Exemple #1
0
static int virtualblocks(struct fs *super, union dinode *dp)
{
	off_t nblk, sz;

	sz = DIP(super, dp, di_size);
#ifdef	COMPAT
	if (lblkno(super,sz) >= NDADDR) {
		nblk = blkroundup(super,sz);
		if (sz == nblk)
			nblk += super->fs_bsize;
	}

	return sz / 1024;

#else	/* COMPAT */

	if (lblkno(super,sz) >= NDADDR) {
		nblk = blkroundup(super,sz);
		sz = lblkno(super,nblk);
		sz = (sz - NDADDR + NINDIR(super) - 1) / NINDIR(super);
		while (sz > 0) {
			nblk += sz * super->fs_bsize;
			/* sz - 1 rounded up */
			sz = (sz - 1 + NINDIR(super) - 1) / NINDIR(super);
		}
	} else
		nblk = fragroundup(super,sz);

	return nblk / 512;
#endif	/* COMPAT */
}
Exemple #2
0
/*
 * Read indirect blocks, and pass the data blocks to be dumped.
 */
static void
dmpindir(ino_t ino, daddr_t  blk, int ind_level, off_t *size)
{
	int i, cnt;
	char idblk[MAXBSIZE];

	if (blk != 0)
		bread(fsbtodb(sblock, blk), idblk, (int) sblock->fs_bsize);
	else
		memset(idblk, 0, (int)sblock->fs_bsize);
	if (ind_level <= 0) {
		if (*size < NINDIR(sblock) * sblock->fs_bsize)
			cnt = howmany(*size, sblock->fs_fsize);
		else
			cnt = NINDIR(sblock) * sblock->fs_frag;
		*size -= NINDIR(sblock) * sblock->fs_bsize;
		if (sblock->fs_magic == FS_UFS1_MAGIC)
			ufs1_blksout((int32_t *)idblk, cnt, ino);
		else
			ufs2_blksout((int64_t *)idblk, cnt, ino);
		return;
	}
	ind_level--;
	for (i = 0; i < NINDIR(sblock); i++) {
		if (sblock->fs_magic == FS_UFS1_MAGIC)
			dmpindir(ino, ((int32_t *)idblk)[i], ind_level,
			    size);
		else
			dmpindir(ino, ((int64_t *)idblk)[i], ind_level,
			    size);
		if (*size <= 0)
			return;
	}
}
Exemple #3
0
/*
 * Read indirect blocks, and pass the data blocks to be dumped.
 */
static void
dmpindir(ufs1_ino_t ino, daddr_t blk, int ind_level, fsizeT *size)
{
	int i, cnt;
	daddr_t idblk[MAXNINDIR];

	if (blk != 0)
		bread(fsbtodb(sblock, blk), (char *)idblk, (int) sblock->fs_bsize);
	else
		memset(idblk, 0, (int)sblock->fs_bsize);
	if (ind_level <= 0) {
		if (*size < NINDIR(sblock) * sblock->fs_bsize)
			cnt = howmany(*size, sblock->fs_fsize);
		else
			cnt = NINDIR(sblock) * sblock->fs_frag;
		*size -= NINDIR(sblock) * sblock->fs_bsize;
		blksout(&idblk[0], cnt, ino);
		return;
	}
	ind_level--;
	for (i = 0; i < NINDIR(sblock); i++) {
		dmpindir(ino, idblk[i], ind_level, size);
		if (*size <= 0)
			return;
	}
}
Exemple #4
0
static int
virtualblocks(struct fs *super, union dinode *dp)
{
	off_t nblk, sz;

	sz = DIP(super, dp, di_size);
#ifdef	COMPAT
	if (lblkno(super, sz) >= NDADDR) {
		nblk = blkroundup(super, sz);
		if (sz == nblk)
			nblk += super->fs_bsize;
	}

	return sz / 1024;
#else	/* COMPAT */

	if (lblkno(super, sz) >= NDADDR) {
		nblk = blkroundup(super, sz);
		sz = lblkno(super, nblk);
		sz = howmany(sz - NDADDR, NINDIR(super));
		while (sz > 0) {
			nblk += sz * super->fs_bsize;
			/* One block on this level is in the inode itself */
			sz = howmany(sz - 1, NINDIR(super));
		}
	} else
		nblk = fragroundup(super, sz);

	return nblk / DEV_BSIZE;
#endif	/* COMPAT */
}
/*
 * Read indirect blocks, and pass the data blocks to be searched
 * as directories. Quit as soon as any entry is found that will
 * require the directory to be dumped.
 */
static int
dirindir(ino_t ino, daddr64_t blkno, int ind_level, off_t *filesize)
{
	int ret = 0;
	int i;
	char idblk[MAXBSIZE];

	bread(fsbtodb(sblock, blkno), idblk, (int)sblock->fs_bsize);
	if (ind_level <= 0) {
		for (i = 0; *filesize > 0 && i < NINDIR(sblock); i++) {
			if (sblock->fs_magic == FS_UFS1_MAGIC)
				blkno = ((int32_t *)idblk)[i];
			else
				blkno = ((int64_t *)idblk)[i];
			if (blkno != 0)
				ret |= searchdir(ino, blkno, sblock->fs_bsize,
					*filesize);
			if (ret & HASDUMPEDFILE)
				*filesize = 0;
			else
				*filesize -= sblock->fs_bsize;
		}
		return (ret);
	}
	ind_level--;
	for (i = 0; *filesize > 0 && i < NINDIR(sblock); i++) {
		if (sblock->fs_magic == FS_UFS1_MAGIC)
			blkno = ((int32_t *)idblk)[i];
		else
			blkno = ((int64_t *)idblk)[i];
		if (blkno != 0)
			ret |= dirindir(ino, blkno, ind_level, filesize);
	}
	return (ret);
}
Exemple #6
0
/*
 * Read indirect blocks, and pass the data blocks to be searched
 * as directories. Quit as soon as any entry is found that will
 * require the directory to be dumped.
 */
static int
dirindir(ufs1_ino_t ino, daddr_t blkno, int ind_level, long *filesize,
         long *tape_size, int nodump)
{
	int ret = 0;
	int i;
	daddr_t	idblk[MAXNINDIR];

	bread(fsbtodb(sblock, blkno), (char *)idblk, (int)sblock->fs_bsize);
	if (ind_level <= 0) {
		for (i = 0; *filesize > 0 && i < NINDIR(sblock); i++) {
			blkno = idblk[i];
			if (blkno != 0) {
				ret |= searchdir(ino, blkno, sblock->fs_bsize,
					*filesize, tape_size, nodump);
			}
			if (ret & HASDUMPEDFILE)
				*filesize = 0;
			else
				*filesize -= sblock->fs_bsize;
		}
		return (ret);
	}
	ind_level--;
	for (i = 0; *filesize > 0 && i < NINDIR(sblock); i++) {
		blkno = idblk[i];
		if (blkno != 0) {
			ret |= dirindir(ino, blkno, ind_level, filesize,
			    tape_size, nodump);
		}
	}
	return (ret);
}
Exemple #7
0
/*
 * Create the root directory for this file system and the lost+found
 * directory.
 */
static void
make_dinode(ino_t ino, struct ufs1_dinode *dip, int nfrags, struct lfs *fs)
{
	int fsb_per_blk, i;
	int nblocks, bb, base, factor, lvl;

	nblocks = howmany(nfrags, fs->lfs_frag);
	if(nblocks >= NDADDR)
		nfrags = roundup(nfrags, fs->lfs_frag);

	dip->di_nlink = 1;
	dip->di_blocks = fragstofsb(fs, nfrags);

	dip->di_size = (nfrags << fs->lfs_ffshift);
	dip->di_atime = dip->di_mtime = dip->di_ctime = fs->lfs_tstamp;
	dip->di_atimensec = dip->di_mtimensec = dip->di_ctimensec = 0;
	dip->di_inumber = ino;
	dip->di_gen = 1;

	fsb_per_blk = fragstofsb(fs, blkstofrags(fs, 1));

	if (NDADDR < nblocks) {
		/* Count up how many indirect blocks we need, recursively */
		/* XXX We are only called with nblocks > 1 for Ifile */
		bb = nblocks - NDADDR;
		while (bb > 0) {
			bb = howmany(bb, NINDIR(fs));
			ifibc += bb;
			--bb;
		}
		dip->di_blocks += fragstofsb(fs, blkstofrags(fs, ifibc));
	}

	/* Assign the block addresses for the ifile */
	for (i = 0; i < MIN(nblocks,NDADDR); i++) {
		dip->di_db[i] = 0x0;
	}
	if(nblocks > NDADDR) {
		dip->di_ib[0] = 0x0;
		bb = howmany(nblocks - NDADDR, NINDIR(fs)) - 1;
		factor = NINDIR(fs);
		base = -NDADDR - factor;
		lvl = 1;
		while (bb > 0) {
			dip->di_ib[lvl] = 0x0;
			bb = howmany(bb, NINDIR(fs));
			--bb;
			factor *= NINDIR(fs);
			base -= factor;
			++lvl;
		}
	}
}
Exemple #8
0
static int indir_fill( ufs2_daddr_t blk, int level, int *resid ) {
	char indirbuf[MAXBSIZE];
	ufs1_daddr_t *bap1;
	ufs2_daddr_t *bap2;
	ufs2_daddr_t nblk;
	int ncnt;
	int cnt;
	int i;
	bzero( indirbuf, sizeof( indirbuf ) );
	bap1 = (ufs1_daddr_t *) indirbuf;
	bap2 = (void *) bap1;
	cnt = 0;
	for ( i = 0; i < NINDIR( &sblock ) && *resid != 0; i++ ) {
		nblk = journal_balloc();
		if ( nblk <= 0 ) return ( -1 );
		cnt++;
		if ( sblock.fs_magic == FS_UFS1_MAGIC ) *bap1++ = nblk;
		else *bap2++ = nblk;
		if ( level != 0 ) {
			ncnt = indir_fill( nblk, level - 1, resid );
			if ( ncnt <= 0 ) return ( -1 );
			cnt += ncnt;
		} else ( *resid )--;
	}
	if ( bwrite( &disk, fsbtodb( &sblock, blk ), indirbuf,
	sblock.fs_bsize ) <= 0 ) {
		warn( "Failed to write indirect" );
		return ( -1 );
	}
	return ( cnt );
}
Exemple #9
0
/*
 * Sanity checks for old file systems.
 */
int
ffs_oldfscompat(struct fs *fs)
{
	int i;

	fs->fs_npsect = max(fs->fs_npsect, fs->fs_nsect);	/* XXX */
	fs->fs_interleave = max(fs->fs_interleave, 1);		/* XXX */
	if (fs->fs_postblformat == FS_42POSTBLFMT)		/* XXX */
		fs->fs_nrpos = 8;				/* XXX */
	if (fs->fs_inodefmt < FS_44INODEFMT) {			/* XXX */
		u_int64_t sizepb = fs->fs_bsize;		/* XXX */
								/* XXX */
		fs->fs_maxfilesize = fs->fs_bsize * NDADDR - 1;	/* XXX */
		for (i = 0; i < NIADDR; i++) {			/* XXX */
			sizepb *= NINDIR(fs);			/* XXX */
			fs->fs_maxfilesize += sizepb;		/* XXX */
		}						/* XXX */
		fs->fs_qbmask = ~fs->fs_bmask;			/* XXX */
		fs->fs_qfmask = ~fs->fs_fmask;			/* XXX */
	}							/* XXX */
	if (fs->fs_avgfilesize <= 0)				/* XXX */
		fs->fs_avgfilesize = AVFILESIZ;			/* XXX */
	if (fs->fs_avgfpdir <= 0)				/* XXX */
		fs->fs_avgfpdir = AFPDIR;			/* XXX */
	return (0);
}
Exemple #10
0
/*
 * Read indirect blocks, and pass the data blocks to be searched
 * as directories. Quit as soon as any entry is found that will
 * require the directory to be dumped.
 */
static int
dirindir(
	ino_t ino,
	ufs2_daddr_t blkno,
	int ind_level,
	long *filesize,
	long *tapesize,
	int nodump,
	ino_t maxino)
{
	union {
		ufs1_daddr_t ufs1[MAXBSIZE / sizeof(ufs1_daddr_t)];
		ufs2_daddr_t ufs2[MAXBSIZE / sizeof(ufs2_daddr_t)];
	} idblk;
	int ret = 0;
	int i;

	bread(fsbtodb(sblock, blkno), (char *)&idblk, (int)sblock->fs_bsize);
	if (ind_level <= 0) {
		for (i = 0; *filesize > 0 && i < NINDIR(sblock); i++) {
			if (sblock->fs_magic == FS_UFS1_MAGIC)
				blkno = idblk.ufs1[i];
			else
				blkno = idblk.ufs2[i];
			if (blkno != 0)
				ret |= searchdir(ino, blkno, sblock->fs_bsize,
					*filesize, tapesize, nodump, maxino);
			if (ret & HASDUMPEDFILE)
				*filesize = 0;
			else
				*filesize -= sblock->fs_bsize;
		}
		return (ret);
	}
	ind_level--;
	for (i = 0; *filesize > 0 && i < NINDIR(sblock); i++) {
		if (sblock->fs_magic == FS_UFS1_MAGIC)
			blkno = idblk.ufs1[i];
		else
			blkno = idblk.ufs2[i];
		if (blkno != 0)
			ret |= dirindir(ino, blkno, ind_level, filesize,
			    tapesize, nodump, maxino);
	}
	return (ret);
}
Exemple #11
0
static grub_int64_t
block_map (int file_block)
{
  int bnum, offset, bsize;
  
  if (file_block < NDADDR)
    return (INODE_UFS2->di_db[file_block]);
  
