/** branching execution method for fractional LP solutions */ static SCIP_DECL_BRANCHEXECLP(branchExeclpPscost) { /*lint --e{715}*/ SCIP_VAR** lpcands; SCIP_Real* lpcandssol; SCIP_Real bestscore; SCIP_Real bestrootdiff; int nlpcands; int bestcand; int c; assert(branchrule != NULL); assert(strcmp(SCIPbranchruleGetName(branchrule), BRANCHRULE_NAME) == 0); assert(scip != NULL); assert(result != NULL); SCIPdebugMessage("Execlp method of pscost branching\n"); /* get branching candidates */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, NULL, &nlpcands, NULL) ); assert(nlpcands > 0); bestcand = -1; bestscore = -SCIPinfinity(scip); bestrootdiff = 0.0; for( c = 0; c < nlpcands; ++c ) { SCIP_Real score; SCIP_Real rootsolval; SCIP_Real rootdiff; score = SCIPgetVarPseudocostScore(scip, lpcands[c], lpcandssol[c]); rootsolval = SCIPvarGetRootSol(lpcands[c]); rootdiff = REALABS(lpcandssol[c] - rootsolval); if( SCIPisSumGT(scip, score, bestscore) || (SCIPisSumEQ(scip, score, bestscore) && rootdiff > bestrootdiff) ) { bestcand = c; bestscore = score; bestrootdiff = rootdiff; } } assert(0 <= bestcand && bestcand < nlpcands); assert(!SCIPisFeasIntegral(scip, lpcandssol[bestcand])); /* perform the branching */ SCIPdebugMessage(" -> %d cands, selected cand %d: variable <%s> (solval=%g, score=%g)\n", nlpcands, bestcand, SCIPvarGetName(lpcands[bestcand]), lpcandssol[bestcand], bestscore); /* perform the branching */ SCIP_CALL( SCIPbranchVar(scip, lpcands[bestcand], NULL, NULL, NULL) ); *result = SCIP_BRANCHED; return SCIP_OKAY; }
/** searches and adds integral objective cuts that separate the given primal solution */ static SCIP_RETCODE separateCuts( SCIP* scip, /**< SCIP data structure */ SCIP_SEPA* sepa, /**< the intobj separator */ SCIP_SOL* sol, /**< the solution that should be separated, or NULL for LP solution */ SCIP_RESULT* result /**< pointer to store the result */ ) { SCIP_SEPADATA* sepadata; SCIP_Real objval; SCIP_Real intbound; SCIP_Bool infeasible; SCIP_Bool tightened; assert(result != NULL); assert(*result == SCIP_DIDNOTRUN); /* if the objective value may be fractional, we cannot do anything */ if( !SCIPisObjIntegral(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; /* if the current objective value is integral, there is no integral objective value cut */ if( sol == NULL ) objval = SCIPretransformObj(scip, SCIPgetLPObjval(scip)); else objval = SCIPgetSolOrigObj(scip, sol); if( SCIPisFeasIntegral(scip, objval) ) return SCIP_OKAY; sepadata = SCIPsepaGetData(sepa); assert(sepadata != NULL); /* the objective value is fractional: create the objective value inequality, if not yet existing */ SCIP_CALL( createObjRow(scip, sepa, sepadata) ); /* adjust the bounds of the objective value variable */ if( SCIPgetObjsense(scip) == SCIP_OBJSENSE_MINIMIZE ) { intbound = SCIPceil(scip, objval) - sepadata->setoff; SCIP_CALL( SCIPtightenVarLb(scip, sepadata->objvar, intbound, FALSE, &infeasible, &tightened) ); SCIPdebugMessage("new objective variable lower bound: <%s>[%g,%g]\n", SCIPvarGetName(sepadata->objvar), SCIPvarGetLbLocal(sepadata->objvar), SCIPvarGetUbLocal(sepadata->objvar)); } else { intbound = SCIPfloor(scip, objval) - sepadata->setoff; SCIP_CALL( SCIPtightenVarUb(scip, sepadata->objvar, intbound, FALSE, &infeasible, &tightened) ); SCIPdebugMessage("new objective variable upper bound: <%s>[%g,%g]\n", SCIPvarGetName(sepadata->objvar), SCIPvarGetLbLocal(sepadata->objvar), SCIPvarGetUbLocal(sepadata->objvar)); } /* add the objective value inequality as a cut to the LP */ if( infeasible ) *result = SCIP_CUTOFF; else { if( !SCIProwIsInLP(sepadata->objrow) ) { SCIP_CALL( SCIPaddCut(scip, sol, sepadata->objrow, FALSE, &infeasible) ); } if ( infeasible ) *result = SCIP_CUTOFF; else if ( tightened ) *result = SCIP_REDUCEDDOM; else *result = SCIP_SEPARATED; } return SCIP_OKAY; }
/** perform randomized rounding of the given solution. Domain propagation is optionally applied after every rounding * step */ static SCIP_RETCODE performRandRounding( SCIP* scip, /**< SCIP main data structure */ SCIP_HEURDATA* heurdata, /**< heuristic data */ SCIP_SOL* sol, /**< solution to round */ SCIP_VAR** cands, /**< candidate variables */ int ncands, /**< number of candidates */ SCIP_Bool propagate, /**< should the rounding be propagated? */ SCIP_RESULT* result /**< pointer to store the result of the heuristic call */ ) { int c; SCIP_Bool stored; SCIP_VAR** permutedcands; SCIP_Bool cutoff; assert(heurdata != NULL); /* start probing tree before rounding begins */ if( propagate ) { SCIP_CALL( SCIPstartProbing(scip) ); SCIPenableVarHistory(scip); } /* copy and permute the candidate array */ SCIP_CALL( SCIPduplicateBufferArray(scip, &permutedcands, cands, ncands) ); assert(permutedcands != NULL); SCIPpermuteArray((void **)permutedcands, 0, ncands, &heurdata->randseed); cutoff = FALSE; /* loop over candidates and perform randomized rounding and optionally probing. */ for (c = 0; c < ncands && !cutoff; ++c) { SCIP_VAR* var; SCIP_Real oldsolval; SCIP_Real newsolval; SCIP_Bool mayrounddown; SCIP_Bool mayroundup; SCIP_Longint ndomreds; SCIP_Real lb; SCIP_Real ub; SCIP_Real ceilval; SCIP_Real floorval; /* get next variable from permuted candidate array */ var = permutedcands[c]; oldsolval = SCIPgetSolVal(scip, sol, var); lb = SCIPvarGetLbLocal(var); ub = SCIPvarGetUbLocal(var); assert( ! SCIPisFeasIntegral(scip, oldsolval) ); assert( SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN ); mayrounddown = SCIPvarMayRoundDown(var); mayroundup = SCIPvarMayRoundUp(var); ceilval = SCIPfeasCeil(scip, oldsolval); floorval = SCIPfeasFloor(scip, oldsolval); SCIPdebugMessage("rand rounding heuristic: var <%s>, val=%g, rounddown=%u, roundup=%u\n", SCIPvarGetName(var), oldsolval, mayrounddown, mayroundup); /* abort if rounded ceil and floor value lie outside the variable domain. Otherwise, check if * bounds allow only one rounding direction, anyway */ if( lb > ceilval + 0.5 || ub < floorval - 0.5 ) { cutoff = TRUE; break; } else if( SCIPisFeasEQ(scip, lb, ceilval) ) { /* only rounding up possible */ assert(SCIPisFeasGE(scip, ub, ceilval)); newsolval = ceilval; } else if( SCIPisFeasEQ(scip, ub, floorval) ) { /* only rounding down possible */ assert(SCIPisFeasLE(scip,lb, floorval)); newsolval = floorval; } else if( !heurdata->usesimplerounding || !(mayroundup || mayrounddown) ) { /* the standard randomized rounding */ SCIP_Real randnumber; randnumber = SCIPgetRandomReal(0.0, 1.0, &heurdata->randseed); if( randnumber <= oldsolval - floorval ) newsolval = ceilval; else newsolval = floorval; } /* choose rounding direction, if possible, or use the only direction guaranteed to be feasible */ else if( mayrounddown && mayroundup ) { /* we can round in both directions: round in objective function direction */ if ( SCIPvarGetObj(var) >= 0.0 ) newsolval = floorval; else newsolval = ceilval; } else if( mayrounddown ) newsolval = floorval; else { assert(mayroundup); newsolval = ceilval; } assert(SCIPisFeasLE(scip, lb, newsolval)); assert(SCIPisFeasGE(scip, ub, newsolval)); /* if propagation is enabled, fix the candidate variable to its rounded value and propagate the solution */ if( propagate ) { SCIP_Bool lbadjust; SCIP_Bool ubadjust; lbadjust = SCIPisGT(scip, newsolval, lb); ubadjust = SCIPisLT(scip, newsolval, ub); assert( lbadjust || ubadjust || SCIPisFeasEQ(scip, lb, ub)); /* enter a new probing node if the variable was not already fixed before */ if( lbadjust || ubadjust ) { SCIP_RETCODE retcode; if( SCIPisStopped(scip) ) break; retcode = SCIPnewProbingNode(scip); if( retcode == SCIP_MAXDEPTHLEVEL ) break; SCIP_CALL( retcode ); /* tighten the bounds to fix the variable for the probing node */ if( lbadjust ) { SCIP_CALL( SCIPchgVarLbProbing(scip, var, newsolval) ); } if( ubadjust ) { SCIP_CALL( SCIPchgVarUbProbing(scip, var, newsolval) ); } /* call propagation routines for the reduced problem */ SCIP_CALL( SCIPpropagateProbing(scip, heurdata->maxproprounds, &cutoff, &ndomreds) ); } } /* store new solution value */ SCIP_CALL( SCIPsetSolVal(scip, sol, var, newsolval) ); } /* if no cutoff was detected, the solution is a candidate to be checked for feasibility */ if( !cutoff && ! SCIPisStopped(scip) ) { if( SCIPallColsInLP(scip) ) { /* check solution for feasibility, and add it to solution store if possible * neither integrality nor feasibility of LP rows has to be checked, because all fractional * variables were already moved in feasible direction to the next integer */ SCIP_CALL( SCIPtrySol(scip, sol, FALSE, FALSE, FALSE, TRUE, &stored) ); } else { /* if there are variables which are not present in the LP, e.g., for * column generation, we need to check their bounds */ SCIP_CALL( SCIPtrySol(scip, sol, FALSE, TRUE, FALSE, TRUE, &stored) ); } if( stored ) { #ifdef SCIP_DEBUG SCIPdebugMessage("found feasible rounded solution:\n"); SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) ); #endif *result = SCIP_FOUNDSOL; } } assert( !propagate || SCIPinProbing(scip) ); /* exit probing mode and free locally allocated memory */ if( propagate ) { SCIP_CALL( SCIPendProbing(scip) ); } SCIPfreeBufferArray(scip, &permutedcands); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecIndicator) { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; int nfoundsols = 0; assert( heur != NULL ); assert( scip != NULL ); assert( result != NULL ); *result = SCIP_DIDNOTRUN; if ( SCIPgetSubscipDepth(scip) > 0 ) return SCIP_OKAY; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); /* call heuristic, if solution candidate is available */ if ( heurdata->solcand != NULL ) { assert( heurdata->nindconss > 0 ); assert( heurdata->indconss != NULL ); /* The heuristic will only be successful if there are