1 -= norm2;
  if (norm1<-tol || norm1>tol) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error:MatGetRowMaxAbs() \n");CHKERRQ(ierr);
  }

  /* Test MatMult() */
  for (i=0; i<40; i++) {
    ierr   = VecSetRandom(x,rdm);CHKERRQ(ierr);
    ierr   = MatMult(A,x,s1);CHKERRQ(ierr);
    ierr   = MatMult(sB,x,s2);CHKERRQ(ierr);
    ierr   = VecNorm(s1,NORM_1,&norm1);CHKERRQ(ierr);
    ierr   = VecNorm(s2,NORM_1,&norm2);CHKERRQ(ierr);
    norm1 -= norm2;
    if (norm1<-tol || norm1>tol) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatMult(), norm1-norm2: %g\n",(double)norm1);CHKERRQ(ierr);
    }
  }

  /* MatMultAdd() */
  for (i=0; i<40; i++) {
    ierr   = VecSetRandom(x,rdm);CHKERRQ(ierr);
    ierr   = VecSetRandom(y,rdm);CHKERRQ(ierr);
    ierr   = MatMultAdd(A,x,y,s1);CHKERRQ(ierr);
    ierr   = MatMultAdd(sB,x,y,s2);CHKERRQ(ierr);
    ierr   = VecNorm(s1,NORM_1,&norm1);CHKERRQ(ierr);
    ierr   = VecNorm(s2,NORM_1,&norm2);CHKERRQ(ierr);
    norm1 -= norm2;
    if (norm1<-tol || norm1>tol) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"Error:MatMultAdd(),  norm1-norm2: %g\n",(double)norm1);CHKERRQ(ierr);
    }
  }

  /* Test MatCholeskyFactor(), MatICCFactor() with natural ordering */
  ierr  = MatGetOrdering(A,MATORDERINGNATURAL,&perm,&iscol);CHKERRQ(ierr);
  ierr  = ISDestroy(&iscol);CHKERRQ(ierr);
  norm1 = tol;
  inc   = bs;

  /* initialize factinfo */
  ierr = PetscMemzero(&factinfo,sizeof(MatFactorInfo));CHKERRQ(ierr);

  for (lf=-1; lf<10; lf += inc) {
    if (lf==-1) {  /* Cholesky factor of sB (duplicate sA) */
      factinfo.fill = 5.0;

      ierr = MatGetFactor(sB,MATSOLVERPETSC,MAT_FACTOR_CHOLESKY,&sFactor);CHKERRQ(ierr);
      ierr = MatCholeskyFactorSymbolic(sFactor,sB,perm,&factinfo);CHKERRQ(ierr);
    } else if (!doIcc) break;
    else {       /* incomplete Cholesky factor */
      factinfo.fill   = 5.0;
      factinfo.levels = lf;

      ierr = MatGetFactor(sB,MATSOLVERPETSC,MAT_FACTOR_ICC,&sFactor);CHKERRQ(ierr);
      ierr = MatICCFactorSymbolic(sFactor,sB,perm,&factinfo);CHKERRQ(ierr);
    }
    ierr = MatCholeskyFactorNumeric(sFactor,sB,&factinfo);CHKERRQ(ierr);
    /* MatView(sFactor, PETSC_VIEWER_DRAW_WORLD); */

    /* test MatGetDiagonal on numeric factor */
    /*
    if (lf == -1) {
      ierr = MatGetDiagonal(sFactor,s1);CHKERRQ(ierr);
      printf(" in ex74.c, diag: \n");
      ierr = VecView(s1,PETSC_VIEWER_STDOUT_SELF);CHKERRQ(ierr);
    }
    */

    ierr = MatMult(sB,x,b);CHKERRQ(ierr);

    /* test MatForwardSolve() and MatBackwardSolve() */
    if (lf == -1) {
      ierr = MatForwardSolve(sFactor,b,s1);CHKERRQ(ierr);
      ierr = MatBackwardSolve(sFactor,s1,s2);CHKERRQ(ierr);
      ierr = VecAXPY(s2,neg_one,x);CHKERRQ(ierr);
      ierr = VecNorm(s2,NORM_2,&norm2);CHKERRQ(ierr);
      if (10*norm1 < norm2) {
        ierr = PetscPrintf(PETSC_COMM_SELF,"MatForwardSolve and BackwardSolve: Norm of error=%g, bs=%D\n",(double)norm2,bs);CHKERRQ(ierr);
      }
    }

    /* test MatSolve() */
    ierr = MatSolve(sFactor,b,y);CHKERRQ(ierr);
    ierr = MatDestroy(&sFactor);CHKERRQ(ierr);
    /* Check the error */
    ierr = VecAXPY(y,neg_one,x);CHKERRQ(ierr);
    ierr = VecNorm(y,NORM_2,&norm2);CHKERRQ(ierr);
    if (10*norm1 < norm2 && lf-inc != -1) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"lf=%D, %D, Norm of error=%g, %g\n",lf-inc,lf,(double)norm1,(double)norm2);CHKERRQ(ierr);
    }
    norm1 = norm2;
    if (norm2 < tol && lf != -1) break;
  }

  ierr = ISDestroy(&perm);CHKERRQ(ierr);

  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = MatDestroy(&sB);CHKERRQ(ierr);
  ierr = MatDestroy(&sA);CHKERRQ(ierr);
  ierr = VecDestroy(&x);CHKERRQ(ierr);
  ierr = VecDestroy(&y);CHKERRQ(ierr);
  ierr = VecDestroy(&s1);CHKERRQ(ierr);
  ierr = VecDestroy(&s2);CHKERRQ(ierr);
  ierr = VecDestroy(&b);CHKERRQ(ierr);
  ierr = PetscRandomDestroy(&rdm);CHKERRQ(ierr);

  ierr = PetscFinalize();
  return ierr;
}
Exemple #9
0
int main(int argc,char **args)
{
    Mat            mat;          /* matrix */
    Vec            b,ustar,u;  /* vectors (RHS, exact solution, approx solution) */
    PC             pc;           /* PC context */
    KSP            ksp;          /* KSP context */
    PetscErrorCode ierr;
    PetscInt       n = 10,i,its,col[3];
    PetscScalar    value[3];
    PCType         pcname;
    KSPType        kspname;
    PetscReal      norm,tol=1.e-14;

    PetscInitialize(&argc,&args,(char*)0,help);

    /* Create and initialize vectors */
    ierr = VecCreateSeq(PETSC_COMM_SELF,n,&b);
    CHKERRQ(ierr);
    ierr = VecCreateSeq(PETSC_COMM_SELF,n,&ustar);
    CHKERRQ(ierr);
    ierr = VecCreateSeq(PETSC_COMM_SELF,n,&u);
    CHKERRQ(ierr);
    ierr = VecSet(ustar,1.0);
    CHKERRQ(ierr);
    ierr = VecSet(u,0.0);
    CHKERRQ(ierr);

    /* Create and assemble matrix */
    ierr     = MatCreateSeqAIJ(PETSC_COMM_SELF,n,n,3,NULL,&mat);
    CHKERRQ(ierr);
    value[0] = -1.0;
    value[1] = 2.0;
    value[2] = -1.0;
    for (i=1; i<n-1; i++) {
        col[0] = i-1;
        col[1] = i;
        col[2] = i+1;
        ierr   = MatSetValues(mat,1,&i,3,col,value,INSERT_VALUES);
        CHKERRQ(ierr);
    }
    i    = n - 1;
    col[0] = n - 2;
    col[1] = n - 1;
    ierr = MatSetValues(mat,1,&i,2,col,value,INSERT_VALUES);
    CHKERRQ(ierr);
    i    = 0;
    col[0] = 0;
    col[1] = 1;
    value[0] = 2.0;
    value[1] = -1.0;
    ierr = MatSetValues(mat,1,&i,2,col,value,INSERT_VALUES);
    CHKERRQ(ierr);
    ierr = MatAssemblyBegin(mat,MAT_FINAL_ASSEMBLY);
    CHKERRQ(ierr);
    ierr = MatAssemblyEnd(mat,MAT_FINAL_ASSEMBLY);
    CHKERRQ(ierr);

    /* Compute right-hand-side vector */
    ierr = MatMult(mat,ustar,b);
    CHKERRQ(ierr);

    /* Create PC context and set up data structures */
    ierr = PCCreate(PETSC_COMM_WORLD,&pc);
    CHKERRQ(ierr);
    ierr = PCSetType(pc,PCNONE);
    CHKERRQ(ierr);
    ierr = PCSetFromOptions(pc);
    CHKERRQ(ierr);
    ierr = PCSetOperators(pc,mat,mat);
    CHKERRQ(ierr);
    ierr = PCSetUp(pc);
    CHKERRQ(ierr);

    /* Create KSP context and set up data structures */
    ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);
    CHKERRQ(ierr);
    ierr = KSPSetType(ksp,KSPRICHARDSON);
    CHKERRQ(ierr);
    ierr = KSPSetFromOptions(ksp);
    CHKERRQ(ierr);
    ierr = PCSetOperators(pc,mat,mat);
    CHKERRQ(ierr);
    ierr = KSPSetPC(ksp,pc);
    CHKERRQ(ierr);
    ierr = KSPSetUp(ksp);
    CHKERRQ(ierr);

    /* Solve the problem */
    ierr = KSPGetType(ksp,&kspname);
    CHKERRQ(ierr);
    ierr = PCGetType(pc,&pcname);
    CHKERRQ(ierr);
    ierr = PetscPrintf(PETSC_COMM_SELF,"Running %s with %s preconditioning\n",kspname,pcname);
    CHKERRQ(ierr);
    ierr = KSPSolve(ksp,b,u);
    CHKERRQ(ierr);
    ierr = VecAXPY(u,-1.0,ustar);
    CHKERRQ(ierr);
    ierr = VecNorm(u,NORM_2,&norm);
    ierr = KSPGetIterationNumber(ksp,&its);
    CHKERRQ(ierr);
    if (norm > tol) {
        ierr = PetscPrintf(PETSC_COMM_SELF,"2 norm of error %g Number of iterations %D\n",(double)norm,its);
        CHKERRQ(ierr);
    }

    /* Free data structures */
    ierr = KSPDestroy(&ksp);
    CHKERRQ(ierr);
    ierr = VecDestroy(&u);
    CHKERRQ(ierr);
    ierr = VecDestroy(&ustar);
    CHKERRQ(ierr);
    ierr = VecDestroy(&b);
    CHKERRQ(ierr);
    ierr = MatDestroy(&mat);
    CHKERRQ(ierr);
    ierr = PCDestroy(&pc);
    CHKERRQ(ierr);

    ierr = PetscFinalize();
    return 0;
}
Exemple #10
0
int main(int argc,char **args)
{
  Vec            x,b;      /* approx solution, RHS */
  Mat            A;        /* linear system matrix */
  KSP            ksp;      /* linear solver context */
  PetscInt       Ii,Istart,Iend,m = 11;
  PetscErrorCode ierr;
  PetscScalar    v;

  ierr = PetscInitialize(&argc,&args,(char*)0,help);if (ierr) return ierr;
  ierr = PetscOptionsGetInt(NULL,NULL,"-m",&m,NULL);CHKERRQ(ierr);

  /* Create parallel diagonal matrix */
  ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
  ierr = MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,m,m);CHKERRQ(ierr);
  ierr = MatSetFromOptions(A);CHKERRQ(ierr);
  ierr = MatMPIAIJSetPreallocation(A,1,NULL,1,NULL);CHKERRQ(ierr);
  ierr = MatSeqAIJSetPreallocation(A,1,NULL);CHKERRQ(ierr);
  ierr = MatSetUp(A);CHKERRQ(ierr);
  ierr = MatGetOwnershipRange(A,&Istart,&Iend);CHKERRQ(ierr);

  for (Ii=Istart; Ii<Iend; Ii++) {
    v = (PetscReal)Ii+1;
    ierr = MatSetValues(A,1,&Ii,1,&Ii,&v,INSERT_VALUES);CHKERRQ(ierr);
  }
  /* Make A sigular */
  Ii = m - 1; /* last diagonal entry */
  v  = 0.0;
  ierr = MatSetValues(A,1,&Ii,1,&Ii,&v,INSERT_VALUES);CHKERRQ(ierr);
  ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

  /* A is symmetric. Set symmetric flag to enable KSP_type = minres */
  ierr = MatSetOption(A,MAT_SYMMETRIC,PETSC_TRUE);CHKERRQ(ierr);

  ierr = VecCreate(PETSC_COMM_WORLD,&b);CHKERRQ(ierr);
  ierr = VecSetSizes(b,PETSC_DECIDE,m);CHKERRQ(ierr);
  ierr = VecSetFromOptions(b);CHKERRQ(ierr);
  ierr = VecDuplicate(b,&x);CHKERRQ(ierr);
  ierr = VecSet(x,1.0);CHKERRQ(ierr);
  ierr = MatMult(A,x,b);CHKERRQ(ierr);
  ierr = VecSet(x,0.0);CHKERRQ(ierr);

  /* Create linear solver context */
  ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);
  ierr = KSPSetOperators(ksp,A,A);CHKERRQ(ierr);
  ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);
  ierr = KSPSolve(ksp,b,x);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                      Check solution and clean up
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = VecView(x,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);

  /* Free work space. */
  ierr = KSPDestroy(&ksp);CHKERRQ(ierr);
  ierr = VecDestroy(&x);CHKERRQ(ierr);
  ierr = VecDestroy(&b);CHKERRQ(ierr);  
  ierr = MatDestroy(&A);CHKERRQ(ierr);

  ierr = PetscFinalize();
  return ierr;
}
Exemple #11
0
int main(int argc,char **args)
{
  Mat            A,RHS,C,F,X,S;
  Vec            u,x,b;
  Vec            xschur,bschur,uschur;
  IS             is_schur;
  PetscErrorCode ierr;
  PetscMPIInt    size;
  PetscInt       isolver=0,size_schur,m,n,nfact,nsolve,nrhs;
  PetscReal      norm,tol=PETSC_SQRT_MACHINE_EPSILON;
  PetscRandom    rand;
  PetscBool      data_provided,herm,symm,use_lu;
  PetscReal      sratio = 5.1/12.;
  PetscViewer    fd;              /* viewer */
  char           solver[256];
  char           file[PETSC_MAX_PATH_LEN]; /* input file name */

  PetscInitialize(&argc,&args,(char*)0,help);
  ierr = MPI_Comm_size(PETSC_COMM_WORLD, &size);CHKERRQ(ierr);
  if (size > 1) SETERRQ(PETSC_COMM_WORLD,1,"This is a uniprocessor test");
  /* Determine which type of solver we want to test for */
  herm = PETSC_FALSE;
  symm = PETSC_FALSE;
  ierr = PetscOptionsGetBool(NULL,NULL,"-symmetric_solve",&symm,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetBool(NULL,NULL,"-hermitian_solve",&herm,NULL);CHKERRQ(ierr);
  if (herm) symm = PETSC_TRUE;

  /* Determine file from which we read the matrix A */
  ierr = PetscOptionsGetString(NULL,NULL,"-f",file,PETSC_MAX_PATH_LEN,&data_provided);CHKERRQ(ierr);
  if (!data_provided) { /* get matrices from PETSc distribution */
    sprintf(file,PETSC_DIR);
    ierr = PetscStrcat(file,"/share/petsc/datafiles/matrices/");CHKERRQ(ierr);
    if (symm) {
#if defined (PETSC_USE_COMPLEX)
      ierr = PetscStrcat(file,"hpd-complex-");CHKERRQ(ierr);
#else
      ierr = PetscStrcat(file,"spd-real-");CHKERRQ(ierr);
#endif
    } else {
#if defined (PETSC_USE_COMPLEX)
      ierr = PetscStrcat(file,"nh-complex-");CHKERRQ(ierr);
#else
      ierr = PetscStrcat(file,"ns-real-");CHKERRQ(ierr);
#endif
    }
#if defined(PETSC_USE_64BIT_INDICES)
    ierr = PetscStrcat(file,"int64-");CHKERRQ(ierr);
#else
    ierr = PetscStrcat(file,"int32-");CHKERRQ(ierr);
#endif
#if defined (PETSC_USE_REAL_SINGLE)
    ierr = PetscStrcat(file,"float32");CHKERRQ(ierr);
#else
    ierr = PetscStrcat(file,"float64");CHKERRQ(ierr);
#endif
  }
  /* Load matrix A */
  ierr = PetscViewerBinaryOpen(PETSC_COMM_WORLD,file,FILE_MODE_READ,&fd);CHKERRQ(ierr);
  ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
  ierr = MatLoad(A,fd);CHKERRQ(ierr);
  ierr = PetscViewerDestroy(&fd);CHKERRQ(ierr);
  ierr = MatGetSize(A,&m,&n);CHKERRQ(ierr);
  if (m != n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ, "This example is not intended for rectangular matrices (%d, %d)", m, n);

  /* Create dense matrix C and X; C holds true solution with identical colums */
  nrhs = 2;
  ierr = PetscOptionsGetInt(NULL,NULL,"-nrhs",&nrhs,NULL);CHKERRQ(ierr);
  ierr = MatCreate(PETSC_COMM_WORLD,&C);CHKERRQ(ierr);
  ierr = MatSetSizes(C,m,PETSC_DECIDE,PETSC_DECIDE,nrhs);CHKERRQ(ierr);
  ierr = MatSetType(C,MATDENSE);CHKERRQ(ierr);
  ierr = MatSetFromOptions(C);CHKERRQ(ierr);
  ierr = MatSetUp(C);CHKERRQ(ierr);

  ierr = PetscRandomCreate(PETSC_COMM_WORLD,&rand);CHKERRQ(ierr);
  ierr = PetscRandomSetFromOptions(rand);CHKERRQ(ierr);
  ierr = MatSetRandom(C,rand);CHKERRQ(ierr);
  ierr = MatDuplicate(C,MAT_DO_NOT_COPY_VALUES,&X);CHKERRQ(ierr);

  /* Create vectors */
  ierr = VecCreate(PETSC_COMM_WORLD,&x);CHKERRQ(ierr);
  ierr = VecSetSizes(x,n,PETSC_DECIDE);CHKERRQ(ierr);
  ierr = VecSetFromOptions(x);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&b);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&u);CHKERRQ(ierr); /* save the true solution */

  ierr = PetscOptionsGetInt(NULL,NULL,"-solver",&isolver,NULL);CHKERRQ(ierr);
  switch (isolver) {
#if defined(PETSC_HAVE_MUMPS)
    case 0:
      ierr = PetscStrcpy(solver,MATSOLVERMUMPS);CHKERRQ(ierr);
      break;
#endif
#if defined(PETSC_HAVE_MKL_PARDISO)
    case 1:
      ierr = PetscStrcpy(solver,MATSOLVERMKL_PARDISO);CHKERRQ(ierr);
      break;
#endif
    default:
      ierr = PetscStrcpy(solver,MATSOLVERPETSC);CHKERRQ(ierr);
      break;
  }

#if defined (PETSC_USE_COMPLEX)
  if (isolver == 0 && symm && !data_provided) { /* MUMPS (5.0.0) does not have support for hermitian matrices, so make them symmetric */
    PetscScalar im = PetscSqrtScalar((PetscScalar)-1.);
    PetscScalar val = -1.0;
    val = val + im;
    ierr = MatSetValue(A,1,0,val,INSERT_VALUES);CHKERRQ(ierr);
    ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
    ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  }
#endif

  ierr = PetscOptionsGetReal(NULL,NULL,"-schur_ratio",&sratio,NULL);CHKERRQ(ierr);
  if (sratio < 0. || sratio > 1.) {
    SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ, "Invalid ratio for schur degrees of freedom %f", sratio);
  }
  size_schur = (PetscInt)(sratio*m);

  ierr = PetscPrintf(PETSC_COMM_SELF,"Solving with %s: nrhs %d, sym %d, herm %d, size schur %d, size mat %d\n",solver,nrhs,symm,herm,size_schur,m);CHKERRQ(ierr);

  /* Test LU/Cholesky Factorization */
  use_lu = PETSC_FALSE;
  if (!symm) use_lu = PETSC_TRUE;
#if defined (PETSC_USE_COMPLEX)
  if (isolver == 1) use_lu = PETSC_TRUE;
#endif

  if (herm && !use_lu) { /* test also conversion routines inside the solver packages */
    ierr = MatSetOption(A,MAT_SYMMETRIC,PETSC_TRUE);CHKERRQ(ierr);
    ierr = MatConvert(A,MATSEQSBAIJ,MAT_INPLACE_MATRIX,&A);CHKERRQ(ierr);
  }


  if (use_lu) {
    ierr = MatGetFactor(A,solver,MAT_FACTOR_LU,&F);CHKERRQ(ierr);
  } else {
    if (herm) {
      ierr = MatSetOption(A,MAT_SYMMETRIC,PETSC_TRUE);CHKERRQ(ierr);
      ierr = MatSetOption(A,MAT_SPD,PETSC_TRUE);CHKERRQ(ierr);
    } else {
      ierr = MatSetOption(A,MAT_SYMMETRIC,PETSC_TRUE);CHKERRQ(ierr);
      ierr = MatSetOption(A,MAT_SPD,PETSC_FALSE);CHKERRQ(ierr);
    }
    ierr = MatGetFactor(A,solver,MAT_FACTOR_CHOLESKY,&F);CHKERRQ(ierr);
  }
  ierr = ISCreateStride(PETSC_COMM_SELF,size_schur,m-size_schur,1,&is_schur);CHKERRQ(ierr);
  ierr = MatFactorSetSchurIS(F,is_schur);CHKERRQ(ierr);
  ierr = ISDestroy(&is_schur);CHKERRQ(ierr);
  if (use_lu) {
    ierr = MatLUFactorSymbolic(F,A,NULL,NULL,NULL);CHKERRQ(ierr);
  } else {
    ierr = MatCholeskyFactorSymbolic(F,A,NULL,NULL);CHKERRQ(ierr);
  }

  for (nfact = 0; nfact < 3; nfact++) {
    Mat AD;

    if (!nfact) {
      ierr = VecSetRandom(x,rand);CHKERRQ(ierr);
      if (symm && herm) {
        ierr = VecAbs(x);CHKERRQ(ierr);
      }
      ierr = MatDiagonalSet(A,x,ADD_VALUES);CHKERRQ(ierr);
    }
    if (use_lu) {
      ierr = MatLUFactorNumeric(F,A,NULL);CHKERRQ(ierr);
    } else {
      ierr = MatCholeskyFactorNumeric(F,A,NULL);CHKERRQ(ierr);
    }
    ierr = MatFactorCreateSchurComplement(F,&S);CHKERRQ(ierr);
    ierr = MatCreateVecs(S,&xschur,&bschur);CHKERRQ(ierr);
    ierr = VecDuplicate(xschur,&uschur);CHKERRQ(ierr);
    if (nfact == 1) {
      ierr = MatFactorInvertSchurComplement(F);CHKERRQ(ierr);
    }
    for (nsolve = 0; nsolve < 2; nsolve++) {
      ierr = VecSetRandom(x,rand);CHKERRQ(ierr);
      ierr = VecCopy(x,u);CHKERRQ(ierr);

      if (nsolve) {
        ierr = MatMult(A,x,b);CHKERRQ(ierr);
        ierr = MatSolve(F,b,x);CHKERRQ(ierr);
      } else {
        ierr = MatMultTranspose(A,x,b);CHKERRQ(ierr);
        ierr = MatSolveTranspose(F,b,x);CHKERRQ(ierr);
      }
      /* Check the error */
      ierr = VecAXPY(u,-1.0,x);CHKERRQ(ierr);  /* u <- (-1.0)x + u */
      ierr = VecNorm(u,NORM_2,&norm);CHKERRQ(ierr);
      if (norm > tol) {
        PetscReal resi;
        if (nsolve) {
          ierr = MatMult(A,x,u);CHKERRQ(ierr); /* u = A*x */
        } else {
          ierr = MatMultTranspose(A,x,u);CHKERRQ(ierr); /* u = A*x */
        }
        ierr = VecAXPY(u,-1.0,b);CHKERRQ(ierr);  /* u <- (-1.0)b + u */
        ierr = VecNorm(u,NORM_2,&resi);CHKERRQ(ierr);
        if (nsolve) {
          ierr = PetscPrintf(PETSC_COMM_SELF,"(f %d, s %d) MatSolve error: Norm of error %g, residual %f\n",nfact,nsolve,norm,resi);CHKERRQ(ierr);
        } else {
          ierr = PetscPrintf(PETSC_COMM_SELF,"(f %d, s %d) MatSolveTranspose error: Norm of error %g, residual %f\n",nfact,nsolve,norm,resi);CHKERRQ(ierr);
        }
      }
      ierr = VecSetRandom(xschur,rand);CHKERRQ(ierr);
      ierr = VecCopy(xschur,uschur);CHKERRQ(ierr);
      if (nsolve) {
        ierr = MatMult(S,xschur,bschur);CHKERRQ(ierr);
        ierr = MatFactorSolveSchurComplement(F,bschur,xschur);CHKERRQ(ierr);
      } else {
        ierr = MatMultTranspose(S,xschur,bschur);CHKERRQ(ierr);
        ierr = MatFactorSolveSchurComplementTranspose(F,bschur,xschur);CHKERRQ(ierr);
      }
      /* Check the error */
      ierr = VecAXPY(uschur,-1.0,xschur);CHKERRQ(ierr);  /* u <- (-1.0)x + u */
      ierr = VecNorm(uschur,NORM_2,&norm);CHKERRQ(ierr);
      if (norm > tol) {
        PetscReal resi;
        if (nsolve) {
          ierr = MatMult(S,xschur,uschur);CHKERRQ(ierr); /* u = A*x */
        } else {
          ierr = MatMultTranspose(S,xschur,uschur);CHKERRQ(ierr); /* u = A*x */
        }
        ierr = VecAXPY(uschur,-1.0,bschur);CHKERRQ(ierr);  /* u <- (-1.0)b + u */
        ierr = VecNorm(uschur,NORM_2,&resi);CHKERRQ(ierr);
        if (nsolve) {
          ierr = PetscPrintf(PETSC_COMM_SELF,"(f %d, s %d) MatFactorSolveSchurComplement error: Norm of error %g, residual %f\n",nfact,nsolve,norm,resi);CHKERRQ(ierr);
        } else {
          ierr = PetscPrintf(PETSC_COMM_SELF,"(f %d, s %d) MatFactorSolveSchurComplementTranspose error: Norm of error %g, residual %f\n",nfact,nsolve,norm,resi);CHKERRQ(ierr);
        }
      }
    }
    ierr = MatConvert(A,MATSEQAIJ,MAT_INITIAL_MATRIX,&AD);
    if (!nfact) {
      ierr = MatMatMult(AD,C,MAT_INITIAL_MATRIX,2.0,&RHS);CHKERRQ(ierr);
    } else {
      ierr = MatMatMult(AD,C,MAT_REUSE_MATRIX,2.0,&RHS);CHKERRQ(ierr);
    }
    ierr = MatDestroy(&AD);CHKERRQ(ierr);
    for (nsolve = 0; nsolve < 2; nsolve++) {
      ierr = MatMatSolve(F,RHS,X);CHKERRQ(ierr);