  /* If the blockmap loaded does not include FILE_BLOCK,
     load a new blockmap.  */

  if ((bnum = fsbtodb (SUPERBLOCK, INODE_UFS2->di_ib[0])) != mapblock
      || (mapblock_offset <= bnum && bnum <= mapblock_offset + mapblock_bsize))
    {
      if (MAPBUF_LEN < SUPERBLOCK->fs_bsize)
	{
	  offset = ((file_block - NDADDR) % NINDIR (SUPERBLOCK));
	  bsize = MAPBUF_LEN;
	  
	  if (offset + MAPBUF_LEN > SUPERBLOCK->fs_bsize)
	    offset = (SUPERBLOCK->fs_bsize - MAPBUF_LEN) / sizeof (int);
	}
      else
	{
	  bsize = SUPERBLOCK->fs_bsize;
	  offset = 0;
	}
      
      if (! devread (bnum, offset * sizeof (int), bsize, (char *) MAPBUF, 0xedde0d90))
	{
	  mapblock = -1;
	  mapblock_bsize = -1;
	  mapblock_offset = -1;
	  errnum = ERR_FSYS_CORRUPT;
	  return -1;
	}
      
      mapblock = bnum;
      mapblock_bsize = bsize;
      mapblock_offset = offset;
    }
  
  return (((grub_int64_t *) MAPBUF)[((file_block - NDADDR) % NINDIR (SUPERBLOCK))
				    - mapblock_offset]);
}
Exemple #12
0
static int
block_map(int file_block)
{
	int bnum;
	if (file_block < NDADDR)
		return(inode.i_db[file_block]);
	if ((bnum=fsbtodb(fs, inode.i_ib[0])+boff) != mapblock) {
		devread(mapbuf, bnum, fs->fs_bsize);
		mapblock = bnum;
	}
	return (((int *)mapbuf)[(file_block - NDADDR) % NINDIR(fs)]);
}
Exemple #13
0
/*
 * Recursively print a list of indirect blocks.
 */
static void
printindir(ufs2_daddr_t blk, int level, char *bufp)
{
    struct bufarea buf, *bp;
    char tempbuf[32];		/* enough to print an ufs2_daddr_t */
    int i, j, cpl, charssofar;
    ufs2_daddr_t blkno;

    if (blk == 0)
	return;
    printf("%jd (%d) =>\n", (intmax_t)blk, level);
    if (level == 0) {
	/* for the final indirect level, don't use the cache */
	bp = &buf;
	bp->b_un.b_buf = bufp;
	bp->b_prev = bp->b_next = bp;
	initbarea(bp);

	getblk(bp, blk, sblock.fs_bsize);
    } else
	bp = getdatablk(blk, sblock.fs_bsize);

    cpl = charsperline();
    for (i = charssofar = 0; i < NINDIR(&sblock); i++) {
	if (sblock.fs_magic == FS_UFS1_MAGIC)
		blkno = bp->b_un.b_indir1[i];
	else
		blkno = bp->b_un.b_indir2[i];
	if (blkno == 0)
	    continue;
	j = sprintf(tempbuf, "%jd", (intmax_t)blkno);
	if (level == 0) {
	    charssofar += j;
	    if (charssofar >= cpl - 2) {
		putchar('\n');
		charssofar = j;
	    }
	}
	fputs(tempbuf, stdout);
	if (level == 0) {
	    printf(", ");
	    charssofar += 2;
	} else {
	    printf(" =>\n");
	    printindir(blkno, level - 1, bufp);
	    printf("\n");
	    charssofar = 0;
	}
    }
    if (level == 0)
	putchar('\n');
    return;
}
Exemple #14
0
/*
 * Read indirect blocks, and pass the data blocks to be dumped.
 */
static void
dmpindir(union dinode *dp, ino_t ino, ufs2_daddr_t blk, int ind_level,
	off_t *size)
{
	union {
		ufs1_daddr_t ufs1[MAXBSIZE / sizeof(ufs1_daddr_t)];
		ufs2_daddr_t ufs2[MAXBSIZE / sizeof(ufs2_daddr_t)];
	} idblk;
	int i, cnt, last;

	if (blk != 0)
		bread(fsbtodb(sblock, blk), (char *)&idblk,
		    (int)sblock->fs_bsize);
	else
		memset(&idblk, 0, sblock->fs_bsize);
	if (ind_level <= 0) {
		if (*size > NINDIR(sblock) * sblock->fs_bsize) {
			cnt = NINDIR(sblock) * sblock->fs_frag;
			last = 0;
		} else {
			cnt = howmany(*size, sblock->fs_fsize);
			last = 1;
		}
		*size -= NINDIR(sblock) * sblock->fs_bsize;
		if (sblock->fs_magic == FS_UFS1_MAGIC)
			ufs1_blksout(idblk.ufs1, cnt, ino);
		else
			ufs2_blksout(dp, idblk.ufs2, cnt, ino, last);
		return;
	}
	ind_level--;
	for (i = 0; i < NINDIR(sblock); i++) {
		if (sblock->fs_magic == FS_UFS1_MAGIC)
			dmpindir(dp, ino, idblk.ufs1[i], ind_level, size);
		else
			dmpindir(dp, ino, idblk.ufs2[i], ind_level, size);
		if (*size <= 0)
			return;
	}
}
Exemple #15
0
int
block_map(int file_block)
{
	if (file_block < NDADDR)
		return(inode.i_db[file_block]);
	if ((bnum=fsbtodb(fs, inode.i_ib[0])+boff) != mapblock) {
		cnt = fs->fs_bsize;
		if (disk_read(bnum, cnt, (vm_offset_t)mapbuf))
			return(-1);
		mapblock = bnum;
	}
	return (((int *)mapbuf)[(file_block - NDADDR) % NINDIR(fs)]);
}
Exemple #16
0
/*
 * Recursively print a list of indirect blocks.
 */
static int
printindir(ufs_daddr_t blk, int level, char *bufp)
{
    struct bufarea buf, *bp;
    char tempbuf[32];		/* enough to print an ufs_daddr_t */
    int i, j, cpl, charssofar;
    ufs_daddr_t blkno;

    if (level == 0) {
	/* for the final indirect level, don't use the cache */
	bp = &buf;
	bp->b_un.b_buf = bufp;
	bp->b_prev = bp->b_next = bp;
	initbarea(bp);

	getblk(bp, blk, sblock.fs_bsize);
    } else
	bp = getdatablk(blk, sblock.fs_bsize);

    cpl = charsperline();
    for (i = charssofar = 0; i < NINDIR(&sblock); i++) {
	blkno = bp->b_un.b_indir[i];
	if (blkno == 0) {
	    if (level == 0)
		putchar('\n');
	    return 0;
	}
	j = sprintf(tempbuf, "%d", blkno);
	if (level == 0) {
	    charssofar += j;
	    if (charssofar >= cpl - 2) {
		putchar('\n');
		charssofar = j;
	    }
	}
	fputs(tempbuf, stdout);
	if (level == 0) {
	    printf(", ");
	    charssofar += 2;
	} else {
	    printf(" =>\n");
	    if (printindir(blkno, level - 1, bufp) == 0)
		return 0;
	}
    }
    if (level == 0)
	putchar('\n');
    return 1;
}
Exemple #17
0
diskaddr_t
bmap(diskaddr_t i)
{
	daddr32_t ibuf[MAXNINDIR];

	if (i < NDADDR)
		return ((diskaddr_t)gip->di_db[i]);
	i -= NDADDR;
	if (i > NINDIR(&sblock)) {
		(void) fprintf(stderr, "ff    : %lu - huge directory\n", ino);
		return ((diskaddr_t)0);
	}
	bread(fsbtodb(&sblock, gip->di_ib[0]), (char *)ibuf, sizeof (ibuf));
	return ((diskaddr_t)ibuf[i]);
}
Exemple #18
0
/*
 * Truncate a directory to its first hole.  If there are non-holes
 * in the direct blocks after the problem block, move them down so
 * that there's somewhat less lossage.  Doing this for indirect blocks
 * is left as an exercise for the reader.
 */
static void
collapse_dirhole(fsck_ino_t inumber, struct inodesc *idesc)
{
	offset_t new_size;
	int blocks;

	if (idesc->id_firsthole < 0) {
		return;
	}

	/*
	 * Since truncino() adjusts the size, we don't need to do that here,
	 * but we have to tell it what final size we want.
	 *
	 * We need to count from block zero up through the last block
	 * before the hole.  If the hole is in the indirect blocks, chop at
	 * the start of the nearest level of indirection.  Orphans will
	 * get reconnected, so we're not actually losing anything by doing
	 * it this way, and we're simplifying truncation significantly.
	 */
	new_size = idesc->id_firsthole * (offset_t)sblock.fs_bsize;
	blocks = howmany(new_size, sblock.fs_bsize);
	if (blocks > NDADDR) {
		if (blocks < (NDADDR + NINDIR(&sblock)))
			blocks = NDADDR;
		else if (blocks < (NDADDR + NINDIR(&sblock) +
		    (NINDIR(&sblock) * NINDIR(&sblock))))
			blocks = NDADDR + NINDIR(&sblock);
		else
			blocks = NDADDR + NINDIR(&sblock) +
			    (NINDIR(&sblock) * NINDIR(&sblock));
		new_size = blocks * sblock.fs_bsize;
		if (debug)
			(void) printf("to %lld (blocks %d)\n",
			    (longlong_t)new_size, blocks);
	}
	truncino(inumber, new_size, TI_NOPARENT);

	/*
	 * Technically, there are still the original number of fragments
	 * associated with the object.  However, that number is not used
	 * to control anything, so we can do the in-memory truncation of
	 * it without bad things happening.
	 */
	idesc->id_entryno = btodb(new_size);
}
Exemple #19
0
/*
 * Sanity checks for old file systems.
 * Stolen from <sys/lib/libsa/ufs.c>
 */
static void
ffs_oldfscompat(struct fs *fs)
{
	int i;

	fs->fs_npsect = max(fs->fs_npsect, fs->fs_nsect);	/* XXX */
	fs->fs_interleave = max(fs->fs_interleave, 1);		/* XXX */
	if (fs->fs_postblformat == FS_42POSTBLFMT)		/* XXX */
		fs->fs_nrpos = 8;				/* XXX */
	if (fs->fs_inodefmt < FS_44INODEFMT) {			/* XXX */
		quad_t sizepb = fs->fs_bsize;			/* XXX */
								/* XXX */
		fs->fs_maxfilesize = fs->fs_bsize * NDADDR - 1;	/* XXX */
		for (i = 0; i < NIADDR; i++) {			/* XXX */
			sizepb *= NINDIR(fs);			/* XXX */
			fs->fs_maxfilesize += sizepb;		/* XXX */
		}						/* XXX */
		fs->fs_qbmask = ~fs->fs_bmask;			/* XXX */
		fs->fs_qfmask = ~fs->fs_fmask;			/* XXX */
	}							/* XXX */
}
Exemple #20
0
daddr_t
ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
{
	struct fs *fs;
	int cg;
	int avgbfree, startcg;

	fs = ip->i_fs;
	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
		if (lbn < NDADDR + NINDIR(fs)) {
			cg = ino_to_cg(fs, ip->i_number);
			return (fs->fs_fpg * cg + fs->fs_frag);
		}
		/*
		 * Find a cylinder with greater than average number of
		 * unused data blocks.
		 */
		if (indx == 0 || bap[indx - 1] == 0)
			startcg =
			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
		else
			startcg = dtog(fs,
				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
		startcg %= fs->fs_ncg;
		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
		for (cg = startcg; cg < fs->fs_ncg; cg++)
			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
				return (fs->fs_fpg * cg + fs->fs_frag);
			}
		for (cg = 0; cg < startcg; cg++)
			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
				return (fs->fs_fpg * cg + fs->fs_frag);
			}
		return (0);
	}
	/*
	 * We just always try to lay things out contiguously.
	 */
	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
}
Exemple #21
0
struct fs *
ffs_mkfs(const char *fsys, const fsinfo_t *fsopts, time_t tstamp)
{
	int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
	int32_t cylno, i, csfrags;
	long long sizepb;
	void *space;
	int size, blks;
	int nprintcols, printcolwidth;
	ffs_opt_t	*ffs_opts = fsopts->fs_specific;

	Oflag =		ffs_opts->version;
	fssize =        fsopts->size / fsopts->sectorsize;
	sectorsize =    fsopts->sectorsize;
	fsize =         ffs_opts->fsize;
	bsize =         ffs_opts->bsize;
	maxbsize =      ffs_opts->maxbsize;
	maxblkspercg =  ffs_opts->maxblkspercg;
	minfree =       ffs_opts->minfree;
	opt =           ffs_opts->optimization;
	density =       ffs_opts->density;
	maxcontig =     ffs_opts->maxcontig;
	maxbpg =        ffs_opts->maxbpg;
	avgfilesize =   ffs_opts->avgfilesize;
	avgfpdir =      ffs_opts->avgfpdir;
	bbsize =        BBSIZE;
	sbsize =        SBLOCKSIZE;

	strlcpy(sblock.fs_volname, ffs_opts->label, sizeof(sblock.fs_volname));

	if (Oflag == 0) {
		sblock.fs_old_inodefmt = FS_42INODEFMT;
		sblock.fs_maxsymlinklen = 0;
		sblock.fs_old_flags = 0;
	} else {
		sblock.fs_old_inodefmt = FS_44INODEFMT;
		sblock.fs_maxsymlinklen = (Oflag == 1 ? MAXSYMLINKLEN_UFS1 :
		    MAXSYMLINKLEN_UFS2);
		sblock.fs_old_flags = FS_FLAGS_UPDATED;
		sblock.fs_flags = 0;
	}
	/*
	 * Validate the given file system size.
	 * Verify that its last block can actually be accessed.
	 * Convert to file system fragment sized units.
	 */
	if (fssize <= 0) {
		printf("preposterous size %lld\n", (long long)fssize);
		exit(13);
	}
	ffs_wtfs(fssize - 1, sectorsize, (char *)&sblock, fsopts);