no integral variables and no binary variables except the * indicator variables. */ if ( SCIPgetNIntVars(scip) > 0 || heurdata->nindconss < SCIPgetNBinVars(scip) ) return SCIP_OKAY; SCIP_CALL( trySolCandidate(scip, heur, heurdata, heurdata->nindconss, heurdata->indconss, heurdata->solcand, &nfoundsols) ); if ( nfoundsols > 0 ) *result = SCIP_FOUNDSOL; else *result = SCIP_DIDNOTFIND; /* free memory */ SCIPfreeBlockMemoryArray(scip, &(heurdata->solcand), heurdata->nindconss); SCIPfreeBlockMemoryArray(scip, &(heurdata->indconss), heurdata->nindconss); } else { SCIP_CONS** indconss; SCIP_Bool* solcand; SCIP_SOL* bestsol; int nindconss; int i; if ( heurdata->indicatorconshdlr == NULL ) return SCIP_OKAY; /* check whether a new best solution has been found */ bestsol = SCIPgetBestSol(scip); if ( bestsol == heurdata->lastsol ) return SCIP_OKAY; heurdata->lastsol = bestsol; /* avoid solutions produced by this heuristic */ if ( SCIPsolGetHeur(bestsol) == heur ) return SCIP_OKAY; /* The heuristic will only be successful if there are no integral variables and no binary variables except the * indicator variables. */ if ( SCIPgetNIntVars(scip) > 0 || SCIPconshdlrGetNConss(heurdata->indicatorconshdlr) < SCIPgetNBinVars(scip) ) return SCIP_OKAY; nindconss = SCIPconshdlrGetNConss(heurdata->indicatorconshdlr); if ( nindconss == 0 ) return SCIP_OKAY; indconss = SCIPconshdlrGetConss(heurdata->indicatorconshdlr); assert( indconss != NULL ); /* fill solutin candidate */ SCIP_CALL( SCIPallocBufferArray(scip, &solcand, nindconss) ); for (i = 0; i < nindconss; ++i) { SCIP_VAR* binvar; SCIP_Real val; solcand[i] = FALSE; if ( SCIPconsIsActive(indconss[i]) ) { binvar = SCIPgetBinaryVarIndicator(indconss[i]); assert( binvar != NULL ); val = SCIPgetSolVal(scip, bestsol, binvar); assert( SCIPisFeasIntegral(scip, val) ); if ( val > 0.5 ) solcand[i] = TRUE; } } SCIPdebugMessage("Trying to improve best solution of value %f.\n", SCIPgetSolOrigObj(scip, bestsol) ); /* try one-opt heuristic */ SCIP_CALL( tryOneOpt(scip, heur, heurdata, nindconss, indconss, solcand, &nfoundsols) ); if ( nfoundsols > 0 ) *result = SCIP_FOUNDSOL; else *result = SCIP_DIDNOTFIND; SCIPfreeBufferArray(scip, &solcand); } return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecZirounding) { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_SOL* sol; SCIP_VAR** lpcands; SCIP_VAR** zilpcands; SCIP_VAR** slackvars; SCIP_Real* upslacks; SCIP_Real* downslacks; SCIP_Real* activities; SCIP_Real* slackvarcoeffs; SCIP_Bool* rowneedsslackvar; SCIP_ROW** rows; SCIP_Real* lpcandssol; SCIP_Real* solarray; SCIP_Longint nlps; int currentlpcands; int nlpcands; int nimplfracs; int i; int c; int nslacks; int nroundings; SCIP_RETCODE retcode; SCIP_Bool improvementfound; SCIP_Bool numericalerror; assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DIDNOTRUN; /* do not call heuristic of node was already detected to be infeasible */ if( nodeinfeasible ) return SCIP_OKAY; /* only call heuristic if an optimal LP-solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* get heuristic data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* Do not call heuristic if deactivation check is enabled and percentage of found solutions in relation * to number of calls falls below heurdata->stoppercentage */ if( heurdata->stopziround && SCIPheurGetNCalls(heur) >= heurdata->minstopncalls && SCIPheurGetNSolsFound(heur)/(SCIP_Real)SCIPheurGetNCalls(heur) < heurdata->stoppercentage ) return SCIP_OKAY; /* assure that heuristic has not already been called after the last LP had been solved */ nlps = SCIPgetNLPs(scip); if( nlps == heurdata->lastlp ) return SCIP_OKAY; heurdata->lastlp = nlps; /* get fractional variables */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL, &nimplfracs) ); nlpcands = nlpcands + nimplfracs; /* make sure that there is at least one fractional variable that should be integral */ if( nlpcands == 0 ) return SCIP_OKAY; assert(nlpcands > 0); assert(lpcands != NULL); assert(lpcandssol != NULL); /* get LP rows data */ rows = SCIPgetLPRows(scip); nslacks = SCIPgetNLPRows(scip); /* cannot do anything if LP is empty */ if( nslacks == 0 ) return SCIP_OKAY; assert(rows != NULL); assert(nslacks > 0); /* get the working solution from heuristic's local data */ sol = heurdata->sol; assert(sol != NULL); *result = SCIP_DIDNOTFIND; solarray = NULL; zilpcands = NULL; retcode = SCIP_OKAY; /* copy the current LP solution to the working solution and allocate memory for local data */ SCIP_CALL( SCIPlinkLPSol(scip, sol) ); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &solarray, nlpcands), TERMINATE); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &zilpcands, nlpcands), TERMINATE); /* copy necessary data to local arrays */ BMScopyMemoryArray(solarray, lpcandssol, nlpcands); BMScopyMemoryArray(zilpcands, lpcands, nlpcands); /* allocate buffer data arrays */ SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &slackvars, nslacks), TERMINATE); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &upslacks, nslacks), TERMINATE); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &downslacks, nslacks), TERMINATE); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &slackvarcoeffs, nslacks), TERMINATE); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &rowneedsslackvar, nslacks), TERMINATE); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &activities, nslacks), TERMINATE); BMSclearMemoryArray(slackvars, nslacks); BMSclearMemoryArray(slackvarcoeffs, nslacks); BMSclearMemoryArray(rowneedsslackvar, nslacks); numericalerror = FALSE; nroundings = 0; /* loop over fractional variables and involved LP rows to find all rows which require a slack variable */ for( c = 0; c < nlpcands; ++c ) { SCIP_VAR* cand; SCIP_ROW** candrows; int r; int ncandrows; cand = zilpcands[c]; assert(cand != NULL); assert(SCIPcolGetLPPos(SCIPvarGetCol(cand)) >= 0); candrows = SCIPcolGetRows(SCIPvarGetCol(cand)); ncandrows = SCIPcolGetNLPNonz(SCIPvarGetCol(cand)); assert(candrows == NULL || ncandrows > 0); for( r = 0; r < ncandrows; ++r ) { int rowpos; assert(candrows != NULL); /* to please flexelint */ assert(candrows[r] != NULL); rowpos = SCIProwGetLPPos(candrows[r]); if( rowpos >= 0 && SCIPisFeasEQ(scip, SCIProwGetLhs(candrows[r]), SCIProwGetRhs(candrows[r])) ) { rowneedsslackvar[rowpos] = TRUE; SCIPdebugMessage(" Row %s needs slack variable for variable %s\n", SCIProwGetName(candrows[r]), SCIPvarGetName(cand)); } } } /* calculate row slacks for every every row that belongs to the current LP and ensure, that the current solution * has no violated constraint -- if any constraint is violated, i.e. a slack is significantly smaller than zero, * this will cause the termination of the heuristic because Zirounding does not provide feasibility recovering */ for( i = 0; i < nslacks; ++i ) { SCIP_ROW* row; SCIP_Real lhs; SCIP_Real rhs; row = rows[i]; assert(row != NULL); lhs = SCIProwGetLhs(row); rhs = SCIProwGetRhs(row); /* get row activity */ activities[i] = SCIPgetRowActivity(scip, row); assert(SCIPisFeasLE(scip, lhs, activities[i]) && SCIPisFeasLE(scip, activities[i], rhs)); /* in special case if LHS or RHS is (-)infinity slacks have to be initialized as infinity */ if( SCIPisInfinity(scip, -lhs) ) downslacks[i] = SCIPinfinity(scip); else downslacks[i] = activities[i] - lhs; if( SCIPisInfinity(scip, rhs) ) upslacks[i] = SCIPinfinity(scip); else upslacks[i] = rhs - activities[i]; SCIPdebugMessage("lhs:%5.2f <= act:%5.2g <= rhs:%5.2g --> down: %5.2g, up:%5.2g\n", lhs, activities[i], rhs, downslacks[i], upslacks[i]); /* row is an equation. Try to find a slack variable in the row, i.e., * a continuous variable which occurs only in this row. If no such variable exists, * there is no hope for an IP-feasible solution in this round */ if( SCIPisFeasEQ(scip, lhs, rhs) && rowneedsslackvar[i] ) { /* @todo: This is only necessary for rows containing fractional variables. */ rowFindSlackVar(scip, row, &(slackvars[i]), &(slackvarcoeffs[i])); if( slackvars[i] == NULL ) { SCIPdebugMessage("No slack variable found for equation %s, terminating ZI Round heuristic\n", SCIProwGetName(row)); goto TERMINATE; } else { SCIP_Real ubslackvar; SCIP_Real lbslackvar; SCIP_Real solvalslackvar; SCIP_Real coeffslackvar; SCIP_Real ubgap; SCIP_Real lbgap; assert(SCIPvarGetType(slackvars[i]) == SCIP_VARTYPE_CONTINUOUS); solvalslackvar = SCIPgetSolVal(scip, sol, slackvars[i]); ubslackvar = SCIPvarGetUbGlobal(slackvars[i]); lbslackvar = SCIPvarGetLbGlobal(slackvars[i]); coeffslackvar = slackvarcoeffs[i]; assert(!SCIPisFeasZero(scip, coeffslackvar)); ubgap = ubslackvar - solvalslackvar; lbgap = solvalslackvar - lbslackvar; if( SCIPisFeasZero(scip, ubgap) ) ubgap = 0.0; if( SCIPisFeasZero(scip, lbgap) ) lbgap = 0.0; if( SCIPisFeasPositive(scip, coeffslackvar) ) { if( !SCIPisInfinity(scip, lbslackvar) ) upslacks[i] += coeffslackvar * lbgap; else upslacks[i] = SCIPinfinity(scip); if( !SCIPisInfinity(scip, ubslackvar) ) downslacks[i] += coeffslackvar * ubgap; else downslacks[i] = SCIPinfinity(scip); } else { if( !SCIPisInfinity(scip, ubslackvar) ) upslacks[i] -= coeffslackvar * ubgap; else upslacks[i] = SCIPinfinity(scip); if( !SCIPisInfinity(scip, lbslackvar) ) downslacks[i] -= coeffslackvar * lbgap; else downslacks[i] = SCIPinfinity(scip); } SCIPdebugMessage(" Slack variable for row %s at pos %d: %g <= %s = %g <= %g; Coeff %g, upslack = %g, downslack = %g \n", SCIProwGetName(row), SCIProwGetLPPos(row), lbslackvar, SCIPvarGetName(slackvars[i]), solvalslackvar, ubslackvar, coeffslackvar, upslacks[i], downslacks[i]); } } /* due to numerical inaccuracies, the rows might be feasible, even if the slacks are * significantly smaller than zero -> terminate */ if( SCIPisFeasLT(scip, upslacks[i], 0.0) || SCIPisFeasLT(scip, downslacks[i], 0.0) ) goto TERMINATE; } assert(nslacks == 0 || (upslacks != NULL && downslacks != NULL && activities != NULL)); /* initialize number of remaining variables and flag to enter the main loop */ currentlpcands = nlpcands; improvementfound = TRUE; /* iterate over variables as long as there are fractional variables left */ while( currentlpcands > 0 && improvementfound && (heurdata->maxroundingloops == -1 || nroundings < heurdata->maxroundingloops) ) { /*lint --e{850}*/ improvementfound = FALSE; nroundings++; SCIPdebugMessage("zirounding enters while loop for %d time with %d candidates left. \n", nroundings, currentlpcands); /* check for every remaining fractional variable if a shifting decreases ZI-value of the variable */ for( c = 0; c < currentlpcands; ++c ) { SCIP_VAR* var; SCIP_Real oldsolval; SCIP_Real upperbound; SCIP_Real lowerbound; SCIP_Real up; SCIP_Real down; SCIP_Real ziup; SCIP_Real zidown; SCIP_Real zicurrent; SCIP_Real shiftval; DIRECTION direction; /* get values from local data */ oldsolval = solarray[c]; var = zilpcands[c]; assert(!SCIPisFeasIntegral(scip, oldsolval)); assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN); /* calculate bounds for variable and make sure that there are no numerical inconsistencies */ upperbound = SCIPinfinity(scip); lowerbound = SCIPinfinity(scip); calculateBounds(scip, var, oldsolval, &upperbound, &lowerbound, upslacks, downslacks, nslacks, &numericalerror); if( numericalerror ) goto TERMINATE; /* calculate the possible values after shifting */ up = oldsolval + upperbound; down = oldsolval - lowerbound; /* if the variable is integer or implicit binary, do not shift further than the nearest integer */ if( SCIPvarGetType(var) != SCIP_VARTYPE_BINARY) { SCIP_Real ceilx; SCIP_Real floorx; ceilx = SCIPfeasCeil(scip, oldsolval); floorx = SCIPfeasFloor(scip, oldsolval); up = MIN(up, ceilx); down = MAX(down, floorx); } /* calculate necessary values */ ziup = getZiValue(scip, up); zidown = getZiValue(scip, down); zicurrent = getZiValue(scip, oldsolval); /* calculate the shifting direction that reduces ZI-value the most, * if both directions improve ZI-value equally, take the direction which improves the objective */ if( SCIPisFeasLT(scip, zidown, zicurrent) || SCIPisFeasLT(scip, ziup, zicurrent) ) { if( SCIPisFeasEQ(scip,ziup, zidown) ) direction = SCIPisFeasGE(scip, SCIPvarGetObj(var), 0.0) ? DIRECTION_DOWN : DIRECTION_UP; else if( SCIPisFeasLT(scip, zidown, ziup) ) direction = DIRECTION_DOWN; else direction = DIRECTION_UP; /* once a possible shifting direction and value have been found, variable value is updated */ shiftval = (direction == DIRECTION_UP ? up - oldsolval : down - oldsolval); /* this improves numerical stability in some cases */ if( direction == DIRECTION_UP ) shiftval = MIN(shiftval, upperbound); else shiftval = MIN(shiftval, lowerbound); /* update the solution */ solarray[c] = direction == DIRECTION_UP ? up : down; SCIP_CALL( SCIPsetSolVal(scip, sol, var, solarray[c]) ); /* update the rows activities and slacks */ SCIP_CALL( updateSlacks(scip, sol, var, shiftval, upslacks, downslacks, activities, slackvars, slackvarcoeffs, nslacks) ); SCIPdebugMessage("zirounding update step : %d var index, oldsolval=%g, shiftval=%g\n", SCIPvarGetIndex(var), oldsolval, shiftval); /* since at least one improvement has been found, heuristic will enter main loop for another time because the improvement * might affect many LP rows and their current slacks and thus make further rounding steps possible */ improvementfound = TRUE; } /* if solution value of variable has become feasibly integral due to rounding step, * variable is put at the end of remaining candidates array so as not to be considered in future loops */ if( SCIPisFeasIntegral(scip, solarray[c]) ) { zilpcands[c] = zilpcands[currentlpcands - 1]; solarray[c] = solarray[currentlpcands - 1]; currentlpcands--; /* counter is decreased if end of candidates array has not been reached yet */ if( c < currentlpcands ) c--; } else if( nroundings == heurdata->maxroundingloops - 1 ) goto TERMINATE; } } /* in case that no candidate is left for rounding after the final main loop * the found solution has to be checked for feasibility in the original problem */ if( currentlpcands == 0 ) { SCIP_Bool stored; SCIP_CALL(SCIPtrySol(scip, sol, FALSE, FALSE, TRUE, FALSE, &stored)); if( stored ) { #ifdef SCIP_DEBUG SCIPdebugMessage("found feasible rounded solution:\n"); SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) ); #endif SCIPstatisticMessage(" ZI Round solution value: %g \n", SCIPgetSolOrigObj(scip, sol)); *result = SCIP_FOUNDSOL; } } /* free memory for all locally allocated data */ TERMINATE: SCIPfreeBufferArrayNull(scip, &activities); SCIPfreeBufferArrayNull(scip, &rowneedsslackvar); SCIPfreeBufferArrayNull(scip, &slackvarcoeffs); SCIPfreeBufferArrayNull(scip, &downslacks); SCIPfreeBufferArrayNull(scip, &upslacks); SCIPfreeBufferArrayNull(scip, &slackvars); SCIPfreeBufferArrayNull(scip, &zilpcands); SCIPfreeBufferArrayNull(scip, &solarray); return retcode; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecSimplerounding) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_SOL* sol; SCIP_VAR** lpcands; SCIP_Real* lpcandssol; SCIP_Longint nlps; int nlpcands; int c; assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DIDNOTRUN; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* get heuristic data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* on our first call or after each pricing round, calculate the number of roundable variables */ if( heurdata->nroundablevars == -1 || heurtiming == SCIP_HEURTIMING_DURINGPRICINGLOOP ) { SCIP_VAR** vars; int nvars; int nroundablevars; int i; vars = SCIPgetVars(scip); nvars = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); nroundablevars = 0; for( i = 0; i < nvars; ++i ) { if( SCIPvarMayRoundDown(vars[i]) || SCIPvarMayRoundUp(vars[i]) ) nroundablevars++; } heurdata->nroundablevars = nroundablevars; } /* don't call heuristic if there are no roundable variables; except we are called during pricing, in this case we * want to detect a (mixed) integer (LP) solution which is primal feasible */ if( heurdata->nroundablevars == 0 && heurtiming != SCIP_HEURTIMING_DURINGPRICINGLOOP ) return SCIP_OKAY; /* don't call heuristic, if we have already processed the current LP solution */ nlps = SCIPgetNLPs(scip); if( nlps == heurdata->lastlp ) return SCIP_OKAY; heurdata->lastlp = nlps; /* get fractional variables, that should be integral */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL) ); /* only call heuristic, if LP solution is fractional; except we are called during pricing, in this case we * want to detect a (mixed) integer (LP) solution which is primal feasible */ if( nlpcands == 0 && heurtiming != SCIP_HEURTIMING_DURINGPRICINGLOOP ) return SCIP_OKAY; /* don't call heuristic, if there are more fractional variables than roundable ones */ if( nlpcands > heurdata->nroundablevars ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIPdebugMessage("executing simple rounding heuristic: %d fractionals\n", nlpcands); /* get the working solution from heuristic's local data */ sol = heurdata->sol; assert(sol != NULL); /* copy the current LP solution to the working solution */ SCIP_CALL( SCIPlinkLPSol(scip, sol) ); /* round all roundable fractional columns in the corresponding direction as long as no unroundable column was found */ for( c = 0; c < nlpcands; ++c ) { SCIP_VAR* var; SCIP_Real oldsolval; SCIP_Real newsolval; SCIP_Bool mayrounddown; SCIP_Bool mayroundup; oldsolval = lpcandssol[c]; assert(!SCIPisFeasIntegral(scip, oldsolval)); var = lpcands[c]; assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN); mayrounddown = SCIPvarMayRoundDown(var); mayroundup = SCIPvarMayRoundUp(var); SCIPdebugMessage("simple rounding heuristic: var <%s>, val=%g, rounddown=%u, roundup=%u\n", SCIPvarGetName(var), oldsolval, mayrounddown, mayroundup); /* choose rounding direction */ if( mayrounddown && mayroundup ) { /* we can round in both directions: round in objective function direction */ if( SCIPvarGetObj(var) >= 0.0 ) newsolval = SCIPfeasFloor(scip, oldsolval); else newsolval = SCIPfeasCeil(scip, oldsolval); } else if( mayrounddown ) newsolval = SCIPfeasFloor(scip, oldsolval); else if( mayroundup ) newsolval = SCIPfeasCeil(scip, oldsolval); else break; /* store new solution value */ SCIP_CALL( SCIPsetSolVal(scip, sol, var, newsolval) ); } /* check, if rounding was successful */ if( c == nlpcands ) { SCIP_Bool stored; /* check solution for feasibility, and add it to solution store if possible * neither integrality nor feasibility of LP rows has to be checked, because all fractional * variables were already moved in feasible direction to the next integer */ SCIP_CALL( SCIPtrySol(scip, sol, FALSE, FALSE, FALSE, FALSE, &stored) ); if( stored ) { #ifdef SCIP_DEBUG SCIPdebugMessage("found feasible rounded solution:\n"); SCIPprintSol(scip, sol, NULL, FALSE); #endif *result = SCIP_FOUNDSOL; } } return SCIP_OKAY; }