      /* Check the error */
      ierr = MatAXPY(X,-1.0,C,SAME_NONZERO_PATTERN);CHKERRQ(ierr);
      ierr = MatNorm(X,NORM_FROBENIUS,&norm);CHKERRQ(ierr);
      if (norm > tol) {
        ierr = PetscPrintf(PETSC_COMM_SELF,"(f %D, s %D) MatMatSolve: Norm of error %g\n",nfact,nsolve,norm);CHKERRQ(ierr);
      }
    }
    ierr = MatDestroy(&S);CHKERRQ(ierr);
    ierr = VecDestroy(&xschur);CHKERRQ(ierr);
    ierr = VecDestroy(&bschur);CHKERRQ(ierr);
    ierr = VecDestroy(&uschur);CHKERRQ(ierr);
  }
  /* Free data structures */
  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = MatDestroy(&C);CHKERRQ(ierr);
  ierr = MatDestroy(&F);CHKERRQ(ierr);
  ierr = MatDestroy(&X);CHKERRQ(ierr);
  ierr = MatDestroy(&RHS);CHKERRQ(ierr);
  ierr = PetscRandomDestroy(&rand);CHKERRQ(ierr);
  ierr = VecDestroy(&x);CHKERRQ(ierr);
  ierr = VecDestroy(&b);CHKERRQ(ierr);
  ierr = VecDestroy(&u);CHKERRQ(ierr);
  ierr = PetscFinalize();
  return 0;
}
Exemple #12
0
PetscErrorCode ResidualFunction(SNES snes,Vec X, Vec F, Userctx *user)
{
  PetscErrorCode ierr;
  Vec            Xgen,Xnet,Fgen,Fnet;
  PetscScalar    *xgen,*xnet,*fgen,*fnet;
  PetscInt       i,idx=0;
  PetscScalar    Vr,Vi,Vm,Vm2;
  PetscScalar    Eqp,Edp,delta,w; /* Generator variables */
  PetscScalar    Efd,RF,VR; /* Exciter variables */
  PetscScalar    Id,Iq;  /* Generator dq axis currents */
  PetscScalar    Vd,Vq,SE;
  PetscScalar    IGr,IGi,IDr,IDi;
  PetscScalar    Zdq_inv[4],det;
  PetscScalar    PD,QD,Vm0,*v0;
  PetscInt       k;

  PetscFunctionBegin;
  ierr = VecZeroEntries(F);CHKERRQ(ierr);
  ierr = DMCompositeGetLocalVectors(user->dmpgrid,&Xgen,&Xnet);CHKERRQ(ierr);
  ierr = DMCompositeGetLocalVectors(user->dmpgrid,&Fgen,&Fnet);CHKERRQ(ierr);
  ierr = DMCompositeScatter(user->dmpgrid,X,Xgen,Xnet);CHKERRQ(ierr);
  ierr = DMCompositeScatter(user->dmpgrid,F,Fgen,Fnet);CHKERRQ(ierr);

  /* Network current balance residual IG + Y*V + IL = 0. Only YV is added here.
     The generator current injection, IG, and load current injection, ID are added later
  */
  /* Note that the values in Ybus are stored assuming the imaginary current balance
     equation is ordered first followed by real current balance equation for each bus.
     Thus imaginary current contribution goes in location 2*i, and
     real current contribution in 2*i+1
  */
  ierr = MatMult(user->Ybus,Xnet,Fnet);CHKERRQ(ierr);

  ierr = VecGetArray(Xgen,&xgen);CHKERRQ(ierr);
  ierr = VecGetArray(Xnet,&xnet);CHKERRQ(ierr);
  ierr = VecGetArray(Fgen,&fgen);CHKERRQ(ierr);
  ierr = VecGetArray(Fnet,&fnet);CHKERRQ(ierr);

  /* Generator subsystem */
  for (i=0; i < ngen; i++) {
    Eqp   = xgen[idx];
    Edp   = xgen[idx+1];
    delta = xgen[idx+2];
    w     = xgen[idx+3];
    Id    = xgen[idx+4];
    Iq    = xgen[idx+5];
    Efd   = xgen[idx+6];
    RF    = xgen[idx+7];
    VR    = xgen[idx+8];

    /* Generator differential equations */
    fgen[idx]   = (Eqp + (Xd[i] - Xdp[i])*Id - Efd)/Td0p[i];
    fgen[idx+1] = (Edp - (Xq[i] - Xqp[i])*Iq)/Tq0p[i];
    fgen[idx+2] = -w + w_s;
    fgen[idx+3] = (-TM[i] + Edp*Id + Eqp*Iq + (Xqp[i] - Xdp[i])*Id*Iq + D[i]*(w - w_s))/M[i];

    Vr = xnet[2*gbus[i]]; /* Real part of generator terminal voltage */
    Vi = xnet[2*gbus[i]+1]; /* Imaginary part of the generator terminal voltage */

    ierr = ri2dq(Vr,Vi,delta,&Vd,&Vq);CHKERRQ(ierr);
    /* Algebraic equations for stator currents */

    det = Rs[i]*Rs[i] + Xdp[i]*Xqp[i];

    Zdq_inv[0] = Rs[i]/det;
    Zdq_inv[1] = Xqp[i]/det;
    Zdq_inv[2] = -Xdp[i]/det;
    Zdq_inv[3] = Rs[i]/det;

    fgen[idx+4] = Zdq_inv[0]*(-Edp + Vd) + Zdq_inv[1]*(-Eqp + Vq) + Id;
    fgen[idx+5] = Zdq_inv[2]*(-Edp + Vd) + Zdq_inv[3]*(-Eqp + Vq) + Iq;

    /* Add generator current injection to network */
    ierr = dq2ri(Id,Iq,delta,&IGr,&IGi);CHKERRQ(ierr);

    fnet[2*gbus[i]]   -= IGi;
    fnet[2*gbus[i]+1] -= IGr;

    Vm = PetscSqrtScalar(Vd*Vd + Vq*Vq);

    SE = k1[i]*PetscExpScalar(k2[i]*Efd);

    /* Exciter differential equations */
    fgen[idx+6] = (KE[i]*Efd + SE - VR)/TE[i];
    fgen[idx+7] = (RF - KF[i]*Efd/TF[i])/TF[i];
    fgen[idx+8] = (VR - KA[i]*RF + KA[i]*KF[i]*Efd/TF[i] - KA[i]*(Vref[i] - Vm))/TA[i];

    idx = idx + 9;
  }

  ierr = VecGetArray(user->V0,&v0);CHKERRQ(ierr);
  for (i=0; i < nload; i++) {
    Vr  = xnet[2*lbus[i]]; /* Real part of load bus voltage */
    Vi  = xnet[2*lbus[i]+1]; /* Imaginary part of the load bus voltage */
    Vm  = PetscSqrtScalar(Vr*Vr + Vi*Vi); Vm2 = Vm*Vm;
    Vm0 = PetscSqrtScalar(v0[2*lbus[i]]*v0[2*lbus[i]] + v0[2*lbus[i]+1]*v0[2*lbus[i]+1]);
    PD  = QD = 0.0;
    for (k=0; k < ld_nsegsp[i]; k++) PD += ld_alphap[k]*PD0[i]*PetscPowScalar((Vm/Vm0),ld_betap[k]);
    for (k=0; k < ld_nsegsq[i]; k++) QD += ld_alphaq[k]*QD0[i]*PetscPowScalar((Vm/Vm0),ld_betaq[k]);

    /* Load currents */
    IDr = (PD*Vr + QD*Vi)/Vm2;
    IDi = (-QD*Vr + PD*Vi)/Vm2;

    fnet[2*lbus[i]]   += IDi;
    fnet[2*lbus[i]+1] += IDr;
  }
  ierr = VecRestoreArray(user->V0,&v0);CHKERRQ(ierr);

  ierr = VecRestoreArray(Xgen,&xgen);CHKERRQ(ierr);
  ierr = VecRestoreArray(Xnet,&xnet);CHKERRQ(ierr);
  ierr = VecRestoreArray(Fgen,&fgen);CHKERRQ(ierr);
  ierr = VecRestoreArray(Fnet,&fnet);CHKERRQ(ierr);

  ierr = DMCompositeGather(user->dmpgrid,F,INSERT_VALUES,Fgen,Fnet);CHKERRQ(ierr);
  ierr = DMCompositeRestoreLocalVectors(user->dmpgrid,&Xgen,&Xnet);CHKERRQ(ierr);
  ierr = DMCompositeRestoreLocalVectors(user->dmpgrid,&Fgen,&Fnet);CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
Exemple #13
0
PetscErrorCode CkEigenSolutions(PetscInt cklvl,Mat A,PetscInt il,PetscInt iu,PetscScalar *eval,Vec *evec,PetscReal *tols)
{
  PetscInt    ierr,i,j,nev;
  Vec         vt1,vt2;  /* tmp vectors */
  PetscReal   norm,norm_max;
  PetscScalar dot,tmp;
  PetscReal   dot_max;

  PetscFunctionBegin;
  nev = iu - il;
  if (nev <= 0) PetscFunctionReturn(0);

  ierr = VecDuplicate(evec[0],&vt1);CHKERRQ(ierr);
  ierr = VecDuplicate(evec[0],&vt2);CHKERRQ(ierr);

  switch (cklvl) {
  case 2:
    dot_max = 0.0;
    for (i = il; i<iu; i++) {
      ierr = VecCopy(evec[i], vt1);CHKERRQ(ierr);
      for (j=il; j<iu; j++) {
        ierr = VecDot(evec[j],vt1,&dot);CHKERRQ(ierr);
        if (j == i) {
          dot = PetscAbsScalar(dot - 1.0);
        } else {
          dot = PetscAbsScalar(dot);
        }
        if (PetscAbsScalar(dot) > dot_max) dot_max = PetscAbsScalar(dot);
#if defined(DEBUG_CkEigenSolutions)
        if (dot > tols[1]) {
          ierr = VecNorm(evec[i],NORM_INFINITY,&norm);CHKERRQ(ierr);
          ierr = PetscPrintf(PETSC_COMM_SELF,"|delta(%d,%d)|: %g, norm: %d\n",i,j,(double)dot,(double)norm);CHKERRQ(ierr);
        }
#endif
      }
    }
    ierr = PetscPrintf(PETSC_COMM_SELF,"    max|(x_j^T*x_i) - delta_ji|: %g\n",(double)dot_max);CHKERRQ(ierr);

  case 1:
    norm_max = 0.0;
    for (i = il; i< iu; i++) {
      ierr = MatMult(A, evec[i], vt1);CHKERRQ(ierr);
      ierr = VecCopy(evec[i], vt2);CHKERRQ(ierr);
      tmp  = -eval[i];
      ierr = VecAXPY(vt1,tmp,vt2);CHKERRQ(ierr);
      ierr = VecNorm(vt1, NORM_INFINITY, &norm);CHKERRQ(ierr);
      norm = PetscAbsReal(norm);
      if (norm > norm_max) norm_max = norm;
#if defined(DEBUG_CkEigenSolutions)
      if (norm > tols[0]) {
        ierr = PetscPrintf(PETSC_COMM_SELF,"  residual violation: %d, resi: %g\n",i, norm);CHKERRQ(ierr);
      }
#endif
    }
    ierr = PetscPrintf(PETSC_COMM_SELF,"    max_resi:                    %g\n", (double)norm_max);CHKERRQ(ierr);
    break;
  default:
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error: cklvl=%d is not supported \n",cklvl);CHKERRQ(ierr);
  }

  ierr = VecDestroy(&vt2);CHKERRQ(ierr);
  ierr = VecDestroy(&vt1);CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
Exemple #14
0
int main(int argc,char **argv)
{
  DM             da;            /* distributed array */
  Vec            x,b,u;         /* approx solution, RHS, exact solution */
  Mat            A;             /* linear system matrix */
  KSP            ksp;           /* linear solver context */
  PetscRandom    rctx;          /* random number generator context */
  PetscReal      norm;          /* norm of solution error */
  PetscInt       i,j,its;
  PetscErrorCode ierr;
  PetscBool      flg = PETSC_FALSE;
  PetscLogStage  stage;
  DMDALocalInfo  info;

  ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
  /*
     Create distributed array to handle parallel distribution.
     The problem size will default to 8 by 7, but this can be
     changed using -da_grid_x M -da_grid_y N
  */
  ierr = DMDACreate2d(PETSC_COMM_WORLD, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE,DMDA_STENCIL_STAR,-8,-7,PETSC_DECIDE,PETSC_DECIDE,1,1,NULL,NULL,&da);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
         Compute the matrix and right-hand-side vector that define
         the linear system, Ax = b.
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  /*
     Create parallel matrix preallocated according to the DMDA, format AIJ by default.
     To use symmetric storage, run with -dm_mat_type sbaij -mat_ignore_lower_triangular
  */
  ierr = DMCreateMatrix(da,&A);CHKERRQ(ierr);

  /*
     Set matrix elements for the 2-D, five-point stencil in parallel.
      - Each processor needs to insert only elements that it owns
        locally (but any non-local elements will be sent to the
        appropriate processor during matrix assembly).
      - Rows and columns are specified by the stencil
      - Entries are normalized for a domain [0,1]x[0,1]
   */
  ierr = PetscLogStageRegister("Assembly", &stage);CHKERRQ(ierr);
  ierr = PetscLogStagePush(stage);CHKERRQ(ierr);
  ierr = DMDAGetLocalInfo(da,&info);CHKERRQ(ierr);
  for (j=info.ys; j<info.ys+info.ym; j++) {
    for (i=info.xs; i<info.xs+info.xm; i++) {
      PetscReal   hx  = 1./info.mx,hy = 1./info.my;
      MatStencil  row = {0},col[5] = {{0}};
      PetscScalar v[5];
      PetscInt    ncols = 0;
      row.j        = j; row.i = i;
      col[ncols].j = j; col[ncols].i = i; v[ncols++] = 2*(hx/hy + hy/hx);
      /* boundaries */
      if (i>0)         {col[ncols].j = j;   col[ncols].i = i-1; v[ncols++] = -hy/hx;}
      if (i<info.mx-1) {col[ncols].j = j;   col[ncols].i = i+1; v[ncols++] = -hy/hx;}
      if (j>0)         {col[ncols].j = j-1; col[ncols].i = i;   v[ncols++] = -hx/hy;}
      if (j<info.my-1) {col[ncols].j = j+1; col[ncols].i = i;   v[ncols++] = -hx/hy;}
      ierr = MatSetValuesStencil(A,1,&row,ncols,col,v,INSERT_VALUES);CHKERRQ(ierr);
    }
  }

  /*
     Assemble matrix, using the 2-step process:
       MatAssemblyBegin(), MatAssemblyEnd()
     Computations can be done while messages are in transition
     by placing code between these two statements.
  */
  ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = PetscLogStagePop();CHKERRQ(ierr);

  /*
     Create parallel vectors compatible with the DMDA.
  */
  ierr = DMCreateGlobalVector(da,&u);CHKERRQ(ierr);
  ierr = VecDuplicate(u,&b);CHKERRQ(ierr);
  ierr = VecDuplicate(u,&x);CHKERRQ(ierr);

  /*
     Set exact solution; then compute right-hand-side vector.
     By default we use an exact solution of a vector with all
     elements of 1.0;  Alternatively, using the runtime option
     -random_sol forms a solution vector with random components.
  */
  ierr = PetscOptionsGetBool(NULL,NULL,"-random_exact_sol",&flg,NULL);CHKERRQ(ierr);
  if (flg) {
    ierr = PetscRandomCreate(PETSC_COMM_WORLD,&rctx);CHKERRQ(ierr);
    ierr = PetscRandomSetFromOptions(rctx);CHKERRQ(ierr);
    ierr = VecSetRandom(u,rctx);CHKERRQ(ierr);
    ierr = PetscRandomDestroy(&rctx);CHKERRQ(ierr);
  } else {
    ierr = VecSet(u,1.);CHKERRQ(ierr);
  }
  ierr = MatMult(A,u,b);CHKERRQ(ierr);

  /*
     View the exact solution vector if desired
  */
  flg  = PETSC_FALSE;
  ierr = PetscOptionsGetBool(NULL,NULL,"-view_exact_sol",&flg,NULL);CHKERRQ(ierr);
  if (flg) {ierr = VecView(u,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);}

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                Create the linear solver and set various options
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

  /*
     Create linear solver context
  */
  ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);

  /*
     Set operators. Here the matrix that defines the linear system
     also serves as the preconditioning matrix.
  */
  ierr = KSPSetOperators(ksp,A,A);CHKERRQ(ierr);

  /*
    Set runtime options, e.g.,
        -ksp_type <type> -pc_type <type> -ksp_monitor -ksp_rtol <rtol>
    These options will override those specified above as long as
    KSPSetFromOptions() is called _after_ any other customization
    routines.
  */
  ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                      Solve the linear system
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

  ierr = KSPSolve(ksp,b,x);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                      Check solution and clean up
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

  /*
     Check the error
  */
  ierr = VecAXPY(x,-1.,u);CHKERRQ(ierr);
  ierr = VecNorm(x,NORM_2,&norm);CHKERRQ(ierr);
  ierr = KSPGetIterationNumber(ksp,&its);CHKERRQ(ierr);

  /*
     Print convergence information.  PetscPrintf() produces a single
     print statement from all processes that share a communicator.
     An alternative is PetscFPrintf(), which prints to a file.
  */
  ierr = PetscPrintf(PETSC_COMM_WORLD,"Norm of error %g iterations %D\n",(double)norm,its);CHKERRQ(ierr);

  /*
     Free work space.  All PETSc objects should be destroyed when they
     are no longer needed.
  */
  ierr = KSPDestroy(&ksp);CHKERRQ(ierr);
  ierr = VecDestroy(&u);CHKERRQ(ierr);
  ierr = VecDestroy(&x);CHKERRQ(ierr);
  ierr = VecDestroy(&b);CHKERRQ(ierr);
  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = DMDestroy(&da);CHKERRQ(ierr);

  /*
     Always call PetscFinalize() before exiting a program.  This routine
       - finalizes the PETSc libraries as well as MPI
       - provides summary and diagnostic information if certain runtime
         options are chosen (e.g., -log_summary).
  */
  ierr = PetscFinalize();
  return ierr;
}
Exemple #15
0
PetscErrorCode KSPFGMRESCycle(PetscInt *itcount,KSP ksp)
{

  KSP_FGMRES     *fgmres = (KSP_FGMRES *)(ksp->data);
  PetscReal      res_norm;
  PetscReal      hapbnd,tt;
  PetscBool      hapend = PETSC_FALSE;  /* indicates happy breakdown ending */
  PetscErrorCode ierr;
  PetscInt       loc_it;                /* local count of # of dir. in Krylov space */
  PetscInt       max_k = fgmres->max_k; /* max # of directions Krylov space */
  Mat            Amat,Pmat;
  MatStructure   pflag;

  PetscFunctionBegin;

  /* Number of pseudo iterations since last restart is the number
     of prestart directions */
  loc_it = 0;

  /* note: (fgmres->it) is always set one less than (loc_it) It is used in
     KSPBUILDSolution_FGMRES, where it is passed to KSPFGMRESBuildSoln.
     Note that when KSPFGMRESBuildSoln is called from this function,
     (loc_it -1) is passed, so the two are equivalent */
  fgmres->it = (loc_it - 1);

  /* initial residual is in VEC_VV(0)  - compute its norm*/
  ierr   = VecNorm(VEC_VV(0),NORM_2,&res_norm);CHKERRQ(ierr);

  /* first entry in right-hand-side of hessenberg system is just
     the initial residual norm */
  *RS(0) = res_norm;

  ksp->rnorm = res_norm;
  KSPLogResidualHistory(ksp,res_norm);

  /* check for the convergence - maybe the current guess is good enough */
  ierr = (*ksp->converged)(ksp,ksp->its,res_norm,&ksp->reason,ksp->cnvP);CHKERRQ(ierr);
  if (ksp->reason) {
    if (itcount) *itcount = 0;
    PetscFunctionReturn(0);
  }

  /* scale VEC_VV (the initial residual) */
  ierr = VecScale(VEC_VV(0),1.0/res_norm);CHKERRQ(ierr);

  /* MAIN ITERATION LOOP BEGINNING*/
  /* keep iterating until we have converged OR generated the max number
     of directions OR reached the max number of iterations for the method */
  while (!ksp->reason && loc_it < max_k && ksp->its < ksp->max_it) {
    if (loc_it) KSPLogResidualHistory(ksp,res_norm);
    fgmres->it = (loc_it - 1);
    ierr = KSPMonitor(ksp,ksp->its,res_norm);CHKERRQ(ierr);

    /* see if more space is needed for work vectors */
    if (fgmres->vv_allocated <= loc_it + VEC_OFFSET + 1) {
      ierr = KSPFGMRESGetNewVectors(ksp,loc_it+1);CHKERRQ(ierr);
      /* (loc_it+1) is passed in as number of the first vector that should
         be allocated */
    }

    /* CHANGE THE PRECONDITIONER? */
    /* ModifyPC is the callback function that can be used to
       change the PC or its attributes before its applied */
    (*fgmres->modifypc)(ksp,ksp->its,loc_it,res_norm,fgmres->modifyctx);


    /* apply PRECONDITIONER to direction vector and store with
       preconditioned vectors in prevec */
    ierr = KSP_PCApply(ksp,VEC_VV(loc_it),PREVEC(loc_it));CHKERRQ(ierr);

    ierr = PCGetOperators(ksp->pc,&Amat,&Pmat,&pflag);CHKERRQ(ierr);
    /* Multiply preconditioned vector by operator - put in VEC_VV(loc_it+1) */
    ierr = MatMult(Amat,PREVEC(loc_it),VEC_VV(1+loc_it));CHKERRQ(ierr);


    /* update hessenberg matrix and do Gram-Schmidt - new direction is in
       VEC_VV(1+loc_it)*/
    ierr = (*fgmres->orthog)(ksp,loc_it);CHKERRQ(ierr);

    /* new entry in hessenburg is the 2-norm of our new direction */
    ierr = VecNorm(VEC_VV(loc_it+1),NORM_2,&tt);CHKERRQ(ierr);
    *HH(loc_it+1,loc_it)   = tt;
    *HES(loc_it+1,loc_it)  = tt;

    /* Happy Breakdown Check */
    hapbnd  = PetscAbsScalar((tt) / *RS(loc_it));
    /* RS(loc_it) contains the res_norm from the last iteration  */
    hapbnd = PetscMin(fgmres->haptol,hapbnd);
    if (tt > hapbnd) {
        /* scale new direction by its norm */
        ierr = VecScale(VEC_VV(loc_it+1),1.0/tt);CHKERRQ(ierr);
    } else {
        /* This happens when the solution is exactly reached. */
        /* So there is no new direction... */
          ierr   = VecSet(VEC_TEMP,0.0);CHKERRQ(ierr); /* set VEC_TEMP to 0 */
          hapend = PETSC_TRUE;
    }
    /* note that for FGMRES we could get HES(loc_it+1, loc_it)  = 0 and the
       current solution would not be exact if HES was singular.  Note that
       HH non-singular implies that HES is no singular, and HES is guaranteed
       to be nonsingular when PREVECS are linearly independent and A is
       nonsingular (in GMRES, the nonsingularity of A implies the nonsingularity
       of HES). So we should really add a check to verify that HES is nonsingular.*/