	/*
	 * collect and verify the filesystem density info
	 */
	sblock.fs_avgfilesize = avgfilesize;
	sblock.fs_avgfpdir = avgfpdir;
	if (sblock.fs_avgfilesize <= 0)
		printf("illegal expected average file size %d\n",
		    sblock.fs_avgfilesize), exit(14);
	if (sblock.fs_avgfpdir <= 0)
		printf("illegal expected number of files per directory %d\n",
		    sblock.fs_avgfpdir), exit(15);
	/*
	 * collect and verify the block and fragment sizes
	 */
	sblock.fs_bsize = bsize;
	sblock.fs_fsize = fsize;
	if (!POWEROF2(sblock.fs_bsize)) {
		printf("block size must be a power of 2, not %d\n",
		    sblock.fs_bsize);
		exit(16);
	}
	if (!POWEROF2(sblock.fs_fsize)) {
		printf("fragment size must be a power of 2, not %d\n",
		    sblock.fs_fsize);
		exit(17);
	}
	if (sblock.fs_fsize < sectorsize) {
		printf("fragment size %d is too small, minimum is %d\n",
		    sblock.fs_fsize, sectorsize);
		exit(18);
	}
	if (sblock.fs_bsize < MINBSIZE) {
		printf("block size %d is too small, minimum is %d\n",
		    sblock.fs_bsize, MINBSIZE);
		exit(19);
	}
	if (sblock.fs_bsize > FFS_MAXBSIZE) {
		printf("block size %d is too large, maximum is %d\n",
		    sblock.fs_bsize, FFS_MAXBSIZE);
		exit(19);
	}
	if (sblock.fs_bsize < sblock.fs_fsize) {
		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
		    sblock.fs_bsize, sblock.fs_fsize);
		exit(20);
	}

	if (maxbsize < bsize || !POWEROF2(maxbsize)) {
		sblock.fs_maxbsize = sblock.fs_bsize;
		printf("Extent size set to %d\n", sblock.fs_maxbsize);
	} else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
		sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
		printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
	} else {
		sblock.fs_maxbsize = maxbsize;
	}
	sblock.fs_maxcontig = maxcontig;
	if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
		sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
		printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
	}

	if (sblock.fs_maxcontig > 1)
		sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);

	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
	sblock.fs_qbmask = ~sblock.fs_bmask;
	sblock.fs_qfmask = ~sblock.fs_fmask;
	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
		sblock.fs_bshift++;
	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
		sblock.fs_fshift++;
	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
		sblock.fs_fragshift++;
	if (sblock.fs_frag > MAXFRAG) {
		printf("fragment size %d is too small, "
			"minimum with block size %d is %d\n",
		    sblock.fs_fsize, sblock.fs_bsize,
		    sblock.fs_bsize / MAXFRAG);
		exit(21);
	}
	sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
	sblock.fs_size = sblock.fs_providersize = fssize =
	    dbtofsb(&sblock, fssize);

	if (Oflag <= 1) {
		sblock.fs_magic = FS_UFS1_MAGIC;
		sblock.fs_sblockloc = SBLOCK_UFS1;
		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
		sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
		    sizeof (ufs1_daddr_t));
		sblock.fs_old_inodefmt = FS_44INODEFMT;
		sblock.fs_old_cgoffset = 0;
		sblock.fs_old_cgmask = 0xffffffff;
		sblock.fs_old_size = sblock.fs_size;
		sblock.fs_old_rotdelay = 0;
		sblock.fs_old_rps = 60;
		sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
		sblock.fs_old_cpg = 1;
		sblock.fs_old_interleave = 1;
		sblock.fs_old_trackskew = 0;
		sblock.fs_old_cpc = 0;
		sblock.fs_old_postblformat = 1;
		sblock.fs_old_nrpos = 1;
	} else {
		sblock.fs_magic = FS_UFS2_MAGIC;
		sblock.fs_sblockloc = SBLOCK_UFS2;
		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
		sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
		    sizeof (ufs2_daddr_t));
	}

	sblock.fs_sblkno =
	    roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
		sblock.fs_frag);
	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
	    roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag));
	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
		sizepb *= NINDIR(&sblock);
		sblock.fs_maxfilesize += sizepb;
	}

	/*
	 * Calculate the number of blocks to put into each cylinder group.
	 *
	 * This algorithm selects the number of blocks per cylinder
	 * group. The first goal is to have at least enough data blocks
	 * in each cylinder group to meet the density requirement. Once
	 * this goal is achieved we try to expand to have at least
	 * 1 cylinder group. Once this goal is achieved, we pack as
	 * many blocks into each cylinder group map as will fit.
	 *
	 * We start by calculating the smallest number of blocks that we
	 * can put into each cylinder group. If this is too big, we reduce
	 * the density until it fits.
	 */
	origdensity = density;
	for (;;) {
		fragsperinode = MAX(numfrags(&sblock, density), 1);
		minfpg = fragsperinode * INOPB(&sblock);
		if (minfpg > sblock.fs_size)
			minfpg = sblock.fs_size;
		sblock.fs_ipg = INOPB(&sblock);
		sblock.fs_fpg = roundup(sblock.fs_iblkno +
		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
		if (sblock.fs_fpg < minfpg)
			sblock.fs_fpg = minfpg;
		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
		    INOPB(&sblock));
		sblock.fs_fpg = roundup(sblock.fs_iblkno +
		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
		if (sblock.fs_fpg < minfpg)
			sblock.fs_fpg = minfpg;
		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
		    INOPB(&sblock));
		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
			break;
		density -= sblock.fs_fsize;
	}
	if (density != origdensity)
		printf("density reduced from %d to %d\n", origdensity, density);

	if (maxblkspercg <= 0 || maxblkspercg >= fssize)
		maxblkspercg = fssize - 1;
	/*
	 * Start packing more blocks into the cylinder group until
	 * it cannot grow any larger, the number of cylinder groups
	 * drops below 1, or we reach the size requested.
	 */
	for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
		    INOPB(&sblock));
		if (sblock.fs_size / sblock.fs_fpg < 1)
			break;
		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
			continue;
		if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
			break;
		sblock.fs_fpg -= sblock.fs_frag;
		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
		    INOPB(&sblock));
		break;
	}
	/*
	 * Check to be sure that the last cylinder group has enough blocks
	 * to be viable. If it is too small, reduce the number of blocks
	 * per cylinder group which will have the effect of moving more
	 * blocks into the last cylinder group.
	 */
	optimalfpg = sblock.fs_fpg;
	for (;;) {
		sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
		lastminfpg = roundup(sblock.fs_iblkno +
		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
		if (sblock.fs_size < lastminfpg) {
			printf("Filesystem size %lld < minimum size of %d\n",
			    (long long)sblock.fs_size, lastminfpg);
			exit(28);
		}
		if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
		    sblock.fs_size % sblock.fs_fpg == 0)
			break;
		sblock.fs_fpg -= sblock.fs_frag;
		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
		    INOPB(&sblock));
	}
	if (optimalfpg != sblock.fs_fpg)
		printf("Reduced frags per cylinder group from %d to %d %s\n",
		   optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
	if (Oflag <= 1) {
		sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
		sblock.fs_old_nsect = sblock.fs_old_spc;
		sblock.fs_old_npsect = sblock.fs_old_spc;
		sblock.fs_old_ncyl = sblock.fs_ncg;
	}

	/*
	 * fill in remaining fields of the super block
	 */
	sblock.fs_csaddr = cgdmin(&sblock, 0);
	sblock.fs_cssize =
	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));

	/*
	 * Setup memory for temporary in-core cylgroup summaries.
	 * Cribbed from ffs_mountfs().
	 */
	size = sblock.fs_cssize;
	blks = howmany(size, sblock.fs_fsize);
	if (sblock.fs_contigsumsize > 0)
		size += sblock.fs_ncg * sizeof(int32_t);
	if ((space = (char *)calloc(1, size)) == NULL)
		err(1, "memory allocation error for cg summaries");
	sblock.fs_csp = space;
	space = (char *)space + sblock.fs_cssize;
	if (sblock.fs_contigsumsize > 0) {
		int32_t *lp;

		sblock.fs_maxcluster = lp = space;
		for (i = 0; i < sblock.fs_ncg; i++)
		*lp++ = sblock.fs_contigsumsize;
	}

	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
	if (sblock.fs_sbsize > SBLOCKSIZE)
		sblock.fs_sbsize = SBLOCKSIZE;
	sblock.fs_minfree = minfree;
	sblock.fs_maxcontig = maxcontig;
	sblock.fs_maxbpg = maxbpg;
	sblock.fs_optim = opt;
	sblock.fs_cgrotor = 0;
	sblock.fs_pendingblocks = 0;
	sblock.fs_pendinginodes = 0;
	sblock.fs_cstotal.cs_ndir = 0;
	sblock.fs_cstotal.cs_nbfree = 0;
	sblock.fs_cstotal.cs_nifree = 0;
	sblock.fs_cstotal.cs_nffree = 0;
	sblock.fs_fmod = 0;
	sblock.fs_ronly = 0;
	sblock.fs_state = 0;
	sblock.fs_clean = FS_ISCLEAN;
	sblock.fs_ronly = 0;
	sblock.fs_id[0] = tstamp;
	sblock.fs_id[1] = random();
	sblock.fs_fsmnt[0] = '\0';
	csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
	sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
	    sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
	sblock.fs_cstotal.cs_nbfree =
	    fragstoblks(&sblock, sblock.fs_dsize) -
	    howmany(csfrags, sblock.fs_frag);
	sblock.fs_cstotal.cs_nffree =
	    fragnum(&sblock, sblock.fs_size) +
	    (fragnum(&sblock, csfrags) > 0 ?
	    sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
	sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO;
	sblock.fs_cstotal.cs_ndir = 0;
	sblock.fs_dsize -= csfrags;
	sblock.fs_time = tstamp;
	if (Oflag <= 1) {
		sblock.fs_old_time = tstamp;
		sblock.fs_old_dsize = sblock.fs_dsize;
		sblock.fs_old_csaddr = sblock.fs_csaddr;
		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
	}
	/*
	 * Dump out summary information about file system.
	 */
#define	B2MBFACTOR (1 / (1024.0 * 1024.0))
	printf("%s: %.1fMB (%lld sectors) block size %d, "
	       "fragment size %d\n",
	    fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
	    (long long)fsbtodb(&sblock, sblock.fs_size),
	    sblock.fs_bsize, sblock.fs_fsize);
	printf("\tusing %d cylinder groups of %.2fMB, %d blks, "
	       "%d inodes.\n",
	    sblock.fs_ncg,
	    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
#undef B2MBFACTOR
	/*
	 * Now determine how wide each column will be, and calculate how
	 * many columns will fit in a 76 char line. 76 is the width of the
	 * subwindows in sysinst.
	 */
	printcolwidth = count_digits(
			fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
	nprintcols = 76 / (printcolwidth + 2);

	/*
	 * allocate space for superblock, cylinder group map, and
	 * two sets of inode blocks.
	 */
	if (sblock.fs_bsize < SBLOCKSIZE)
		iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
	else
		iobufsize = 4 * sblock.fs_bsize;
	if ((iobuf = malloc(iobufsize)) == NULL) {
		printf("Cannot allocate I/O buffer\n");
		exit(38);
	}
	memset(iobuf, 0, iobufsize);
	/*
	 * Make a copy of the superblock into the buffer that we will be
	 * writing out in each cylinder group.
	 */
	memcpy(writebuf, &sblock, sbsize);
	if (fsopts->needswap)
		ffs_sb_swap(&sblock, (struct fs*)writebuf);
	memcpy(iobuf, writebuf, SBLOCKSIZE);

	printf("super-block backups (for fsck -b #) at:");
	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
		initcg(cylno, tstamp, fsopts);
		if (cylno % nprintcols == 0)
			printf("\n");
		printf(" %*lld,", printcolwidth,
			(long long)fsbtodb(&sblock, cgsblock(&sblock, cylno)));
		fflush(stdout);
	}
	printf("\n");

	/*
	 * Now construct the initial file system,
	 * then write out the super-block.
	 */
	sblock.fs_time = tstamp;
	if (Oflag <= 1) {
		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
	}
	if (fsopts->needswap)
		sblock.fs_flags |= FS_SWAPPED;
	ffs_write_superblock(&sblock, fsopts);
	return (&sblock);
}
Exemple #22
0
Fichier : sys.c Projet : aosm/boot
static daddr_t
sbmap(struct iob *io, daddr_t bn)
{
	register struct inode *ip;
	int i, j, sh;
	daddr_t nb, *bap;

	ip = &io->i_ino;

	if (ip->i_icflags & IC_FASTLINK)
	{
		error("fast symlinks unimplemented\n");
		return ((daddr_t)0);
	}

	if (bn < 0) {
#if	SYS_MESSAGES
		error("bn negative\n");
#endif
		return ((daddr_t)0);
	}

	/*
	 * blocks 0..NDADDR are direct blocks
	 */
	if(bn < NDADDR)
	{
		nb = ip->i_db[bn];
		return (nb);
	}

	/*
	 * addresses NIADDR have single and double indirect blocks.
	 * the first step is to determine how many levels of indirection.
	 */
	sh = 1;
	bn -= NDADDR;
	for (j = NIADDR; j > 0; j--) {
		sh *= NINDIR(io->i_fs);
		if (bn < sh)
			break;
		bn -= sh;
	}
	if (j == 0) {
#if	SYS_MESSAGES
		error("bn ovf %d\n", bn);
#endif
		return ((daddr_t)0);
	}