/** creates a subproblem for subscip by fixing a number of variables */ static SCIP_RETCODE createSubproblem( SCIP* scip, /**< original SCIP data structure */ SCIP* subscip, /**< SCIP data structure for the subproblem */ SCIP_VAR** subvars, /**< the variables of the subproblem */ SCIP_Real minfixingrate, /**< percentage of integer variables that have to be fixed */ SCIP_Bool binarybounds, /**< should general integers get binary bounds [floor(.),ceil(.)] ? */ SCIP_Bool uselprows, /**< should subproblem be created out of the rows in the LP rows? */ SCIP_Bool* success /**< pointer to store whether the problem was created successfully */ ) { SCIP_VAR** vars; /* original SCIP variables */ SCIP_Real fixingrate; int nvars; int nbinvars; int nintvars; int i; int fixingcounter; assert(scip != NULL); assert(subscip != NULL); assert(subvars != NULL); assert(0.0 <= minfixingrate && minfixingrate <= 1.0); /* get required variable data */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); fixingcounter = 0; /* change bounds of variables of the subproblem */ for( i = 0; i < nbinvars + nintvars; i++ ) { SCIP_Real lpsolval; SCIP_Real lb; SCIP_Real ub; /* get the current LP solution for each variable */ lpsolval = SCIPgetRelaxSolVal(scip, vars[i]); if( SCIPisFeasIntegral(scip, lpsolval) ) { /* fix variables to current LP solution if it is integral, * use exact integral value, if the variable is only integral within numerical tolerances */ lb = SCIPfloor(scip, lpsolval+0.5); ub = lb; fixingcounter++; } else if( binarybounds ) { /* if the sub problem should be a binary problem, change the bounds to nearest integers */ lb = SCIPfeasFloor(scip,lpsolval); ub = SCIPfeasCeil(scip,lpsolval); } else { /* otherwise just copy bounds */ lb = SCIPvarGetLbGlobal(vars[i]); ub = SCIPvarGetUbGlobal(vars[i]); } /* perform the bound change */ SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], lb) ); SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], ub) ); } /* abort, if all integer variables were fixed (which should not happen for MIP) */ if( fixingcounter == nbinvars + nintvars ) { *success = FALSE; return SCIP_OKAY; } else fixingrate = fixingcounter / (SCIP_Real)(MAX(nbinvars + nintvars, 1)); SCIPdebugMessage("fixing rate: %g = %d of %d\n", fixingrate, fixingcounter, nbinvars + nintvars); /* abort, if the amount of fixed variables is insufficient */ if( fixingrate < minfixingrate ) { *success = FALSE; return SCIP_OKAY; } if( uselprows ) { SCIP_ROW** rows; /* original scip rows */ int nrows; /* get the rows and their number */ SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) ); /* copy all rows to linear constraints */ for( i = 0; i < nrows; i++ ) { SCIP_CONS* cons; SCIP_VAR** consvars; SCIP_COL** cols; SCIP_Real constant; SCIP_Real lhs; SCIP_Real rhs; SCIP_Real* vals; int nnonz; int j; /* ignore rows that are only locally valid */ if( SCIProwIsLocal(rows[i]) ) continue; /* get the row's data */ constant = SCIProwGetConstant(rows[i]); lhs = SCIProwGetLhs(rows[i]) - constant; rhs = SCIProwGetRhs(rows[i]) - constant; vals = SCIProwGetVals(rows[i]); nnonz = SCIProwGetNNonz(rows[i]); cols = SCIProwGetCols(rows[i]); assert( lhs <= rhs ); /* allocate memory array to be filled with the corresponding subproblem variables */ SCIP_CALL( SCIPallocBufferArray(subscip, &consvars, nnonz) ); for( j = 0; j < nnonz; j++ ) consvars[j] = subvars[SCIPvarGetProbindex(SCIPcolGetVar(cols[j]))]; /* create a new linear constraint and add it to the subproblem */ SCIP_CALL( SCIPcreateConsLinear(subscip, &cons, SCIProwGetName(rows[i]), nnonz, consvars, vals, lhs, rhs, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) ); SCIP_CALL( SCIPaddCons(subscip, cons) ); SCIP_CALL( SCIPreleaseCons(subscip, &cons) ); /* free temporary memory */ SCIPfreeBufferArray(subscip, &consvars); } } *success = TRUE; return SCIP_OKAY; }
/** returns a fractional variable, that has most impact on rows in opposite direction, i.e. that is most crucial to * fix in the other direction; * if variables have equal impact, chooses the one with best objective value improvement in corresponding direction; * rounding in a direction is forbidden, if this forces the objective value over the upper bound */ static SCIP_RETCODE selectEssentialRounding( SCIP* scip, /**< SCIP data structure */ SCIP_SOL* sol, /**< primal solution */ SCIP_Real minobj, /**< minimal objective value possible after rounding remaining fractional vars */ SCIP_VAR** lpcands, /**< fractional variables in LP */ int nlpcands, /**< number of fractional variables in LP */ SCIP_VAR** roundvar, /**< pointer to store the rounding variable, returns NULL if impossible */ SCIP_Real* oldsolval, /**< old (fractional) solution value of rounding variable */ SCIP_Real* newsolval /**< new (rounded) solution value of rounding variable */ ) { SCIP_VAR* var; SCIP_Real solval; SCIP_Real roundval; SCIP_Real obj; SCIP_Real deltaobj; SCIP_Real bestdeltaobj; int maxnlocks; int nlocks; int v; assert(roundvar != NULL); assert(oldsolval != NULL); assert(newsolval != NULL); /* select rounding variable */ maxnlocks = -1; bestdeltaobj = SCIPinfinity(scip); *roundvar = NULL; for( v = 0; v < nlpcands; ++v ) { var = lpcands[v]; assert(SCIPvarGetType(var) == SCIP_VARTYPE_BINARY || SCIPvarGetType(var) == SCIP_VARTYPE_INTEGER); solval = SCIPgetSolVal(scip, sol, var); if( !SCIPisFeasIntegral(scip, solval) ) { obj = SCIPvarGetObj(var); /* rounding down */ nlocks = SCIPvarGetNLocksUp(var); if( nlocks >= maxnlocks ) { roundval = SCIPfeasFloor(scip, solval); deltaobj = obj * (roundval - solval); if( (nlocks > maxnlocks || deltaobj < bestdeltaobj) && minobj - obj < SCIPgetCutoffbound(scip) ) { maxnlocks = nlocks; bestdeltaobj = deltaobj; *roundvar = var; *oldsolval = solval; *newsolval = roundval; } } /* rounding up */ nlocks = SCIPvarGetNLocksDown(var); if( nlocks >= maxnlocks ) { roundval = SCIPfeasCeil(scip, solval); deltaobj = obj * (roundval - solval); if( (nlocks > maxnlocks || deltaobj < bestdeltaobj) && minobj + obj < SCIPgetCutoffbound(scip) ) { maxnlocks = nlocks; bestdeltaobj = deltaobj; *roundvar = var; *oldsolval = solval; *newsolval = roundval; } } } } return SCIP_OKAY; }
/** create the extra constraint of local branching and add it to subscip */ static SCIP_RETCODE addLocalBranchingConstraint( SCIP* scip, /**< SCIP data structure of the original problem */ SCIP* subscip, /**< SCIP data structure of the subproblem */ SCIP_VAR** subvars, /**< variables of the subproblem */ SCIP_HEURDATA* heurdata /**< heuristic's data structure */ ) { SCIP_CONS* cons; /* local branching constraint to create */ SCIP_VAR** consvars; SCIP_VAR** vars; SCIP_SOL* bestsol; int nbinvars; int i; SCIP_Real lhs; SCIP_Real rhs; SCIP_Real* consvals; char consname[SCIP_MAXSTRLEN]; (void) SCIPsnprintf(consname, SCIP_MAXSTRLEN, "%s_localbranchcons", SCIPgetProbName(scip)); /* get the data of the variables and the best solution */ SCIP_CALL( SCIPgetVarsData(scip, &vars, NULL, &nbinvars, NULL, NULL, NULL) ); bestsol = SCIPgetBestSol(scip); assert( bestsol != NULL ); /* memory allocation */ SCIP_CALL( SCIPallocBufferArray(scip, &consvars, nbinvars) ); SCIP_CALL( SCIPallocBufferArray(scip, &consvals, nbinvars) ); /* set initial left and right hand sides of local branching constraint */ lhs = (SCIP_Real)heurdata->emptyneighborhoodsize + 1.0; rhs = (SCIP_Real)heurdata->curneighborhoodsize; /* create the distance (to incumbent) function of the binary variables */ for( i = 0; i < nbinvars; i++ ) { SCIP_Real solval; solval = SCIPgetSolVal(scip, bestsol, vars[i]); assert( SCIPisFeasIntegral(scip,solval) ); /* is variable i part of the binary support of bestsol? */ if( SCIPisFeasEQ(scip,solval,1.0) ) { consvals[i] = -1.0; rhs -= 1.0; lhs -= 1.0; } else consvals[i] = 1.0; consvars[i] = subvars[i]; assert( SCIPvarGetType(consvars[i]) == SCIP_VARTYPE_BINARY ); } /* creates localbranching constraint and adds it to subscip */ SCIP_CALL( SCIPcreateConsLinear(subscip, &cons, consname, nbinvars, consvars, consvals, lhs, rhs, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) ); SCIP_CALL( SCIPaddCons(subscip, cons) ); SCIP_CALL( SCIPreleaseCons(subscip, &cons) ); /* free local memory */ SCIPfreeBufferArray(scip, &consvals); SCIPfreeBufferArray(scip, &consvars); return SCIP_OKAY; }
/** selects a variable and fixes it to its current pseudo solution value */ static SCIP_RETCODE fixVariable( SCIP* scip, /**< SCIP data structure */ SCIP_VAR** pseudocands, /**< array of unfixed variables */ int npseudocands, /**< number of unfixed variables */ SCIP_Real large /**< large value to be used instead of infinity */ ) { SCIP_VAR* var; SCIP_Real bestscore; SCIP_Real score; SCIP_Real solval; int bestcand; int ncands; int c; assert(pseudocands != NULL); assert(npseudocands > 0); /* if existing, choose one of the highest priority binary variables; if no high priority binary variables * exist, choose a variable among all unfixed integral variables */ ncands = SCIPgetNPrioPseudoBranchBins(scip); if( ncands == 0 ) ncands = npseudocands; /* select variable to tighten the domain for */ bestscore = -SCIPinfinity(scip); bestcand = -1; for( c = 0; c < ncands; ++c ) { score = SCIPgetVarAvgInferenceScore(scip, pseudocands[c]); if( score > bestscore ) { bestscore = score; bestcand = c; } } assert(bestcand != -1); /* fix variable to its current pseudo solution value */ var = pseudocands[bestcand]; solval = SCIPgetVarSol(scip, var); /* adapt solution value if it is infinite */ if( SCIPisInfinity(scip, solval) ) { SCIP_Real lb; assert(SCIPisInfinity(scip, SCIPvarGetUbLocal(var))); lb = SCIPvarGetLbLocal(var); /* adapt fixing value by changing it to a large value */ if( SCIPisInfinity(scip, -lb) ) solval = SCIPceil(scip, large); else if( !SCIPisInfinity(scip, SCIPceil(scip, lb+large)) ) solval = SCIPceil(scip, lb+large); } else if( SCIPisInfinity(scip, -solval) ) { SCIP_Real ub; assert(SCIPisInfinity(scip, -SCIPvarGetLbLocal(var))); ub = SCIPvarGetUbLocal(var); /* adapt fixing value by changing it to a large negative value */ if( SCIPisInfinity(scip, ub) ) solval = SCIPfloor(scip, -large); else if( !SCIPisInfinity(scip, -SCIPfloor(scip, ub-large)) ) solval = SCIPfloor(scip, ub-large); } assert(SCIPisFeasIntegral(scip, solval)); /* in probing, we always have the pseudo solution */ SCIPdebugMessage(" -> fixed variable <%s>[%g,%g] = %g (%d candidates left)\n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), solval, npseudocands - 1); SCIP_CALL( SCIPfixVarProbing(scip, var, solval) ); return SCIP_OKAY; }