    /* Now apply rotations to new col of hessenberg (and right side of system),
       calculate new rotation, and get new residual norm at the same time*/
    ierr = KSPFGMRESUpdateHessenberg(ksp,loc_it,hapend,&res_norm);CHKERRQ(ierr);
    if (ksp->reason) break;

    loc_it++;
    fgmres->it  = (loc_it-1);  /* Add this here in case it has converged */

    ierr = PetscObjectTakeAccess(ksp);CHKERRQ(ierr);
    ksp->its++;
    ksp->rnorm = res_norm;
    ierr = PetscObjectGrantAccess(ksp);CHKERRQ(ierr);

    ierr = (*ksp->converged)(ksp,ksp->its,res_norm,&ksp->reason,ksp->cnvP);CHKERRQ(ierr);

    /* Catch error in happy breakdown and signal convergence and break from loop */
    if (hapend) {
      if (!ksp->reason) {
        SETERRQ(((PetscObject)ksp)->comm,PETSC_ERR_PLIB,"You reached the happy break down,but convergence was not indicated.");
      }
      break;
    }
  }
  /* END OF ITERATION LOOP */

  KSPLogResidualHistory(ksp,res_norm);

  /*
     Monitor if we know that we will not return for a restart */
  if (ksp->reason || ksp->its >= ksp->max_it) {
    ierr = KSPMonitor(ksp,ksp->its,res_norm);CHKERRQ(ierr);
  }

  if (itcount) *itcount    = loc_it;

  /*
    Down here we have to solve for the "best" coefficients of the Krylov
    columns, add the solution values together, and possibly unwind the
    preconditioning from the solution
   */

  /* Form the solution (or the solution so far) */
  /* Note: must pass in (loc_it-1) for iteration count so that KSPFGMRESBuildSoln
     properly navigates */

  ierr = KSPFGMRESBuildSoln(RS(0),ksp->vec_sol,ksp->vec_sol,ksp,loc_it-1);CHKERRQ(ierr);

  PetscFunctionReturn(0);
}
Exemple #16
0
PetscErrorCode PCBDDCNullSpaceAssembleCorrection(PC pc,IS local_dofs)
{
  PC_BDDC        *pcbddc = (PC_BDDC*)pc->data;
  PC_IS          *pcis = (PC_IS*)pc->data;
  Mat_IS*        matis = (Mat_IS*)pc->pmat->data;
  KSP            *local_ksp;
  PC             newpc;
  NullSpaceCorrection_ctx  shell_ctx;
  Mat            local_mat,local_pmat,small_mat,inv_small_mat;
  MatStructure   local_mat_struct;
  Vec            work1,work2;
  const Vec      *nullvecs;
  VecScatter     scatter_ctx;
  IS             is_aux;
  MatFactorInfo  matinfo;
  PetscScalar    *basis_mat,*Kbasis_mat,*array,*array_mat;
  PetscScalar    one = 1.0,zero = 0.0, m_one = -1.0;
  PetscInt       basis_dofs,basis_size,nnsp_size,i,k,n_I,n_R;
  PetscBool      nnsp_has_cnst;
  PetscErrorCode ierr;

  PetscFunctionBegin;
  /* Infer the local solver */
  ierr = ISGetSize(local_dofs,&basis_dofs);CHKERRQ(ierr);
  ierr = VecGetSize(pcis->vec1_D,&n_I);CHKERRQ(ierr);
  ierr = VecGetSize(pcbddc->vec1_R,&n_R);CHKERRQ(ierr);
  if (basis_dofs == n_I) {
    /* Dirichlet solver */
    local_ksp = &pcbddc->ksp_D;
  } else if (basis_dofs == n_R) {
    /* Neumann solver */
    local_ksp = &pcbddc->ksp_R;
  } else {
    SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Error in %s: unknown local IS size %d. n_I=%d, n_R=%d)\n",__FUNCT__,basis_dofs,n_I,n_R);
  }
  ierr = KSPGetOperators(*local_ksp,&local_mat,&local_pmat,&local_mat_struct);CHKERRQ(ierr);

  /* Get null space vecs */
  ierr = MatNullSpaceGetVecs(pcbddc->NullSpace,&nnsp_has_cnst,&nnsp_size,&nullvecs);CHKERRQ(ierr);
  basis_size = nnsp_size;
  if (nnsp_has_cnst) {
    basis_size++;
  }

  /* Create shell ctx */
  ierr = PetscMalloc(sizeof(*shell_ctx),&shell_ctx);CHKERRQ(ierr);

  /* Create work vectors in shell context */
  ierr = VecCreate(PETSC_COMM_SELF,&shell_ctx->work_small_1);CHKERRQ(ierr);
  ierr = VecSetSizes(shell_ctx->work_small_1,basis_size,basis_size);CHKERRQ(ierr);
  ierr = VecSetType(shell_ctx->work_small_1,VECSEQ);CHKERRQ(ierr);
  ierr = VecDuplicate(shell_ctx->work_small_1,&shell_ctx->work_small_2);CHKERRQ(ierr);
  ierr = VecCreate(PETSC_COMM_SELF,&shell_ctx->work_full_1);CHKERRQ(ierr);
  ierr = VecSetSizes(shell_ctx->work_full_1,basis_dofs,basis_dofs);CHKERRQ(ierr);
  ierr = VecSetType(shell_ctx->work_full_1,VECSEQ);CHKERRQ(ierr);
  ierr = VecDuplicate(shell_ctx->work_full_1,&shell_ctx->work_full_2);CHKERRQ(ierr);

  /* Allocate workspace */
  ierr = MatCreateSeqDense(PETSC_COMM_SELF,basis_dofs,basis_size,NULL,&shell_ctx->basis_mat );CHKERRQ(ierr);
  ierr = MatCreateSeqDense(PETSC_COMM_SELF,basis_dofs,basis_size,NULL,&shell_ctx->Kbasis_mat);CHKERRQ(ierr);
  ierr = MatDenseGetArray(shell_ctx->basis_mat,&basis_mat);CHKERRQ(ierr);
  ierr = MatDenseGetArray(shell_ctx->Kbasis_mat,&Kbasis_mat);CHKERRQ(ierr);

  /* Restrict local null space on selected dofs (Dirichlet or Neumann)
     and compute matrices N and K*N */
  ierr = VecDuplicate(shell_ctx->work_full_1,&work1);CHKERRQ(ierr);
  ierr = VecDuplicate(shell_ctx->work_full_1,&work2);CHKERRQ(ierr);
  ierr = VecScatterCreate(pcis->vec1_N,local_dofs,work1,(IS)0,&scatter_ctx);CHKERRQ(ierr);
  for (k=0;k<nnsp_size;k++) {
    ierr = VecScatterBegin(matis->ctx,nullvecs[k],pcis->vec1_N,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd(matis->ctx,nullvecs[k],pcis->vec1_N,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecPlaceArray(work1,(const PetscScalar*)&basis_mat[k*basis_dofs]);CHKERRQ(ierr);
    ierr = VecScatterBegin(scatter_ctx,pcis->vec1_N,work1,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd(scatter_ctx,pcis->vec1_N,work1,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecPlaceArray(work2,(const PetscScalar*)&Kbasis_mat[k*basis_dofs]);CHKERRQ(ierr);
    ierr = MatMult(local_mat,work1,work2);CHKERRQ(ierr);
    ierr = VecResetArray(work1);CHKERRQ(ierr);
    ierr = VecResetArray(work2);CHKERRQ(ierr);
  }
  if (nnsp_has_cnst) {
    ierr = VecPlaceArray(work1,(const PetscScalar*)&basis_mat[k*basis_dofs]);CHKERRQ(ierr);
    ierr = VecSet(work1,one);CHKERRQ(ierr);
    ierr = VecPlaceArray(work2,(const PetscScalar*)&Kbasis_mat[k*basis_dofs]);CHKERRQ(ierr);
    ierr = MatMult(local_mat,work1,work2);CHKERRQ(ierr);
    ierr = VecResetArray(work1);CHKERRQ(ierr);
    ierr = VecResetArray(work2);CHKERRQ(ierr);
  }
  ierr = VecDestroy(&work1);CHKERRQ(ierr);
  ierr = VecDestroy(&work2);CHKERRQ(ierr);
  ierr = VecScatterDestroy(&scatter_ctx);CHKERRQ(ierr);
  ierr = MatDenseRestoreArray(shell_ctx->basis_mat,&basis_mat);CHKERRQ(ierr);
  ierr = MatDenseRestoreArray(shell_ctx->Kbasis_mat,&Kbasis_mat);CHKERRQ(ierr);

  /* Assemble another Mat object in shell context */
  ierr = MatTransposeMatMult(shell_ctx->basis_mat,shell_ctx->Kbasis_mat,MAT_INITIAL_MATRIX,PETSC_DEFAULT,&small_mat);CHKERRQ(ierr);
  ierr = MatFactorInfoInitialize(&matinfo);CHKERRQ(ierr);
  ierr = ISCreateStride(PETSC_COMM_SELF,basis_size,0,1,&is_aux);CHKERRQ(ierr);
  ierr = MatLUFactor(small_mat,is_aux,is_aux,&matinfo);CHKERRQ(ierr);
  ierr = ISDestroy(&is_aux);CHKERRQ(ierr);
  ierr = PetscMalloc(basis_size*basis_size*sizeof(PetscScalar),&array_mat);CHKERRQ(ierr);
  for (k=0;k<basis_size;k++) {
    ierr = VecSet(shell_ctx->work_small_1,zero);CHKERRQ(ierr);
    ierr = VecSetValue(shell_ctx->work_small_1,k,one,INSERT_VALUES);CHKERRQ(ierr);
    ierr = VecAssemblyBegin(shell_ctx->work_small_1);CHKERRQ(ierr);
    ierr = VecAssemblyEnd(shell_ctx->work_small_1);CHKERRQ(ierr);
    ierr = MatSolve(small_mat,shell_ctx->work_small_1,shell_ctx->work_small_2);CHKERRQ(ierr);
    ierr = VecGetArrayRead(shell_ctx->work_small_2,(const PetscScalar**)&array);CHKERRQ(ierr);
    for (i=0;i<basis_size;i++) {
      array_mat[i*basis_size+k]=array[i];
    }
    ierr = VecRestoreArrayRead(shell_ctx->work_small_2,(const PetscScalar**)&array);CHKERRQ(ierr);
  }
  ierr = MatCreateSeqDense(PETSC_COMM_SELF,basis_size,basis_size,array_mat,&inv_small_mat);CHKERRQ(ierr);
  ierr = MatMatMult(shell_ctx->basis_mat,inv_small_mat,MAT_INITIAL_MATRIX,PETSC_DEFAULT,&shell_ctx->Lbasis_mat);CHKERRQ(ierr);
  ierr = PetscFree(array_mat);CHKERRQ(ierr);
  ierr = MatDestroy(&inv_small_mat);CHKERRQ(ierr);
  ierr = MatDestroy(&small_mat);CHKERRQ(ierr);
  ierr = MatScale(shell_ctx->Kbasis_mat,m_one);CHKERRQ(ierr);

  /* Rebuild local PC */
  ierr = KSPGetPC(*local_ksp,&shell_ctx->local_pc);CHKERRQ(ierr);
  ierr = PetscObjectReference((PetscObject)shell_ctx->local_pc);CHKERRQ(ierr);
  ierr = PCCreate(PETSC_COMM_SELF,&newpc);CHKERRQ(ierr);
  ierr = PCSetOperators(newpc,local_mat,local_mat,SAME_PRECONDITIONER);CHKERRQ(ierr);
  ierr = PCSetType(newpc,PCSHELL);CHKERRQ(ierr);
  ierr = PCShellSetContext(newpc,shell_ctx);CHKERRQ(ierr);
  ierr = PCShellSetApply(newpc,PCBDDCApplyNullSpaceCorrectionPC);CHKERRQ(ierr);
  ierr = PCShellSetDestroy(newpc,PCBDDCDestroyNullSpaceCorrectionPC);CHKERRQ(ierr);
  ierr = PCSetUp(newpc);CHKERRQ(ierr);
  ierr = KSPSetPC(*local_ksp,newpc);CHKERRQ(ierr);
  ierr = PCDestroy(&newpc);CHKERRQ(ierr);
  ierr = KSPSetUp(*local_ksp);CHKERRQ(ierr);
  /* test */
  /* TODO: this cause a deadlock when doing multilevel */
#if 0
  if (pcbddc->dbg_flag) {
    KSP         check_ksp;
    PC          check_pc;
    Mat         test_mat;
    Vec         work3;
    PetscViewer viewer=pcbddc->dbg_viewer;
    PetscReal   test_err,lambda_min,lambda_max;
    PetscBool   setsym,issym=PETSC_FALSE;

    ierr = KSPGetPC(*local_ksp,&check_pc);CHKERRQ(ierr);
    ierr = VecDuplicate(shell_ctx->work_full_1,&work1);CHKERRQ(ierr);
    ierr = VecDuplicate(shell_ctx->work_full_1,&work2);CHKERRQ(ierr);
    ierr = VecDuplicate(shell_ctx->work_full_1,&work3);CHKERRQ(ierr);
    ierr = VecSetRandom(shell_ctx->work_small_1,NULL);CHKERRQ(ierr);
    ierr = MatMult(shell_ctx->basis_mat,shell_ctx->work_small_1,work1);CHKERRQ(ierr);
    ierr = VecCopy(work1,work2);CHKERRQ(ierr);
    ierr = MatMult(local_mat,work1,work3);CHKERRQ(ierr);
    ierr = PCApply(check_pc,work3,work1);CHKERRQ(ierr);
    ierr = VecAXPY(work1,m_one,work2);CHKERRQ(ierr);
    ierr = VecNorm(work1,NORM_INFINITY,&test_err);CHKERRQ(ierr);
    ierr = PetscViewerASCIISynchronizedPrintf(viewer,"Subdomain %04d error for nullspace correction for ",PetscGlobalRank);
    if (basis_dofs == n_I) {
      ierr = PetscViewerASCIISynchronizedPrintf(viewer,"Dirichlet ");
    } else {
      ierr = PetscViewerASCIISynchronizedPrintf(viewer,"Neumann ");
    }
    ierr = PetscViewerASCIISynchronizedPrintf(viewer,"solver is :%1.14e\n",test_err);

    ierr = MatTransposeMatMult(shell_ctx->Lbasis_mat,shell_ctx->Kbasis_mat,MAT_INITIAL_MATRIX,PETSC_DEFAULT,&test_mat);CHKERRQ(ierr);
    ierr = MatShift(test_mat,one);CHKERRQ(ierr);
    ierr = MatNorm(test_mat,NORM_INFINITY,&test_err);CHKERRQ(ierr);
    ierr = MatDestroy(&test_mat);CHKERRQ(ierr);
    ierr = PetscViewerASCIISynchronizedPrintf(viewer,"Subdomain %04d error for nullspace matrices is :%1.14e\n",PetscGlobalRank,test_err);

    /* Create ksp object suitable for extreme eigenvalues' estimation */
    ierr = KSPCreate(PETSC_COMM_SELF,&check_ksp);CHKERRQ(ierr);
    ierr = KSPSetOperators(check_ksp,local_mat,local_mat,SAME_PRECONDITIONER);CHKERRQ(ierr);
    ierr = KSPSetTolerances(check_ksp,1.e-8,1.e-8,PETSC_DEFAULT,basis_dofs);CHKERRQ(ierr);
    ierr = KSPSetComputeSingularValues(check_ksp,PETSC_TRUE);CHKERRQ(ierr);
    ierr = MatIsSymmetricKnown(pc->pmat,&setsym,&issym);CHKERRQ(ierr);
    if (issym) {
      ierr = KSPSetType(check_ksp,KSPCG);CHKERRQ(ierr);
    }
    ierr = KSPSetPC(check_ksp,check_pc);CHKERRQ(ierr);
    ierr = KSPSetUp(check_ksp);CHKERRQ(ierr);
    ierr = VecSetRandom(work1,NULL);CHKERRQ(ierr);
    ierr = MatMult(local_mat,work1,work2);CHKERRQ(ierr);
    ierr = KSPSolve(check_ksp,work2,work2);CHKERRQ(ierr);
    ierr = VecAXPY(work2,m_one,work1);CHKERRQ(ierr);
    ierr = VecNorm(work2,NORM_INFINITY,&test_err);CHKERRQ(ierr);
    ierr = KSPComputeExtremeSingularValues(check_ksp,&lambda_max,&lambda_min);CHKERRQ(ierr);
    ierr = KSPGetIterationNumber(check_ksp,&k);CHKERRQ(ierr);
    ierr = PetscViewerASCIISynchronizedPrintf(viewer,"Subdomain %04d error for adapted KSP %1.14e (it %d, eigs %1.6e %1.6e)\n",PetscGlobalRank,test_err,k,lambda_min,lambda_max);
    ierr = KSPDestroy(&check_ksp);CHKERRQ(ierr);
    ierr = VecDestroy(&work1);CHKERRQ(ierr);
    ierr = VecDestroy(&work2);CHKERRQ(ierr);
    ierr = VecDestroy(&work3);CHKERRQ(ierr);
    ierr = PetscViewerFlush(viewer);CHKERRQ(ierr);
  }
#endif
  PetscFunctionReturn(0);
}
Exemple #17
0
int main(int argc,char **args)
{
  Mat             A,B;
  Vec             xx,s1,s2,yy;
  PetscErrorCode ierr;
  PetscInt        m=45,rows[2],cols[2],bs=1,i,row,col,*idx,M;
  PetscScalar     rval,vals1[4],vals2[4];
  PetscRandom     rdm;
  IS              is1,is2;
  PetscReal       s1norm,s2norm,rnorm,tol = 1.e-4;
  PetscBool       flg;
  MatFactorInfo   info;

  PetscInitialize(&argc,&args,(char *)0,help);

  /* Test MatSetValues() and MatGetValues() */
  ierr = PetscOptionsGetInt(PETSC_NULL,"-mat_block_size",&bs,PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(PETSC_NULL,"-mat_size",&m,PETSC_NULL);CHKERRQ(ierr);
  M    = m*bs;
  ierr = MatCreateSeqBAIJ(PETSC_COMM_SELF,bs,M,M,1,PETSC_NULL,&A);CHKERRQ(ierr);
  ierr = MatSetOption(A,MAT_NEW_NONZERO_ALLOCATION_ERR,PETSC_FALSE);CHKERRQ(ierr);
  ierr = MatCreateSeqAIJ(PETSC_COMM_SELF,M,M,15,PETSC_NULL,&B);CHKERRQ(ierr);
  ierr = MatSetOption(B,MAT_NEW_NONZERO_ALLOCATION_ERR,PETSC_FALSE);CHKERRQ(ierr);
  ierr = PetscRandomCreate(PETSC_COMM_SELF,&rdm);CHKERRQ(ierr);
  ierr = PetscRandomSetFromOptions(rdm);CHKERRQ(ierr);
  ierr = VecCreateSeq(PETSC_COMM_SELF,M,&xx);CHKERRQ(ierr);
  ierr = VecDuplicate(xx,&s1);CHKERRQ(ierr);
  ierr = VecDuplicate(xx,&s2);CHKERRQ(ierr);
  ierr = VecDuplicate(xx,&yy);CHKERRQ(ierr);

  /* For each row add atleast 15 elements */
  for (row=0; row<M; row++) {
    for (i=0; i<25*bs; i++) {
      ierr = PetscRandomGetValue(rdm,&rval);CHKERRQ(ierr);
      col  = (PetscInt)(PetscRealPart(rval)*M);
      ierr = MatSetValues(A,1,&row,1,&col,&rval,INSERT_VALUES);CHKERRQ(ierr);
      ierr = MatSetValues(B,1,&row,1,&col,&rval,INSERT_VALUES);CHKERRQ(ierr);
    }
  }

  /* Now set blocks of values */
  for (i=0; i<20*bs; i++) {
    ierr = PetscRandomGetValue(rdm,&rval);CHKERRQ(ierr);
    cols[0] = (PetscInt)(PetscRealPart(rval)*M);
    vals1[0] = rval;
    ierr = PetscRandomGetValue(rdm,&rval);CHKERRQ(ierr);
    cols[1] = (PetscInt)(PetscRealPart(rval)*M);
    vals1[1] = rval;
    ierr = PetscRandomGetValue(rdm,&rval);CHKERRQ(ierr);
    rows[0] = (PetscInt)(PetscRealPart(rval)*M);
    vals1[2] = rval;
    ierr = PetscRandomGetValue(rdm,&rval);CHKERRQ(ierr);
    rows[1] = (PetscInt)(PetscRealPart(rval)*M);
    vals1[3] = rval;
    ierr = MatSetValues(A,2,rows,2,cols,vals1,INSERT_VALUES);CHKERRQ(ierr);
    ierr = MatSetValues(B,2,rows,2,cols,vals1,INSERT_VALUES);CHKERRQ(ierr);
  }

  ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

  /* Test MatNorm() */
  ierr = MatNorm(A,NORM_FROBENIUS,&s1norm);CHKERRQ(ierr);
  ierr = MatNorm(B,NORM_FROBENIUS,&s2norm);CHKERRQ(ierr);
  rnorm = PetscAbsScalar(s2norm-s1norm)/s2norm;
  if ( rnorm>tol ) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatNorm_FROBENIUS()- NormA=%16.14e NormB=%16.14e bs = %D\n",s1norm,s2norm,bs);CHKERRQ(ierr);
  }
  ierr = MatNorm(A,NORM_INFINITY,&s1norm);CHKERRQ(ierr);
  ierr = MatNorm(B,NORM_INFINITY,&s2norm);CHKERRQ(ierr);
  rnorm = PetscAbsScalar(s2norm-s1norm)/s2norm;
  if ( rnorm>tol ) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatNorm_INFINITY()- NormA=%16.14e NormB=%16.14e bs = %D\n",s1norm,s2norm,bs);CHKERRQ(ierr);
  }
  ierr = MatNorm(A,NORM_1,&s1norm);CHKERRQ(ierr);
  ierr = MatNorm(B,NORM_1,&s2norm);CHKERRQ(ierr);
  rnorm = PetscAbsScalar(s2norm-s1norm)/s2norm;
  if ( rnorm>tol ) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatNorm_NORM_1()- NormA=%16.14e NormB=%16.14e bs = %D\n",s1norm,s2norm,bs);CHKERRQ(ierr);
  }

  /* MatShift() */
  rval = 10*s1norm;
  ierr = MatShift(A,rval);CHKERRQ(ierr);
  ierr = MatShift(B,rval);CHKERRQ(ierr);

  /* Test MatTranspose() */
  ierr = MatTranspose(A,MAT_REUSE_MATRIX,&A);CHKERRQ(ierr);
  ierr = MatTranspose(B,MAT_REUSE_MATRIX,&B);CHKERRQ(ierr);

  /* Now do MatGetValues()  */
  for (i=0; i<30; i++) {
    ierr = PetscRandomGetValue(rdm,&rval);CHKERRQ(ierr);
    cols[0] = (PetscInt)(PetscRealPart(rval)*M);
    ierr = PetscRandomGetValue(rdm,&rval);CHKERRQ(ierr);
    cols[1] = (PetscInt)(PetscRealPart(rval)*M);
    ierr = PetscRandomGetValue(rdm,&rval);CHKERRQ(ierr);
    rows[0] = (PetscInt)(PetscRealPart(rval)*M);
    ierr = PetscRandomGetValue(rdm,&rval);CHKERRQ(ierr);
    rows[1] = (PetscInt)(PetscRealPart(rval)*M);
    ierr = MatGetValues(A,2,rows,2,cols,vals1);CHKERRQ(ierr);
    ierr = MatGetValues(B,2,rows,2,cols,vals2);CHKERRQ(ierr);
    ierr = PetscMemcmp(vals1,vals2,4*sizeof(PetscScalar),&flg);CHKERRQ(ierr);
    if (!flg) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatGetValues bs = %D\n",bs);CHKERRQ(ierr);
    }
  }

  /* Test MatMult(), MatMultAdd() */
  for (i=0; i<40; i++) {
    ierr = VecSetRandom(xx,rdm);CHKERRQ(ierr);
    ierr = VecSet(s2,0.0);CHKERRQ(ierr);
    ierr = MatMult(A,xx,s1);CHKERRQ(ierr);
    ierr = MatMultAdd(A,xx,s2,s2);CHKERRQ(ierr);
    ierr = VecNorm(s1,NORM_2,&s1norm);CHKERRQ(ierr);
    ierr = VecNorm(s2,NORM_2,&s2norm);CHKERRQ(ierr);
    rnorm = s2norm-s1norm;
    if (rnorm<-tol || rnorm>tol) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"MatMult not equal to MatMultAdd Norm1=%e Norm2=%e bs = %D\n",s1norm,s2norm,bs);CHKERRQ(ierr);
    }
  }

  /* Test MatMult() */
  ierr = MatMultEqual(A,B,10,&flg);CHKERRQ(ierr);
  if (!flg){
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatMult()\n");CHKERRQ(ierr);
  }

  /* Test MatMultAdd() */
  ierr = MatMultAddEqual(A,B,10,&flg);CHKERRQ(ierr);
  if (!flg){
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatMultAdd()\n");CHKERRQ(ierr);
  }