	/*
	 * fetch the first indirect block address from the inode
	 */
	nb = ip->i_ib[NIADDR - j];
	if (nb == 0) {
#if	SYS_MESSAGES
		error("bn void %d\n",bn);
#endif
		return ((daddr_t)0);
	}

	/*
	 * fetch through the indirect blocks
	 */
	for (; j <= NIADDR; j++) {
		if (blknos[j] != nb) {
			io->i_bn = fsbtodb(io->i_fs, nb) + io->i_boff;
			if (b[j] == (char *)0)
				b[j] = malloc(MAXBSIZE);
			io->i_ma = b[j];
			io->i_cc = io->i_fs->fs_bsize;
			if (devread(io) != io->i_fs->fs_bsize) {
#if	SYS_MESSAGES
				error("bn %d: read error\n", io->i_bn);
#endif
				return ((daddr_t)0);
			}
			blknos[j] = nb;
		}
		bap = (daddr_t *)b[j];
		sh /= NINDIR(io->i_fs);
		i = (bn / sh) % NINDIR(io->i_fs);
#if	BIG_ENDIAN_FS
#if 1
		// for now it is little endian FS for intel
		nb = bap[i];
#else
		nb = OSSwapBigToHostInt32(bap[i]);
#endif 1
#else	BIG_ENDIAN_FS
		nb = bap[i];
#endif	BIG_ENDIAN_FS
		if(nb == 0) {
#if	SYS_MESSAGES
			error("bn void %d\n",bn);
#endif
			return ((daddr_t)0);
		}
	}

	return (nb);
}
Exemple #23
0
/*
 * Release blocks associated with the inode ip and stored in the indirect
 * block bn.  Blocks are free'd in LIFO order up to (but not including)
 * lastbn.  If level is greater than SINGLE, the block is an indirect block
 * and recursive calls to indirtrunc must be used to cleanse other indirect
 * blocks.
 *
 * NB: triple indirect blocks are untested.
 */
static int
ffs_indirtrunc(struct inode *ip, ufs_daddr_t lbn, ufs_daddr_t dbn,
	       ufs_daddr_t lastbn, int level, long *countp)
{
	int i;
	struct buf *bp;
	struct fs *fs = ip->i_fs;
	ufs_daddr_t *bap;
	struct vnode *vp;
	ufs_daddr_t *copy = NULL, nb, nlbn, last;
	long blkcount, factor;
	int nblocks, blocksreleased = 0;
	int error = 0, allerror = 0;

	/*
	 * Calculate index in current block of last
	 * block to be kept.  -1 indicates the entire
	 * block so we need not calculate the index.
	 */
	factor = 1;
	for (i = SINGLE; i < level; i++)
		factor *= NINDIR(fs);
	last = lastbn;
	if (lastbn > 0)
		last /= factor;
	nblocks = btodb(fs->fs_bsize);
	/*
	 * Get buffer of block pointers, zero those entries corresponding
	 * to blocks to be free'd, and update on disk copy first.  Since
	 * double(triple) indirect before single(double) indirect, calls
	 * to bmap on these blocks will fail.  However, we already have
	 * the on disk address, so we have to set the bio_offset field
	 * explicitly instead of letting bread do everything for us.
	 */
	vp = ITOV(ip);
	bp = getblk(vp, lblktodoff(fs, lbn), (int)fs->fs_bsize, 0, 0);
	if ((bp->b_flags & B_CACHE) == 0) {
		bp->b_flags &= ~(B_ERROR|B_INVAL);
		bp->b_cmd = BUF_CMD_READ;
		if (bp->b_bcount > bp->b_bufsize)
			panic("ffs_indirtrunc: bad buffer size");
		/*
		 * BIO is bio2 which chains back to bio1.  We wait
		 * on bio1.
		 */
		bp->b_bio2.bio_offset = dbtodoff(fs, dbn);
		bp->b_bio1.bio_done = biodone_sync;
		bp->b_bio1.bio_flags |= BIO_SYNC;
		vfs_busy_pages(vp, bp);
		/*
		 * Access the block device layer using the device vnode
		 * and the translated block number (bio2) instead of the
		 * file vnode (vp) and logical block number (bio1).
		 *
		 * Even though we are bypassing the vnode layer, we still
		 * want the vnode state to indicate that an I/O on its behalf
		 * is in progress.
		 */
		bio_start_transaction(&bp->b_bio1, &vp->v_track_read);
		vn_strategy(ip->i_devvp, &bp->b_bio2);
		error = biowait(&bp->b_bio1, "biord");
	}
	if (error) {
		brelse(bp);
		*countp = 0;
		return (error);
	}

	bap = (ufs_daddr_t *)bp->b_data;
	if (lastbn != -1) {
		copy = kmalloc(fs->fs_bsize, M_TEMP, M_WAITOK);
		bcopy((caddr_t)bap, (caddr_t)copy, (uint)fs->fs_bsize);
		bzero((caddr_t)&bap[last + 1],
		    (uint)(NINDIR(fs) - (last + 1)) * sizeof (ufs_daddr_t));
		if (DOINGASYNC(vp)) {
			bawrite(bp);
		} else {
			error = bwrite(bp);
			if (error)
				allerror = error;
		}
		bap = copy;
	}

	/*
	 * Recursively free totally unused blocks.
	 */
	for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last;
	    i--, nlbn += factor) {
		nb = bap[i];
		if (nb == 0)
			continue;
		if (level > SINGLE) {
			if ((error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
			    (ufs_daddr_t)-1, level - 1, &blkcount)) != 0)
				allerror = error;
			blocksreleased += blkcount;
		}
		ffs_blkfree(ip, nb, fs->fs_bsize);
		blocksreleased += nblocks;
	}

	/*
	 * Recursively free last partial block.
	 */
	if (level > SINGLE && lastbn >= 0) {
		last = lastbn % factor;
		nb = bap[i];
		if (nb != 0) {
			error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
			    last, level - 1, &blkcount);
			if (error)
				allerror = error;
			blocksreleased += blkcount;
		}
	}
	if (copy != NULL) {
		kfree(copy, M_TEMP);
	} else {
		bp->b_flags |= B_INVAL | B_NOCACHE;
		brelse(bp);
	}
		
	*countp = blocksreleased;
	return (allerror);
}
Exemple #24
0
/*
 * Truncate the inode oip to at most length size, freeing the
 * disk blocks.
 */
int
ffs_truncate(struct vnode *vp, off_t length, int flags, struct ucred *cred)
{
	struct vnode *ovp = vp;
	ufs_daddr_t lastblock;
	struct inode *oip;
	ufs_daddr_t bn, lbn, lastiblock[NIADDR], indir_lbn[NIADDR];
	ufs_daddr_t oldblks[NDADDR + NIADDR], newblks[NDADDR + NIADDR];
	struct fs *fs;
	struct buf *bp;
	int offset, size, level;
	long count, nblocks, blocksreleased = 0;
	int i;
	int aflags, error, allerror;
	off_t osize;

	oip = VTOI(ovp);
	fs = oip->i_fs;
	if (length < 0)
		return (EINVAL);
	if (length > fs->fs_maxfilesize)
		return (EFBIG);
	if (ovp->v_type == VLNK &&
	    (oip->i_size < ovp->v_mount->mnt_maxsymlinklen || oip->i_din.di_blocks == 0)) {
#ifdef DIAGNOSTIC
		if (length != 0)
			panic("ffs_truncate: partial truncate of symlink");
#endif /* DIAGNOSTIC */
		bzero((char *)&oip->i_shortlink, (uint)oip->i_size);
		oip->i_size = 0;
		oip->i_flag |= IN_CHANGE | IN_UPDATE;
		return (ffs_update(ovp, 1));
	}
	if (oip->i_size == length) {
		oip->i_flag |= IN_CHANGE | IN_UPDATE;
		return (ffs_update(ovp, 0));
	}
	if (fs->fs_ronly)
		panic("ffs_truncate: read-only filesystem");
#ifdef QUOTA
	error = ufs_getinoquota(oip);
	if (error)
		return (error);
#endif
	ovp->v_lasta = ovp->v_clen = ovp->v_cstart = ovp->v_lastw = 0;
	if (DOINGSOFTDEP(ovp)) {
		if (length > 0 || softdep_slowdown(ovp)) {
			/*
			 * If a file is only partially truncated, then
			 * we have to clean up the data structures
			 * describing the allocation past the truncation
			 * point. Finding and deallocating those structures
			 * is a lot of work. Since partial truncation occurs
			 * rarely, we solve the problem by syncing the file
			 * so that it will have no data structures left.
			 */
			if ((error = VOP_FSYNC(ovp, MNT_WAIT, 0)) != 0)
				return (error);
		} else {
#ifdef QUOTA
			(void) ufs_chkdq(oip, -oip->i_blocks, NOCRED, 0);
#endif
			softdep_setup_freeblocks(oip, length);
			vinvalbuf(ovp, 0, 0, 0);
			nvnode_pager_setsize(ovp, 0, fs->fs_bsize, 0);
			oip->i_flag |= IN_CHANGE | IN_UPDATE;
			return (ffs_update(ovp, 0));
		}
	}
	osize = oip->i_size;

	/*
	 * Lengthen the size of the file. We must ensure that the
	 * last byte of the file is allocated. Since the smallest
	 * value of osize is 0, length will be at least 1.
	 *
	 * nvextendbuf() only breads the old buffer.  The blocksize
	 * of the new buffer must be specified so it knows how large
	 * to make the VM object.
	 */
	if (osize < length) {
		nvextendbuf(vp, osize, length,
			    blkoffsize(fs, oip, osize),	/* oblksize */
			    blkoffresize(fs, length),	/* nblksize */
			    blkoff(fs, osize),
			    blkoff(fs, length),
			    0);

		aflags = B_CLRBUF;
		if (flags & IO_SYNC)
			aflags |= B_SYNC;
		/* BALLOC will reallocate the fragment at the old EOF */
		error = VOP_BALLOC(ovp, length - 1, 1, cred, aflags, &bp);
		if (error)
			return (error);
		oip->i_size = length;
		if (bp->b_bufsize == fs->fs_bsize)
			bp->b_flags |= B_CLUSTEROK;
		if (aflags & B_SYNC)
			bwrite(bp);
		else
			bawrite(bp);
		oip->i_flag |= IN_CHANGE | IN_UPDATE;
		return (ffs_update(ovp, 1));
	}

	/*
	 * Shorten the size of the file.
	 *
	 * NOTE: The block size specified in nvtruncbuf() is the blocksize
	 *	 of the buffer containing length prior to any reallocation
	 *	 of the block.
	 */
	allerror = nvtruncbuf(ovp, length, blkoffsize(fs, oip, length),
			      blkoff(fs, length), 0);
	offset = blkoff(fs, length);
	if (offset == 0) {
		oip->i_size = length;
	} else {
		lbn = lblkno(fs, length);
		aflags = B_CLRBUF;
		if (flags & IO_SYNC)
			aflags |= B_SYNC;
		error = VOP_BALLOC(ovp, length - 1, 1, cred, aflags, &bp);
		if (error)
			return (error);

		/*
		 * When we are doing soft updates and the UFS_BALLOC
		 * above fills in a direct block hole with a full sized
		 * block that will be truncated down to a fragment below,
		 * we must flush out the block dependency with an FSYNC
		 * so that we do not get a soft updates inconsistency
		 * when we create the fragment below.
		 *
		 * nvtruncbuf() may have re-dirtied the underlying block
		 * as part of its truncation zeroing code.  To avoid a
		 * 'locking against myself' panic in the second fsync we
		 * can simply undirty the bp since the redirtying was
		 * related to areas of the buffer that we are going to
		 * throw away anyway, and we will b*write() the remainder
		 * anyway down below.
		 */
		if (DOINGSOFTDEP(ovp) && lbn < NDADDR &&
		    fragroundup(fs, blkoff(fs, length)) < fs->fs_bsize) {
			bundirty(bp);
			error = VOP_FSYNC(ovp, MNT_WAIT, 0);
			if (error) {
				bdwrite(bp);
				return (error);
			}
		}
		oip->i_size = length;
		size = blksize(fs, oip, lbn);
#if 0
		/* remove - nvtruncbuf deals with this */
		if (ovp->v_type != VDIR)
			bzero((char *)bp->b_data + offset,
			    (uint)(size - offset));
#endif
		/* Kirk's code has reallocbuf(bp, size, 1) here */
		allocbuf(bp, size);
		if (bp->b_bufsize == fs->fs_bsize)
			bp->b_flags |= B_CLUSTEROK;
		if (aflags & B_SYNC)
			bwrite(bp);
		else
			bawrite(bp);
	}
	/*
	 * Calculate index into inode's block list of
	 * last direct and indirect blocks (if any)
	 * which we want to keep.  Lastblock is -1 when
	 * the file is truncated to 0.
	 */
	lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1;
	lastiblock[SINGLE] = lastblock - NDADDR;
	lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs);
	lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs);
	nblocks = btodb(fs->fs_bsize);

	/*
	 * Update file and block pointers on disk before we start freeing
	 * blocks.  If we crash before free'ing blocks below, the blocks
	 * will be returned to the free list.  lastiblock values are also
	 * normalized to -1 for calls to ffs_indirtrunc below.
	 */
	bcopy((caddr_t)&oip->i_db[0], (caddr_t)oldblks, sizeof oldblks);
	for (level = TRIPLE; level >= SINGLE; level--)
		if (lastiblock[level] < 0) {
			oip->i_ib[level] = 0;
			lastiblock[level] = -1;
		}
	for (i = NDADDR - 1; i > lastblock; i--)
		oip->i_db[i] = 0;
	oip->i_flag |= IN_CHANGE | IN_UPDATE;
	error = ffs_update(ovp, 1);
	if (error && allerror == 0)
		allerror = error;
	