/** returns a variable, that pushes activity of the row in the given direction with minimal negative impact on other rows; * if variables have equal impact, chooses the one with best objective value improvement in corresponding direction; * rounding in a direction is forbidden, if this forces the objective value over the upper bound */ static SCIP_RETCODE selectRounding( SCIP* scip, /**< SCIP data structure */ SCIP_SOL* sol, /**< primal solution */ SCIP_Real minobj, /**< minimal objective value possible after rounding remaining fractional vars */ SCIP_ROW* row, /**< LP row */ int direction, /**< should the activity be increased (+1) or decreased (-1)? */ SCIP_VAR** roundvar, /**< pointer to store the rounding variable, returns NULL if impossible */ SCIP_Real* oldsolval, /**< pointer to store old (fractional) solution value of rounding variable */ SCIP_Real* newsolval /**< pointer to store new (rounded) solution value of rounding variable */ ) { SCIP_COL* col; SCIP_VAR* var; SCIP_Real val; SCIP_COL** rowcols; SCIP_Real* rowvals; SCIP_Real solval; SCIP_Real roundval; SCIP_Real obj; SCIP_Real deltaobj; SCIP_Real bestdeltaobj; SCIP_VARTYPE vartype; int nrowcols; int nlocks; int minnlocks; int c; assert(direction == +1 || direction == -1); assert(roundvar != NULL); assert(oldsolval != NULL); assert(newsolval != NULL); /* get row entries */ rowcols = SCIProwGetCols(row); rowvals = SCIProwGetVals(row); nrowcols = SCIProwGetNLPNonz(row); /* select rounding variable */ minnlocks = INT_MAX; bestdeltaobj = SCIPinfinity(scip); *roundvar = NULL; for( c = 0; c < nrowcols; ++c ) { col = rowcols[c]; var = SCIPcolGetVar(col); vartype = SCIPvarGetType(var); if( vartype == SCIP_VARTYPE_BINARY || vartype == SCIP_VARTYPE_INTEGER ) { solval = SCIPgetSolVal(scip, sol, var); if( !SCIPisFeasIntegral(scip, solval) ) { val = rowvals[c]; obj = SCIPvarGetObj(var); if( direction * val < 0.0 ) { /* rounding down */ nlocks = SCIPvarGetNLocksDown(var); if( nlocks <= minnlocks ) { roundval = SCIPfeasFloor(scip, solval); deltaobj = obj * (roundval - solval); if( (nlocks < minnlocks || deltaobj < bestdeltaobj) && minobj - obj < SCIPgetCutoffbound(scip) ) { minnlocks = nlocks; bestdeltaobj = deltaobj; *roundvar = var; *oldsolval = solval; *newsolval = roundval; } } } else { /* rounding up */ assert(direction * val > 0.0); nlocks = SCIPvarGetNLocksUp(var); if( nlocks <= minnlocks ) { roundval = SCIPfeasCeil(scip, solval); deltaobj = obj * (roundval - solval); if( (nlocks < minnlocks || deltaobj < bestdeltaobj) && minobj + obj < SCIPgetCutoffbound(scip) ) { minnlocks = nlocks; bestdeltaobj = deltaobj; *roundvar = var; *oldsolval = solval; *newsolval = roundval; } } } } } } return SCIP_OKAY; }
/** * Selects a variable from a set of candidates by strong branching * * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref * SCIP_Retcode "SCIP_RETCODE" for a complete list of error codes. * * @note The variables in the lpcands array must have a fractional value in the current LP solution */ SCIP_RETCODE SCIPselectVarPseudoStrongBranching( SCIP* scip, /**< original SCIP data structure */ SCIP_VAR** pseudocands, /**< branching candidates */ SCIP_Bool* skipdown, /**< should down branchings be skipped? */ SCIP_Bool* skipup, /**< should up branchings be skipped? */ int npseudocands, /**< number of branching candidates */ int npriopseudocands, /**< number of priority branching candidates */ SCIP_Bool allowaddcons, /**< is the branching rule allowed to add constraints? */ int* bestpseudocand, /**< best candidate for branching */ SCIP_Real* bestdown, /**< objective value of the down branch for bestcand */ SCIP_Real* bestup, /**< objective value of the up branch for bestcand */ SCIP_Real* bestscore, /**< score for bestcand */ SCIP_Bool* bestdownvalid, /**< is bestdown a valid dual bound for the down branch? */ SCIP_Bool* bestupvalid, /**< is bestup a valid dual bound for the up branch? */ SCIP_Real* provedbound, /**< proved dual bound for current subtree */ SCIP_RESULT* result /**< result pointer */ ) { SCIP_Real lpobjval; SCIP_Bool allcolsinlp; SCIP_Bool exactsolve; #ifndef NDEBUG SCIP_Real cutoffbound; cutoffbound = SCIPgetCutoffbound(scip); #endif assert(scip != NULL); assert(pseudocands != NULL); assert(bestpseudocand != NULL); assert(skipdown != NULL); assert(skipup != NULL); assert(bestdown != NULL); assert(bestup != NULL); assert(bestscore != NULL); assert(bestdownvalid != NULL); assert(bestupvalid != NULL); assert(provedbound != NULL); assert(result != NULL); assert(SCIPgetLPSolstat(scip) == SCIP_LPSOLSTAT_OPTIMAL); /* get current LP objective bound of the local sub problem and global cutoff bound */ lpobjval = SCIPgetLPObjval(scip); /* check, if we want to solve the problem exactly, meaning that strong branching information is not useful * for cutting off sub problems and improving lower bounds of children */ exactsolve = SCIPisExactSolve(scip); /* check, if all existing columns are in LP, and thus the strong branching results give lower bounds */ allcolsinlp = SCIPallColsInLP(scip); /* if only one candidate exists, choose this one without applying strong branching */ *bestpseudocand = 0; *bestdown = lpobjval; *bestup = lpobjval; *bestdownvalid = TRUE; *bestupvalid = TRUE; *bestscore = -SCIPinfinity(scip); *provedbound = lpobjval; if( npseudocands > 1 ) { SCIP_BRANCHRULE* branchrule; SCIP_BRANCHRULEDATA* branchruledata; SCIP_Real solval; SCIP_Real down; SCIP_Real up; SCIP_Real downgain; SCIP_Real upgain; SCIP_Real score; SCIP_Bool integral; SCIP_Bool lperror; SCIP_Bool downvalid; SCIP_Bool upvalid; SCIP_Bool downinf; SCIP_Bool upinf; SCIP_Bool downconflict; SCIP_Bool upconflict; int nsbcalls; int i; int c; branchrule = SCIPfindBranchrule(scip, BRANCHRULE_NAME); assert(branchrule != NULL); /* get branching rule data */ branchruledata = SCIPbranchruleGetData(branchrule); assert(branchruledata != NULL); /* initialize strong branching */ SCIP_CALL( SCIPstartStrongbranch(scip, FALSE) ); /* search the full strong candidate: * cycle through the candidates, starting with the position evaluated in the last run */ nsbcalls = 0; for( i = 0, c = branchruledata->lastcand; i < npseudocands; ++i, ++c ) { c = c % npseudocands; assert(pseudocands[c] != NULL); /* we can only apply strong branching on COLUMN variables that are in the current LP */ if( !SCIPvarIsInLP(pseudocands[c]) ) continue; solval = SCIPvarGetLPSol(pseudocands[c]); integral = SCIPisFeasIntegral(scip, solval); SCIPdebugMessage("applying strong branching on %s variable <%s>[%g,%g] with solution %g\n", integral ? "integral" : "fractional", SCIPvarGetName(pseudocands[c]), SCIPvarGetLbLocal(pseudocands[c]), SCIPvarGetUbLocal(pseudocands[c]), solval); up = -SCIPinfinity(scip); down = -SCIPinfinity(scip); if( integral ) { SCIP_CALL( SCIPgetVarStrongbranchInt(scip, pseudocands[c], INT_MAX, skipdown[c] ? NULL : &down, skipup[c] ? NULL : &up, &downvalid, &upvalid, &downinf, &upinf, &downconflict, &upconflict, &lperror) ); } else { SCIP_CALL( SCIPgetVarStrongbranchFrac(scip, pseudocands[c], INT_MAX, skipdown[c] ? NULL : &down, skipup[c] ? NULL : &up, &downvalid, &upvalid, &downinf, &upinf, &downconflict, &upconflict, &lperror) ); } nsbcalls++; /* display node information line in root node */ if( SCIPgetDepth(scip) == 0 && nsbcalls % 100 == 0 ) { SCIP_CALL( SCIPprintDisplayLine(scip, NULL, SCIP_VERBLEVEL_HIGH, TRUE) ); } /* check for an error in strong branching */ if( lperror ) { SCIPverbMessage(scip, SCIP_VERBLEVEL_HIGH, NULL, "(node %"SCIP_LONGINT_FORMAT") error in strong branching call for variable <%s> with solution %g\n", SCIPgetNNodes(scip), SCIPvarGetName(pseudocands[c]), solval); break; } /* evaluate strong branching */ down = MAX(down, lpobjval); up = MAX(up, lpobjval); downgain = down - lpobjval; upgain = up - lpobjval; assert(!allcolsinlp || exactsolve || !downvalid || downinf == SCIPisGE(scip, down, cutoffbound)); assert(!allcolsinlp || exactsolve || !upvalid || upinf == SCIPisGE(scip, up, cutoffbound)); assert(downinf || !downconflict); assert(upinf || !upconflict); /* check if there are infeasible roundings */ if( downinf || upinf ) { assert(allcolsinlp); assert(!exactsolve); /* if for both infeasibilities, a conflict constraint was created, we don't need to fix the variable by hand, * but better wait for the next propagation round to fix them as an inference, and potentially produce a * cutoff that can be analyzed */ if( allowaddcons && downinf == downconflict && upinf == upconflict ) { *result = SCIP_CONSADDED; break; /* terminate initialization loop, because constraint was added */ } else if( downinf && upinf ) { if( integral ) { SCIP_Bool infeasible; SCIP_Bool fixed; /* both bound changes are infeasible: variable can be fixed to its current value */ SCIP_CALL( SCIPfixVar(scip, pseudocands[c], solval, &infeasible, &fixed) ); assert(!infeasible); assert(fixed); *result = SCIP_REDUCEDDOM; SCIPdebugMessage(" -> integral variable <%s> is infeasible in both directions\n", SCIPvarGetName(pseudocands[c])); break; /* terminate initialization loop, because LP was changed */ } else { /* both roundings are infeasible: the node is infeasible */ *result = SCIP_CUTOFF; SCIPdebugMessage(" -> fractional variable <%s> is infeasible in both directions\n", SCIPvarGetName(pseudocands[c])); break; /* terminate initialization loop, because node is infeasible */ } } else if( downinf ) { SCIP_Real newlb; /* downwards rounding is infeasible -> change lower bound of variable to upward rounding */ newlb = SCIPfeasCeil(scip, solval); if( SCIPvarGetLbLocal(pseudocands[c]) < newlb - 0.5 ) { SCIP_CALL( SCIPchgVarLb(scip, pseudocands[c], newlb) ); *result = SCIP_REDUCEDDOM; SCIPdebugMessage(" -> variable <%s> is infeasible in downward branch\n", SCIPvarGetName(pseudocands[c])); break; /* terminate initialization loop, because LP was changed */ } } else { SCIP_Real newub; /* upwards rounding is infeasible -> change upper bound of variable to downward rounding */ assert(upinf); newub = SCIPfeasFloor(scip, solval); if( SCIPvarGetUbLocal(pseudocands[c]) > newub + 0.5 ) { SCIP_CALL( SCIPchgVarUb(scip, pseudocands[c], newub) ); *result = SCIP_REDUCEDDOM; SCIPdebugMessage(" -> variable <%s> is infeasible in upward branch\n", SCIPvarGetName(pseudocands[c])); break; /* terminate initialization loop, because LP was changed */ } } } else if( allcolsinlp && !exactsolve && downvalid && upvalid ) { SCIP_Real minbound; /* the minimal lower bound of both children is a proved lower bound of the current subtree */ minbound = MIN(down, up); *provedbound = MAX(*provedbound, minbound); } /* check for a better score, if we are within the maximum priority candidates */ if( c < npriopseudocands ) { if( integral ) { if( skipdown[c] ) { downgain = 0.0; score = SCIPgetBranchScore(scip, pseudocands[c], downgain, upgain); } else if( skipup[c] ) { upgain = 0.0; score = SCIPgetBranchScore(scip, pseudocands[c], downgain, upgain); } else { SCIP_Real gains[3]; gains[0] = downgain; gains[1] = 0.0; gains[2] = upgain; score = SCIPgetBranchScoreMultiple(scip, pseudocands[c], 3, gains); } } else score = SCIPgetBranchScore(scip, pseudocands[c], downgain, upgain); if( score > *bestscore ) { *bestpseudocand = c; *bestdown = down; *bestup = up; *bestdownvalid = downvalid; *bestupvalid = upvalid; *bestscore = score; } } else score = 0.0; /* update pseudo cost values */ if( !downinf ) { SCIP_CALL( SCIPupdateVarPseudocost(scip, pseudocands[c], solval-SCIPfeasCeil(scip, solval-1.0), downgain, 1.0) ); } if( !upinf ) { SCIP_CALL( SCIPupdateVarPseudocost(scip, pseudocands[c], solval-SCIPfeasFloor(scip, solval+1.0), upgain, 1.0) ); } SCIPdebugMessage(" -> var <%s> (solval=%g, downgain=%g, upgain=%g, score=%g) -- best: <%s> (%g)\n", SCIPvarGetName(pseudocands[c]), solval, downgain, upgain, score, SCIPvarGetName(pseudocands[*bestpseudocand]), *bestscore); } /* remember last evaluated candidate */ branchruledata->lastcand = c; /* end strong branching */ SCIP_CALL( SCIPendStrongbranch(scip) ); } return SCIP_OKAY; }
/** arbitrary primal solution separation method of separator */ static SCIP_DECL_SEPAEXECSOL(sepaExecsolImpliedbounds) { /*lint --e{715}*/ SCIP_VAR** vars; SCIP_VAR** fracvars; SCIP_Real* solvals; SCIP_Real* fracvals; SCIP_Bool cutoff; int nvars; int nbinvars; int nfracs; int ncuts; int i; assert(sepa != NULL); assert(scip != NULL); *result = SCIP_DIDNOTRUN; /* gets active problem variables */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, NULL, NULL, NULL) ); if( nbinvars == 0 ) return SCIP_OKAY; /* get solution values for all variables */ SCIP_CALL( SCIPallocBufferArray(scip, &solvals, nvars) ); SCIP_CALL( SCIPgetSolVals(scip, sol, nvars, vars, solvals) ); /* get binary problem variables that are fractional in given solution */ SCIP_CALL( SCIPallocBufferArray(scip, &fracvars, nbinvars) ); SCIP_CALL( SCIPallocBufferArray(scip, &fracvals, nbinvars) ); nfracs = 0; for( i = 0; i < nbinvars; ++i ) { if( !SCIPisFeasIntegral(scip, solvals[i]) ) { fracvars[nfracs] = vars[i]; fracvals[nfracs] = solvals[i]; nfracs++; } } /* call the cut separation */ ncuts = 0; cutoff = FALSE; if( nfracs > 0 ) { SCIP_CALL( separateCuts(scip, sepa, sol, solvals, fracvars, fracvals, nfracs, &cutoff, &ncuts) ); } /* adjust result code */ if ( cutoff ) *result = SCIP_CUTOFF; else if ( ncuts > 0 ) *result = SCIP_SEPARATED; else *result = SCIP_DIDNOTFIND; /* free temporary memory */ SCIPfreeBufferArray(scip, &fracvals); SCIPfreeBufferArray(scip, &fracvars); SCIPfreeBufferArray(scip, &solvals); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecShifting) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_SOL* sol; SCIP_VAR** lpcands; SCIP_Real* lpcandssol; SCIP_ROW** lprows; SCIP_Real* activities; SCIP_ROW** violrows; SCIP_Real* nincreases; SCIP_Real* ndecreases; int* violrowpos; int* nfracsinrow; SCIP_Real increaseweight; SCIP_Real obj; SCIP_Real bestshiftval; SCIP_Real minobj; int nlpcands; int nlprows; int nvars; int nfrac; int nviolrows; int nprevviolrows; int minnviolrows; int nnonimprovingshifts; int c; int r; SCIP_Longint nlps; SCIP_Longint ncalls; SCIP_Longint nsolsfound; SCIP_Longint nnodes; assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DIDNOTRUN; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* get heuristic data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* don't call heuristic, if we have already processed the current LP solution */ nlps = SCIPgetNLPs(scip); if( nlps == heurdata->lastlp ) return SCIP_OKAY; heurdata->lastlp = nlps; /* don't call heuristic, if it was not successful enough in the past */ ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + SCIPheurGetNSolsFound(heur); nnodes = SCIPgetNNodes(scip); if( nnodes % ((ncalls/100)/(nsolsfound+1)+1) != 0 ) return SCIP_OKAY; /* get fractional variables, that should be integral */ /* todo check if heuristic should include implicit integer variables for its calculations */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL, NULL) ); nfrac = nlpcands; /* only call heuristic, if LP solution is fractional */ if( nfrac == 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; /* get LP rows */ SCIP_CALL( SCIPgetLPRowsData(scip, &lprows, &nlprows) ); SCIPdebugMessage("executing shifting heuristic: %d LP rows, %d fractionals\n", nlprows, nfrac); /* get memory for activities, violated rows, and row violation positions */ nvars = SCIPgetNVars(scip); SCIP_CALL( SCIPallocBufferArray(scip, &activities, nlprows) ); SCIP_CALL( SCIPallocBufferArray(scip, &violrows, nlprows) ); SCIP_CALL( SCIPallocBufferArray(scip, &violrowpos, nlprows) ); SCIP_CALL( SCIPallocBufferArray(scip, &nfracsinrow, nlprows) ); SCIP_CALL( SCIPallocBufferArray(scip, &nincreases, nvars) ); SCIP_CALL( SCIPallocBufferArray(scip, &ndecreases, nvars) ); BMSclearMemoryArray(nfracsinrow, nlprows); BMSclearMemoryArray(nincreases, nvars); BMSclearMemoryArray(ndecreases, nvars); /* get the activities for all globally valid rows; * the rows should be feasible, but due to numerical inaccuracies in the LP solver, they can be violated */ nviolrows = 0; for( r = 0; r < nlprows; ++r ) { SCIP_ROW* row; row = lprows[r]; assert(SCIProwGetLPPos(row) == r); if( !SCIProwIsLocal(row) ) { activities[r] = SCIPgetRowActivity(scip, row); if( SCIPisFeasLT(scip, activities[r], SCIProwGetLhs(row)) || SCIPisFeasGT(scip, activities[r], SCIProwGetRhs(row)) ) { violrows[nviolrows] = row; violrowpos[r] = nviolrows; nviolrows++; } else violrowpos[r] = -1; } } /* calc the current number of fractional variables in rows */ for( c = 0; c < nlpcands; ++c ) addFracCounter(nfracsinrow, nlprows, lpcands[c], +1); /* get the working solution from heuristic's local data */ sol = heurdata->sol; assert(sol != NULL); /* copy the current LP solution to the working solution */ SCIP_CALL( SCIPlinkLPSol(scip, sol) ); /* calculate the minimal objective value possible after rounding fractional variables */ minobj = SCIPgetSolTransObj(scip, sol); assert(minobj < SCIPgetCutoffbound(scip)); for( c = 0; c < nlpcands; ++c ) { obj = SCIPvarGetObj(lpcands[c]); bestshiftval = obj > 0.0 ? SCIPfeasFloor(scip, lpcandssol[c]) : SCIPfeasCeil(scip, lpcandssol[c]); minobj += obj * (bestshiftval - lpcandssol[c]); } /* try to shift remaining variables in order to become/stay feasible */ nnonimprovingshifts = 0; minnviolrows = INT_MAX; increaseweight = 1.0; while( (nfrac > 0 || nviolrows > 0) && nnonimprovingshifts < MAXSHIFTINGS ) { SCIP_VAR* shiftvar; SCIP_Real oldsolval; SCIP_Real newsolval; SCIP_Bool oldsolvalisfrac; int probindex; SCIPdebugMessage("shifting heuristic: nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g), cutoff=%g\n", nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj), SCIPretransformObj(scip, SCIPgetCutoffbound(scip))); nprevviolrows = nviolrows; /* choose next variable to process: * - if a violated row exists, shift a variable decreasing the violation, that has least impact on other rows * - otherwise, shift a variable, that has strongest devastating impact on rows in opposite direction */ shiftvar = NULL; oldsolval = 0.0; newsolval = 0.0; if( nviolrows > 0 && (nfrac == 0 || nnonimprovingshifts < MAXSHIFTINGS-1) ) { SCIP_ROW* row; int rowidx; int rowpos; int direction; rowidx = -1; rowpos = -1; row = NULL; if( nfrac > 0 ) { for( rowidx = nviolrows-1; rowidx >= 0; --rowidx ) { row = violrows[rowidx]; rowpos = SCIProwGetLPPos(row); assert(violrowpos[rowpos] == rowidx); if( nfracsinrow[rowpos] > 0 ) break; } } if( rowidx == -1 ) { rowidx = SCIPgetRandomInt(0, nviolrows-1, &heurdata->randseed); row = violrows[rowidx]; rowpos = SCIProwGetLPPos(row); assert(0 <= rowpos && rowpos < nlprows); assert(violrowpos[rowpos] == rowidx); assert(nfracsinrow[rowpos] == 0); } assert(violrowpos[rowpos] == rowidx); SCIPdebugMessage("shifting heuristic: try to fix violated row <%s>: %g <= %g <= %g\n", SCIProwGetName(row), SCIProwGetLhs(row), activities[rowpos], SCIProwGetRhs(row)); SCIPdebug( SCIP_CALL( SCIPprintRow(scip, row, NULL) ) ); /* get direction in which activity must be shifted */ assert(SCIPisFeasLT(scip, activities[rowpos], SCIProwGetLhs(row)) || SCIPisFeasGT(scip, activities[rowpos], SCIProwGetRhs(row))); direction = SCIPisFeasLT(scip, activities[rowpos], SCIProwGetLhs(row)) ? +1 : -1; /* search a variable that can shift the activity in