  /* Test MatMultTranspose() */
  ierr = MatMultTransposeEqual(A,B,10,&flg);CHKERRQ(ierr);
  if (!flg){
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatMultTranspose()\n");CHKERRQ(ierr);
  }

  /* Test MatMultTransposeAdd() */
  ierr = MatMultTransposeAddEqual(A,B,10,&flg);CHKERRQ(ierr);
  if (!flg){
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error: MatMultTransposeAdd()\n");CHKERRQ(ierr);
  }

  /* Do LUFactor() on both the matrices */
  ierr = PetscMalloc(M*sizeof(PetscInt),&idx);CHKERRQ(ierr);
  for (i=0; i<M; i++) idx[i] = i;
  ierr = ISCreateGeneral(PETSC_COMM_SELF,M,idx,PETSC_COPY_VALUES,&is1);CHKERRQ(ierr);
  ierr = ISCreateGeneral(PETSC_COMM_SELF,M,idx,PETSC_COPY_VALUES,&is2);CHKERRQ(ierr);
  ierr = PetscFree(idx);CHKERRQ(ierr);
  ierr = ISSetPermutation(is1);CHKERRQ(ierr);
  ierr = ISSetPermutation(is2);CHKERRQ(ierr);

  ierr = MatFactorInfoInitialize(&info);CHKERRQ(ierr);
  info.fill      = 2.0;
  info.dtcol     = 0.0;
  info.zeropivot = 1.e-14;
  info.pivotinblocks = 1.0;
  ierr = MatLUFactor(B,is1,is2,&info);CHKERRQ(ierr);
  ierr = MatLUFactor(A,is1,is2,&info);CHKERRQ(ierr);

  /* Test MatSolveAdd() */
  for (i=0; i<10; i++) {
    ierr = VecSetRandom(xx,rdm);CHKERRQ(ierr);
    ierr = VecSetRandom(yy,rdm);CHKERRQ(ierr);
    ierr = MatSolveAdd(B,xx,yy,s2);CHKERRQ(ierr);
    ierr = MatSolveAdd(A,xx,yy,s1);CHKERRQ(ierr);
    ierr = VecNorm(s1,NORM_2,&s1norm);CHKERRQ(ierr);
    ierr = VecNorm(s2,NORM_2,&s2norm);CHKERRQ(ierr);
    rnorm = s2norm-s1norm;
    if (rnorm<-tol || rnorm>tol) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"Error:MatSolveAdd - Norm1=%16.14e Norm2=%16.14e bs = %D\n",s1norm,s2norm,bs);CHKERRQ(ierr);
    }
  }

  /* Test MatSolveAdd() when x = A'b +x */
  for (i=0; i<10; i++) {
    ierr = VecSetRandom(xx,rdm);CHKERRQ(ierr);
    ierr = VecSetRandom(s1,rdm);CHKERRQ(ierr);
    ierr = VecCopy(s2,s1);CHKERRQ(ierr);
    ierr = MatSolveAdd(B,xx,s2,s2);CHKERRQ(ierr);
    ierr = MatSolveAdd(A,xx,s1,s1);CHKERRQ(ierr);
    ierr = VecNorm(s1,NORM_2,&s1norm);CHKERRQ(ierr);
    ierr = VecNorm(s2,NORM_2,&s2norm);CHKERRQ(ierr);
    rnorm = s2norm-s1norm;
    if (rnorm<-tol || rnorm>tol) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"Error:MatSolveAdd(same) - Norm1=%16.14e Norm2=%16.14e bs = %D\n",s1norm,s2norm,bs);CHKERRQ(ierr);
    }
  }

  /* Test MatSolve() */
  for (i=0; i<10; i++) {
    ierr = VecSetRandom(xx,rdm);CHKERRQ(ierr);
    ierr = MatSolve(B,xx,s2);CHKERRQ(ierr);
    ierr = MatSolve(A,xx,s1);CHKERRQ(ierr);
    ierr = VecNorm(s1,NORM_2,&s1norm);CHKERRQ(ierr);
    ierr = VecNorm(s2,NORM_2,&s2norm);CHKERRQ(ierr);
    rnorm = s2norm-s1norm;
    if (rnorm<-tol || rnorm>tol) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"Error:MatSolve - Norm1=%16.14e Norm2=%16.14e bs = %D\n",s1norm,s2norm,bs);CHKERRQ(ierr);
    }
  }

  /* Test MatSolveTranspose() */
  if (bs < 8) {
    for (i=0; i<10; i++) {
      ierr = VecSetRandom(xx,rdm);CHKERRQ(ierr);
      ierr = MatSolveTranspose(B,xx,s2);CHKERRQ(ierr);
      ierr = MatSolveTranspose(A,xx,s1);CHKERRQ(ierr);
      ierr = VecNorm(s1,NORM_2,&s1norm);CHKERRQ(ierr);
      ierr = VecNorm(s2,NORM_2,&s2norm);CHKERRQ(ierr);
      rnorm = s2norm-s1norm;
      if (rnorm<-tol || rnorm>tol) {
        ierr = PetscPrintf(PETSC_COMM_SELF,"Error:MatSolveTranspose - Norm1=%16.14e Norm2=%16.14e bs = %D\n",s1norm,s2norm,bs);CHKERRQ(ierr);
      }
    }
  }

  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = MatDestroy(&B);CHKERRQ(ierr);
  ierr = VecDestroy(&xx);CHKERRQ(ierr);
  ierr = VecDestroy(&s1);CHKERRQ(ierr);
  ierr = VecDestroy(&s2);CHKERRQ(ierr);
  ierr = VecDestroy(&yy);CHKERRQ(ierr);
  ierr = ISDestroy(&is1);CHKERRQ(ierr);
  ierr = ISDestroy(&is2);CHKERRQ(ierr);
  ierr = PetscRandomDestroy(&rdm);CHKERRQ(ierr);
  ierr = PetscFinalize();
  return 0;
}
Exemple #18
0
PetscErrorCode PCBDDCNullSpaceAdaptGlobal(PC pc)
{
  PC_IS*         pcis = (PC_IS*)  (pc->data);
  PC_BDDC*       pcbddc = (PC_BDDC*)(pc->data);
  KSP            inv_change;
  PC             pc_change;
  const Vec      *nsp_vecs;
  Vec            *new_nsp_vecs;
  PetscInt       i,nsp_size,new_nsp_size,start_new;
  PetscBool      nsp_has_cnst;
  MatNullSpace   new_nsp;
  PetscErrorCode ierr;
  MPI_Comm       comm;

  PetscFunctionBegin;
  /* create KSP for change of basis */
  ierr = KSPCreate(PETSC_COMM_SELF,&inv_change);CHKERRQ(ierr);
  ierr = KSPSetOperators(inv_change,pcbddc->ChangeOfBasisMatrix,pcbddc->ChangeOfBasisMatrix,SAME_PRECONDITIONER);CHKERRQ(ierr);
  ierr = KSPSetType(inv_change,KSPPREONLY);CHKERRQ(ierr);
  ierr = KSPGetPC(inv_change,&pc_change);CHKERRQ(ierr);
  ierr = PCSetType(pc_change,PCLU);CHKERRQ(ierr);
  ierr = KSPSetUp(inv_change);CHKERRQ(ierr);
  /* get nullspace and transform it */
  ierr = MatNullSpaceGetVecs(pcbddc->NullSpace,&nsp_has_cnst,&nsp_size,&nsp_vecs);CHKERRQ(ierr);
  new_nsp_size = nsp_size;
  if (nsp_has_cnst) {
    new_nsp_size++;
  }
  ierr = PetscMalloc(new_nsp_size*sizeof(Vec),&new_nsp_vecs);CHKERRQ(ierr);
  for (i=0;i<new_nsp_size;i++) {
    ierr = VecDuplicate(pcis->vec1_global,&new_nsp_vecs[i]);CHKERRQ(ierr);
  }
  start_new = 0;
  if (nsp_has_cnst) {
    start_new = 1;
    ierr = VecSet(new_nsp_vecs[0],1.0);CHKERRQ(ierr);
    ierr = VecSet(pcis->vec1_B,1.0);CHKERRQ(ierr);
    ierr = KSPSolve(inv_change,pcis->vec1_B,pcis->vec1_B);
    ierr = VecScatterBegin(pcis->global_to_B,pcis->vec1_B,new_nsp_vecs[0],INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
    ierr = VecScatterEnd  (pcis->global_to_B,pcis->vec1_B,new_nsp_vecs[0],INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
  }
  for (i=0;i<nsp_size;i++) {
    ierr = VecCopy(nsp_vecs[i],new_nsp_vecs[i+start_new]);CHKERRQ(ierr);
    ierr = VecScatterBegin(pcis->global_to_B,nsp_vecs[i],pcis->vec1_B,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd  (pcis->global_to_B,nsp_vecs[i],pcis->vec1_B,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = KSPSolve(inv_change,pcis->vec1_B,pcis->vec1_B);
    ierr = VecScatterBegin(pcis->global_to_B,pcis->vec1_B,new_nsp_vecs[i+start_new],INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
    ierr = VecScatterEnd  (pcis->global_to_B,pcis->vec1_B,new_nsp_vecs[i+start_new],INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
  }
  ierr = PCBDDCOrthonormalizeVecs(new_nsp_size,new_nsp_vecs);CHKERRQ(ierr);
#if 0
  PetscBool nsp_t=PETSC_FALSE;
  ierr = MatNullSpaceTest(pcbddc->NullSpace,pc->pmat,&nsp_t);CHKERRQ(ierr);
  printf("Original Null Space test: %d\n",nsp_t);
  Mat temp_mat;
  Mat_IS* matis = (Mat_IS*)pc->pmat->data;
    temp_mat = matis->A;
    matis->A = pcbddc->local_mat;
    pcbddc->local_mat = temp_mat;
  ierr = MatNullSpaceTest(pcbddc->NullSpace,pc->pmat,&nsp_t);CHKERRQ(ierr);
  printf("Original Null Space, mat changed test: %d\n",nsp_t);
  {
    PetscReal test_norm;
    for (i=0;i<new_nsp_size;i++) {
      ierr = MatMult(pc->pmat,new_nsp_vecs[i],pcis->vec1_global);CHKERRQ(ierr);
      ierr = VecNorm(pcis->vec1_global,NORM_2,&test_norm);CHKERRQ(ierr);
      if (test_norm > 1.e-12) {
        printf("------------ERROR VEC %d------------------\n",i);
        ierr = VecView(pcis->vec1_global,PETSC_VIEWER_STDOUT_WORLD);
        printf("------------------------------------------\n");
      }
    }
  }
#endif

  ierr = KSPDestroy(&inv_change);CHKERRQ(ierr);
  ierr = PetscObjectGetComm((PetscObject)pc,&comm);CHKERRQ(ierr);
  ierr = MatNullSpaceCreate(comm,PETSC_FALSE,new_nsp_size,new_nsp_vecs,&new_nsp);CHKERRQ(ierr);
  ierr = PCBDDCSetNullSpace(pc,new_nsp);CHKERRQ(ierr);
  ierr = MatNullSpaceDestroy(&new_nsp);CHKERRQ(ierr);
#if 0
  ierr = MatNullSpaceTest(pcbddc->NullSpace,pc->pmat,&nsp_t);CHKERRQ(ierr);
  printf("New Null Space, mat changed: %d\n",nsp_t);
    temp_mat = matis->A;
    matis->A = pcbddc->local_mat;
    pcbddc->local_mat = temp_mat;
  ierr = MatNullSpaceTest(pcbddc->NullSpace,pc->pmat,&nsp_t);CHKERRQ(ierr);
  printf("New Null Space, mat original: %d\n",nsp_t);
#endif

  for (i=0;i<new_nsp_size;i++) {
    ierr = VecDestroy(&new_nsp_vecs[i]);CHKERRQ(ierr);
  }
  ierr = PetscFree(new_nsp_vecs);CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
Exemple #19
0
int main(int argc,char **args)
{
  Mat            C; 
  PetscInt       i,j,m = 5,n = 2,Ii,J;
  PetscErrorCode ierr;
  PetscMPIInt    rank,size;
  PetscScalar    v;
  Vec            x,y;

  PetscInitialize(&argc,&args,(char *)0,help);
  ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&rank);CHKERRQ(ierr);
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  n = 2*size;

  /* Create the matrix for the five point stencil, YET AGAIN */
  ierr = MatCreate(PETSC_COMM_WORLD,&C);CHKERRQ(ierr);
  ierr = MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,m*n,m*n);CHKERRQ(ierr);
  ierr = MatSetFromOptions(C);CHKERRQ(ierr);
  for (i=0; i<m; i++) { 
    for (j=2*rank; j<2*rank+2; j++) {
      v = -1.0;  Ii = j + n*i;
      if (i>0)   {J = Ii - n; ierr = MatSetValues(C,1,&Ii,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr);}
      if (i<m-1) {J = Ii + n; ierr = MatSetValues(C,1,&Ii,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr);}
      if (j>0)   {J = Ii - 1; ierr = MatSetValues(C,1,&Ii,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr);}
      if (j<n-1) {J = Ii + 1; ierr = MatSetValues(C,1,&Ii,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr);}
      v = 4.0; ierr = MatSetValues(C,1,&Ii,1,&Ii,&v,INSERT_VALUES);CHKERRQ(ierr);
    }
  }
  ierr = MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  for (i=0; i<m; i++) {
    for (j=2*rank; j<2*rank+2; j++) {
      v = 1.0;  Ii = j + n*i;
      if (i>0)   {J = Ii - n; ierr = MatSetValues(C,1,&Ii,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr);}
      if (i<m-1) {J = Ii + n; ierr = MatSetValues(C,1,&Ii,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr);}
      if (j>0)   {J = Ii - 1; ierr = MatSetValues(C,1,&Ii,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr);}
      if (j<n-1) {J = Ii + 1; ierr = MatSetValues(C,1,&Ii,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr);}
      v = -4.0; ierr = MatSetValues(C,1,&Ii,1,&Ii,&v,INSERT_VALUES);CHKERRQ(ierr);
    }
  }
  /* Introduce new nonzero that requires new construction for 
      matrix-vector product */
  if (rank) {
    Ii = rank-1; J = m*n-1;
    ierr = MatSetValues(C,1,&Ii,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr);
  }
  ierr = MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

  ierr = MatView(C,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);

  /* Form a couple of vectors to test matrix-vector product */
  ierr = VecCreate(PETSC_COMM_WORLD,&x);CHKERRQ(ierr);
  ierr = VecSetSizes(x,PETSC_DECIDE,m*n);CHKERRQ(ierr);
  ierr = VecSetFromOptions(x);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&y);CHKERRQ(ierr);
  v = 1.0; ierr = VecSet(x,v);CHKERRQ(ierr);
  ierr = MatMult(C,x,y);CHKERRQ(ierr);

  ierr = MatDestroy(C);CHKERRQ(ierr);
  ierr = VecDestroy(x);CHKERRQ(ierr);
  ierr = VecDestroy(y);CHKERRQ(ierr);
  ierr = PetscFinalize();CHKERRQ(ierr);
  return 0;
}
Exemple #20
0
PetscErrorCode PCBDDCNullSpaceAssembleCoarse(PC pc, MatNullSpace* CoarseNullSpace)
{
  PC_BDDC        *pcbddc = (PC_BDDC*)pc->data;
  Mat_IS         *matis = (Mat_IS*)pc->pmat->data;
  MatNullSpace   tempCoarseNullSpace;
  const Vec      *nsp_vecs;
  Vec            *coarse_nsp_vecs,local_vec,local_primal_vec;
  PetscInt       nsp_size,coarse_nsp_size,i;
  PetscBool      nsp_has_cnst;
  PetscReal      test_null;
  PetscErrorCode ierr;

  PetscFunctionBegin;
  tempCoarseNullSpace = 0;
  coarse_nsp_size = 0;
  coarse_nsp_vecs = 0;
  ierr = MatNullSpaceGetVecs(pcbddc->NullSpace,&nsp_has_cnst,&nsp_size,&nsp_vecs);CHKERRQ(ierr);
  if (pcbddc->coarse_mat) {
    ierr = PetscMalloc((nsp_size+1)*sizeof(Vec),&coarse_nsp_vecs);CHKERRQ(ierr);
    for (i=0;i<nsp_size+1;i++) {
      ierr = VecDuplicate(pcbddc->coarse_vec,&coarse_nsp_vecs[i]);CHKERRQ(ierr);
    }
  }
  ierr = MatGetVecs(pcbddc->ConstraintMatrix,&local_vec,&local_primal_vec);CHKERRQ(ierr);
  if (nsp_has_cnst) {
    ierr = VecSet(local_vec,1.0);CHKERRQ(ierr);
    ierr = MatMult(pcbddc->ConstraintMatrix,local_vec,local_primal_vec);CHKERRQ(ierr);
    ierr = PCBDDCScatterCoarseDataBegin(pc,local_primal_vec,pcbddc->coarse_vec,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = PCBDDCScatterCoarseDataEnd(pc,local_primal_vec,pcbddc->coarse_vec,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    if (pcbddc->coarse_mat) {
      if (pcbddc->dbg_flag) {
        ierr = MatMult(pcbddc->coarse_mat,pcbddc->coarse_vec,pcbddc->coarse_rhs);CHKERRQ(ierr);
        ierr = VecNorm(pcbddc->coarse_rhs,NORM_INFINITY,&test_null);CHKERRQ(ierr);
        ierr = PetscViewerASCIIPrintf(pcbddc->dbg_viewer,"Constant coarse null space error % 1.14e\n",test_null);CHKERRQ(ierr);
      }
      ierr = VecCopy(pcbddc->coarse_vec,coarse_nsp_vecs[coarse_nsp_size]);CHKERRQ(ierr);
      coarse_nsp_size++;
    }
  }
  for (i=0;i<nsp_size;i++)  {
    ierr = VecScatterBegin(matis->ctx,nsp_vecs[i],local_vec,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd(matis->ctx,nsp_vecs[i],local_vec,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = MatMult(pcbddc->ConstraintMatrix,local_vec,local_primal_vec);CHKERRQ(ierr);
    ierr = PCBDDCScatterCoarseDataBegin(pc,local_primal_vec,pcbddc->coarse_vec,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = PCBDDCScatterCoarseDataEnd(pc,local_primal_vec,pcbddc->coarse_vec,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    if (pcbddc->coarse_mat) {
      if (pcbddc->dbg_flag) {
        ierr = MatMult(pcbddc->coarse_mat,pcbddc->coarse_vec,pcbddc->coarse_rhs);CHKERRQ(ierr);
        ierr = VecNorm(pcbddc->coarse_rhs,NORM_2,&test_null);CHKERRQ(ierr);
        ierr = PetscViewerASCIIPrintf(pcbddc->dbg_viewer,"Vec %d coarse null space error % 1.14e\n",i,test_null);CHKERRQ(ierr);
      }
      ierr = VecCopy(pcbddc->coarse_vec,coarse_nsp_vecs[coarse_nsp_size]);CHKERRQ(ierr);
      coarse_nsp_size++;
    }
  }
  if (coarse_nsp_size > 0) {
    ierr = PCBDDCOrthonormalizeVecs(coarse_nsp_size,coarse_nsp_vecs);CHKERRQ(ierr);
    ierr = MatNullSpaceCreate(PetscObjectComm((PetscObject)(pcbddc->coarse_mat)),PETSC_FALSE,coarse_nsp_size,coarse_nsp_vecs,&tempCoarseNullSpace);CHKERRQ(ierr);
    for (i=0;i<nsp_size+1;i++) {
      ierr = VecDestroy(&coarse_nsp_vecs[i]);CHKERRQ(ierr);
    }
  }
  ierr = PetscFree(coarse_nsp_vecs);CHKERRQ(ierr);
  ierr = VecDestroy(&local_vec);CHKERRQ(ierr);
  ierr = VecDestroy(&local_primal_vec);CHKERRQ(ierr);
  *CoarseNullSpace = tempCoarseNullSpace;
  PetscFunctionReturn(0);
}
Exemple #21
0
Example: mpiexec -n <np> ./ex130 -f <matrix binary file> -mat_solver_type 1 -mat_superlu_equil \n\n";

#include <petscmat.h>

int main(int argc,char **args)
{
  Mat            A,F;
  Vec            u,x,b;
  PetscErrorCode ierr;
  PetscMPIInt    rank,size;
  PetscInt       m,n,nfact,ipack=0;
  PetscReal      norm,tol=1.e-12,Anorm;
  IS             perm,iperm;
  MatFactorInfo  info;
  PetscBool      flg,testMatSolve=PETSC_TRUE;
  PetscViewer    fd;              /* viewer */
  char           file[PETSC_MAX_PATH_LEN]; /* input file name */

  ierr = PetscInitialize(&argc,&args,(char*)0,help);if (ierr) return ierr;
  ierr = MPI_Comm_rank(PETSC_COMM_WORLD, &rank);CHKERRQ(ierr);
  ierr = MPI_Comm_size(PETSC_COMM_WORLD, &size);CHKERRQ(ierr);

  /* Determine file from which we read the matrix A */
  ierr = PetscOptionsGetString(NULL,NULL,"-f",file,PETSC_MAX_PATH_LEN,&flg);CHKERRQ(ierr);
  if (!flg) SETERRQ(PETSC_COMM_WORLD,1,"Must indicate binary file with the -f option");

  /* Load matrix A */
  ierr = PetscViewerBinaryOpen(PETSC_COMM_WORLD,file,FILE_MODE_READ,&fd);CHKERRQ(ierr);
  ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
  ierr = MatLoad(A,fd);CHKERRQ(ierr);
  ierr = VecCreate(PETSC_COMM_WORLD,&b);CHKERRQ(ierr);
  ierr = VecLoad(b,fd);CHKERRQ(ierr);
  ierr = PetscViewerDestroy(&fd);CHKERRQ(ierr);
  ierr = MatGetLocalSize(A,&m,&n);CHKERRQ(ierr);
  if (m != n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ, "This example is not intended for rectangular matrices (%d, %d)", m, n);
  ierr = MatNorm(A,NORM_INFINITY,&Anorm);CHKERRQ(ierr);

  /* Create vectors */
  ierr = VecDuplicate(b,&x);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&u);CHKERRQ(ierr); /* save the true solution */

  /* Test LU Factorization */
  ierr = MatGetOrdering(A,MATORDERINGNATURAL,&perm,&iperm);CHKERRQ(ierr);

  ierr = PetscOptionsGetInt(NULL,NULL,"-mat_solver_type",&ipack,NULL);CHKERRQ(ierr);
  switch (ipack) {
  case 1:
#if defined(PETSC_HAVE_SUPERLU)
    if (!rank) printf(" SUPERLU LU:\n");
    ierr = MatGetFactor(A,MATSOLVERSUPERLU,MAT_FACTOR_LU,&F);CHKERRQ(ierr);
    break;
#endif
  case 2:
#if defined(PETSC_HAVE_MUMPS)
    if (!rank) printf(" MUMPS LU:\n");
    ierr = MatGetFactor(A,MATSOLVERMUMPS,MAT_FACTOR_LU,&F);CHKERRQ(ierr);
    {
      /* test mumps options */
      PetscInt icntl_7 = 5;
      ierr = MatMumpsSetIcntl(F,7,icntl_7);CHKERRQ(ierr);
    }
    break;
#endif
  default:
    if (!rank) printf(" PETSC LU:\n");
    ierr = MatGetFactor(A,MATSOLVERPETSC,MAT_FACTOR_LU,&F);CHKERRQ(ierr);
  }

  info.fill = 5.0;
  ierr      = MatLUFactorSymbolic(F,A,perm,iperm,&info);CHKERRQ(ierr);

  for (nfact = 0; nfact < 1; nfact++) {
    if (!rank) printf(" %d-the LU numfactorization \n",nfact);
    ierr = MatLUFactorNumeric(F,A,&info);CHKERRQ(ierr);

    /* Test MatSolve() */
    if (testMatSolve) {
      ierr = MatSolve(F,b,x);CHKERRQ(ierr);

      /* Check the residual */
      ierr = MatMult(A,x,u);CHKERRQ(ierr);
      ierr = VecAXPY(u,-1.0,b);CHKERRQ(ierr);
      ierr = VecNorm(u,NORM_INFINITY,&norm);CHKERRQ(ierr);
      if (norm > tol) {
        if (!rank) {
          ierr = PetscPrintf(PETSC_COMM_SELF,"MatSolve: rel residual %g/%g = %g, LU numfact %d\n",norm,Anorm,norm/Anorm,nfact);CHKERRQ(ierr);
        }
      }
    }
  }