	/*
	 * Having written the new inode to disk, save its new configuration
	 * and put back the old block pointers long enough to process them.
	 * Note that we save the new block configuration so we can check it
	 * when we are done.
	 */
	bcopy((caddr_t)&oip->i_db[0], (caddr_t)newblks, sizeof newblks);
	bcopy((caddr_t)oldblks, (caddr_t)&oip->i_db[0], sizeof oldblks);
	oip->i_size = osize;

	if (error && allerror == 0)
		allerror = error;

	/*
	 * Indirect blocks first.
	 */
	indir_lbn[SINGLE] = -NDADDR;
	indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1;
	indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1;
	for (level = TRIPLE; level >= SINGLE; level--) {
		bn = oip->i_ib[level];
		if (bn != 0) {
			error = ffs_indirtrunc(oip, indir_lbn[level],
			    fsbtodb(fs, bn), lastiblock[level], level, &count);
			if (error)
				allerror = error;
			blocksreleased += count;
			if (lastiblock[level] < 0) {
				oip->i_ib[level] = 0;
				ffs_blkfree(oip, bn, fs->fs_bsize);
				blocksreleased += nblocks;
			}
		}
		if (lastiblock[level] >= 0)
			goto done;
	}

	/*
	 * All whole direct blocks or frags.
	 */
	for (i = NDADDR - 1; i > lastblock; i--) {
		long bsize;

		bn = oip->i_db[i];
		if (bn == 0)
			continue;
		oip->i_db[i] = 0;
		bsize = blksize(fs, oip, i);
		ffs_blkfree(oip, bn, bsize);
		blocksreleased += btodb(bsize);
	}
	if (lastblock < 0)
		goto done;

	/*
	 * Finally, look for a change in size of the
	 * last direct block; release any frags.
	 */
	bn = oip->i_db[lastblock];
	if (bn != 0) {
		long oldspace, newspace;

		/*
		 * Calculate amount of space we're giving
		 * back as old block size minus new block size.
		 */
		oldspace = blksize(fs, oip, lastblock);
		oip->i_size = length;
		newspace = blksize(fs, oip, lastblock);
		if (newspace == 0)
			panic("ffs_truncate: newspace");
		if (oldspace - newspace > 0) {
			/*
			 * Block number of space to be free'd is
			 * the old block # plus the number of frags
			 * required for the storage we're keeping.
			 */
			bn += numfrags(fs, newspace);
			ffs_blkfree(oip, bn, oldspace - newspace);
			blocksreleased += btodb(oldspace - newspace);
		}
	}
done:
#ifdef DIAGNOSTIC
	for (level = SINGLE; level <= TRIPLE; level++)
		if (newblks[NDADDR + level] != oip->i_ib[level])
			panic("ffs_truncate1");
	for (i = 0; i < NDADDR; i++)
		if (newblks[i] != oip->i_db[i])
			panic("ffs_truncate2");
	if (length == 0 && !RB_EMPTY(&ovp->v_rbdirty_tree))
		panic("ffs_truncate3");
#endif /* DIAGNOSTIC */
	/*
	 * Put back the real size.
	 */
	oip->i_size = length;
	oip->i_blocks -= blocksreleased;

	if (oip->i_blocks < 0)			/* sanity */
		oip->i_blocks = 0;
	oip->i_flag |= IN_CHANGE;
#ifdef QUOTA
	(void) ufs_chkdq(oip, -blocksreleased, NOCRED, 0);
#endif
	return (allerror);
}
Exemple #25
0
void
mkfs(char *fsys, int fi, int fo, const char *mfscopy)
{
	long i, mincpc, mincpg, inospercg;
	long cylno, rpos, blk, j, emitwarn = 0;
	long used, mincpgcnt, bpcg;
	off_t usedb;
	long mapcramped, inodecramped;
	long postblsize, rotblsize, totalsbsize;
	int status, fd;
	time_t utime;
	quad_t sizepb;
	int width;
	char tmpbuf[100];	/* XXX this will break in about 2,500 years */

	time(&utime);
#ifdef FSIRAND
	if (!randinit) {
		randinit = 1;
		srandomdev();
	}
#endif
	if (mfs) {
		int omask;
		pid_t child;

		mfs_ppid = getpid();
		signal(SIGUSR1, parentready);
		if ((child = fork()) != 0) {
			/*
			 * Parent
			 */
			if (child == -1)
				err(10, "mfs");
			if (mfscopy)
			    copyroot = FSCopy(&copyhlinks, mfscopy);
			signal(SIGUSR1, started);
			kill(child, SIGUSR1);
			while (waitpid(child, &status, 0) != child)
				;
			exit(WEXITSTATUS(status));
			/* NOTREACHED */
		}

		/*
		 * Child
		 */
		omask = sigblock(sigmask(SIGUSR1));
		while (parentready_signalled == 0)
			sigpause(omask);
		sigsetmask(omask);
		if (filename != NULL) {
			unsigned char buf[BUFSIZ];
			unsigned long l, l1;
			ssize_t w;

			fd = open(filename, O_RDWR|O_TRUNC|O_CREAT, 0644);
			if(fd < 0)
				err(12, "%s", filename);
			l1 = fssize * sectorsize;
			if (l1 > BUFSIZ)
				l1 = BUFSIZ;
			for (l = 0; l < fssize * (u_long)sectorsize; l += l1) {
				w = write(fd, buf, l1);
				if (w < 0 || (u_long)w != l1)
					err(12, "%s", filename);
			}
			membase = mmap(NULL, fssize * sectorsize,
				       PROT_READ|PROT_WRITE,
				       MAP_SHARED, fd, 0);
			if (membase == MAP_FAILED)
				err(12, "mmap");
			close(fd);
		} else {
			membase = mmap(NULL, fssize * sectorsize,
				       PROT_READ|PROT_WRITE,
				       MAP_SHARED|MAP_ANON, -1, 0);
			if (membase == MAP_FAILED)
				errx(13, "mmap (anonymous memory) failed");
		}
	}
	fsi = fi;
	fso = fo;
	if (Oflag) {
		sblock.fs_inodefmt = FS_42INODEFMT;
		sblock.fs_maxsymlinklen = 0;
	} else {
		sblock.fs_inodefmt = FS_44INODEFMT;
		sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
	}
	if (Uflag)
		sblock.fs_flags |= FS_DOSOFTDEP;
	if (Lflag)
		strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);

	/*
	 * Validate the given file system size.
	 * Verify that its last block can actually be accessed.
	 */
	if (fssize == 0)
		printf("preposterous size %lu\n", fssize), exit(13);
	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
		 (char *)&sblock);
	/*
	 * collect and verify the sector and track info
	 */
	sblock.fs_nsect = nsectors;
	sblock.fs_ntrak = ntracks;
	if (sblock.fs_ntrak <= 0)
		printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
	if (sblock.fs_nsect <= 0)
		printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
	/*
	 * collect and verify the filesystem density info
	 */
	sblock.fs_avgfilesize = avgfilesize;
	sblock.fs_avgfpdir = avgfilesperdir;
	if (sblock.fs_avgfilesize <= 0)
		printf("illegal expected average file size %d\n",
		    sblock.fs_avgfilesize), exit(14);
	if (sblock.fs_avgfpdir <= 0)
		printf("illegal expected number of files per directory %d\n",
		    sblock.fs_avgfpdir), exit(15);
	/*
	 * collect and verify the block and fragment sizes
	 */
	sblock.fs_bsize = bsize;
	sblock.fs_fsize = fsize;
	if (!POWEROF2(sblock.fs_bsize)) {
		printf("block size must be a power of 2, not %d\n",
		    sblock.fs_bsize);
		exit(16);
	}
	if (!POWEROF2(sblock.fs_fsize)) {
		printf("fragment size must be a power of 2, not %d\n",
		    sblock.fs_fsize);
		exit(17);
	}
	if (sblock.fs_fsize < sectorsize) {
		printf("fragment size %d is too small, minimum is %d\n",
		    sblock.fs_fsize, sectorsize);
		exit(18);
	}
	if (sblock.fs_bsize < MINBSIZE) {
		printf("block size %d is too small, minimum is %d\n",
		    sblock.fs_bsize, MINBSIZE);
		exit(19);
	}
	if (sblock.fs_bsize < sblock.fs_fsize) {
		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
		    sblock.fs_bsize, sblock.fs_fsize);
		exit(20);
	}
	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
	sblock.fs_qbmask = ~sblock.fs_bmask;
	sblock.fs_qfmask = ~sblock.fs_fmask;
	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
		sblock.fs_bshift++;
	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
		sblock.fs_fshift++;
	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
		sblock.fs_fragshift++;
	if (sblock.fs_frag > MAXFRAG) {
		printf("fragment size %d is too small, minimum with block size %d is %d\n",
		    sblock.fs_fsize, sblock.fs_bsize,
		    sblock.fs_bsize / MAXFRAG);
		exit(21);
	}
	sblock.fs_nrpos = nrpos;
	sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
	sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
		sblock.fs_fsbtodb++;
	sblock.fs_sblkno =
	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
	sblock.fs_cgoffset = roundup(
	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
	for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
		sblock.fs_cgmask <<= 1;
	if (!POWEROF2(sblock.fs_ntrak))
		sblock.fs_cgmask <<= 1;
	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
		sizepb *= NINDIR(&sblock);
		sblock.fs_maxfilesize += sizepb;
	}
	/*
	 * Validate specified/determined secpercyl
	 * and calculate minimum cylinders per group.
	 */
	sblock.fs_spc = secpercyl;
	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
	     sblock.fs_cpc > 1 && (i & 1) == 0;
	     sblock.fs_cpc >>= 1, i >>= 1)
		/* void */;
	mincpc = sblock.fs_cpc;
	bpcg = sblock.fs_spc * sectorsize;
	inospercg = roundup(bpcg / sizeof(struct ufs1_dinode), INOPB(&sblock));
	if (inospercg > MAXIPG(&sblock))
		inospercg = MAXIPG(&sblock);
	used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
	mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
	    sblock.fs_spc);
	mincpg = roundup(mincpgcnt, mincpc);
	/*
	 * Ensure that cylinder group with mincpg has enough space
	 * for block maps.
	 */
	sblock.fs_cpg = mincpg;
	sblock.fs_ipg = inospercg;
	if (maxcontig > 1)
		sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
	mapcramped = 0;
	while (CGSIZE(&sblock) > (uint32_t)sblock.fs_bsize) {
		mapcramped = 1;
		if (sblock.fs_bsize < MAXBSIZE) {
			sblock.fs_bsize <<= 1;
			if ((i & 1) == 0) {
				i >>= 1;
			} else {
Exemple #26
0
void
mkfs(struct partition *pp, char *fsys)
{
	int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
	long i, j, csfrags;
	uint cg;
	time_t utime;
	quad_t sizepb;
	int width;
	ino_t maxinum;
	int minfragsperinode;	/* minimum ratio of frags to inodes */
	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
	union {
		struct fs fdummy;
		char cdummy[SBLOCKSIZE];
	} dummy;
#define fsdummy dummy.fdummy
#define chdummy dummy.cdummy

	/*
	 * Our blocks == sector size, and the version of UFS we are using is
	 * specified by Oflag.
	 */
	disk.d_bsize = sectorsize;
	disk.d_ufs = Oflag;
	if (Rflag) {
		utime = 1000000000;
	} else {
		time(&utime);
		arc4random_stir();
	}
	sblock.fs_old_flags = FS_FLAGS_UPDATED;
	sblock.fs_flags = 0;
	if (Uflag)
		sblock.fs_flags |= FS_DOSOFTDEP;
	if (Lflag)
		strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
	if (Jflag)
		sblock.fs_flags |= FS_GJOURNAL;
	if (lflag)
		sblock.fs_flags |= FS_MULTILABEL;
	if (tflag)
		sblock.fs_flags |= FS_TRIM;
	/*
	 * Validate the given file system size.
	 * Verify that its last block can actually be accessed.
	 * Convert to file system fragment sized units.
	 */
	if (fssize <= 0) {
		printf("preposterous size %jd\n", (intmax_t)fssize);
		exit(13);
	}
	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
	    (char *)&sblock);
	/*
	 * collect and verify the file system density info
	 */
	sblock.fs_avgfilesize = avgfilesize;
	sblock.fs_avgfpdir = avgfilesperdir;
	if (sblock.fs_avgfilesize <= 0)
		printf("illegal expected average file size %d\n",
		    sblock.fs_avgfilesize), exit(14);
	if (sblock.fs_avgfpdir <= 0)
		printf("illegal expected number of files per directory %d\n",
		    sblock.fs_avgfpdir), exit(15);