the necessary direction */ SCIP_CALL( selectShifting(scip, sol, row, activities[rowpos], direction, nincreases, ndecreases, increaseweight, &shiftvar, &oldsolval, &newsolval) ); } if( shiftvar == NULL && nfrac > 0 ) { SCIPdebugMessage("shifting heuristic: search rounding variable and try to stay feasible\n"); SCIP_CALL( selectEssentialRounding(scip, sol, minobj, lpcands, nlpcands, &shiftvar, &oldsolval, &newsolval) ); } /* check, whether shifting was possible */ if( shiftvar == NULL || SCIPisEQ(scip, oldsolval, newsolval) ) { SCIPdebugMessage("shifting heuristic: -> didn't find a shifting variable\n"); break; } SCIPdebugMessage("shifting heuristic: -> shift var <%s>[%g,%g], type=%d, oldval=%g, newval=%g, obj=%g\n", SCIPvarGetName(shiftvar), SCIPvarGetLbGlobal(shiftvar), SCIPvarGetUbGlobal(shiftvar), SCIPvarGetType(shiftvar), oldsolval, newsolval, SCIPvarGetObj(shiftvar)); /* update row activities of globally valid rows */ SCIP_CALL( updateActivities(scip, activities, violrows, violrowpos, &nviolrows, nlprows, shiftvar, oldsolval, newsolval) ); if( nviolrows >= nprevviolrows ) nnonimprovingshifts++; else if( nviolrows < minnviolrows ) { minnviolrows = nviolrows; nnonimprovingshifts = 0; } /* store new solution value and decrease fractionality counter */ SCIP_CALL( SCIPsetSolVal(scip, sol, shiftvar, newsolval) ); /* update fractionality counter and minimal objective value possible after shifting remaining variables */ oldsolvalisfrac = !SCIPisFeasIntegral(scip, oldsolval) && (SCIPvarGetType(shiftvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(shiftvar) == SCIP_VARTYPE_INTEGER); obj = SCIPvarGetObj(shiftvar); if( (SCIPvarGetType(shiftvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(shiftvar) == SCIP_VARTYPE_INTEGER) && oldsolvalisfrac ) { assert(SCIPisFeasIntegral(scip, newsolval)); nfrac--; nnonimprovingshifts = 0; minnviolrows = INT_MAX; addFracCounter(nfracsinrow, nlprows, shiftvar, -1); /* the rounding was already calculated into the minobj -> update only if rounding in "wrong" direction */ if( obj > 0.0 && newsolval > oldsolval ) minobj += obj; else if( obj < 0.0 && newsolval < oldsolval ) minobj -= obj; } else { /* update minimal possible objective value */ minobj += obj * (newsolval - oldsolval); } /* update increase/decrease arrays */ if( !oldsolvalisfrac ) { probindex = SCIPvarGetProbindex(shiftvar); assert(0 <= probindex && probindex < nvars); increaseweight *= WEIGHTFACTOR; if( newsolval < oldsolval ) ndecreases[probindex] += increaseweight; else nincreases[probindex] += increaseweight; if( increaseweight >= 1e+09 ) { int i; for( i = 0; i < nvars; ++i ) { nincreases[i] /= increaseweight; ndecreases[i] /= increaseweight; } increaseweight = 1.0; } } SCIPdebugMessage("shifting heuristic: -> nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g)\n", nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj)); } /* check, if the new solution is feasible */ if( nfrac == 0 && nviolrows == 0 ) { SCIP_Bool stored; /* check solution for feasibility, and add it to solution store if possible * neither integrality nor feasibility of LP rows has to be checked, because this is already * done in the shifting heuristic itself; however, we better check feasibility of LP rows, * because of numerical problems with activity updating */ SCIP_CALL( SCIPtrySol(scip, sol, FALSE, FALSE, FALSE, TRUE, &stored) ); if( stored ) { SCIPdebugMessage("found feasible shifted solution:\n"); SCIPdebug( SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) ) ); *result = SCIP_FOUNDSOL; } } /* free memory buffers */ SCIPfreeBufferArray(scip, &ndecreases); SCIPfreeBufferArray(scip, &nincreases); SCIPfreeBufferArray(scip, &nfracsinrow); SCIPfreeBufferArray(scip, &violrowpos); SCIPfreeBufferArray(scip, &violrows); SCIPfreeBufferArray(scip, &activities); return SCIP_OKAY; }
/** returns a variable, that pushes activity of the row in the given direction with minimal negative impact on other rows; * if variables have equal impact, chooses the one with best objective value improvement in corresponding direction; * prefer fractional integers over other variables in order to become integral during the process; * shifting in a direction is forbidden, if this forces the objective value over the upper bound, or if the variable * was already shifted in the opposite direction */ static SCIP_RETCODE selectShifting( SCIP* scip, /**< SCIP data structure */ SCIP_SOL* sol, /**< primal solution */ SCIP_ROW* row, /**< LP row */ SCIP_Real rowactivity, /**< activity of LP row */ int direction, /**< should the activity be increased (+1) or decreased (-1)? */ SCIP_Real* nincreases, /**< array with weighted number of increasings per variables */ SCIP_Real* ndecreases, /**< array with weighted number of decreasings per variables */ SCIP_Real increaseweight, /**< current weight of increase/decrease updates */ SCIP_VAR** shiftvar, /**< pointer to store the shifting variable, returns NULL if impossible */ SCIP_Real* oldsolval, /**< pointer to store old solution value of shifting variable */ SCIP_Real* newsolval /**< pointer to store new (shifted) solution value of shifting variable */ ) { SCIP_COL** rowcols; SCIP_Real* rowvals; int nrowcols; SCIP_Real activitydelta; SCIP_Real bestshiftscore; SCIP_Real bestdeltaobj; int c; assert(direction == +1 || direction == -1); assert(nincreases != NULL); assert(ndecreases != NULL); assert(shiftvar != NULL); assert(oldsolval != NULL); assert(newsolval != NULL); /* get row entries */ rowcols = SCIProwGetCols(row); rowvals = SCIProwGetVals(row); nrowcols = SCIProwGetNLPNonz(row); /* calculate how much the activity must be shifted in order to become feasible */ activitydelta = (direction == +1 ? SCIProwGetLhs(row) - rowactivity : SCIProwGetRhs(row) - rowactivity); assert((direction == +1 && SCIPisPositive(scip, activitydelta)) || (direction == -1 && SCIPisNegative(scip, activitydelta))); /* select shifting variable */ bestshiftscore = SCIP_REAL_MAX; bestdeltaobj = SCIPinfinity(scip); *shiftvar = NULL; *newsolval = 0.0; *oldsolval = 0.0; for( c = 0; c < nrowcols; ++c ) { SCIP_COL* col; SCIP_VAR* var; SCIP_Real val; SCIP_Real solval; SCIP_Real shiftval; SCIP_Real shiftscore; SCIP_Bool isinteger; SCIP_Bool isfrac; SCIP_Bool increase; col = rowcols[c]; var = SCIPcolGetVar(col); val = rowvals[c]; assert(!SCIPisZero(scip, val)); solval = SCIPgetSolVal(scip, sol, var); isinteger = (SCIPvarGetType(var) == SCIP_VARTYPE_BINARY || SCIPvarGetType(var) == SCIP_VARTYPE_INTEGER); isfrac = isinteger && !SCIPisFeasIntegral(scip, solval); increase = (direction * val > 0.0); /* calculate the score of the shifting (prefer smaller values) */ if( isfrac ) shiftscore = increase ? -1.0 / (SCIPvarGetNLocksUp(var) + 1.0) : -1.0 / (SCIPvarGetNLocksDown(var) + 1.0); else { int probindex; probindex = SCIPvarGetProbindex(var); if( increase ) shiftscore = ndecreases[probindex]/increaseweight; else shiftscore = nincreases[probindex]/increaseweight; if( isinteger ) shiftscore += 1.0; } if( shiftscore <= bestshiftscore ) { SCIP_Real deltaobj; if( !increase ) { /* shifting down */ assert(direction * val < 0.0); if( isfrac ) shiftval = SCIPfeasFloor(scip, solval); else { SCIP_Real lb; assert(activitydelta/val < 0.0); shiftval = solval + activitydelta/val; assert(shiftval <= solval); /* may be equal due to numerical digit erasement in the subtraction */ if( SCIPvarIsIntegral(var) ) shiftval = SCIPfeasFloor(scip, shiftval); lb = SCIPvarGetLbGlobal(var); shiftval = MAX(shiftval, lb); } } else { /* shifting up */ assert(direction * val > 0.0); if( isfrac ) shiftval = SCIPfeasCeil(scip, solval); else { SCIP_Real ub; assert(activitydelta/val > 0.0); shiftval = solval + activitydelta/val; assert(shiftval >= solval); /* may be equal due to numerical digit erasement in the subtraction */ if( SCIPvarIsIntegral(var) ) shiftval = SCIPfeasCeil(scip, shiftval); ub = SCIPvarGetUbGlobal(var); shiftval = MIN(shiftval, ub); } } if( SCIPisEQ(scip, shiftval, solval) ) continue; deltaobj = SCIPvarGetObj(var) * (shiftval - solval); if( shiftscore < bestshiftscore || deltaobj < bestdeltaobj ) { bestshiftscore = shiftscore; bestdeltaobj = deltaobj; *shiftvar = var; *oldsolval = solval; *newsolval = shiftval; } } } return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecRootsoldiving) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_VAR** vars; SCIP_Real* rootsol; SCIP_Real* objchgvals; int* softroundings; int* intvalrounds; int nvars; int nbinvars; int nintvars; int nlpcands; SCIP_LPSOLSTAT lpsolstat; SCIP_Real absstartobjval; SCIP_Real objstep; SCIP_Real alpha; SCIP_Real oldobj; SCIP_Real newobj; SCIP_Bool lperror; SCIP_Bool lpsolchanged; SCIP_Longint nsolsfound; SCIP_Longint ncalls; SCIP_Longint nlpiterations; SCIP_Longint maxnlpiterations; int depth; int maxdepth; int maxdivedepth; int divedepth; int startnlpcands; int ncycles; int i; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* don't dive two times at the same node */ if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only apply heuristic, if only a few solutions have been found */ if( heurdata->maxsols >= 0 && SCIPgetNSolsFound(scip) >= heurdata->maxsols ) return SCIP_OKAY; /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */ depth = SCIPgetDepth(scip); maxdepth = SCIPgetMaxDepth(scip); maxdepth = MAX(maxdepth, 30); if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth ) return SCIP_OKAY; /* calculate the maximal number of LP iterations until heuristic is aborted */ nlpiterations = SCIPgetNNodeLPIterations(scip); ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess; maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations); maxnlpiterations += heurdata->maxlpiterofs; /* don't try to dive, if