  /* Free data structures */
  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = MatDestroy(&F);CHKERRQ(ierr);
  ierr = ISDestroy(&perm);CHKERRQ(ierr);
  ierr = ISDestroy(&iperm);CHKERRQ(ierr);
  ierr = VecDestroy(&x);CHKERRQ(ierr);
  ierr = VecDestroy(&b);CHKERRQ(ierr);
  ierr = VecDestroy(&u);CHKERRQ(ierr);
  ierr = PetscFinalize();
  return ierr;
}
Exemple #22
0
int main(int argc,char *argv[])
{
  char mat_type[256]  = "aij";  /* default matrix type */
  PetscErrorCode ierr;
  MPI_Comm       comm;
  PetscMPIInt    rank,size;
  Sliced         slice;
  PetscInt       i,bs=1,N=5,n,m,rstart,ghosts[2],*d_nnz,*o_nnz,dfill[4]={1,0,0,1},ofill[4]={1,1,1,1};
  PetscReal      alpha=1,K=1,rho0=1,u0=0,sigma=0.2;
  PetscTruth     useblock=PETSC_TRUE;
  PetscScalar    *xx;
  Mat            A;
  Vec            x,b,lf;

  ierr = PetscInitialize(&argc,&argv,0,help);CHKERRQ(ierr);
  comm = PETSC_COMM_WORLD;
  ierr = MPI_Comm_size(comm,&size);CHKERRQ(ierr);
  ierr = MPI_Comm_rank(comm,&rank);CHKERRQ(ierr);

  ierr = PetscOptionsBegin(comm,0,"Options for Sliced test",0);CHKERRQ(ierr);
  {
    ierr = PetscOptionsInt("-n","Global number of nodes","",N,&N,PETSC_NULL);CHKERRQ(ierr);
    ierr = PetscOptionsInt("-bs","Block size (1 or 2)","",bs,&bs,PETSC_NULL);CHKERRQ(ierr);
    if (bs != 1) {
      if (bs != 2) SETERRQ(1,"Block size must be 1 or 2");
      ierr = PetscOptionsReal("-alpha","Inverse time step for wave operator","",alpha,&alpha,PETSC_NULL);CHKERRQ(ierr);
      ierr = PetscOptionsReal("-K","Bulk modulus of compressibility","",K,&K,PETSC_NULL);CHKERRQ(ierr);
      ierr = PetscOptionsReal("-rho0","Reference density","",rho0,&rho0,PETSC_NULL);CHKERRQ(ierr);
      ierr = PetscOptionsReal("-u0","Reference velocity","",u0,&u0,PETSC_NULL);CHKERRQ(ierr);
      ierr = PetscOptionsReal("-sigma","Width of Gaussian density perturbation","",sigma,&sigma,PETSC_NULL);CHKERRQ(ierr);
      ierr = PetscOptionsTruth("-block","Use block matrix assembly","",useblock,&useblock,PETSC_NULL);CHKERRQ(ierr);
    }
    ierr = PetscOptionsString("-sliced_mat_type","Matrix type to use (aij or baij)","",mat_type,mat_type,sizeof mat_type,PETSC_NULL);CHKERRQ(ierr);
  }
  ierr = PetscOptionsEnd();CHKERRQ(ierr);

  /* Split ownership, set up periodic grid in 1D */
  n = PETSC_DECIDE;
  ierr = PetscSplitOwnership(comm,&n,&N);CHKERRQ(ierr);
  rstart = 0;
  ierr = MPI_Scan(&n,&rstart,1,MPIU_INT,MPI_SUM,comm);CHKERRQ(ierr);
  rstart -= n;
  ghosts[0] = (N+rstart-1)%N;
  ghosts[1] = (rstart+n)%N;

  ierr = SlicedCreate(comm,&slice);CHKERRQ(ierr);
  ierr = SlicedSetGhosts(slice,bs,n,2,ghosts);CHKERRQ(ierr);
  ierr = PetscMalloc2(n,PetscInt,&d_nnz,n,PetscInt,&o_nnz);CHKERRQ(ierr);
  for (i=0; i<n; i++) {
    if (size > 1 && (i==0 || i==n-1)) {
      d_nnz[i] = 2;
      o_nnz[i] = 1;
    } else {
      d_nnz[i] = 3;
      o_nnz[i] = 0;
    }
  }
  ierr = SlicedSetPreallocation(slice,0,d_nnz,0,o_nnz);CHKERRQ(ierr); /* Currently does not copy X_nnz so we can't free them until after SlicedGetMatrix */

  if (!useblock) {ierr = SlicedSetBlockFills(slice,dfill,ofill);CHKERRQ(ierr);} /* Irrelevant for baij formats */
  ierr = SlicedGetMatrix(slice,mat_type,&A);CHKERRQ(ierr);
  ierr = PetscFree2(d_nnz,o_nnz);CHKERRQ(ierr);
  ierr = MatSetOption(A,MAT_NEW_NONZERO_ALLOCATION_ERR,PETSC_TRUE);CHKERRQ(ierr);

  ierr = SlicedCreateGlobalVector(slice,&x);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&b);CHKERRQ(ierr);

  ierr = VecGhostGetLocalForm(x,&lf);CHKERRQ(ierr);
  ierr = VecGetSize(lf,&m);CHKERRQ(ierr);
  if (m != (n+2)*bs) SETERRQ2(1,"size of local form %D, expected %D",m,(n+2)*bs);
  ierr = VecGetArray(lf,&xx);CHKERRQ(ierr);
  for (i=0; i<n; i++) {
    PetscInt row[2],col[9],im,ip;
    PetscScalar v[12];
    const PetscReal xref = 2.0*(rstart+i)/N - 1; /* [-1,1] */
    const PetscReal h = 1.0/N;                   /* grid spacing */
    im = (i==0) ? n : i-1;
    ip = (i==n-1) ? n+1 : i+1;
    switch (bs) {
      case 1:                   /* Laplacian with periodic boundaries */
        col[0] = im;         col[1] = i;        col[2] = ip;
          v[0] = -h;           v[1] = 2*h;        v[2] = -h;
        ierr = MatSetValuesLocal(A,1,&i,3,col,v,INSERT_VALUES);CHKERRQ(ierr);
        xx[i] = sin(xref*PETSC_PI);
        break;
      case 2:                   /* Linear acoustic wave operator in variables [rho, u], central differences, periodic, timestep 1/alpha */
        v[0] = -0.5*u0;   v[1] = -0.5*K;      v[2] = alpha; v[3] = 0;       v[4] = 0.5*u0;    v[5] = 0.5*K;
        v[6] = -0.5/rho0; v[7] = -0.5*u0;     v[8] = 0;     v[9] = alpha;   v[10] = 0.5/rho0; v[11] = 0.5*u0;
        if (useblock) {
          row[0] = i; col[0] = im; col[1] = i; col[2] = ip;
          ierr = MatSetValuesBlockedLocal(A,1,row,3,col,v,INSERT_VALUES);CHKERRQ(ierr);
        } else {
          row[0] = 2*i; row[1] = 2*i+1;
          col[0] = 2*im; col[1] = 2*im+1; col[2] = 2*i; col[3] = 2*ip; col[4] = 2*ip+1;
          v[3] = v[4]; v[4] = v[5];                                                     /* pack values in first row */
          ierr = MatSetValuesLocal(A,1,row,5,col,v,INSERT_VALUES);CHKERRQ(ierr);
          col[2] = 2*i+1;
          v[8] = v[9]; v[9] = v[10]; v[10] = v[11];                                     /* pack values in second row */
          ierr = MatSetValuesLocal(A,1,row+1,5,col,v+6,INSERT_VALUES);CHKERRQ(ierr);
        }
        /* Set current state (gaussian density perturbation) */
        xx[2*i] = 0.2*exp(-PetscSqr(xref)/(2*PetscSqr(sigma)));
        xx[2*i+1] = 0;
        break;
      default: SETERRQ1(1,"not implemented for block size %D",bs);
    }
  }
  ierr = VecRestoreArray(lf,&xx);CHKERRQ(ierr);
  ierr = VecGhostRestoreLocalForm(x,&lf);CHKERRQ(ierr);
  ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

  ierr = MatMult(A,x,b);CHKERRQ(ierr);
  ierr = MatView(A,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = VecView(x,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = VecView(b,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);

  /* Update the ghosted values, view the result on rank 0. */
  ierr = VecGhostUpdateBegin(b,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
  ierr = VecGhostUpdateEnd(b,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
  if (!rank) {
    ierr = VecGhostGetLocalForm(b,&lf);CHKERRQ(ierr);
    ierr = PetscViewerASCIIPrintf(PETSC_VIEWER_STDOUT_SELF,"Local form of b on rank 0, last two nodes are ghost nodes\n");CHKERRQ(ierr);
    ierr = VecView(lf,PETSC_VIEWER_STDOUT_SELF);CHKERRQ(ierr);
    ierr = VecGhostRestoreLocalForm(b,&lf);CHKERRQ(ierr);
  }

  ierr = SlicedDestroy(slice);CHKERRQ(ierr);
  ierr = VecDestroy(x);CHKERRQ(ierr);
  ierr = VecDestroy(b);CHKERRQ(ierr);
  ierr = MatDestroy(A);CHKERRQ(ierr);
  ierr = PetscFinalize();CHKERRQ(ierr);
  return 0;
}
Exemple #23
0
PetscErrorCode PCBDDCSetupFETIDPMatContext(FETIDPMat_ctx fetidpmat_ctx )
{
  PetscErrorCode ierr;
  PC_IS          *pcis=(PC_IS*)fetidpmat_ctx->pc->data;
  PC_BDDC        *pcbddc=(PC_BDDC*)fetidpmat_ctx->pc->data;
  PCBDDCGraph    mat_graph=pcbddc->mat_graph;
  Mat_IS         *matis  = (Mat_IS*)fetidpmat_ctx->pc->pmat->data;
  MPI_Comm       comm;
  Mat            ScalingMat;
  Vec            lambda_global;
  IS             IS_l2g_lambda;
  PetscBool      skip_node,fully_redundant;
  PetscInt       i,j,k,s,n_boundary_dofs,n_global_lambda,n_vertices,partial_sum;
  PetscInt       n_local_lambda,n_lambda_for_dof,dual_size,n_neg_values,n_pos_values;
  PetscMPIInt    rank,size,buf_size,neigh;
  PetscScalar    scalar_value;
  PetscInt       *vertex_indices;
  PetscInt       *dual_dofs_boundary_indices,*aux_local_numbering_1,*aux_global_numbering;
  PetscInt       *aux_sums,*cols_B_delta,*l2g_indices;
  PetscScalar    *array,*scaling_factors,*vals_B_delta;
  PetscInt       *aux_local_numbering_2;
  /* For communication of scaling factors */
  PetscInt       *ptrs_buffer,neigh_position;
  PetscScalar    **all_factors,*send_buffer,*recv_buffer;
  MPI_Request    *send_reqs,*recv_reqs;
  /* tests */
  Vec            test_vec;
  PetscBool      test_fetidp;
  PetscViewer    viewer;

  PetscFunctionBegin;
  ierr = PetscObjectGetComm((PetscObject)(fetidpmat_ctx->pc),&comm);CHKERRQ(ierr);
  ierr = MPI_Comm_rank(comm,&rank);CHKERRQ(ierr);
  ierr = MPI_Comm_size(comm,&size);CHKERRQ(ierr);

  /* Default type of lagrange multipliers is non-redundant */
  fully_redundant = PETSC_FALSE;
  ierr = PetscOptionsGetBool(NULL,"-fetidp_fullyredundant",&fully_redundant,NULL);CHKERRQ(ierr);

  /* Evaluate local and global number of lagrange multipliers */
  ierr = VecSet(pcis->vec1_N,0.0);CHKERRQ(ierr);
  n_local_lambda = 0;
  partial_sum = 0;
  n_boundary_dofs = 0;
  s = 0;
  /* Get Vertices used to define the BDDC */
  ierr = PCBDDCGetPrimalVerticesLocalIdx(fetidpmat_ctx->pc,&n_vertices,&vertex_indices);CHKERRQ(ierr);
  dual_size = pcis->n_B-n_vertices;
  ierr = PetscSortInt(n_vertices,vertex_indices);CHKERRQ(ierr);
  ierr = PetscMalloc1(dual_size,&dual_dofs_boundary_indices);CHKERRQ(ierr);
  ierr = PetscMalloc1(dual_size,&aux_local_numbering_1);CHKERRQ(ierr);
  ierr = PetscMalloc1(dual_size,&aux_local_numbering_2);CHKERRQ(ierr);

  ierr = VecGetArray(pcis->vec1_N,&array);CHKERRQ(ierr);
  for (i=0;i<pcis->n;i++){
    j = mat_graph->count[i]; /* RECALL: mat_graph->count[i] does not count myself */
    if ( j > 0 ) {
      n_boundary_dofs++;
    }
    skip_node = PETSC_FALSE;
    if ( s < n_vertices && vertex_indices[s]==i) { /* it works for a sorted set of vertices */
      skip_node = PETSC_TRUE;
      s++;
    }
    if (j < 1) {
      skip_node = PETSC_TRUE;
    }
    if ( !skip_node ) {
      if (fully_redundant) {
        /* fully redundant set of lagrange multipliers */
        n_lambda_for_dof = (j*(j+1))/2;
      } else {
        n_lambda_for_dof = j;
      }
      n_local_lambda += j;
      /* needed to evaluate global number of lagrange multipliers */
      array[i]=(1.0*n_lambda_for_dof)/(j+1.0); /* already scaled for the next global sum */
      /* store some data needed */
      dual_dofs_boundary_indices[partial_sum] = n_boundary_dofs-1;
      aux_local_numbering_1[partial_sum] = i;
      aux_local_numbering_2[partial_sum] = n_lambda_for_dof;
      partial_sum++;
    }
  }
  ierr = VecRestoreArray(pcis->vec1_N,&array);CHKERRQ(ierr);

  ierr = VecSet(pcis->vec1_global,0.0);CHKERRQ(ierr);
  ierr = VecScatterBegin(matis->ctx,pcis->vec1_N,pcis->vec1_global,ADD_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
  ierr = VecScatterEnd  (matis->ctx,pcis->vec1_N,pcis->vec1_global,ADD_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
  ierr = VecSum(pcis->vec1_global,&scalar_value);CHKERRQ(ierr);
  fetidpmat_ctx->n_lambda = (PetscInt)PetscRealPart(scalar_value);

  /* compute global ordering of lagrange multipliers and associate l2g map */
  ierr = PCBDDCSubsetNumbering(comm,matis->mapping,partial_sum,aux_local_numbering_1,aux_local_numbering_2,&i,&aux_global_numbering);CHKERRQ(ierr);
  if (i != fetidpmat_ctx->n_lambda) {
    SETERRQ3(PETSC_COMM_WORLD,PETSC_ERR_PLIB,"Error in %s: global number of multipliers mismatch! (%d!=%d)\n",__FUNCT__,fetidpmat_ctx->n_lambda,i);
  }
  ierr = PetscFree(aux_local_numbering_2);CHKERRQ(ierr);

  /* init data for scaling factors exchange */
  partial_sum = 0;
  j = 0;
  ierr = PetscMalloc1(pcis->n_neigh,&ptrs_buffer);CHKERRQ(ierr);
  ierr = PetscMalloc1(pcis->n_neigh-1,&send_reqs);CHKERRQ(ierr);
  ierr = PetscMalloc1(pcis->n_neigh-1,&recv_reqs);CHKERRQ(ierr);
  ierr = PetscMalloc1(pcis->n,&all_factors);CHKERRQ(ierr);
  ptrs_buffer[0]=0;
  for (i=1;i<pcis->n_neigh;i++) {
    partial_sum += pcis->n_shared[i];
    ptrs_buffer[i] = ptrs_buffer[i-1]+pcis->n_shared[i];
  }
  ierr = PetscMalloc1(partial_sum,&send_buffer);CHKERRQ(ierr);
  ierr = PetscMalloc1(partial_sum,&recv_buffer);CHKERRQ(ierr);
  ierr = PetscMalloc1(partial_sum,&all_factors[0]);CHKERRQ(ierr);
  for (i=0;i<pcis->n-1;i++) {
    j = mat_graph->count[i];
    all_factors[i+1]=all_factors[i]+j;
  }
  /* scatter B scaling to N vec */
  ierr = VecScatterBegin(pcis->N_to_B,pcis->D,pcis->vec1_N,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
  ierr = VecScatterEnd(pcis->N_to_B,pcis->D,pcis->vec1_N,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
  /* communications */
  ierr = VecGetArray(pcis->vec1_N,&array);CHKERRQ(ierr);
  for (i=1;i<pcis->n_neigh;i++) {
    for (j=0;j<pcis->n_shared[i];j++) {
      send_buffer[ptrs_buffer[i-1]+j]=array[pcis->shared[i][j]];
    }
    ierr = PetscMPIIntCast(ptrs_buffer[i]-ptrs_buffer[i-1],&buf_size);CHKERRQ(ierr);
    ierr = PetscMPIIntCast(pcis->neigh[i],&neigh);CHKERRQ(ierr);
    ierr = MPI_Isend(&send_buffer[ptrs_buffer[i-1]],buf_size,MPIU_SCALAR,neigh,0,comm,&send_reqs[i-1]);CHKERRQ(ierr);
    ierr = MPI_Irecv(&recv_buffer[ptrs_buffer[i-1]],buf_size,MPIU_SCALAR,neigh,0,comm,&recv_reqs[i-1]);CHKERRQ(ierr);
  }
  ierr = VecRestoreArray(pcis->vec1_N,&array);CHKERRQ(ierr);
  ierr = MPI_Waitall((pcis->n_neigh-1),recv_reqs,MPI_STATUSES_IGNORE);CHKERRQ(ierr);
  /* put values in correct places */
  for (i=1;i<pcis->n_neigh;i++) {
    for (j=0;j<pcis->n_shared[i];j++) {
      k = pcis->shared[i][j];
      neigh_position = 0;
      while(mat_graph->neighbours_set[k][neigh_position] != pcis->neigh[i]) {neigh_position++;}
      all_factors[k][neigh_position]=recv_buffer[ptrs_buffer[i-1]+j];
    }
  }
  ierr = MPI_Waitall((pcis->n_neigh-1),send_reqs,MPI_STATUSES_IGNORE);CHKERRQ(ierr);
  ierr = PetscFree(send_reqs);CHKERRQ(ierr);
  ierr = PetscFree(recv_reqs);CHKERRQ(ierr);
  ierr = PetscFree(send_buffer);CHKERRQ(ierr);
  ierr = PetscFree(recv_buffer);CHKERRQ(ierr);
  ierr = PetscFree(ptrs_buffer);CHKERRQ(ierr);

  /* Compute B and B_delta (local actions) */
  ierr = PetscMalloc1(pcis->n_neigh,&aux_sums);CHKERRQ(ierr);
  ierr = PetscMalloc1(n_local_lambda,&l2g_indices);CHKERRQ(ierr);
  ierr = PetscMalloc1(n_local_lambda,&vals_B_delta);CHKERRQ(ierr);
  ierr = PetscMalloc1(n_local_lambda,&cols_B_delta);CHKERRQ(ierr);
  ierr = PetscMalloc1(n_local_lambda,&scaling_factors);CHKERRQ(ierr);
  n_global_lambda=0;
  partial_sum=0;
  for (i=0;i<dual_size;i++) {
    n_global_lambda = aux_global_numbering[i];
    j = mat_graph->count[aux_local_numbering_1[i]];
    aux_sums[0]=0;
    for (s=1;s<j;s++) {
      aux_sums[s]=aux_sums[s-1]+j-s+1;
    }
    array = all_factors[aux_local_numbering_1[i]];
    n_neg_values = 0;
    while(n_neg_values < j && mat_graph->neighbours_set[aux_local_numbering_1[i]][n_neg_values] < rank) {n_neg_values++;}
    n_pos_values = j - n_neg_values;
    if (fully_redundant) {
      for (s=0;s<n_neg_values;s++) {
        l2g_indices    [partial_sum+s]=aux_sums[s]+n_neg_values-s-1+n_global_lambda;
        cols_B_delta   [partial_sum+s]=dual_dofs_boundary_indices[i];
        vals_B_delta   [partial_sum+s]=-1.0;
        scaling_factors[partial_sum+s]=array[s];
      }
      for (s=0;s<n_pos_values;s++) {
        l2g_indices    [partial_sum+s+n_neg_values]=aux_sums[n_neg_values]+s+n_global_lambda;
        cols_B_delta   [partial_sum+s+n_neg_values]=dual_dofs_boundary_indices[i];
        vals_B_delta   [partial_sum+s+n_neg_values]=1.0;
        scaling_factors[partial_sum+s+n_neg_values]=array[s+n_neg_values];
      }
      partial_sum += j;
    } else {
      /* l2g_indices and default cols and vals of B_delta */
      for (s=0;s<j;s++) {
        l2g_indices    [partial_sum+s]=n_global_lambda+s;
        cols_B_delta   [partial_sum+s]=dual_dofs_boundary_indices[i];
        vals_B_delta   [partial_sum+s]=0.0;
      }
      /* B_delta */
      if ( n_neg_values > 0 ) { /* there's a rank next to me to the left */
        vals_B_delta   [partial_sum+n_neg_values-1]=-1.0;
      }
      if ( n_neg_values < j ) { /* there's a rank next to me to the right */
        vals_B_delta   [partial_sum+n_neg_values]=1.0;
      }
      /* scaling as in Klawonn-Widlund 1999*/
      for (s=0;s<n_neg_values;s++) {
        scalar_value = 0.0;
        for (k=0;k<s+1;k++) {
          scalar_value += array[k];
        }
        scaling_factors[partial_sum+s] = -scalar_value;
      }
      for (s=0;s<n_pos_values;s++) {
        scalar_value = 0.0;
        for (k=s+n_neg_values;k<j;k++) {
          scalar_value += array[k];
        }
        scaling_factors[partial_sum+s+n_neg_values] = scalar_value;
      }
      partial_sum += j;
    }
  }
  ierr = PetscFree(aux_global_numbering);CHKERRQ(ierr);
  ierr = PetscFree(aux_sums);CHKERRQ(ierr);
  ierr = PetscFree(aux_local_numbering_1);CHKERRQ(ierr);
  ierr = PetscFree(dual_dofs_boundary_indices);CHKERRQ(ierr);
  ierr = PetscFree(all_factors[0]);CHKERRQ(ierr);
  ierr = PetscFree(all_factors);CHKERRQ(ierr);

  /* Local to global mapping of fetidpmat */
  ierr = VecCreate(PETSC_COMM_SELF,&fetidpmat_ctx->lambda_local);CHKERRQ(ierr);
  ierr = VecSetSizes(fetidpmat_ctx->lambda_local,n_local_lambda,n_local_lambda);CHKERRQ(ierr);
  ierr = VecSetType(fetidpmat_ctx->lambda_local,VECSEQ);CHKERRQ(ierr);
  ierr = VecCreate(comm,&lambda_global);CHKERRQ(ierr);
  ierr = VecSetSizes(lambda_global,PETSC_DECIDE,fetidpmat_ctx->n_lambda);CHKERRQ(ierr);
  ierr = VecSetType(lambda_global,VECMPI);CHKERRQ(ierr);
  ierr = ISCreateGeneral(comm,n_local_lambda,l2g_indices,PETSC_OWN_POINTER,&IS_l2g_lambda);CHKERRQ(ierr);
  ierr = VecScatterCreate(fetidpmat_ctx->lambda_local,(IS)0,lambda_global,IS_l2g_lambda,&fetidpmat_ctx->l2g_lambda);CHKERRQ(ierr);
  ierr = ISDestroy(&IS_l2g_lambda);CHKERRQ(ierr);

  /* Create local part of B_delta */
  ierr = MatCreate(PETSC_COMM_SELF,&fetidpmat_ctx->B_delta);
  ierr = MatSetSizes(fetidpmat_ctx->B_delta,n_local_lambda,pcis->n_B,n_local_lambda,pcis->n_B);CHKERRQ(ierr);
  ierr = MatSetType(fetidpmat_ctx->B_delta,MATSEQAIJ);CHKERRQ(ierr);
  ierr = MatSeqAIJSetPreallocation(fetidpmat_ctx->B_delta,1,NULL);CHKERRQ(ierr);
  ierr = MatSetOption(fetidpmat_ctx->B_delta,MAT_IGNORE_ZERO_ENTRIES,PETSC_TRUE);CHKERRQ(ierr);
  for (i=0;i<n_local_lambda;i++) {
    ierr = MatSetValue(fetidpmat_ctx->B_delta,i,cols_B_delta[i],vals_B_delta[i],INSERT_VALUES);CHKERRQ(ierr);
  }
  ierr = PetscFree(vals_B_delta);CHKERRQ(ierr);
  ierr = MatAssemblyBegin(fetidpmat_ctx->B_delta,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd  (fetidpmat_ctx->B_delta,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

  if (fully_redundant) {
    ierr = MatCreate(PETSC_COMM_SELF,&ScalingMat);
    ierr = MatSetSizes(ScalingMat,n_local_lambda,n_local_lambda,n_local_lambda,n_local_lambda);CHKERRQ(ierr);
    ierr = MatSetType(ScalingMat,MATSEQAIJ);CHKERRQ(ierr);
    ierr = MatSeqAIJSetPreallocation(ScalingMat,1,NULL);CHKERRQ(ierr);
    for (i=0;i<n_local_lambda;i++) {
      ierr = MatSetValue(ScalingMat,i,i,scaling_factors[i],INSERT_VALUES);CHKERRQ(ierr);
    }
    ierr = MatAssemblyBegin(ScalingMat,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
    ierr = MatAssemblyEnd  (ScalingMat,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
    ierr = MatMatMult(ScalingMat,fetidpmat_ctx->B_delta,MAT_INITIAL_MATRIX,PETSC_DEFAULT,&fetidpmat_ctx->B_Ddelta);CHKERRQ(ierr);
    ierr = MatDestroy(&ScalingMat);CHKERRQ(ierr);
  } else {
    ierr = MatCreate(PETSC_COMM_SELF,&fetidpmat_ctx->B_Ddelta);
    ierr = MatSetSizes(fetidpmat_ctx->B_Ddelta,n_local_lambda,pcis->n_B,n_local_lambda,pcis->n_B);CHKERRQ(ierr);
    ierr = MatSetType(fetidpmat_ctx->B_Ddelta,MATSEQAIJ);CHKERRQ(ierr);
    ierr = MatSeqAIJSetPreallocation(fetidpmat_ctx->B_Ddelta,1,NULL);CHKERRQ(ierr);
    for (i=0;i<n_local_lambda;i++) {
      ierr = MatSetValue(fetidpmat_ctx->B_Ddelta,i,cols_B_delta[i],scaling_factors[i],INSERT_VALUES);CHKERRQ(ierr);
    }
    ierr = MatAssemblyBegin(fetidpmat_ctx->B_Ddelta,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
    ierr = MatAssemblyEnd  (fetidpmat_ctx->B_Ddelta,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  }
  ierr = PetscFree(scaling_factors);CHKERRQ(ierr);
  ierr = PetscFree(cols_B_delta);CHKERRQ(ierr);