restart:
	/*
	 * collect and verify the block and fragment sizes
	 */
	sblock.fs_bsize = bsize;
	sblock.fs_fsize = fsize;
	if (!POWEROF2(sblock.fs_bsize)) {
		printf("block size must be a power of 2, not %d\n",
		    sblock.fs_bsize);
		exit(16);
	}
	if (!POWEROF2(sblock.fs_fsize)) {
		printf("fragment size must be a power of 2, not %d\n",
		    sblock.fs_fsize);
		exit(17);
	}
	if (sblock.fs_fsize < sectorsize) {
		printf("increasing fragment size from %d to sector size (%d)\n",
		    sblock.fs_fsize, sectorsize);
		sblock.fs_fsize = sectorsize;
	}
	if (sblock.fs_bsize > MAXBSIZE) {
		printf("decreasing block size from %d to maximum (%d)\n",
		    sblock.fs_bsize, MAXBSIZE);
		sblock.fs_bsize = MAXBSIZE;
	}
	if (sblock.fs_bsize < MINBSIZE) {
		printf("increasing block size from %d to minimum (%d)\n",
		    sblock.fs_bsize, MINBSIZE);
		sblock.fs_bsize = MINBSIZE;
	}
	if (sblock.fs_fsize > MAXBSIZE) {
		printf("decreasing fragment size from %d to maximum (%d)\n",
		    sblock.fs_fsize, MAXBSIZE);
		sblock.fs_fsize = MAXBSIZE;
	}
	if (sblock.fs_bsize < sblock.fs_fsize) {
		printf("increasing block size from %d to fragment size (%d)\n",
		    sblock.fs_bsize, sblock.fs_fsize);
		sblock.fs_bsize = sblock.fs_fsize;
	}
	if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) {
		printf(
		"increasing fragment size from %d to block size / %d (%d)\n",
		    sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG);
		sblock.fs_fsize = sblock.fs_bsize / MAXFRAG;
	}
	if (maxbsize == 0)
		maxbsize = bsize;
	if (maxbsize < bsize || !POWEROF2(maxbsize)) {
		sblock.fs_maxbsize = sblock.fs_bsize;
		printf("Extent size set to %d\n", sblock.fs_maxbsize);
	} else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
		sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
		printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
	} else {
		sblock.fs_maxbsize = maxbsize;
	}
	/*
	 * Maxcontig sets the default for the maximum number of blocks
	 * that may be allocated sequentially. With file system clustering
	 * it is possible to allocate contiguous blocks up to the maximum
	 * transfer size permitted by the controller or buffering.
	 */
	if (maxcontig == 0)
		maxcontig = MAX(1, MAXPHYS / bsize);
	sblock.fs_maxcontig = maxcontig;
	if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
		sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
		printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
	}
	if (sblock.fs_maxcontig > 1)
		sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
	sblock.fs_qbmask = ~sblock.fs_bmask;
	sblock.fs_qfmask = ~sblock.fs_fmask;
	sblock.fs_bshift = ilog2(sblock.fs_bsize);
	sblock.fs_fshift = ilog2(sblock.fs_fsize);
	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
	sblock.fs_fragshift = ilog2(sblock.fs_frag);
	if (sblock.fs_frag > MAXFRAG) {
		printf("fragment size %d is still too small (can't happen)\n",
		    sblock.fs_bsize / MAXFRAG);
		exit(21);
	}
	sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
	sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize);

	/*
	 * Before the filesystem is finally initialized, mark it
	 * as incompletely initialized.
	 */
	sblock.fs_magic = FS_BAD_MAGIC;

	if (Oflag == 1) {
		sblock.fs_sblockloc = SBLOCK_UFS1;
		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
		sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
		    sizeof(ufs1_daddr_t));
		sblock.fs_old_inodefmt = FS_44INODEFMT;
		sblock.fs_old_cgoffset = 0;
		sblock.fs_old_cgmask = 0xffffffff;
		sblock.fs_old_size = sblock.fs_size;
		sblock.fs_old_rotdelay = 0;
		sblock.fs_old_rps = 60;
		sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
		sblock.fs_old_cpg = 1;
		sblock.fs_old_interleave = 1;
		sblock.fs_old_trackskew = 0;
		sblock.fs_old_cpc = 0;
		sblock.fs_old_postblformat = 1;
		sblock.fs_old_nrpos = 1;
	} else {
		sblock.fs_sblockloc = SBLOCK_UFS2;
		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
		sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
		    sizeof(ufs2_daddr_t));
	}
	sblock.fs_sblkno =
	    roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
		sblock.fs_frag);
	sblock.fs_cblkno = sblock.fs_sblkno +
	    roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag);
	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
		sizepb *= NINDIR(&sblock);
		sblock.fs_maxfilesize += sizepb;
	}

	/*
	 * It's impossible to create a snapshot in case that fs_maxfilesize
	 * is smaller than the fssize.
	 */
	if (sblock.fs_maxfilesize < (u_quad_t)fssize) {
		warnx("WARNING: You will be unable to create snapshots on this "
		      "file system.  Correct by using a larger blocksize.");
	}

	/*
	 * Calculate the number of blocks to put into each cylinder group.
	 *
	 * This algorithm selects the number of blocks per cylinder
	 * group. The first goal is to have at least enough data blocks
	 * in each cylinder group to meet the density requirement. Once
	 * this goal is achieved we try to expand to have at least
	 * MINCYLGRPS cylinder groups. Once this goal is achieved, we
	 * pack as many blocks into each cylinder group map as will fit.
	 *
	 * We start by calculating the smallest number of blocks that we
	 * can put into each cylinder group. If this is too big, we reduce
	 * the density until it fits.
	 */
	maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock);
	minfragsperinode = 1 + fssize / maxinum;
	if (density == 0) {
		density = MAX(NFPI, minfragsperinode) * fsize;
	} else if (density < minfragsperinode * fsize) {
		origdensity = density;
		density = minfragsperinode * fsize;
		fprintf(stderr, "density increased from %d to %d\n",
		    origdensity, density);
	}
	origdensity = density;
	for (;;) {
		fragsperinode = MAX(numfrags(&sblock, density), 1);
		if (fragsperinode < minfragsperinode) {
			bsize <<= 1;
			fsize <<= 1;
			printf("Block size too small for a file system %s %d\n",
			     "of this size. Increasing blocksize to", bsize);
			goto restart;
		}
		minfpg = fragsperinode * INOPB(&sblock);
		if (minfpg > sblock.fs_size)
			minfpg = sblock.fs_size;
		sblock.fs_ipg = INOPB(&sblock);
		sblock.fs_fpg = roundup(sblock.fs_iblkno +
		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
		if (sblock.fs_fpg < minfpg)
			sblock.fs_fpg = minfpg;
		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
		    INOPB(&sblock));
		sblock.fs_fpg = roundup(sblock.fs_iblkno +
		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
		if (sblock.fs_fpg < minfpg)
			sblock.fs_fpg = minfpg;
		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
		    INOPB(&sblock));
		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
			break;
		density -= sblock.fs_fsize;
	}
	if (density != origdensity)
		printf("density reduced from %d to %d\n", origdensity, density);
	/*
	 * Start packing more blocks into the cylinder group until
	 * it cannot grow any larger, the number of cylinder groups
	 * drops below MINCYLGRPS, or we reach the size requested.
	 * For UFS1 inodes per cylinder group are stored in an int16_t
	 * so fs_ipg is limited to 2^15 - 1.
	 */
	for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
		    INOPB(&sblock));
		if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) {
			if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS)
				break;
			if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
				continue;
			if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
				break;
		}
		sblock.fs_fpg -= sblock.fs_frag;
		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
		    INOPB(&sblock));
		break;
	}
	/*
	 * Check to be sure that the last cylinder group has enough blocks
	 * to be viable. If it is too small, reduce the number of blocks
	 * per cylinder group which will have the effect of moving more
	 * blocks into the last cylinder group.
	 */
	optimalfpg = sblock.fs_fpg;
	for (;;) {
		sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
		lastminfpg = roundup(sblock.fs_iblkno +
		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
		if (sblock.fs_size < lastminfpg) {
			printf("Filesystem size %jd < minimum size of %d\n",
			    (intmax_t)sblock.fs_size, lastminfpg);
			exit(28);
		}
		if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
		    sblock.fs_size % sblock.fs_fpg == 0)
			break;
		sblock.fs_fpg -= sblock.fs_frag;
		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
		    INOPB(&sblock));
	}
	if (optimalfpg != sblock.fs_fpg)
		printf("Reduced frags per cylinder group from %d to %d %s\n",
		   optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
	if (Oflag == 1) {
		sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
		sblock.fs_old_nsect = sblock.fs_old_spc;
		sblock.fs_old_npsect = sblock.fs_old_spc;
		sblock.fs_old_ncyl = sblock.fs_ncg;
	}
	/*
	 * fill in remaining fields of the super block
	 */
	sblock.fs_csaddr = cgdmin(&sblock, 0);
	sblock.fs_cssize =
	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
	if (fscs == NULL)
		errx(31, "calloc failed");
	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
	if (sblock.fs_sbsize > SBLOCKSIZE)
		sblock.fs_sbsize = SBLOCKSIZE;
	sblock.fs_minfree = minfree;
	if (metaspace > 0 && metaspace < sblock.fs_fpg / 2)
		sblock.fs_metaspace = blknum(&sblock, metaspace);
	else if (metaspace != -1)
		/* reserve half of minfree for metadata blocks */
		sblock.fs_metaspace = blknum(&sblock,
		    (sblock.fs_fpg * minfree) / 200);
	if (maxbpg == 0)
		sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize);
	else
		sblock.fs_maxbpg = maxbpg;
	sblock.fs_optim = opt;
	sblock.fs_cgrotor = 0;
	sblock.fs_pendingblocks = 0;
	sblock.fs_pendinginodes = 0;
	sblock.fs_fmod = 0;
	sblock.fs_ronly = 0;
	sblock.fs_state = 0;
	sblock.fs_clean = 1;
	sblock.fs_id[0] = (long)utime;
	sblock.fs_id[1] = newfs_random();
	sblock.fs_fsmnt[0] = '\0';
	csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
	sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
	    sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
	sblock.fs_cstotal.cs_nbfree =
	    fragstoblks(&sblock, sblock.fs_dsize) -
	    howmany(csfrags, sblock.fs_frag);
	sblock.fs_cstotal.cs_nffree =
	    fragnum(&sblock, sblock.fs_size) +
	    (fragnum(&sblock, csfrags) > 0 ?
	     sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
	sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO;
	sblock.fs_cstotal.cs_ndir = 0;
	sblock.fs_dsize -= csfrags;
	sblock.fs_time = utime;
	if (Oflag == 1) {
		sblock.fs_old_time = utime;
		sblock.fs_old_dsize = sblock.fs_dsize;
		sblock.fs_old_csaddr = sblock.fs_csaddr;
		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
	}

	/*
	 * Dump out summary information about file system.
	 */
#	define B2MBFACTOR (1 / (1024.0 * 1024.0))
	printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
	    fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
	    sblock.fs_fsize);
	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
	if (sblock.fs_flags & FS_DOSOFTDEP)
		printf("\twith soft updates\n");
#	undef B2MBFACTOR

	if (Eflag && !Nflag) {
		printf("Erasing sectors [%jd...%jd]\n", 
		    sblock.fs_sblockloc / disk.d_bsize,
		    fsbtodb(&sblock, sblock.fs_size) - 1);
		berase(&disk, sblock.fs_sblockloc / disk.d_bsize,
		    sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc);
	}
	/*
	 * Wipe out old UFS1 superblock(s) if necessary.
	 */
	if (!Nflag && Oflag != 1) {
		i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE);
		if (i == -1)
			err(1, "can't read old UFS1 superblock: %s", disk.d_error);

		if (fsdummy.fs_magic == FS_UFS1_MAGIC) {
			fsdummy.fs_magic = 0;
			bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize,
			    chdummy, SBLOCKSIZE);
			for (cg = 0; cg < fsdummy.fs_ncg; cg++) {
				if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > fssize)
					break;
				bwrite(&disk, part_ofs + fsbtodb(&fsdummy,
				  cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE);
			}
		}
	}
	if (!Nflag)
		do_sbwrite(&disk);
	if (Xflag == 1) {
		printf("** Exiting on Xflag 1\n");
		exit(0);
	}
	if (Xflag == 2)
		printf("** Leaving BAD MAGIC on Xflag 2\n");
	else
		sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC;

	/*
	 * Now build the cylinders group blocks and
	 * then print out indices of cylinder groups.
	 */
	printf("super-block backups (for fsck -b #) at:\n");
	i = 0;
	width = charsperline();
	/*
	 * allocate space for superblock, cylinder group map, and
	 * two sets of inode blocks.
	 */
	if (sblock.fs_bsize < SBLOCKSIZE)
		iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
	else
		iobufsize = 4 * sblock.fs_bsize;
	if ((iobuf = calloc(1, iobufsize)) == 0) {
		printf("Cannot allocate I/O buffer\n");
		exit(38);
	}
	/*
	 * Make a copy of the superblock into the buffer that we will be
	 * writing out in each cylinder group.
	 */
	bcopy((char *)&sblock, iobuf, SBLOCKSIZE);
	for (cg = 0; cg < sblock.fs_ncg; cg++) {
		initcg(cg, utime);
		j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s",
		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)),
		    cg < (sblock.fs_ncg-1) ? "," : "");
		if (j < 0)
			tmpbuf[j = 0] = '\0';
		if (i + j >= width) {
			printf("\n");
			i = 0;
		}
		i += j;
		printf("%s", tmpbuf);
		fflush(stdout);
	}
	printf("\n");
	if (Nflag)
		exit(0);
	/*
	 * Now construct the initial file system,
	 * then write out the super-block.
	 */
	fsinit(utime);
	if (Oflag == 1) {
		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
	}
	if (Xflag == 3) {
		printf("** Exiting on Xflag 3\n");
		exit(0);
	}
	if (!Nflag) {
		do_sbwrite(&disk);
		/*
		 * For UFS1 filesystems with a blocksize of 64K, the first
		 * alternate superblock resides at the location used for
		 * the default UFS2 superblock. As there is a valid
		 * superblock at this location, the boot code will use
		 * it as its first choice. Thus we have to ensure that
		 * all of its statistcs on usage are correct.
		 */
		if (Oflag == 1 && sblock.fs_bsize == 65536)
			wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)),
			    sblock.fs_bsize, (char *)&sblock);
	}
	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
			sblock.fs_cssize - i < sblock.fs_bsize ?
			sblock.fs_cssize - i : sblock.fs_bsize,
			((char *)fscs) + i);
	/*
	 * Update information about this partition in pack
	 * label, to that it may be updated on disk.
	 */
	if (pp != NULL) {
		pp->p_fstype = FS_BSDFFS;
		pp->p_fsize = sblock.fs_fsize;
		pp->p_frag = sblock.fs_frag;
		pp->p_cpg = sblock.fs_fpg;
	}
}
Exemple #27
0
/*
 * Truncate the inode oip to at most length size, freeing the
 * disk blocks.
 */
int
ext2_truncate(struct vnode *vp, off_t length, int flags, struct ucred *cred,
    struct thread *td)
{
	struct vnode *ovp = vp;
	int32_t lastblock;
	struct inode *oip;
	int32_t bn, lbn, lastiblock[NIADDR], indir_lbn[NIADDR];
	uint32_t oldblks[NDADDR + NIADDR], newblks[NDADDR + NIADDR];
	struct m_ext2fs *fs;
	struct buf *bp;
	int offset, size, level;
	e4fs_daddr_t count, nblocks, blocksreleased = 0;
	int error, i, allerror;
	off_t osize;
#ifdef INVARIANTS
	struct bufobj *bo;
#endif