we took too many LP iterations during diving */ if( heurdata->nlpiterations >= maxnlpiterations ) return SCIP_OKAY; /* allow at least a certain number of LP iterations in this dive */ maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER); /* get number of fractional variables, that should be integral */ nlpcands = SCIPgetNLPBranchCands(scip); /* don't try to dive, if there are no fractional variables */ if( nlpcands == 0 ) return SCIP_OKAY; /* calculate the maximal diving depth */ nvars = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); if( SCIPgetNSolsFound(scip) == 0 ) maxdivedepth = (int)(heurdata->depthfacnosol * nvars); else maxdivedepth = (int)(heurdata->depthfac * nvars); maxdivedepth = MAX(maxdivedepth, 10); *result = SCIP_DIDNOTFIND; /* get all variables of LP */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); /* get root solution value of all binary and integer variables */ SCIP_CALL( SCIPallocBufferArray(scip, &rootsol, nbinvars + nintvars) ); for( i = 0; i < nbinvars + nintvars; i++ ) rootsol[i] = SCIPvarGetRootSol(vars[i]); /* get current LP objective value, and calculate length of a single step in an objective coefficient */ absstartobjval = SCIPgetLPObjval(scip); absstartobjval = ABS(absstartobjval); absstartobjval = MAX(absstartobjval, 1.0); objstep = absstartobjval / 10.0; /* initialize array storing the preferred soft rounding directions and counting the integral value rounds */ SCIP_CALL( SCIPallocBufferArray(scip, &softroundings, nbinvars + nintvars) ); BMSclearMemoryArray(softroundings, nbinvars + nintvars); SCIP_CALL( SCIPallocBufferArray(scip, &intvalrounds, nbinvars + nintvars) ); BMSclearMemoryArray(intvalrounds, nbinvars + nintvars); /* allocate temporary memory for buffering objective changes */ SCIP_CALL( SCIPallocBufferArray(scip, &objchgvals, nbinvars + nintvars) ); /* start diving */ SCIP_CALL( SCIPstartDive(scip) ); SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing rootsoldiving heuristic: depth=%d, %d fractionals, dualbound=%g, maxnlpiterations=%"SCIP_LONGINT_FORMAT", maxdivedepth=%d, LPobj=%g, objstep=%g\n", SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), maxnlpiterations, maxdivedepth, SCIPgetLPObjval(scip), objstep); lperror = FALSE; divedepth = 0; lpsolstat = SCIP_LPSOLSTAT_OPTIMAL; alpha = heurdata->alpha; ncycles = 0; lpsolchanged = TRUE; startnlpcands = nlpcands; while( !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0 && ncycles < 10 && (divedepth < 10 || nlpcands <= startnlpcands - divedepth/2 || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations)) && !SCIPisStopped(scip) ) { SCIP_Bool success; int hardroundingidx; int hardroundingdir; SCIP_Real hardroundingoldbd; SCIP_Real hardroundingnewbd; SCIP_Bool boundschanged; SCIP_RETCODE retcode; /* create solution from diving LP and try to round it */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) ); if( success ) { SCIPdebugMessage("rootsoldiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } divedepth++; hardroundingidx = -1; hardroundingdir = 0; hardroundingoldbd = 0.0; hardroundingnewbd = 0.0; boundschanged = FALSE; SCIPdebugMessage("dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT":\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations); /* round solution x* from diving LP: * - x~_j = down(x*_j) if x*_j is integer or binary variable and x*_j <= root solution_j * - x~_j = up(x*_j) if x*_j is integer or binary variable and x*_j > root solution_j * - x~_j = x*_j if x*_j is continuous variable * change objective function in diving LP: * - if x*_j is integral, or j is a continuous variable, set obj'_j = alpha * obj_j * - otherwise, set obj'_j = alpha * obj_j + sign(x*_j - x~_j) */ for( i = 0; i < nbinvars + nintvars; i++ ) { SCIP_VAR* var; SCIP_Real solval; var = vars[i]; oldobj = SCIPgetVarObjDive(scip, var); newobj = oldobj; solval = SCIPvarGetLPSol(var); if( SCIPisFeasIntegral(scip, solval) ) { /* if the variable became integral after a soft rounding, count the rounds; after a while, fix it to its * current integral value; * otherwise, fade out the objective value */ if( softroundings[i] != 0 && lpsolchanged ) { intvalrounds[i]++; if( intvalrounds[i] == 5 && SCIPgetVarLbDive(scip, var) < SCIPgetVarUbDive(scip, var) - 0.5 ) { /* use exact integral value, if the variable is only integral within numerical tolerances */ solval = SCIPfloor(scip, solval+0.5); SCIPdebugMessage(" -> fixing <%s> = %g\n", SCIPvarGetName(var), solval); SCIP_CALL( SCIPchgVarLbDive(scip, var, solval) ); SCIP_CALL( SCIPchgVarUbDive(scip, var, solval) ); boundschanged = TRUE; } } else newobj = alpha * oldobj; } else if( solval <= rootsol[i] ) { /* if the variable was soft rounded most of the time downwards, round it downwards by changing the bounds; * otherwise, apply soft rounding by changing the objective value */ softroundings[i]--; if( softroundings[i] <= -10 && hardroundingidx == -1 ) { SCIPdebugMessage(" -> hard rounding <%s>[%g] <= %g\n", SCIPvarGetName(var), solval, SCIPfeasFloor(scip, solval)); hardroundingidx = i; hardroundingdir = -1; hardroundingoldbd = SCIPgetVarUbDive(scip, var); hardroundingnewbd = SCIPfeasFloor(scip, solval); SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingnewbd) ); boundschanged = TRUE; } else newobj = alpha * oldobj + objstep; } else { /* if the variable was soft rounded most of the time upwards, round it upwards by changing the bounds; * otherwise, apply soft rounding by changing the objective value */ softroundings[i]++; if( softroundings[i] >= +10 && hardroundingidx == -1 ) { SCIPdebugMessage(" -> hard rounding <%s>[%g] >= %g\n", SCIPvarGetName(var), solval, SCIPfeasCeil(scip, solval)); hardroundingidx = i; hardroundingdir = +1; hardroundingoldbd = SCIPgetVarLbDive(scip, var); hardroundingnewbd = SCIPfeasCeil(scip, solval); SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingnewbd) ); boundschanged = TRUE; } else newobj = alpha * oldobj - objstep; } /* remember the objective change */ objchgvals[i] = newobj; } /* apply objective changes if there was no bound change */ if( !boundschanged ) { /* apply cached changes on integer variables */ for( i = 0; i < nbinvars + nintvars; ++i ) { SCIP_VAR* var; var = vars[i]; SCIPdebugMessage(" -> i=%d var <%s>, solval=%g, rootsol=%g, oldobj=%g, newobj=%g\n", i, SCIPvarGetName(var), SCIPvarGetLPSol(var), rootsol[i], SCIPgetVarObjDive(scip, var), objchgvals[i]); SCIP_CALL( SCIPchgVarObjDive(scip, var, objchgvals[i]) ); } /* fade out the objective values of the continuous variables */ for( i = nbinvars + nintvars; i < nvars; i++ ) { SCIP_VAR* var; var = vars[i]; oldobj = SCIPgetVarObjDive(scip, var); newobj = alpha * oldobj; SCIPdebugMessage(" -> i=%d var <%s>, solval=%g, oldobj=%g, newobj=%g\n", i, SCIPvarGetName(var), SCIPvarGetLPSol(var), oldobj, newobj); SCIP_CALL( SCIPchgVarObjDive(scip, var, newobj) ); } } SOLVEAGAIN: /* resolve the diving LP */ nlpiterations = SCIPgetNLPIterations(scip); retcode = SCIPsolveDiveLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror); lpsolstat = SCIPgetLPSolstat(scip); /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG if( lpsolstat != SCIP_LPSOLSTAT_UNBOUNDEDRAY ) { SCIP_CALL( retcode ); } #endif SCIPwarningMessage(scip, "Error while solving LP in Rootsoldiving heuristic; LP solve terminated with code <%d>\n", retcode); SCIPwarningMessage(scip, "This does not affect the remaining solution procedure --> continue\n"); } if( lperror ) break; /* update iteration count */ heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations; /* if no LP iterations were performed, we stayed at the same solution -> count this cycling */ lpsolchanged = (SCIPgetNLPIterations(scip) != nlpiterations); if( lpsolchanged ) ncycles = 0; else if( !boundschanged ) /* do not count if integral variables have been fixed */ ncycles++; /* get LP solution status and number of fractional variables, that should be integral */ if( lpsolstat == SCIP_LPSOLSTAT_INFEASIBLE && hardroundingidx != -1 ) { SCIP_VAR* var; var = vars[hardroundingidx]; /* round the hard rounded variable to the opposite direction and resolve the LP */ if( hardroundingdir == -1 ) { SCIPdebugMessage(" -> opposite hard rounding <%s> >= %g\n", SCIPvarGetName(var), hardroundingnewbd + 1.0); SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingoldbd) ); SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingnewbd + 1.0) ); } else { SCIPdebugMessage(" -> opposite hard rounding <%s> <= %g\n", SCIPvarGetName(var), hardroundingnewbd - 1.0); SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingoldbd) ); SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingnewbd - 1.0) ); } hardroundingidx = -1; goto SOLVEAGAIN; } if( lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) nlpcands = SCIPgetNLPBranchCands(scip); SCIPdebugMessage(" -> lpsolstat=%d, nfrac=%d\n", lpsolstat, nlpcands); } SCIPdebugMessage("---> diving finished: lpsolstat = %d, depth %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT"\n", lpsolstat, divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations); /* check if a solution has been found */ if( nlpcands == 0 && !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* create solution from diving LP */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIPdebugMessage("rootsoldiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } /* end diving */ SCIP_CALL( SCIPendDive(scip) ); if( *result == SCIP_FOUNDSOL ) heurdata->nsuccess++; /* free temporary memory */ SCIPfreeBufferArray(scip, &objchgvals); SCIPfreeBufferArray(scip, &intvalrounds); SCIPfreeBufferArray(scip, &softroundings); SCIPfreeBufferArray(scip, &rootsol); SCIPdebugMessage("rootsoldiving heuristic finished\n"); return SCIP_OKAY; }