  /* Create some vectors needed by fetidp */
  ierr = VecDuplicate(pcis->vec1_B,&fetidpmat_ctx->temp_solution_B);CHKERRQ(ierr);
  ierr = VecDuplicate(pcis->vec1_D,&fetidpmat_ctx->temp_solution_D);CHKERRQ(ierr);

  test_fetidp = PETSC_FALSE;
  ierr = PetscOptionsGetBool(NULL,"-fetidp_check",&test_fetidp,NULL);CHKERRQ(ierr);

  if (test_fetidp && !pcbddc->use_deluxe_scaling) {

    PetscReal real_value;

    ierr = PetscViewerASCIIGetStdout(comm,&viewer);CHKERRQ(ierr);
    ierr = PetscViewerASCIISynchronizedAllow(viewer,PETSC_TRUE);CHKERRQ(ierr);
    ierr = PetscViewerASCIIPrintf(viewer,"----------FETI_DP TESTS--------------\n");CHKERRQ(ierr);
    ierr = PetscViewerASCIIPrintf(viewer,"All tests should return zero!\n");CHKERRQ(ierr);
    ierr = PetscViewerASCIIPrintf(viewer,"FETIDP MAT context in the ");CHKERRQ(ierr);
    if (fully_redundant) {
      ierr = PetscViewerASCIIPrintf(viewer,"fully redundant case for lagrange multipliers.\n");CHKERRQ(ierr);
    } else {
      ierr = PetscViewerASCIIPrintf(viewer,"Non-fully redundant case for lagrange multiplier.\n");CHKERRQ(ierr);
    }
    ierr = PetscViewerFlush(viewer);CHKERRQ(ierr);

    /******************************************************************/
    /* TEST A/B: Test numbering of global lambda dofs             */
    /******************************************************************/

    ierr = VecDuplicate(fetidpmat_ctx->lambda_local,&test_vec);CHKERRQ(ierr);
    ierr = VecSet(lambda_global,1.0);CHKERRQ(ierr);
    ierr = VecSet(test_vec,1.0);CHKERRQ(ierr);
    ierr = VecScatterBegin(fetidpmat_ctx->l2g_lambda,lambda_global,fetidpmat_ctx->lambda_local,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
    ierr = VecScatterEnd  (fetidpmat_ctx->l2g_lambda,lambda_global,fetidpmat_ctx->lambda_local,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
    scalar_value = -1.0;
    ierr = VecAXPY(test_vec,scalar_value,fetidpmat_ctx->lambda_local);CHKERRQ(ierr);
    ierr = VecNorm(test_vec,NORM_INFINITY,&real_value);CHKERRQ(ierr);
    ierr = VecDestroy(&test_vec);CHKERRQ(ierr);
    ierr = PetscViewerASCIISynchronizedPrintf(viewer,"A[%04d]: CHECK glob to loc: % 1.14e\n",rank,real_value);CHKERRQ(ierr);
    ierr = PetscViewerFlush(viewer);CHKERRQ(ierr);
    if (fully_redundant) {
      ierr = VecSet(lambda_global,0.0);CHKERRQ(ierr);
      ierr = VecSet(fetidpmat_ctx->lambda_local,0.5);CHKERRQ(ierr);
      ierr = VecScatterBegin(fetidpmat_ctx->l2g_lambda,fetidpmat_ctx->lambda_local,lambda_global,ADD_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
      ierr = VecScatterEnd  (fetidpmat_ctx->l2g_lambda,fetidpmat_ctx->lambda_local,lambda_global,ADD_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
      ierr = VecSum(lambda_global,&scalar_value);CHKERRQ(ierr);
      ierr = PetscViewerASCIISynchronizedPrintf(viewer,"B[%04d]: CHECK loc to glob: % 1.14e\n",rank,PetscRealPart(scalar_value)-fetidpmat_ctx->n_lambda);CHKERRQ(ierr);
      ierr = PetscViewerFlush(viewer);CHKERRQ(ierr);
    }

    /******************************************************************/
    /* TEST C: It should holds B_delta*w=0, w\in\widehat{W}           */
    /* This is the meaning of the B matrix                            */
    /******************************************************************/

    ierr = VecSetRandom(pcis->vec1_N,NULL);CHKERRQ(ierr);
    ierr = VecSet(pcis->vec1_global,0.0);CHKERRQ(ierr);
    ierr = VecScatterBegin(matis->ctx,pcis->vec1_N,pcis->vec1_global,ADD_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
    ierr = VecScatterEnd  (matis->ctx,pcis->vec1_N,pcis->vec1_global,ADD_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
    ierr = VecScatterBegin(matis->ctx,pcis->vec1_global,pcis->vec1_N,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd  (matis->ctx,pcis->vec1_global,pcis->vec1_N,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterBegin(pcis->N_to_B,pcis->vec1_N,pcis->vec1_B,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd  (pcis->N_to_B,pcis->vec1_N,pcis->vec1_B,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    /* Action of B_delta */
    ierr = MatMult(fetidpmat_ctx->B_delta,pcis->vec1_B,fetidpmat_ctx->lambda_local);CHKERRQ(ierr);
    ierr = VecSet(lambda_global,0.0);CHKERRQ(ierr);
    ierr = VecScatterBegin(fetidpmat_ctx->l2g_lambda,fetidpmat_ctx->lambda_local,lambda_global,ADD_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd  (fetidpmat_ctx->l2g_lambda,fetidpmat_ctx->lambda_local,lambda_global,ADD_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecNorm(lambda_global,NORM_INFINITY,&real_value);CHKERRQ(ierr);
    ierr = PetscViewerASCIIPrintf(viewer,"C[coll]: CHECK infty norm of B_delta*w (w continuous): % 1.14e\n",real_value);CHKERRQ(ierr);
    ierr = PetscViewerFlush(viewer);CHKERRQ(ierr);

    /******************************************************************/
    /* TEST D: It should holds E_Dw = w - P_Dw w\in\widetilde{W}     */
    /* E_D = R_D^TR                                                   */
    /* P_D = B_{D,delta}^T B_{delta}                                  */
    /* eq.44 Mandel Tezaur and Dohrmann 2005                          */
    /******************************************************************/

    /* compute a random vector in \widetilde{W} */
    ierr = VecSetRandom(pcis->vec1_N,NULL);CHKERRQ(ierr);
    scalar_value = 0.0;  /* set zero at vertices */
    ierr = VecGetArray(pcis->vec1_N,&array);CHKERRQ(ierr);
    for (i=0;i<n_vertices;i++) { array[vertex_indices[i]]=scalar_value; }
    ierr = VecRestoreArray(pcis->vec1_N,&array);CHKERRQ(ierr);
    /* store w for final comparison */
    ierr = VecDuplicate(pcis->vec1_B,&test_vec);CHKERRQ(ierr);
    ierr = VecScatterBegin(pcis->N_to_B,pcis->vec1_N,test_vec,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd  (pcis->N_to_B,pcis->vec1_N,test_vec,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);

    /* Jump operator P_D : results stored in pcis->vec1_B */

    ierr = VecScatterBegin(pcis->N_to_B,pcis->vec1_N,pcis->vec1_B,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd  (pcis->N_to_B,pcis->vec1_N,pcis->vec1_B,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    /* Action of B_delta */
    ierr = MatMult(fetidpmat_ctx->B_delta,pcis->vec1_B,fetidpmat_ctx->lambda_local);CHKERRQ(ierr);
    ierr = VecSet(lambda_global,0.0);CHKERRQ(ierr);
    ierr = VecScatterBegin(fetidpmat_ctx->l2g_lambda,fetidpmat_ctx->lambda_local,lambda_global,ADD_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd  (fetidpmat_ctx->l2g_lambda,fetidpmat_ctx->lambda_local,lambda_global,ADD_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    /* Action of B_Ddelta^T */
    ierr = VecScatterBegin(fetidpmat_ctx->l2g_lambda,lambda_global,fetidpmat_ctx->lambda_local,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
    ierr = VecScatterEnd  (fetidpmat_ctx->l2g_lambda,lambda_global,fetidpmat_ctx->lambda_local,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
    ierr = MatMultTranspose(fetidpmat_ctx->B_Ddelta,fetidpmat_ctx->lambda_local,pcis->vec1_B);CHKERRQ(ierr);

    /* Average operator E_D : results stored in pcis->vec2_B */
    ierr = VecScatterBegin(pcis->N_to_B,pcis->vec1_N,pcis->vec2_B,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd  (pcis->N_to_B,pcis->vec1_N,pcis->vec2_B,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = PCBDDCScalingExtension(fetidpmat_ctx->pc,pcis->vec2_B,pcis->vec1_global);CHKERRQ(ierr);
    ierr = VecScatterBegin(pcis->global_to_B,pcis->vec1_global,pcis->vec2_B,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd  (pcis->global_to_B,pcis->vec1_global,pcis->vec2_B,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);

    /* test E_D=I-P_D */
    scalar_value = 1.0;
    ierr = VecAXPY(pcis->vec1_B,scalar_value,pcis->vec2_B);CHKERRQ(ierr);
    scalar_value = -1.0;
    ierr = VecAXPY(pcis->vec1_B,scalar_value,test_vec);CHKERRQ(ierr);
    ierr = VecNorm(pcis->vec1_B,NORM_INFINITY,&real_value);CHKERRQ(ierr);
    ierr = VecDestroy(&test_vec);CHKERRQ(ierr);
    ierr = PetscViewerASCIISynchronizedPrintf(viewer,"D[%04d] CHECK infty norm of E_D + P_D - I: % 1.14e\n",rank,real_value);CHKERRQ(ierr);
    ierr = PetscViewerFlush(viewer);CHKERRQ(ierr);

    /******************************************************************/
    /* TEST E: It should holds R_D^TP_Dw=0 w\in\widetilde{W}          */
    /* eq.48 Mandel Tezaur and Dohrmann 2005                          */
    /******************************************************************/

    ierr = VecSetRandom(pcis->vec1_N,NULL);CHKERRQ(ierr);
    ierr = VecGetArray(pcis->vec1_N,&array);CHKERRQ(ierr);
    scalar_value = 0.0;  /* set zero at vertices */
    for (i=0;i<n_vertices;i++) { array[vertex_indices[i]]=scalar_value; }
    ierr = VecRestoreArray(pcis->vec1_N,&array);CHKERRQ(ierr);

    /* Jump operator P_D : results stored in pcis->vec1_B */

    ierr = VecScatterBegin(pcis->N_to_B,pcis->vec1_N,pcis->vec1_B,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd  (pcis->N_to_B,pcis->vec1_N,pcis->vec1_B,INSERT_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    /* Action of B_delta */
    ierr = MatMult(fetidpmat_ctx->B_delta,pcis->vec1_B,fetidpmat_ctx->lambda_local);CHKERRQ(ierr);
    ierr = VecSet(lambda_global,0.0);CHKERRQ(ierr);
    ierr = VecScatterBegin(fetidpmat_ctx->l2g_lambda,fetidpmat_ctx->lambda_local,lambda_global,ADD_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    ierr = VecScatterEnd  (fetidpmat_ctx->l2g_lambda,fetidpmat_ctx->lambda_local,lambda_global,ADD_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
    /* Action of B_Ddelta^T */
    ierr = VecScatterBegin(fetidpmat_ctx->l2g_lambda,lambda_global,fetidpmat_ctx->lambda_local,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
    ierr = VecScatterEnd  (fetidpmat_ctx->l2g_lambda,lambda_global,fetidpmat_ctx->lambda_local,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
    ierr = MatMultTranspose(fetidpmat_ctx->B_Ddelta,fetidpmat_ctx->lambda_local,pcis->vec1_B);CHKERRQ(ierr);
    /* scaling */
    ierr = PCBDDCScalingExtension(fetidpmat_ctx->pc,pcis->vec1_B,pcis->vec1_global);CHKERRQ(ierr);
    ierr = VecNorm(pcis->vec1_global,NORM_INFINITY,&real_value);CHKERRQ(ierr);
    ierr = PetscViewerASCIIPrintf(viewer,"E[coll]: CHECK infty norm of R^T_D P_D: % 1.14e\n",real_value);CHKERRQ(ierr);
    ierr = PetscViewerFlush(viewer);CHKERRQ(ierr);

    if (!fully_redundant) {
      /******************************************************************/
      /* TEST F: It should holds B_{delta}B^T_{D,delta}=I               */
      /* Corollary thm 14 Mandel Tezaur and Dohrmann 2005               */
      /******************************************************************/
      ierr = VecDuplicate(lambda_global,&test_vec);CHKERRQ(ierr);
      ierr = VecSetRandom(lambda_global,NULL);CHKERRQ(ierr);
      /* Action of B_Ddelta^T */
      ierr = VecScatterBegin(fetidpmat_ctx->l2g_lambda,lambda_global,fetidpmat_ctx->lambda_local,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
      ierr = VecScatterEnd  (fetidpmat_ctx->l2g_lambda,lambda_global,fetidpmat_ctx->lambda_local,INSERT_VALUES,SCATTER_REVERSE);CHKERRQ(ierr);
      ierr = MatMultTranspose(fetidpmat_ctx->B_Ddelta,fetidpmat_ctx->lambda_local,pcis->vec1_B);CHKERRQ(ierr);
      /* Action of B_delta */
      ierr = MatMult(fetidpmat_ctx->B_delta,pcis->vec1_B,fetidpmat_ctx->lambda_local);CHKERRQ(ierr);
      ierr = VecSet(test_vec,0.0);CHKERRQ(ierr);
      ierr = VecScatterBegin(fetidpmat_ctx->l2g_lambda,fetidpmat_ctx->lambda_local,test_vec,ADD_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
      ierr = VecScatterEnd  (fetidpmat_ctx->l2g_lambda,fetidpmat_ctx->lambda_local,test_vec,ADD_VALUES,SCATTER_FORWARD);CHKERRQ(ierr);
      scalar_value = -1.0;
      ierr = VecAXPY(lambda_global,scalar_value,test_vec);CHKERRQ(ierr);
      ierr = VecNorm(lambda_global,NORM_INFINITY,&real_value);CHKERRQ(ierr);
      ierr = PetscViewerASCIIPrintf(viewer,"E[coll]: CHECK infty norm of P^T_D - I: % 1.14e\n",real_value);CHKERRQ(ierr);
      ierr = PetscViewerFlush(viewer);CHKERRQ(ierr);
      ierr = PetscViewerFlush(viewer);CHKERRQ(ierr);
      ierr = VecDestroy(&test_vec);CHKERRQ(ierr);
    }
  }
  /* final cleanup */
  ierr = PetscFree(vertex_indices);CHKERRQ(ierr);
  ierr = VecDestroy(&lambda_global);CHKERRQ(ierr);

  PetscFunctionReturn(0);
}
Exemple #24
0
int main(int argc,char **args)
{
  Vec            x1,b1,x2,b2; /* solution and RHS vectors for systems #1 and #2 */
  Vec            u;              /* exact solution vector */
  Mat            C1,C2;         /* matrices for systems #1 and #2 */
  KSP            ksp1,ksp2;   /* KSP contexts for systems #1 and #2 */
  PetscInt       ntimes = 3;     /* number of times to solve the linear systems */
  PetscLogEvent  CHECK_ERROR;    /* event number for error checking */
  PetscInt       ldim,low,high,iglobal,Istart,Iend,Istart2,Iend2;
  PetscInt       Ii,J,i,j,m = 3,n = 2,its,t;
  PetscErrorCode ierr;
  PetscBool      flg = PETSC_FALSE;
  PetscScalar    v;
  PetscMPIInt    rank,size;
#if defined(PETSC_USE_LOG)
  PetscLogStage stages[3];
#endif

  PetscInitialize(&argc,&args,(char*)0,help);
  ierr = PetscOptionsGetInt(NULL,"-m",&m,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(NULL,"-t",&ntimes,NULL);CHKERRQ(ierr);
  ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&rank);CHKERRQ(ierr);
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  n    = 2*size;

  /*
     Register various stages for profiling
  */
  ierr = PetscLogStageRegister("Prelim setup",&stages[0]);CHKERRQ(ierr);
  ierr = PetscLogStageRegister("Linear System 1",&stages[1]);CHKERRQ(ierr);
  ierr = PetscLogStageRegister("Linear System 2",&stages[2]);CHKERRQ(ierr);

  /*
     Register a user-defined event for profiling (error checking).
  */
  CHECK_ERROR = 0;
  ierr        = PetscLogEventRegister("Check Error",KSP_CLASSID,&CHECK_ERROR);CHKERRQ(ierr);

  /* - - - - - - - - - - - - Stage 0: - - - - - - - - - - - - - -
                        Preliminary Setup
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

  ierr = PetscLogStagePush(stages[0]);CHKERRQ(ierr);

  /*
     Create data structures for first linear system.
      - Create parallel matrix, specifying only its global dimensions.
        When using MatCreate(), the matrix format can be specified at
        runtime. Also, the parallel partitioning of the matrix is
        determined by PETSc at runtime.
      - Create parallel vectors.
        - When using VecSetSizes(), we specify only the vector's global
          dimension; the parallel partitioning is determined at runtime.
        - Note: We form 1 vector from scratch and then duplicate as needed.
  */
  ierr = MatCreate(PETSC_COMM_WORLD,&C1);CHKERRQ(ierr);
  ierr = MatSetSizes(C1,PETSC_DECIDE,PETSC_DECIDE,m*n,m*n);CHKERRQ(ierr);
  ierr = MatSetFromOptions(C1);CHKERRQ(ierr);
  ierr = MatSetUp(C1);CHKERRQ(ierr);
  ierr = MatGetOwnershipRange(C1,&Istart,&Iend);CHKERRQ(ierr);
  ierr = VecCreate(PETSC_COMM_WORLD,&u);CHKERRQ(ierr);
  ierr = VecSetSizes(u,PETSC_DECIDE,m*n);CHKERRQ(ierr);
  ierr = VecSetFromOptions(u);CHKERRQ(ierr);
  ierr = VecDuplicate(u,&b1);CHKERRQ(ierr);
  ierr = VecDuplicate(u,&x1);CHKERRQ(ierr);

  /*
     Create first linear solver context.
     Set runtime options (e.g., -pc_type <type>).
     Note that the first linear system uses the default option
     names, while the second linear systme uses a different
     options prefix.
  */
  ierr = KSPCreate(PETSC_COMM_WORLD,&ksp1);CHKERRQ(ierr);
  ierr = KSPSetFromOptions(ksp1);CHKERRQ(ierr);

  /*
     Set user-defined monitoring routine for first linear system.
  */
  ierr = PetscOptionsGetBool(NULL,"-my_ksp_monitor",&flg,NULL);CHKERRQ(ierr);
  if (flg) {ierr = KSPMonitorSet(ksp1,MyKSPMonitor,NULL,0);CHKERRQ(ierr);}

  /*
     Create data structures for second linear system.
  */
  ierr = MatCreate(PETSC_COMM_WORLD,&C2);CHKERRQ(ierr);
  ierr = MatSetSizes(C2,PETSC_DECIDE,PETSC_DECIDE,m*n,m*n);CHKERRQ(ierr);
  ierr = MatSetFromOptions(C2);CHKERRQ(ierr);
  ierr = MatSetUp(C2);CHKERRQ(ierr);
  ierr = MatGetOwnershipRange(C2,&Istart2,&Iend2);CHKERRQ(ierr);
  ierr = VecDuplicate(u,&b2);CHKERRQ(ierr);
  ierr = VecDuplicate(u,&x2);CHKERRQ(ierr);

  /*
     Create second linear solver context
  */
  ierr = KSPCreate(PETSC_COMM_WORLD,&ksp2);CHKERRQ(ierr);

  /*
     Set different options prefix for second linear system.
     Set runtime options (e.g., -s2_pc_type <type>)
  */
  ierr = KSPAppendOptionsPrefix(ksp2,"s2_");CHKERRQ(ierr);
  ierr = KSPSetFromOptions(ksp2);CHKERRQ(ierr);

  /*
     Assemble exact solution vector in parallel.  Note that each
     processor needs to set only its local part of the vector.
  */
  ierr = VecGetLocalSize(u,&ldim);CHKERRQ(ierr);
  ierr = VecGetOwnershipRange(u,&low,&high);CHKERRQ(ierr);
  for (i=0; i<ldim; i++) {
    iglobal = i + low;
    v       = (PetscScalar)(i + 100*rank);
    ierr    = VecSetValues(u,1,&iglobal,&v,ADD_VALUES);CHKERRQ(ierr);
  }
  ierr = VecAssemblyBegin(u);CHKERRQ(ierr);
  ierr = VecAssemblyEnd(u);CHKERRQ(ierr);

  /*
     Log the number of flops for computing vector entries
  */
  ierr = PetscLogFlops(2.0*ldim);CHKERRQ(ierr);

  /*
     End curent profiling stage
  */
  ierr = PetscLogStagePop();CHKERRQ(ierr);

  /* --------------------------------------------------------------
                        Linear solver loop:
      Solve 2 different linear systems several times in succession
     -------------------------------------------------------------- */

  for (t=0; t<ntimes; t++) {

    /* - - - - - - - - - - - - Stage 1: - - - - - - - - - - - - - -
                 Assemble and solve first linear system
       - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

    /*
       Begin profiling stage #1
    */
    ierr = PetscLogStagePush(stages[1]);CHKERRQ(ierr);

    /*
       Initialize all matrix entries to zero.  MatZeroEntries() retains
       the nonzero structure of the matrix for sparse formats.
    */
    if (t > 0) {ierr = MatZeroEntries(C1);CHKERRQ(ierr);}

    /*
       Set matrix entries in parallel.  Also, log the number of flops
       for computing matrix entries.
        - Each processor needs to insert only elements that it owns
          locally (but any non-local elements will be sent to the
          appropriate processor during matrix assembly).
        - Always specify global row and columns of matrix entries.
    */
    for (Ii=Istart; Ii<Iend; Ii++) {
      v = -1.0; i = Ii/n; j = Ii - i*n;
      if (i>0)   {J = Ii - n; ierr = MatSetValues(C1,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
      if (i<m-1) {J = Ii + n; ierr = MatSetValues(C1,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
      if (j>0)   {J = Ii - 1; ierr = MatSetValues(C1,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
      if (j<n-1) {J = Ii + 1; ierr = MatSetValues(C1,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
      v = 4.0; ierr = MatSetValues(C1,1,&Ii,1,&Ii,&v,ADD_VALUES);CHKERRQ(ierr);
    }
    for (Ii=Istart; Ii<Iend; Ii++) { /* Make matrix nonsymmetric */
      v = -1.0*(t+0.5); i = Ii/n;
      if (i>0)   {J = Ii - n; ierr = MatSetValues(C1,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
    }
    ierr = PetscLogFlops(2.0*(Iend-Istart));CHKERRQ(ierr);

    /*
       Assemble matrix, using the 2-step process:
         MatAssemblyBegin(), MatAssemblyEnd()
       Computations can be done while messages are in transition
       by placing code between these two statements.
    */
    ierr = MatAssemblyBegin(C1,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
    ierr = MatAssemblyEnd(C1,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

    /*
       Indicate same nonzero structure of successive linear system matrices
    */
    ierr = MatSetOption(C1,MAT_NEW_NONZERO_LOCATIONS,PETSC_TRUE);CHKERRQ(ierr);

    /*
       Compute right-hand-side vector
    */
    ierr = MatMult(C1,u,b1);CHKERRQ(ierr);

    /*
       Set operators. Here the matrix that defines the linear system
       also serves as the preconditioning matrix.
        - The flag SAME_NONZERO_PATTERN indicates that the
          preconditioning matrix has identical nonzero structure
          as during the last linear solve (although the values of
          the entries have changed). Thus, we can save some
          work in setting up the preconditioner (e.g., no need to
          redo symbolic factorization for ILU/ICC preconditioners).
        - If the nonzero structure of the matrix is different during
          the second linear solve, then the flag DIFFERENT_NONZERO_PATTERN
          must be used instead.  If you are unsure whether the
          matrix structure has changed or not, use the flag
          DIFFERENT_NONZERO_PATTERN.
        - Caution:  If you specify SAME_NONZERO_PATTERN, PETSc
          believes your assertion and does not check the structure
          of the matrix.  If you erroneously claim that the structure
          is the same when it actually is not, the new preconditioner
          will not function correctly.  Thus, use this optimization
          feature with caution!
    */
    ierr = KSPSetOperators(ksp1,C1,C1,SAME_NONZERO_PATTERN);CHKERRQ(ierr);