	oip = VTOI(ovp);
#ifdef INVARIANTS
	bo = &ovp->v_bufobj;
#endif

	ASSERT_VOP_LOCKED(vp, "ext2_truncate");	

	if (length < 0)
	    return (EINVAL);

	if (ovp->v_type == VLNK &&
	    oip->i_size < ovp->v_mount->mnt_maxsymlinklen) {
#ifdef INVARIANTS
		if (length != 0)
			panic("ext2_truncate: partial truncate of symlink");
#endif
		bzero((char *)&oip->i_shortlink, (u_int)oip->i_size);
		oip->i_size = 0;
		oip->i_flag |= IN_CHANGE | IN_UPDATE;
		return (ext2_update(ovp, 1));
	}
	if (oip->i_size == length) {
		oip->i_flag |= IN_CHANGE | IN_UPDATE;
		return (ext2_update(ovp, 0));
	}
	fs = oip->i_e2fs;
	osize = oip->i_size;
	/*
	 * Lengthen the size of the file. We must ensure that the
	 * last byte of the file is allocated. Since the smallest
	 * value of osize is 0, length will be at least 1.
	 */
	if (osize < length) {
		if (length > oip->i_e2fs->e2fs_maxfilesize)
			return (EFBIG);
		vnode_pager_setsize(ovp, length);
		offset = blkoff(fs, length - 1);
		lbn = lblkno(fs, length - 1);
		flags |= BA_CLRBUF;
		error = ext2_balloc(oip, lbn, offset + 1, cred, &bp, flags);
		if (error) {
			vnode_pager_setsize(vp, osize);
			return (error);
		}
		oip->i_size = length;
		if (bp->b_bufsize == fs->e2fs_bsize)
			bp->b_flags |= B_CLUSTEROK;
		if (flags & IO_SYNC)
			bwrite(bp);
		else if (DOINGASYNC(ovp))
			bdwrite(bp);
		else
			bawrite(bp);
		oip->i_flag |= IN_CHANGE | IN_UPDATE;
		return (ext2_update(ovp, !DOINGASYNC(ovp)));
	}
	/*
	 * Shorten the size of the file. If the file is not being
	 * truncated to a block boundry, the contents of the
	 * partial block following the end of the file must be
	 * zero'ed in case it ever become accessible again because
	 * of subsequent file growth.
	 */
	/* I don't understand the comment above */
	offset = blkoff(fs, length);
	if (offset == 0) {
		oip->i_size = length;
	} else {
		lbn = lblkno(fs, length);
		flags |= BA_CLRBUF;
		error = ext2_balloc(oip, lbn, offset, cred, &bp, flags);
		if (error)
			return (error);
		oip->i_size = length;
		size = blksize(fs, oip, lbn);
		bzero((char *)bp->b_data + offset, (u_int)(size - offset));
		allocbuf(bp, size);
		if (bp->b_bufsize == fs->e2fs_bsize)
			bp->b_flags |= B_CLUSTEROK;
		if (flags & IO_SYNC)
			bwrite(bp);
		else if (DOINGASYNC(ovp))
			bdwrite(bp);
		else
			bawrite(bp);
	}
	/*
	 * Calculate index into inode's block list of
	 * last direct and indirect blocks (if any)
	 * which we want to keep.  Lastblock is -1 when
	 * the file is truncated to 0.
	 */
	lastblock = lblkno(fs, length + fs->e2fs_bsize - 1) - 1;
	lastiblock[SINGLE] = lastblock - NDADDR;
	lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs);
	lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs);
	nblocks = btodb(fs->e2fs_bsize);
	/*
	 * Update file and block pointers on disk before we start freeing
	 * blocks.  If we crash before free'ing blocks below, the blocks
	 * will be returned to the free list.  lastiblock values are also
	 * normalized to -1 for calls to ext2_indirtrunc below.
	 */
	for (level = TRIPLE; level >= SINGLE; level--) {
		oldblks[NDADDR + level] = oip->i_ib[level];
		if (lastiblock[level] < 0) {
			oip->i_ib[level] = 0;
			lastiblock[level] = -1;
		}
	}
	for (i = 0; i < NDADDR; i++) {
		oldblks[i] = oip->i_db[i];
		if (i > lastblock)
			oip->i_db[i] = 0;
	}
	oip->i_flag |= IN_CHANGE | IN_UPDATE;
	allerror = ext2_update(ovp, !DOINGASYNC(ovp));

	/*
	 * Having written the new inode to disk, save its new configuration
	 * and put back the old block pointers long enough to process them.
	 * Note that we save the new block configuration so we can check it
	 * when we are done.
	 */
	for (i = 0; i < NDADDR; i++) {
		newblks[i] = oip->i_db[i];
		oip->i_db[i] = oldblks[i];
	}
	for (i = 0; i < NIADDR; i++) {
		newblks[NDADDR + i] = oip->i_ib[i];
		oip->i_ib[i] = oldblks[NDADDR + i];
	}
	oip->i_size = osize;
	error = vtruncbuf(ovp, cred, length, (int)fs->e2fs_bsize);
	if (error && (allerror == 0))
		allerror = error;
	vnode_pager_setsize(ovp, length);

	/*
	 * Indirect blocks first.
	 */
	indir_lbn[SINGLE] = -NDADDR;
	indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1;
	indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1;
	for (level = TRIPLE; level >= SINGLE; level--) {
		bn = oip->i_ib[level];
		if (bn != 0) {
			error = ext2_indirtrunc(oip, indir_lbn[level],
			    fsbtodb(fs, bn), lastiblock[level], level, &count);
			if (error)
				allerror = error;
			blocksreleased += count;
			if (lastiblock[level] < 0) {
				oip->i_ib[level] = 0;
				ext2_blkfree(oip, bn, fs->e2fs_fsize);
				blocksreleased += nblocks;
			}
		}
		if (lastiblock[level] >= 0)
			goto done;
	}

	/*
	 * All whole direct blocks or frags.
	 */
	for (i = NDADDR - 1; i > lastblock; i--) {
		long bsize;

		bn = oip->i_db[i];
		if (bn == 0)
			continue;
		oip->i_db[i] = 0;
		bsize = blksize(fs, oip, i);
		ext2_blkfree(oip, bn, bsize);
		blocksreleased += btodb(bsize);
	}
	if (lastblock < 0)
		goto done;

	/*
	 * Finally, look for a change in size of the
	 * last direct block; release any frags.
	 */
	bn = oip->i_db[lastblock];
	if (bn != 0) {
		long oldspace, newspace;

		/*
		 * Calculate amount of space we're giving
		 * back as old block size minus new block size.
		 */
		oldspace = blksize(fs, oip, lastblock);
		oip->i_size = length;
		newspace = blksize(fs, oip, lastblock);
		if (newspace == 0)
			panic("ext2_truncate: newspace");
		if (oldspace - newspace > 0) {
			/*
			 * Block number of space to be free'd is
			 * the old block # plus the number of frags
			 * required for the storage we're keeping.
			 */
			bn += numfrags(fs, newspace);
			ext2_blkfree(oip, bn, oldspace - newspace);
			blocksreleased += btodb(oldspace - newspace);
		}
	}
done:
#ifdef INVARIANTS
	for (level = SINGLE; level <= TRIPLE; level++)
		if (newblks[NDADDR + level] != oip->i_ib[level])
			panic("itrunc1");
	for (i = 0; i < NDADDR; i++)
		if (newblks[i] != oip->i_db[i])
			panic("itrunc2");
	BO_LOCK(bo);
	if (length == 0 && (bo->bo_dirty.bv_cnt != 0 ||
	    bo->bo_clean.bv_cnt != 0))
		panic("itrunc3");
	BO_UNLOCK(bo);
#endif /* INVARIANTS */
	/*
	 * Put back the real size.
	 */
	oip->i_size = length;
	if (oip->i_blocks >= blocksreleased)
		oip->i_blocks -= blocksreleased;
	else				/* sanity */
		oip->i_blocks = 0;
	oip->i_flag |= IN_CHANGE;
	vnode_pager_setsize(ovp, length);
	return (allerror);
}
Exemple #28
0
/*
 * Release blocks associated with the inode ip and stored in the indirect
 * block bn.  Blocks are free'd in LIFO order up to (but not including)
 * lastbn.  If level is greater than SINGLE, the block is an indirect block
 * and recursive calls to indirtrunc must be used to cleanse other indirect
 * blocks.
 *
 * NB: triple indirect blocks are untested.
 */
int
ffs_indirtrunc(struct inode *ip, daddr64_t lbn, daddr64_t dbn,
    daddr64_t lastbn, int level, long *countp)
{
	int i;
	struct buf *bp;
	struct fs *fs = ip->i_fs;
	struct vnode *vp;
	void *copy = NULL;
	daddr64_t nb, nlbn, last;
	long blkcount, factor;
	int nblocks, blocksreleased = 0;
	int error = 0, allerror = 0;
	int32_t *bap1 = NULL;
#ifdef FFS2
	int64_t *bap2 = NULL;
#endif

	/*
	 * Calculate index in current block of last
	 * block to be kept.  -1 indicates the entire
	 * block so we need not calculate the index.
	 */
	factor = 1;
	for (i = SINGLE; i < level; i++)
		factor *= NINDIR(fs);
	last = lastbn;
	if (lastbn > 0)
		last /= factor;
	nblocks = btodb(fs->fs_bsize);
	/*
	 * Get buffer of block pointers, zero those entries corresponding
	 * to blocks to be free'd, and update on disk copy first.  Since
	 * double(triple) indirect before single(double) indirect, calls
	 * to bmap on these blocks will fail.  However, we already have
	 * the on disk address, so we have to set the b_blkno field
	 * explicitly instead of letting bread do everything for us.
	 */
	vp = ITOV(ip);
	bp = getblk(vp, lbn, (int)fs->fs_bsize, 0, 0);
	if (!(bp->b_flags & (B_DONE | B_DELWRI))) {
		curproc->p_ru.ru_inblock++;		/* pay for read */
		bcstats.pendingreads++;
		bcstats.numreads++;
		bp->b_flags |= B_READ;
		if (bp->b_bcount > bp->b_bufsize)
			panic("ffs_indirtrunc: bad buffer size");
		bp->b_blkno = dbn;
		VOP_STRATEGY(bp);
		error = biowait(bp);
	}
	if (error) {
		brelse(bp);
		*countp = 0;
		return (error);
	}

#ifdef FFS2
	if (ip->i_ump->um_fstype == UM_UFS2)
		bap2 = (int64_t *)bp->b_data;
	else
#endif
		bap1 = (int32_t *)bp->b_data;

	if (lastbn != -1) {
		copy = malloc(fs->fs_bsize, M_TEMP, M_WAITOK);
		bcopy(bp->b_data, copy, (u_int) fs->fs_bsize);

		for (i = last + 1; i < NINDIR(fs); i++)
			BAP_ASSIGN(ip, i, 0);

		if (!DOINGASYNC(vp)) {
			error = bwrite(bp);
			if (error)
				allerror = error;
		} else {
			bawrite(bp);
		}

#ifdef FFS2
		if (ip->i_ump->um_fstype == UM_UFS2)
			bap2 = (int64_t *)copy;
		else
#endif
			bap1 = (int32_t *)copy;
	}

	/*
	 * Recursively free totally unused blocks.
	 */
	for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last;
	    i--, nlbn += factor) {
		nb = BAP(ip, i);
		if (nb == 0)
			continue;
		if (level > SINGLE) {
			error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
					       (daddr64_t)-1, level - 1,
					       &blkcount);
			if (error)
				allerror = error;
			blocksreleased += blkcount;
		}
		ffs_blkfree(ip, nb, fs->fs_bsize);
		blocksreleased += nblocks;
	}

	/*
	 * Recursively free last partial block.
	 */
	if (level > SINGLE && lastbn >= 0) {
		last = lastbn % factor;
		nb = BAP(ip, i);
		if (nb != 0) {
			error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
					       last, level - 1, &blkcount);
			if (error)
				allerror = error;
			blocksreleased += blkcount;
		}
	}
	if (copy != NULL) {
		free(copy, M_TEMP);
	} else {
		bp->b_flags |= B_INVAL;
		brelse(bp);
	}
		