    /*
       Use the previous solution of linear system #1 as the initial
       guess for the next solve of linear system #1.  The user MUST
       call KSPSetInitialGuessNonzero() in indicate use of an initial
       guess vector; otherwise, an initial guess of zero is used.
    */
    if (t>0) {
      ierr = KSPSetInitialGuessNonzero(ksp1,PETSC_TRUE);CHKERRQ(ierr);
    }

    /*
       Solve the first linear system.  Here we explicitly call
       KSPSetUp() for more detailed performance monitoring of
       certain preconditioners, such as ICC and ILU.  This call
       is optional, ase KSPSetUp() will automatically be called
       within KSPSolve() if it hasn't been called already.
    */
    ierr = KSPSetUp(ksp1);CHKERRQ(ierr);
    ierr = KSPSolve(ksp1,b1,x1);CHKERRQ(ierr);
    ierr = KSPGetIterationNumber(ksp1,&its);CHKERRQ(ierr);

    /*
       Check error of solution to first linear system
    */
    ierr = CheckError(u,x1,b1,its,1.e-4,CHECK_ERROR);CHKERRQ(ierr);

    /* - - - - - - - - - - - - Stage 2: - - - - - - - - - - - - - -
                 Assemble and solve second linear system
       - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

    /*
       Conclude profiling stage #1; begin profiling stage #2
    */
    ierr = PetscLogStagePop();CHKERRQ(ierr);
    ierr = PetscLogStagePush(stages[2]);CHKERRQ(ierr);

    /*
       Initialize all matrix entries to zero
    */
    if (t > 0) {ierr = MatZeroEntries(C2);CHKERRQ(ierr);}

    /*
       Assemble matrix in parallel. Also, log the number of flops
       for computing matrix entries.
        - To illustrate the features of parallel matrix assembly, we
          intentionally set the values differently from the way in
          which the matrix is distributed across the processors.  Each
          entry that is not owned locally will be sent to the appropriate
          processor during MatAssemblyBegin() and MatAssemblyEnd().
        - For best efficiency the user should strive to set as many
          entries locally as possible.
     */
    for (i=0; i<m; i++) {
      for (j=2*rank; j<2*rank+2; j++) {
        v = -1.0;  Ii = j + n*i;
        if (i>0)   {J = Ii - n; ierr = MatSetValues(C2,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
        if (i<m-1) {J = Ii + n; ierr = MatSetValues(C2,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
        if (j>0)   {J = Ii - 1; ierr = MatSetValues(C2,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
        if (j<n-1) {J = Ii + 1; ierr = MatSetValues(C2,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
        v = 6.0 + t*0.5; ierr = MatSetValues(C2,1,&Ii,1,&Ii,&v,ADD_VALUES);CHKERRQ(ierr);
      }
    }
    for (Ii=Istart2; Ii<Iend2; Ii++) { /* Make matrix nonsymmetric */
      v = -1.0*(t+0.5); i = Ii/n;
      if (i>0)   {J = Ii - n; ierr = MatSetValues(C2,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
    }
    ierr = MatAssemblyBegin(C2,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
    ierr = MatAssemblyEnd(C2,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
    ierr = PetscLogFlops(2.0*(Iend-Istart));CHKERRQ(ierr);

    /*
       Indicate same nonzero structure of successive linear system matrices
    */
    ierr = MatSetOption(C2,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);CHKERRQ(ierr);

    /*
       Compute right-hand-side vector
    */
    ierr = MatMult(C2,u,b2);CHKERRQ(ierr);

    /*
       Set operators. Here the matrix that defines the linear system
       also serves as the preconditioning matrix.  Indicate same nonzero
       structure of successive preconditioner matrices by setting flag
       SAME_NONZERO_PATTERN.
    */
    ierr = KSPSetOperators(ksp2,C2,C2,SAME_NONZERO_PATTERN);CHKERRQ(ierr);

    /*
       Solve the second linear system
    */
    ierr = KSPSetUp(ksp2);CHKERRQ(ierr);
    ierr = KSPSolve(ksp2,b2,x2);CHKERRQ(ierr);
    ierr = KSPGetIterationNumber(ksp2,&its);CHKERRQ(ierr);

    /*
       Check error of solution to second linear system
    */
    ierr = CheckError(u,x2,b2,its,1.e-4,CHECK_ERROR);CHKERRQ(ierr);

    /*
       Conclude profiling stage #2
    */
    ierr = PetscLogStagePop();CHKERRQ(ierr);
  }
  /* --------------------------------------------------------------
                       End of linear solver loop
     -------------------------------------------------------------- */

  /*
     Free work space.  All PETSc objects should be destroyed when they
     are no longer needed.
  */
  ierr = KSPDestroy(&ksp1);CHKERRQ(ierr); ierr = KSPDestroy(&ksp2);CHKERRQ(ierr);
  ierr = VecDestroy(&x1);CHKERRQ(ierr);   ierr = VecDestroy(&x2);CHKERRQ(ierr);
  ierr = VecDestroy(&b1);CHKERRQ(ierr);   ierr = VecDestroy(&b2);CHKERRQ(ierr);
  ierr = MatDestroy(&C1);CHKERRQ(ierr);   ierr = MatDestroy(&C2);CHKERRQ(ierr);
  ierr = VecDestroy(&u);CHKERRQ(ierr);

  ierr = PetscFinalize();
  return 0;
}
Exemple #25
0
PetscInt main(PetscInt argc,char **args)
{
  PetscErrorCode ierr;
  PetscMPIInt    rank,size;
  PetscInt       N0=2048,N1=2048,N2=3,N3=5,N4=5,N=N0*N1;
  PetscRandom    rdm;
  PetscReal      enorm;
  Vec            x,y,z,input,output;
  Mat            A;
  PetscInt       DIM, dim[5],vsize;
  PetscReal      fac;
  PetscScalar    one=1,two=2,three=3;

  ierr = PetscInitialize(&argc,&args,(char*)0,help);CHKERRQ(ierr);
#if defined(PETSC_USE_COMPLEX)
  SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP, "This example requires real numbers");
#endif
  ierr = MPI_Comm_size(PETSC_COMM_WORLD, &size);CHKERRQ(ierr);
  ierr = MPI_Comm_rank(PETSC_COMM_WORLD, &rank);CHKERRQ(ierr);

  ierr = PetscRandomCreate(PETSC_COMM_WORLD, &rdm);CHKERRQ(ierr);
  ierr = PetscRandomSetFromOptions(rdm);CHKERRQ(ierr);
  ierr = VecCreate(PETSC_COMM_WORLD,&input);CHKERRQ(ierr);
  ierr = VecSetSizes(input,PETSC_DECIDE,N);CHKERRQ(ierr);
  ierr = VecSetFromOptions(input);CHKERRQ(ierr);
/*  ierr = VecSet(input,one);CHKERRQ(ierr); */
/*  ierr = VecSetValue(input,1,two,INSERT_VALUES);CHKERRQ(ierr); */
/*  ierr = VecSetValue(input,2,three,INSERT_VALUES);CHKERRQ(ierr); */
/*  ierr = VecSetValue(input,3,three,INSERT_VALUES);CHKERRQ(ierr); */
  ierr = VecSetRandom(input,rdm);CHKERRQ(ierr);
/*  ierr = VecSetRandom(input,rdm);CHKERRQ(ierr); */
/*  ierr = VecSetRandom(input,rdm);CHKERRQ(ierr); */
  ierr = VecDuplicate(input,&output);

  DIM  = 2; dim[0] = N0; dim[1] = N1; dim[2] = N2; dim[3] = N3; dim[4] = N4;
  ierr = MatCreateFFT(PETSC_COMM_WORLD,DIM,dim,MATFFTW,&A);CHKERRQ(ierr);
  ierr = MatGetVecsFFTW(A,&x,&y,&z);CHKERRQ(ierr);
/*  ierr = MatGetVecs(A,&x,&y);CHKERRQ(ierr); */
/*  ierr = MatGetVecs(A,&z,NULL);CHKERRQ(ierr); */

  ierr = VecGetSize(x,&vsize);CHKERRQ(ierr);
  printf("The vector size  of input from the main routine is %d\n",vsize);

  ierr = VecGetSize(z,&vsize);CHKERRQ(ierr);
  printf("The vector size of output from the main routine is %d\n",vsize);

  ierr = InputTransformFFT(A,input,x);CHKERRQ(ierr);

  ierr = MatMult(A,x,y);CHKERRQ(ierr);
  ierr = VecAssemblyBegin(y);CHKERRQ(ierr);
  ierr = VecAssemblyEnd(y);CHKERRQ(ierr);
  ierr = VecView(y,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);

  ierr = MatMultTranspose(A,y,z);CHKERRQ(ierr);

  ierr = OutputTransformFFT(A,z,output);CHKERRQ(ierr);
  fac  = 1.0/(PetscReal)N;
  ierr = VecScale(output,fac);CHKERRQ(ierr);

  ierr = VecAssemblyBegin(input);CHKERRQ(ierr);
  ierr = VecAssemblyEnd(input);CHKERRQ(ierr);
  ierr = VecAssemblyBegin(output);CHKERRQ(ierr);
  ierr = VecAssemblyEnd(output);CHKERRQ(ierr);

/*  ierr = VecView(input,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); */
/*  ierr = VecView(output,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); */

  ierr = VecAXPY(output,-1.0,input);CHKERRQ(ierr);
  ierr = VecNorm(output,NORM_1,&enorm);CHKERRQ(ierr);
/*  if (enorm > 1.e-14) { */
  ierr = PetscPrintf(PETSC_COMM_SELF,"  Error norm of |x - z| %e\n",enorm);CHKERRQ(ierr);
/*      } */

  ierr = VecDestroy(&output);CHKERRQ(ierr);
  ierr = VecDestroy(&input);CHKERRQ(ierr);
  ierr = VecDestroy(&x);CHKERRQ(ierr);
  ierr = VecDestroy(&y);CHKERRQ(ierr);
  ierr = VecDestroy(&z);CHKERRQ(ierr);
  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = PetscRandomDestroy(&rdm);CHKERRQ(ierr);
  PetscFinalize();
  return 0;

}
Exemple #26
0
int main(int argc,char **args)
{
  Mat            C; 
  PetscInt       i,j,m = 3,n = 3,Ii,J;
  PetscErrorCode ierr;
  PetscTruth     flg;
  PetscScalar    v;
  IS             perm,iperm;
  Vec            x,u,b,y;
  PetscReal      norm;
  MatFactorInfo  info;
  PetscMPIInt    size;

  PetscInitialize(&argc,&args,(char *)0,help);
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  if (size != 1) SETERRQ(1,"This is a uniprocessor example only!");
  ierr = MatCreate(PETSC_COMM_WORLD,&C);CHKERRQ(ierr);
  ierr = MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,m*n,m*n);CHKERRQ(ierr);
  ierr = MatSetFromOptions(C);CHKERRQ(ierr);
  ierr = PetscOptionsHasName(PETSC_NULL,"-symmetric",&flg);CHKERRQ(ierr);
  if (flg) {  /* Treat matrix as symmetric only if we set this flag */
    ierr = MatSetOption(C,MAT_SYMMETRIC,PETSC_TRUE);CHKERRQ(ierr);
    ierr = MatSetOption(C,MAT_SYMMETRY_ETERNAL,PETSC_TRUE);CHKERRQ(ierr);
  }

  /* Create the matrix for the five point stencil, YET AGAIN */
  for (i=0; i<m; i++) {
    for (j=0; j<n; j++) {
      v = -1.0;  Ii = j + n*i;
      if (i>0)   {J = Ii - n; ierr = MatSetValues(C,1,&Ii,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr);}
      if (i<m-1) {J = Ii + n; ierr = MatSetValues(C,1,&Ii,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr);}
      if (j>0)   {J = Ii - 1; ierr = MatSetValues(C,1,&Ii,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr);}
      if (j<n-1) {J = Ii + 1; ierr = MatSetValues(C,1,&Ii,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr);}
      v = 4.0; ierr = MatSetValues(C,1,&Ii,1,&Ii,&v,INSERT_VALUES);CHKERRQ(ierr);
    }
  }
  ierr = MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatGetOrdering(C,MATORDERING_RCM,&perm,&iperm);CHKERRQ(ierr);
  ierr = MatView(C,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = ISView(perm,PETSC_VIEWER_STDOUT_SELF);CHKERRQ(ierr);
  ierr = VecCreateSeq(PETSC_COMM_SELF,m*n,&u);CHKERRQ(ierr);
  ierr = VecSet(u,1.0);CHKERRQ(ierr);
  ierr = VecDuplicate(u,&x);CHKERRQ(ierr);
  ierr = VecDuplicate(u,&b);CHKERRQ(ierr);
  ierr = VecDuplicate(u,&y);CHKERRQ(ierr);
  ierr = MatMult(C,u,b);CHKERRQ(ierr);
  ierr = VecCopy(b,y);CHKERRQ(ierr);
  ierr = VecScale(y,2.0);CHKERRQ(ierr);

  ierr = MatNorm(C,NORM_FROBENIUS,&norm);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_SELF,"Frobenius norm of matrix %G\n",norm);CHKERRQ(ierr);
  ierr = MatNorm(C,NORM_1,&norm);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_SELF,"One  norm of matrix %G\n",norm);CHKERRQ(ierr);
  ierr = MatNorm(C,NORM_INFINITY,&norm);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_SELF,"Infinity norm of matrix %G\n",norm);CHKERRQ(ierr);

  ierr = MatFactorInfoInitialize(&info);CHKERRQ(ierr);
  info.fill      = 2.0;
  info.dtcol     = 0.0; 
  info.zeropivot = 1.e-14; 
  info.pivotinblocks = 1.0;
  ierr = MatLUFactor(C,perm,iperm,&info);CHKERRQ(ierr); 
  ierr = MatView(C,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);

  /* Test MatSolve */
  ierr = MatSolve(C,b,x);CHKERRQ(ierr); 
  ierr = VecView(b,PETSC_VIEWER_STDOUT_SELF);CHKERRQ(ierr);
  ierr = VecView(x,PETSC_VIEWER_STDOUT_SELF);CHKERRQ(ierr);
  ierr = VecAXPY(x,-1.0,u);CHKERRQ(ierr);
  ierr = VecNorm(x,NORM_2,&norm);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_SELF,"Norm of error %A\n",norm);CHKERRQ(ierr);

  /* Test MatSolveAdd */
  ierr = MatSolveAdd(C,b,y,x);CHKERRQ(ierr); 
  ierr = VecAXPY(x,-1.0,y);CHKERRQ(ierr);
  ierr = VecAXPY(x,-1.0,u);CHKERRQ(ierr);
  ierr = VecNorm(x,NORM_2,&norm);CHKERRQ(ierr);

  ierr = PetscPrintf(PETSC_COMM_SELF,"Norm of error %A\n",norm);CHKERRQ(ierr);

  ierr = ISDestroy(perm);CHKERRQ(ierr);
  ierr = ISDestroy(iperm);CHKERRQ(ierr);
  ierr = VecDestroy(u);CHKERRQ(ierr);
  ierr = VecDestroy(y);CHKERRQ(ierr);
  ierr = VecDestroy(b);CHKERRQ(ierr);
  ierr = VecDestroy(x);CHKERRQ(ierr);
  ierr = MatDestroy(C);CHKERRQ(ierr);
  ierr = PetscFinalize();CHKERRQ(ierr);
  return 0;
}
Exemple #27
0
static PetscErrorCode  QPIPSetInitialPoint(TAO_BQPIP *qp, Tao tao)
{
  PetscErrorCode ierr;
  PetscReal      two=2.0,p01=1;
  PetscReal      gap1,gap2,fff,mu;

  PetscFunctionBegin;
  /* Compute function, Gradient R=Hx+b, and Hessian */
  ierr = TaoComputeVariableBounds(tao);CHKERRQ(ierr);
  ierr = VecMedian(qp->XL, tao->solution, qp->XU, tao->solution);CHKERRQ(ierr);
  ierr = MatMult(tao->hessian, tao->solution, tao->gradient);CHKERRQ(ierr);
  ierr = VecCopy(qp->C0, qp->Work);CHKERRQ(ierr);
  ierr = VecAXPY(qp->Work, 0.5, tao->gradient);CHKERRQ(ierr);
  ierr = VecAXPY(tao->gradient, 1.0, qp->C0);CHKERRQ(ierr);
  ierr = VecDot(tao->solution, qp->Work, &fff);CHKERRQ(ierr);
  qp->pobj = fff + qp->c;

  /* Initialize Primal Vectors */
  /* T = XU - X; G = X - XL */
  ierr = VecCopy(qp->XU, qp->T);CHKERRQ(ierr);
  ierr = VecAXPY(qp->T, -1.0, tao->solution);CHKERRQ(ierr);
  ierr = VecCopy(tao->solution, qp->G);CHKERRQ(ierr);
  ierr = VecAXPY(qp->G, -1.0, qp->XL);CHKERRQ(ierr);

  ierr = VecSet(qp->GZwork, p01);CHKERRQ(ierr);
  ierr = VecSet(qp->TSwork, p01);CHKERRQ(ierr);

  ierr = VecPointwiseMax(qp->G, qp->G, qp->GZwork);CHKERRQ(ierr);
  ierr = VecPointwiseMax(qp->T, qp->T, qp->TSwork);CHKERRQ(ierr);

  /* Initialize Dual Variable Vectors */
  ierr = VecCopy(qp->G, qp->Z);CHKERRQ(ierr);
  ierr = VecReciprocal(qp->Z);CHKERRQ(ierr);

  ierr = VecCopy(qp->T, qp->S);CHKERRQ(ierr);
  ierr = VecReciprocal(qp->S);CHKERRQ(ierr);

  ierr = MatMult(tao->hessian, qp->Work, qp->RHS);CHKERRQ(ierr);
  ierr = VecAbs(qp->RHS);CHKERRQ(ierr);
  ierr = VecSet(qp->Work, p01);CHKERRQ(ierr);
  ierr = VecPointwiseMax(qp->RHS, qp->RHS, qp->Work);CHKERRQ(ierr);

  ierr = VecPointwiseDivide(qp->RHS, tao->gradient, qp->RHS);CHKERRQ(ierr);
  ierr = VecNorm(qp->RHS, NORM_1, &gap1);CHKERRQ(ierr);
  mu = PetscMin(10.0,(gap1+10.0)/qp->m);

  ierr = VecScale(qp->S, mu);CHKERRQ(ierr);
  ierr = VecScale(qp->Z, mu);CHKERRQ(ierr);

  ierr = VecSet(qp->TSwork, p01);CHKERRQ(ierr);
  ierr = VecSet(qp->GZwork, p01);CHKERRQ(ierr);
  ierr = VecPointwiseMax(qp->S, qp->S, qp->TSwork);CHKERRQ(ierr);
  ierr = VecPointwiseMax(qp->Z, qp->Z, qp->GZwork);CHKERRQ(ierr);

  qp->mu=0;qp->dinfeas=1.0;qp->pinfeas=1.0;
  while ( (qp->dinfeas+qp->pinfeas)/(qp->m+qp->n) >= qp->mu ){

    ierr = VecScale(qp->G, two);CHKERRQ(ierr);
    ierr = VecScale(qp->Z, two);CHKERRQ(ierr);
    ierr = VecScale(qp->S, two);CHKERRQ(ierr);
    ierr = VecScale(qp->T, two);CHKERRQ(ierr);

    ierr = QPIPComputeResidual(qp,tao);CHKERRQ(ierr);

    ierr = VecCopy(tao->solution, qp->R3);CHKERRQ(ierr);
    ierr = VecAXPY(qp->R3, -1.0, qp->G);CHKERRQ(ierr);
    ierr = VecAXPY(qp->R3, -1.0, qp->XL);CHKERRQ(ierr);

    ierr = VecCopy(tao->solution, qp->R5);CHKERRQ(ierr);
    ierr = VecAXPY(qp->R5, 1.0, qp->T);CHKERRQ(ierr);
    ierr = VecAXPY(qp->R5, -1.0, qp->XU);CHKERRQ(ierr);

    ierr = VecNorm(qp->R3, NORM_INFINITY, &gap1);CHKERRQ(ierr);
    ierr = VecNorm(qp->R5, NORM_INFINITY, &gap2);CHKERRQ(ierr);
    qp->pinfeas=PetscMax(gap1,gap2);

    /* Compute the duality gap */
    ierr = VecDot(qp->G, qp->Z, &gap1);CHKERRQ(ierr);
    ierr = VecDot(qp->T, qp->S, &gap2);CHKERRQ(ierr);

    qp->gap = (gap1+gap2);
    qp->dobj = qp->pobj - qp->gap;
    if (qp->m>0) qp->mu=qp->gap/(qp->m); else qp->mu=0.0;
    qp->rgap=qp->gap/( PetscAbsReal(qp->dobj) + PetscAbsReal(qp->pobj) + 1.0 );
  }
  PetscFunctionReturn(0);
}
Exemple #28
0
int main(int argc,char **args)
{
  PetscErrorCode ierr;
  PetscMPIInt    rank,size;
  PetscInt       N0=50,N1=20,N=N0*N1,DIM;
  PetscRandom    rdm;
  PetscScalar    a;
  PetscReal      enorm;
  Vec            x,y,z;
  PetscBool      view=PETSC_FALSE,use_interface=PETSC_TRUE;

  ierr = PetscInitialize(&argc,&args,(char*)0,help);CHKERRQ(ierr);
#if !defined(PETSC_USE_COMPLEX)
  SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP, "This example requires complex numbers");
#endif

  ierr = PetscOptionsBegin(PETSC_COMM_WORLD, NULL, "FFTW Options", "ex143");CHKERRQ(ierr);
  ierr = PetscOptionsBool("-vec_view draw", "View the vectors", "ex143", view, &view, NULL);CHKERRQ(ierr);
  ierr = PetscOptionsBool("-use_FFTW_interface", "Use PETSc-FFTW interface", "ex143",use_interface, &use_interface, NULL);CHKERRQ(ierr);
  ierr = PetscOptionsEnd();CHKERRQ(ierr);

  ierr = PetscOptionsGetBool(NULL,"-use_FFTW_interface",&use_interface,NULL);CHKERRQ(ierr);
  ierr = MPI_Comm_size(PETSC_COMM_WORLD, &size);CHKERRQ(ierr);
  ierr = MPI_Comm_rank(PETSC_COMM_WORLD, &rank);CHKERRQ(ierr);

  ierr = PetscRandomCreate(PETSC_COMM_WORLD, &rdm);CHKERRQ(ierr);
  ierr = PetscRandomSetFromOptions(rdm);CHKERRQ(ierr);

  if (!use_interface) {
    /* Use mpi FFTW without PETSc-FFTW interface, 2D case only */
    /*---------------------------------------------------------*/
    fftw_plan    fplan,bplan;
    fftw_complex *data_in,*data_out,*data_out2;
    ptrdiff_t    alloc_local,local_n0,local_0_start;
    
    DIM = 2;
    if (!rank) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"Use FFTW without PETSc-FFTW interface, DIM %D\n",DIM);CHKERRQ(ierr);
    }
    fftw_mpi_init();
    N           = N0*N1;
    alloc_local = fftw_mpi_local_size_2d(N0,N1,PETSC_COMM_WORLD,&local_n0,&local_0_start);

    data_in   = (fftw_complex*)fftw_malloc(sizeof(fftw_complex)*alloc_local);
    data_out  = (fftw_complex*)fftw_malloc(sizeof(fftw_complex)*alloc_local);
    data_out2 = (fftw_complex*)fftw_malloc(sizeof(fftw_complex)*alloc_local);

    ierr = VecCreateMPIWithArray(PETSC_COMM_WORLD,1,(PetscInt)local_n0*N1,(PetscInt)N,(const PetscScalar*)data_in,&x);CHKERRQ(ierr);
    ierr = PetscObjectSetName((PetscObject) x, "Real Space vector");CHKERRQ(ierr);
    ierr = VecCreateMPIWithArray(PETSC_COMM_WORLD,1,(PetscInt)local_n0*N1,(PetscInt)N,(const PetscScalar*)data_out,&y);CHKERRQ(ierr);
    ierr = PetscObjectSetName((PetscObject) y, "Frequency space vector");CHKERRQ(ierr);
    ierr = VecCreateMPIWithArray(PETSC_COMM_WORLD,1,(PetscInt)local_n0*N1,(PetscInt)N,(const PetscScalar*)data_out2,&z);CHKERRQ(ierr);
    ierr = PetscObjectSetName((PetscObject) z, "Reconstructed vector");CHKERRQ(ierr);

    fplan = fftw_mpi_plan_dft_2d(N0,N1,data_in,data_out,PETSC_COMM_WORLD,FFTW_FORWARD,FFTW_ESTIMATE);
    bplan = fftw_mpi_plan_dft_2d(N0,N1,data_out,data_out2,PETSC_COMM_WORLD,FFTW_BACKWARD,FFTW_ESTIMATE);

    ierr = VecSetRandom(x, rdm);CHKERRQ(ierr);
    if (view) {ierr = VecView(x,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);}

    fftw_execute(fplan);
    if (view) {ierr = VecView(y,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);}

    fftw_execute(bplan);

    /* Compare x and z. FFTW computes an unnormalized DFT, thus z = N*x */
    a    = 1.0/(PetscReal)N;
    ierr = VecScale(z,a);CHKERRQ(ierr);
    if (view) {ierr = VecView(z, PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);}
    ierr = VecAXPY(z,-1.0,x);CHKERRQ(ierr);
    ierr = VecNorm(z,NORM_1,&enorm);CHKERRQ(ierr);
    if (enorm > 1.e-11 && !rank) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"  Error norm of |x - z| %g\n",(double)enorm);CHKERRQ(ierr);
    }

    /* Free spaces */
    fftw_destroy_plan(fplan);
    fftw_destroy_plan(bplan);
    fftw_free(data_in);  ierr = VecDestroy(&x);CHKERRQ(ierr);
    fftw_free(data_out); ierr = VecDestroy(&y);CHKERRQ(ierr);
    fftw_free(data_out2);ierr = VecDestroy(&z);CHKERRQ(ierr);

  } else {
    /* Use PETSc-FFTW interface                  */
    /*-------------------------------------------*/
    PetscInt i,*dim,k;
    Mat      A;

    N=1;
    for (i=1; i<5; i++) {
      DIM  = i;
      ierr = PetscMalloc1(i,&dim);CHKERRQ(ierr);
      for (k=0; k<i; k++) {
        dim[k]=30;
      }
      N *= dim[i-1];


      /* Create FFTW object */
      if (!rank) printf("Use PETSc-FFTW interface...%d-DIM: %d\n",(int)DIM,(int)N);

      ierr = MatCreateFFT(PETSC_COMM_WORLD,DIM,dim,MATFFTW,&A);CHKERRQ(ierr);

      /* Create vectors that are compatible with parallel layout of A - must call MatGetVecs()! */

      ierr = MatGetVecsFFTW(A,&x,&y,&z);CHKERRQ(ierr);
      ierr = PetscObjectSetName((PetscObject) x, "Real space vector");CHKERRQ(ierr);
      ierr = PetscObjectSetName((PetscObject) y, "Frequency space vector");CHKERRQ(ierr);
      ierr = PetscObjectSetName((PetscObject) z, "Reconstructed vector");CHKERRQ(ierr);

      /* Set values of space vector x */
      ierr = VecSetRandom(x,rdm);CHKERRQ(ierr);

      if (view) {ierr = VecView(x,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);}

      /* Apply FFTW_FORWARD and FFTW_BACKWARD */
      ierr = MatMult(A,x,y);CHKERRQ(ierr);
      if (view) {ierr = VecView(y,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);}

      ierr = MatMultTranspose(A,y,z);CHKERRQ(ierr);

      /* Compare x and z. FFTW computes an unnormalized DFT, thus z = N*x */
      a    = 1.0/(PetscReal)N;
      ierr = VecScale(z,a);CHKERRQ(ierr);
      if (view) {ierr = VecView(z,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);}
      ierr = VecAXPY(z,-1.0,x);CHKERRQ(ierr);
      ierr = VecNorm(z,NORM_1,&enorm);CHKERRQ(ierr);
      if (enorm > 1.e-9 && !rank) {
        ierr = PetscPrintf(PETSC_COMM_SELF,"  Error norm of |x - z| %e\n",enorm);CHKERRQ(ierr);
      }

      ierr = VecDestroy(&x);CHKERRQ(ierr);
      ierr = VecDestroy(&y);CHKERRQ(ierr);
      ierr = VecDestroy(&z);CHKERRQ(ierr);
      ierr = MatDestroy(&A);CHKERRQ(ierr);

      ierr = PetscFree(dim);CHKERRQ(ierr);
    }
  }

  ierr = PetscRandomDestroy(&rdm);CHKERRQ(ierr);
  ierr = PetscFinalize();
  return 0;
}
Exemple #29
0
int main(int argc,char **args)
{
  Mat            C,C1,F; 
  Vec            u,x,b;
  PetscErrorCode ierr;
  PetscMPIInt    rank,nproc;
  PetscInt       i,M = 10,m,n,nfact,nsolve;
  PetscScalar    *array,rval;
  PetscReal      norm,tol=1.e-12;
  IS             perm,iperm;
  MatFactorInfo  info;
  PetscRandom    rand;
  PetscTruth     flg;

  PetscInitialize(&argc,&args,(char *)0,help);
  ierr = MPI_Comm_rank(PETSC_COMM_WORLD, &rank);CHKERRQ(ierr);
  ierr = MPI_Comm_size(PETSC_COMM_WORLD, &nproc);CHKERRQ(ierr);

  /* Create matrix and vectors */
  ierr = PetscOptionsGetInt(PETSC_NULL,"-M",&M,PETSC_NULL);CHKERRQ(ierr);
  ierr = MatCreate(PETSC_COMM_WORLD,&C);CHKERRQ(ierr);
  ierr = MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,M,M);CHKERRQ(ierr);
  ierr = MatSetType(C,MATDENSE);CHKERRQ(ierr); 
  ierr = MatSetFromOptions(C);CHKERRQ(ierr); 
  
  ierr = MatGetLocalSize(C,&m,&n);CHKERRQ(ierr);
  if (m != n) SETERRQ2(PETSC_ERR_ARG_WRONG,"Matrix local size m %d must equal n %d",m,n);

  ierr = VecCreate(PETSC_COMM_WORLD,&x);CHKERRQ(ierr);
  ierr = VecSetSizes(x,n,PETSC_DECIDE);CHKERRQ(ierr);
  ierr = VecSetFromOptions(x);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&b);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&u);CHKERRQ(ierr); /* save the true solution */

  /* Assembly */
  ierr = PetscRandomCreate(PETSC_COMM_WORLD,&rand);CHKERRQ(ierr);
  ierr = PetscRandomSetFromOptions(rand);CHKERRQ(ierr);
  ierr = MatGetArray(C,&array);CHKERRQ(ierr);
  for (i=0; i<m*M; i++){
    ierr = PetscRandomGetValue(rand,&rval);CHKERRQ(ierr);
    array[i] = rval; 
  }
  ierr = MatRestoreArray(C,&array);CHKERRQ(ierr);
  ierr = MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);   
  /*if (!rank) {printf("main, C: \n");}
    ierr = MatView(C,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); */

  /* Test MatDuplicate() */
  ierr = MatDuplicate(C,MAT_COPY_VALUES,&C1);CHKERRQ(ierr); 
  ierr = MatEqual(C,C1,&flg);CHKERRQ(ierr);
  if (!flg){
    SETERRQ(PETSC_ERR_ARG_WRONG,"Duplicate C1 != C");
  }

  /* Test LU Factorization */
  ierr = MatGetOrdering(C1,MATORDERING_NATURAL,&perm,&iperm);CHKERRQ(ierr);
  if (nproc == 1){
    ierr = MatGetFactor(C1,MAT_SOLVER_PETSC,MAT_FACTOR_LU,&F);CHKERRQ(ierr);
  } else {
    ierr = MatGetFactor(C1,MAT_SOLVER_PLAPACK,MAT_FACTOR_LU,&F);CHKERRQ(ierr);
  }
  ierr = MatLUFactorSymbolic(F,C1,perm,iperm,&info);CHKERRQ(ierr);

  for (nfact = 0; nfact < 2; nfact++){
    if (!rank) printf(" LU nfact %d\n",nfact);
    ierr = MatLUFactorNumeric(F,C1,&info);CHKERRQ(ierr);

    /* Test MatSolve() */
    for (nsolve = 0; nsolve < 5; nsolve++){
      ierr = VecGetArray(x,&array);CHKERRQ(ierr);
      for (i=0; i<m; i++){
        ierr = PetscRandomGetValue(rand,&rval);CHKERRQ(ierr);
        array[i] = rval; 
      }
      ierr = VecRestoreArray(x,&array);CHKERRQ(ierr);
      ierr = VecCopy(x,u);CHKERRQ(ierr); 
      ierr = MatMult(C,x,b);CHKERRQ(ierr);

      ierr = MatSolve(F,b,x);CHKERRQ(ierr); 

      /* Check the error */
      ierr = VecAXPY(u,-1.0,x);CHKERRQ(ierr);  /* u <- (-1.0)x + u */
      ierr = VecNorm(u,NORM_2,&norm);CHKERRQ(ierr);
      if (norm > tol){ 
        if (!rank){
          ierr = PetscPrintf(PETSC_COMM_SELF,"Error: Norm of error %g, LU nfact %d\n",norm,nfact);CHKERRQ(ierr);
        }
      }
    }
  }
  ierr = MatDestroy(C1);CHKERRQ(ierr);
  ierr = MatDestroy(F);CHKERRQ(ierr);

  /* Test Cholesky Factorization */
  ierr = MatTranspose(C,MAT_INITIAL_MATRIX,&C1);CHKERRQ(ierr); /* C1 = C^T */
  ierr = MatAXPY(C,1.0,C1,SAME_NONZERO_PATTERN);CHKERRQ(ierr); /* make C symmetric: C <- C + C^T */
  ierr = MatShift(C,M);CHKERRQ(ierr);  /* make C positive definite */
  ierr = MatDestroy(C1);CHKERRQ(ierr);
  
  ierr = MatSetOption(C,MAT_SYMMETRIC,PETSC_TRUE);CHKERRQ(ierr);
  ierr = MatSetOption(C,MAT_SYMMETRY_ETERNAL,PETSC_TRUE);CHKERRQ(ierr); 
  
  if (nproc == 1){
    ierr = MatGetFactor(C,MAT_SOLVER_PETSC,MAT_FACTOR_CHOLESKY,&F);CHKERRQ(ierr);
  } else {
    ierr = MatGetFactor(C,MAT_SOLVER_PLAPACK,MAT_FACTOR_CHOLESKY,&F);CHKERRQ(ierr);
  }
  ierr = MatCholeskyFactorSymbolic(F,C,perm,&info);CHKERRQ(ierr);
  for (nfact = 0; nfact < 2; nfact++){
    if (!rank) printf(" Cholesky nfact %d\n",nfact);
    ierr = MatCholeskyFactorNumeric(F,C,&info);CHKERRQ(ierr);

    /* Test MatSolve() */
    for (nsolve = 0; nsolve < 5; nsolve++){
      ierr = VecGetArray(x,&array);CHKERRQ(ierr);
      for (i=0; i<m; i++){
        ierr = PetscRandomGetValue(rand,&rval);CHKERRQ(ierr);
        array[i] = rval; 
      }
      ierr = VecRestoreArray(x,&array);CHKERRQ(ierr);
      ierr = VecCopy(x,u);CHKERRQ(ierr); 
      ierr = MatMult(C,x,b);CHKERRQ(ierr);

      ierr = MatSolve(F,b,x);CHKERRQ(ierr); 

      /* Check the error */
      ierr = VecAXPY(u,-1.0,x);CHKERRQ(ierr);  /* u <- (-1.0)x + u */
      ierr = VecNorm(u,NORM_2,&norm);CHKERRQ(ierr);
      if (norm > tol){ 
        if (!rank){
          ierr = PetscPrintf(PETSC_COMM_SELF,"Error: Norm of error %g, Cholesky nfact %d\n",norm,nfact);CHKERRQ(ierr);
        }
      }
    }
  }
  ierr = MatDestroy(F);CHKERRQ(ierr);

  /* Free data structures */
  ierr = PetscRandomDestroy(rand);CHKERRQ(ierr);
  ierr = ISDestroy(perm);CHKERRQ(ierr);
  ierr = ISDestroy(iperm);CHKERRQ(ierr);
  ierr = VecDestroy(x);CHKERRQ(ierr); 
  ierr = VecDestroy(b);CHKERRQ(ierr);
  ierr = VecDestroy(u);CHKERRQ(ierr); 
  ierr = MatDestroy(C);CHKERRQ(ierr); 

  ierr = PetscFinalize();CHKERRQ(ierr);
  return 0;
}
Exemple #30
0
static PetscErrorCode SNESSolve_QN(SNES snes)
{
  PetscErrorCode      ierr;
  SNES_QN             *qn = (SNES_QN*) snes->data;
  Vec                 X,Xold;
  Vec                 F,W;
  Vec                 Y,D,Dold;
  PetscInt            i, i_r;
  PetscReal           fnorm,xnorm,ynorm,gnorm;
  PetscBool           lssucceed,powell,periodic;
  PetscScalar         DolddotD,DolddotDold;
  SNESConvergedReason reason;

  /* basically just a regular newton's method except for the application of the jacobian */

  PetscFunctionBegin;
  ierr = PetscCitationsRegister(SNESCitation,&SNEScite);CHKERRQ(ierr);
  F    = snes->vec_func;                /* residual vector */
  Y    = snes->vec_sol_update;          /* search direction generated by J^-1D*/
  W    = snes->work[3];
  X    = snes->vec_sol;                 /* solution vector */
  Xold = snes->work[0];

  /* directions generated by the preconditioned problem with F_pre = F or x - M(x, b) */
  D    = snes->work[1];
  Dold = snes->work[2];

  snes->reason = SNES_CONVERGED_ITERATING;

  ierr       = PetscObjectSAWsTakeAccess((PetscObject)snes);CHKERRQ(ierr);
  snes->iter = 0;
  snes->norm = 0.;
  ierr       = PetscObjectSAWsGrantAccess((PetscObject)snes);CHKERRQ(ierr);

  if (snes->pc && snes->pcside == PC_LEFT && snes->functype == SNES_FUNCTION_PRECONDITIONED) {
    ierr = SNESApplyNPC(snes,X,NULL,F);CHKERRQ(ierr);
    ierr = SNESGetConvergedReason(snes->pc,&reason);CHKERRQ(ierr);
    if (reason < 0  && reason != SNES_DIVERGED_MAX_IT) {
      snes->reason = SNES_DIVERGED_INNER;
      PetscFunctionReturn(0);
    }
    ierr = VecNorm(F,NORM_2,&fnorm);CHKERRQ(ierr);
  } else {
    if (!snes->vec_func_init_set) {
      ierr = SNESComputeFunction(snes,X,F);CHKERRQ(ierr);
      if (snes->domainerror) {
        snes->reason = SNES_DIVERGED_FUNCTION_DOMAIN;
        PetscFunctionReturn(0);
      }
    } else snes->vec_func_init_set = PETSC_FALSE;

    ierr = VecNorm(F,NORM_2,&fnorm);CHKERRQ(ierr);
    if (PetscIsInfOrNanReal(fnorm)) {
      snes->reason = SNES_DIVERGED_FNORM_NAN;
      PetscFunctionReturn(0);
    }
  }
  if (snes->pc && snes->pcside == PC_LEFT && snes->functype == SNES_FUNCTION_UNPRECONDITIONED) {
      ierr = SNESApplyNPC(snes,X,F,D);CHKERRQ(ierr);
      ierr = SNESGetConvergedReason(snes->pc,&reason);CHKERRQ(ierr);
      if (reason < 0  && reason != SNES_DIVERGED_MAX_IT) {
        snes->reason = SNES_DIVERGED_INNER;
        PetscFunctionReturn(0);
      }
  } else {
    ierr = VecCopy(F,D);CHKERRQ(ierr);
  }

  ierr       = PetscObjectSAWsTakeAccess((PetscObject)snes);CHKERRQ(ierr);
  snes->norm = fnorm;
  ierr       = PetscObjectSAWsGrantAccess((PetscObject)snes);CHKERRQ(ierr);
  ierr       = SNESLogConvergenceHistory(snes,fnorm,0);CHKERRQ(ierr);
  ierr       = SNESMonitor(snes,0,fnorm);CHKERRQ(ierr);

  /* test convergence */
  ierr = (*snes->ops->converged)(snes,0,0.0,0.0,fnorm,&snes->reason,snes->cnvP);CHKERRQ(ierr);
  if (snes->reason) PetscFunctionReturn(0);

  if (snes->pc && snes->pcside == PC_RIGHT) {
    ierr = PetscLogEventBegin(SNES_NPCSolve,snes->pc,X,0,0);CHKERRQ(ierr);
    ierr = SNESSolve(snes->pc,snes->vec_rhs,X);CHKERRQ(ierr);
    ierr = PetscLogEventEnd(SNES_NPCSolve,snes->pc,X,0,0);CHKERRQ(ierr);
    ierr = SNESGetConvergedReason(snes->pc,&reason);CHKERRQ(ierr);
    if (reason < 0 && reason != SNES_DIVERGED_MAX_IT) {
      snes->reason = SNES_DIVERGED_INNER;
      PetscFunctionReturn(0);
    }
    ierr = SNESGetNPCFunction(snes,F,&fnorm);CHKERRQ(ierr);
    ierr = VecCopy(F,D);CHKERRQ(ierr);
  }

  /* scale the initial update */
  if (qn->scale_type == SNES_QN_SCALE_JACOBIAN) {
    ierr = SNESComputeJacobian(snes,X,snes->jacobian,snes->jacobian_pre);CHKERRQ(ierr);
  }

  for (i = 0, i_r = 0; i < snes->max_its; i++, i_r++) {
    if (qn->scale_type == SNES_QN_SCALE_SHANNO && i_r > 0) {
      PetscScalar ff,xf;
      ierr = VecCopy(Dold,Y);CHKERRQ(ierr);
      ierr = VecCopy(Xold,W);CHKERRQ(ierr);
      ierr = VecAXPY(Y,-1.0,D);CHKERRQ(ierr);
      ierr = VecAXPY(W,-1.0,X);CHKERRQ(ierr);
      ierr = VecDotBegin(Y,Y,&ff);CHKERRQ(ierr);
      ierr = VecDotBegin(W,Y,&xf);CHKERRQ(ierr);
      ierr = VecDotEnd(Y,Y,&ff);CHKERRQ(ierr);
      ierr = VecDotEnd(W,Y,&xf);CHKERRQ(ierr);
      qn->scaling = PetscRealPart(xf)/PetscRealPart(ff);
    }
    switch (qn->type) {
    case SNES_QN_BADBROYDEN:
      ierr = SNESQNApply_BadBroyden(snes,i_r,Y,X,Xold,D,Dold);CHKERRQ(ierr);
      break;
    case SNES_QN_BROYDEN:
      ierr = SNESQNApply_Broyden(snes,i_r,Y,X,Xold,D);CHKERRQ(ierr);
      break;
    case SNES_QN_LBFGS:
      SNESQNApply_LBFGS(snes,i_r,Y,X,Xold,D,Dold);CHKERRQ(ierr);
      break;
    }
    /* line search for lambda */
    ynorm = 1; gnorm = fnorm;
    ierr  = VecCopy(D, Dold);CHKERRQ(ierr);
    ierr  = VecCopy(X, Xold);CHKERRQ(ierr);
    ierr  = SNESLineSearchApply(snes->linesearch, X, F, &fnorm, Y);CHKERRQ(ierr);
    if (snes->reason == SNES_DIVERGED_FUNCTION_COUNT) break;
    if (snes->domainerror) {
      snes->reason = SNES_DIVERGED_FUNCTION_DOMAIN;
      PetscFunctionReturn(0);
    }
    ierr = SNESLineSearchGetSuccess(snes->linesearch, &lssucceed);CHKERRQ(ierr);
    if (!lssucceed) {
      if (++snes->numFailures >= snes->maxFailures) {
        snes->reason = SNES_DIVERGED_LINE_SEARCH;
        break;
      }
    }
    ierr = SNESLineSearchGetNorms(snes->linesearch, &xnorm, &fnorm, &ynorm);CHKERRQ(ierr);
    if (qn->scale_type == SNES_QN_SCALE_LINESEARCH) {
      ierr = SNESLineSearchGetLambda(snes->linesearch, &qn->scaling);CHKERRQ(ierr);
    }

    /* convergence monitoring */
    ierr = PetscInfo4(snes,"fnorm=%18.16e, gnorm=%18.16e, ynorm=%18.16e, lssucceed=%d\n",(double)fnorm,(double)gnorm,(double)ynorm,(int)lssucceed);CHKERRQ(ierr);

    if (snes->pc && snes->pcside == PC_RIGHT) {
      ierr = PetscLogEventBegin(SNES_NPCSolve,snes->pc,X,0,0);CHKERRQ(ierr);
      ierr = SNESSolve(snes->pc,snes->vec_rhs,X);CHKERRQ(ierr);
      ierr = PetscLogEventEnd(SNES_NPCSolve,snes->pc,X,0,0);CHKERRQ(ierr);
      ierr = SNESGetConvergedReason(snes->pc,&reason);CHKERRQ(ierr);
      if (reason < 0 && reason != SNES_DIVERGED_MAX_IT) {
        snes->reason = SNES_DIVERGED_INNER;
        PetscFunctionReturn(0);
      }
      ierr = SNESGetNPCFunction(snes,F,&fnorm);CHKERRQ(ierr);
    }

    ierr = SNESSetIterationNumber(snes, i+1);CHKERRQ(ierr);
    ierr = SNESSetFunctionNorm(snes, fnorm);CHKERRQ(ierr);

    ierr = SNESLogConvergenceHistory(snes,snes->norm,snes->iter);CHKERRQ(ierr);
    ierr = SNESMonitor(snes,snes->iter,snes->norm);CHKERRQ(ierr);
    /* set parameter for default relative tolerance convergence test */
    ierr = (*snes->ops->converged)(snes,snes->iter,xnorm,ynorm,fnorm,&snes->reason,snes->cnvP);CHKERRQ(ierr);
    if (snes->reason) PetscFunctionReturn(0);
    if (snes->pc && snes->pcside == PC_LEFT && snes->functype == SNES_FUNCTION_UNPRECONDITIONED) {
      ierr = SNESApplyNPC(snes,X,F,D);CHKERRQ(ierr);
      ierr = SNESGetConvergedReason(snes->pc,&reason);CHKERRQ(ierr);
      if (reason < 0  && reason != SNES_DIVERGED_MAX_IT) {
        snes->reason = SNES_DIVERGED_INNER;
        PetscFunctionReturn(0);
      }
    } else {
      ierr = VecCopy(F, D);CHKERRQ(ierr);
    }
    powell = PETSC_FALSE;
    if (qn->restart_type == SNES_QN_RESTART_POWELL) {
      /* check restart by Powell's Criterion: |F^T H_0 Fold| > 0.2 * |Fold^T H_0 Fold| */
      if (qn->scale_type == SNES_QN_SCALE_JACOBIAN) {
        ierr = MatMult(snes->jacobian_pre,Dold,W);CHKERRQ(ierr);
      } else {
        ierr = VecCopy(Dold,W);CHKERRQ(ierr);
      }
      ierr = VecDotBegin(W, Dold, &DolddotDold);CHKERRQ(ierr);
      ierr = VecDotBegin(W, D, &DolddotD);CHKERRQ(ierr);
      ierr = VecDotEnd(W, Dold, &DolddotDold);CHKERRQ(ierr);
      ierr = VecDotEnd(W, D, &DolddotD);CHKERRQ(ierr);
      if (PetscAbs(PetscRealPart(DolddotD)) > qn->powell_gamma*PetscAbs(PetscRealPart(DolddotDold))) powell = PETSC_TRUE;
    }
    periodic = PETSC_FALSE;
    if (qn->restart_type == SNES_QN_RESTART_PERIODIC) {
      if (i_r>qn->m-1) periodic = PETSC_TRUE;
    }
    /* restart if either powell or periodic restart is satisfied. */
    if (powell || periodic) {
      if (qn->monitor) {
        ierr = PetscViewerASCIIAddTab(qn->monitor,((PetscObject)snes)->tablevel+2);CHKERRQ(ierr);
        ierr = PetscViewerASCIIPrintf(qn->monitor, "restart! |%14.12e| > %4.2f*|%14.12e| or i_r = %d\n", PetscRealPart(DolddotD), qn->powell_gamma, PetscRealPart(DolddotDold), i_r);CHKERRQ(ierr);
        ierr = PetscViewerASCIISubtractTab(qn->monitor,((PetscObject)snes)->tablevel+2);CHKERRQ(ierr);
      }
      i_r = -1;
      /* general purpose update */
      if (snes->ops->update) {
        ierr = (*snes->ops->update)(snes, snes->iter);CHKERRQ(ierr);
      }
      if (qn->scale_type == SNES_QN_SCALE_JACOBIAN) {
        ierr = SNESComputeJacobian(snes,X,snes->jacobian,snes->jacobian_pre);CHKERRQ(ierr);
      }
    }
    /* general purpose update */
    if (snes->ops->update) {
      ierr = (*snes->ops->update)(snes, snes->iter);CHKERRQ(ierr);
    }
  }
  if (i == snes->max_its) {
    ierr = PetscInfo1(snes, "Maximum number of iterations has been reached: %D\n", snes->max_its);CHKERRQ(ierr);
    if (!snes->reason) snes->reason = SNES_DIVERGED_MAX_IT;
  }
  PetscFunctionReturn(0);
}