	*countp = blocksreleased;
	return (allerror);
}
Exemple #29
0
/*
 * Truncate the inode oip to at most length size, freeing the
 * disk blocks.
 */
int
ffs_truncate(struct inode *oip, off_t length, int flags, struct ucred *cred)
{
	struct vnode *ovp;
	daddr64_t lastblock;
	daddr64_t bn, lbn, lastiblock[NIADDR], indir_lbn[NIADDR];
	daddr64_t oldblks[NDADDR + NIADDR], newblks[NDADDR + NIADDR];
	struct fs *fs;
	struct buf *bp;
	int offset, size, level;
	long count, nblocks, vflags, blocksreleased = 0;
	int i, aflags, error, allerror, indirect = 0;
	off_t osize;
	extern int num_indirdep;
	extern int max_indirdep;

	if (length < 0)
		return (EINVAL);
	ovp = ITOV(oip);

	if (ovp->v_type != VREG &&
	    ovp->v_type != VDIR &&
	    ovp->v_type != VLNK)
		return (0);

	if (DIP(oip, size) == length)
		return (0);

	if (ovp->v_type == VLNK &&
	    (DIP(oip, size) < ovp->v_mount->mnt_maxsymlinklen ||
	     (ovp->v_mount->mnt_maxsymlinklen == 0 &&
	      oip->i_din1->di_blocks == 0))) {
#ifdef DIAGNOSTIC
		if (length != 0)
			panic("ffs_truncate: partial truncate of symlink");
#endif
		memset(SHORTLINK(oip), 0, (size_t) DIP(oip, size));
		DIP_ASSIGN(oip, size, 0);
		oip->i_flag |= IN_CHANGE | IN_UPDATE;
		return (UFS_UPDATE(oip, MNT_WAIT));
	}

	if ((error = getinoquota(oip)) != 0)
		return (error);

	uvm_vnp_setsize(ovp, length);
	oip->i_ci.ci_lasta = oip->i_ci.ci_clen 
	    = oip->i_ci.ci_cstart = oip->i_ci.ci_lastw = 0;

	if (DOINGSOFTDEP(ovp)) {
		if (length > 0 || softdep_slowdown(ovp)) {
			/*
			 * If a file is only partially truncated, then
			 * we have to clean up the data structures
			 * describing the allocation past the truncation
			 * point. Finding and deallocating those structures
			 * is a lot of work. Since partial truncation occurs
			 * rarely, we solve the problem by syncing the file
			 * so that it will have no data structures left.
			 */
			if ((error = VOP_FSYNC(ovp, cred, MNT_WAIT)) != 0)
				return (error);
		} else {
			(void)ufs_quota_free_blocks(oip, DIP(oip, blocks),
			    NOCRED);
			softdep_setup_freeblocks(oip, length);
			(void) vinvalbuf(ovp, 0, cred, curproc, 0, 0);
			oip->i_flag |= IN_CHANGE | IN_UPDATE;
			return (UFS_UPDATE(oip, 0));
		}
	}

	fs = oip->i_fs;
	osize = DIP(oip, size);
	/*
	 * Lengthen the size of the file. We must ensure that the
	 * last byte of the file is allocated. Since the smallest
	 * value of osize is 0, length will be at least 1.
	 */
	if (osize < length) {
		if (length > fs->fs_maxfilesize)
			return (EFBIG);
		aflags = B_CLRBUF;
		if (flags & IO_SYNC)
			aflags |= B_SYNC;
		error = UFS_BUF_ALLOC(oip, length - 1, 1, 
				   cred, aflags, &bp);
		if (error)
			return (error);
		if (bp->b_lblkno >= NDADDR)
			indirect = 1;
		DIP_ASSIGN(oip, size, length);
		uvm_vnp_setsize(ovp, length);
		(void) uvm_vnp_uncache(ovp);
		if (aflags & B_SYNC)
			bwrite(bp);
		else
			bawrite(bp);
		oip->i_flag |= IN_CHANGE | IN_UPDATE;
		error = UFS_UPDATE(oip, MNT_WAIT);
		if (DOINGSOFTDEP(ovp) && num_indirdep > max_indirdep)
			if (indirect) {
				/*
				 * If the number of pending indirect block
				 * dependencies is sufficiently close to the
				 * maximum number of simultaneously mappable
				 * buffers force a sync on the vnode to prevent
				 * buffer cache exhaustion.
				 */
				VOP_FSYNC(ovp, curproc->p_ucred, MNT_WAIT);
			}
		return (error);
	}
	uvm_vnp_setsize(ovp, length);

	/*
	 * Shorten the size of the file. If the file is not being
	 * truncated to a block boundary, the contents of the
	 * partial block following the end of the file must be
	 * zero'ed in case it ever becomes accessible again because
	 * of subsequent file growth. Directories however are not
	 * zero'ed as they should grow back initialized to empty.
	 */
	offset = blkoff(fs, length);
	if (offset == 0) {
		DIP_ASSIGN(oip, size, length);
	} else {
		lbn = lblkno(fs, length);
		aflags = B_CLRBUF;
		if (flags & IO_SYNC)
			aflags |= B_SYNC;
		error = UFS_BUF_ALLOC(oip, length - 1, 1,
				   cred, aflags, &bp);
		if (error)
			return (error);
		/*
		 * When we are doing soft updates and the UFS_BALLOC
		 * above fills in a direct block hole with a full sized
		 * block that will be truncated down to a fragment below,
		 * we must flush out the block dependency with an FSYNC
		 * so that we do not get a soft updates inconsistency
		 * when we create the fragment below.
		 */
		if (DOINGSOFTDEP(ovp) && lbn < NDADDR &&
		    fragroundup(fs, blkoff(fs, length)) < fs->fs_bsize &&
		    (error = VOP_FSYNC(ovp, cred, MNT_WAIT)) != 0)
			return (error);
		DIP_ASSIGN(oip, size, length);
		size = blksize(fs, oip, lbn);
		(void) uvm_vnp_uncache(ovp);
		if (ovp->v_type != VDIR)
			bzero((char *)bp->b_data + offset,
			      (u_int)(size - offset));
		bp->b_bcount = size;
		if (aflags & B_SYNC)
			bwrite(bp);
		else
			bawrite(bp);
	}
	/*
	 * Calculate index into inode's block list of
	 * last direct and indirect blocks (if any)
	 * which we want to keep.  Lastblock is -1 when
	 * the file is truncated to 0.
	 */
	lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1;
	lastiblock[SINGLE] = lastblock - NDADDR;
	lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs);
	lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs);
	nblocks = btodb(fs->fs_bsize);

	/*
	 * Update file and block pointers on disk before we start freeing
	 * blocks.  If we crash before free'ing blocks below, the blocks
	 * will be returned to the free list.  lastiblock values are also
	 * normalized to -1 for calls to ffs_indirtrunc below.
	 */
	for (level = TRIPLE; level >= SINGLE; level--) {
		oldblks[NDADDR + level] = DIP(oip, ib[level]);
		if (lastiblock[level] < 0) {
			DIP_ASSIGN(oip, ib[level], 0);
			lastiblock[level] = -1;
		}
	}

	for (i = 0; i < NDADDR; i++) {
		oldblks[i] = DIP(oip, db[i]);
		if (i > lastblock)
			DIP_ASSIGN(oip, db[i], 0);
	}

	oip->i_flag |= IN_CHANGE | IN_UPDATE;
	if ((error = UFS_UPDATE(oip, MNT_WAIT)) != 0)
		allerror = error;

	/*
	 * Having written the new inode to disk, save its new configuration
	 * and put back the old block pointers long enough to process them.
	 * Note that we save the new block configuration so we can check it
	 * when we are done.
	 */
	for (i = 0; i < NDADDR; i++) {
		newblks[i] = DIP(oip, db[i]);
		DIP_ASSIGN(oip, db[i], oldblks[i]);
	}

	for (i = 0; i < NIADDR; i++) {
		newblks[NDADDR + i] = DIP(oip, ib[i]);
		DIP_ASSIGN(oip, ib[i], oldblks[NDADDR + i]);
	}

	DIP_ASSIGN(oip, size, osize);
	vflags = ((length > 0) ? V_SAVE : 0) | V_SAVEMETA;
	allerror = vinvalbuf(ovp, vflags, cred, curproc, 0, 0);

	/*
	 * Indirect blocks first.
	 */
	indir_lbn[SINGLE] = -NDADDR;
	indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1;
	indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1;
	for (level = TRIPLE; level >= SINGLE; level--) {
		bn = DIP(oip, ib[level]);
		if (bn != 0) {
			error = ffs_indirtrunc(oip, indir_lbn[level],
			    fsbtodb(fs, bn), lastiblock[level], level, &count);
			if (error)
				allerror = error;
			blocksreleased += count;
			if (lastiblock[level] < 0) {
				DIP_ASSIGN(oip, ib[level], 0);
				ffs_blkfree(oip, bn, fs->fs_bsize);
				blocksreleased += nblocks;
			}
		}
		if (lastiblock[level] >= 0)
			goto done;
	}

	/*
	 * All whole direct blocks or frags.
	 */
	for (i = NDADDR - 1; i > lastblock; i--) {
		long bsize;

		bn = DIP(oip, db[i]);
		if (bn == 0)
			continue;

		DIP_ASSIGN(oip, db[i], 0);
		bsize = blksize(fs, oip, i);
		ffs_blkfree(oip, bn, bsize);
		blocksreleased += btodb(bsize);
	}
	if (lastblock < 0)
		goto done;

	/*
	 * Finally, look for a change in size of the
	 * last direct block; release any frags.
	 */
	bn = DIP(oip, db[lastblock]);
	if (bn != 0) {
		long oldspace, newspace;

		/*
		 * Calculate amount of space we're giving
		 * back as old block size minus new block size.
		 */
		oldspace = blksize(fs, oip, lastblock);
		DIP_ASSIGN(oip, size, length);
		newspace = blksize(fs, oip, lastblock);
		if (newspace == 0)
			panic("ffs_truncate: newspace");
		if (oldspace - newspace > 0) {
			/*
			 * Block number of space to be free'd is
			 * the old block # plus the number of frags
			 * required for the storage we're keeping.
			 */
			bn += numfrags(fs, newspace);
			ffs_blkfree(oip, bn, oldspace - newspace);
			blocksreleased += btodb(oldspace - newspace);
		}
	}
done:
#ifdef DIAGNOSTIC
	for (level = SINGLE; level <= TRIPLE; level++)
		if (newblks[NDADDR + level] != DIP(oip, ib[level]))
			panic("ffs_truncate1");
	for (i = 0; i < NDADDR; i++)
		if (newblks[i] != DIP(oip, db[i]))
			panic("ffs_truncate2");
#endif /* DIAGNOSTIC */
	/*
	 * Put back the real size.
	 */
	DIP_ASSIGN(oip, size, length);
	DIP_ADD(oip, blocks, -blocksreleased);
	oip->i_flag |= IN_CHANGE;
	(void)ufs_quota_free_blocks(oip, blocksreleased, NOCRED);
	return (allerror);
}
Exemple #30
0
static int
ext2_indirtrunc(struct inode *ip, daddr_t lbn, daddr_t dbn,
    daddr_t lastbn, int level, e4fs_daddr_t *countp)
{
	struct buf *bp;
	struct m_ext2fs *fs = ip->i_e2fs;
	struct vnode *vp;
	e2fs_daddr_t *bap, *copy;
	int i, nblocks, error = 0, allerror = 0;
	e2fs_lbn_t nb, nlbn, last;
	e4fs_daddr_t blkcount, factor, blocksreleased = 0;

	/*
	 * Calculate index in current block of last
	 * block to be kept.  -1 indicates the entire
	 * block so we need not calculate the index.
	 */
	factor = 1;
	for (i = SINGLE; i < level; i++)
		factor *= NINDIR(fs);
	last = lastbn;
	if (lastbn > 0)
		last /= factor;
	nblocks = btodb(fs->e2fs_bsize);
	/*
	 * Get buffer of block pointers, zero those entries corresponding
	 * to blocks to be free'd, and update on disk copy first.  Since
	 * double(triple) indirect before single(double) indirect, calls
	 * to bmap on these blocks will fail.  However, we already have
	 * the on disk address, so we have to set the b_blkno field
	 * explicitly instead of letting bread do everything for us.
	 */
	vp = ITOV(ip);
	bp = getblk(vp, lbn, (int)fs->e2fs_bsize, 0, 0, 0);
	if ((bp->b_flags & (B_DONE | B_DELWRI)) == 0) {
		bp->b_iocmd = BIO_READ;
		if (bp->b_bcount > bp->b_bufsize)
			panic("ext2_indirtrunc: bad buffer size");
		bp->b_blkno = dbn;
		vfs_busy_pages(bp, 0);
		bp->b_iooffset = dbtob(bp->b_blkno);
		bstrategy(bp);
		error = bufwait(bp);
	}
	if (error) {
		brelse(bp);
		*countp = 0;
		return (error);
	}

	bap = (e2fs_daddr_t *)bp->b_data;
	copy = malloc(fs->e2fs_bsize, M_TEMP, M_WAITOK);
	bcopy((caddr_t)bap, (caddr_t)copy, (u_int)fs->e2fs_bsize);
	bzero((caddr_t)&bap[last + 1],
	  (NINDIR(fs) - (last + 1)) * sizeof(e2fs_daddr_t));
	if (last == -1)
		bp->b_flags |= B_INVAL;
	if (DOINGASYNC(vp)) {
		bdwrite(bp);
	} else {
		error = bwrite(bp);
		if (error)
			allerror = error;
	}
	bap = copy;

	/*
	 * Recursively free totally unused blocks.
	 */
	for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last;
	    i--, nlbn += factor) {
		nb = bap[i];
		if (nb == 0)
			continue;
		if (level > SINGLE) {
			if ((error = ext2_indirtrunc(ip, nlbn,
			    fsbtodb(fs, nb), (int32_t)-1, level - 1, &blkcount)) != 0)
				allerror = error;
			blocksreleased += blkcount;
		}
		ext2_blkfree(ip, nb, fs->e2fs_bsize);
		blocksreleased += nblocks;
	}

	/*
	 * Recursively free last partial block.
	 */
	if (level > SINGLE && lastbn >= 0) {
		last = lastbn % factor;
		nb = bap[i];
		if (nb != 0) {
			if ((error = ext2_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
			    last, level - 1, &blkcount)) != 0)
				allerror = error;
			blocksreleased += blkcount;
		}
	}
	free(copy, M_TEMP);
	*countp = blocksreleased;
	return (allerror);
}