Exemple #1
0
/** branching execution method for fractional LP solutions */
static
SCIP_DECL_BRANCHEXECLP(branchExeclpPscost)
{  /*lint --e{715}*/
   SCIP_VAR** lpcands;
   SCIP_Real* lpcandssol;
   SCIP_Real bestscore;
   SCIP_Real bestrootdiff;
   int nlpcands;
   int bestcand;
   int c;

   assert(branchrule != NULL);
   assert(strcmp(SCIPbranchruleGetName(branchrule), BRANCHRULE_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);

   SCIPdebugMessage("Execlp method of pscost branching\n");

   /* get branching candidates */
   SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, NULL, &nlpcands, NULL) );
   assert(nlpcands > 0);

   bestcand = -1;
   bestscore = -SCIPinfinity(scip);
   bestrootdiff = 0.0;
   for( c = 0; c < nlpcands; ++c )
   {
      SCIP_Real score;
      SCIP_Real rootsolval;
      SCIP_Real rootdiff;

      score = SCIPgetVarPseudocostScore(scip, lpcands[c], lpcandssol[c]);
      rootsolval = SCIPvarGetRootSol(lpcands[c]);
      rootdiff = REALABS(lpcandssol[c] - rootsolval);
      if( SCIPisSumGT(scip, score, bestscore) || (SCIPisSumEQ(scip, score, bestscore) && rootdiff > bestrootdiff) )
      {
         bestcand = c;
         bestscore = score;
         bestrootdiff = rootdiff;
      }
   }
   assert(0 <= bestcand && bestcand < nlpcands);
   assert(!SCIPisFeasIntegral(scip, lpcandssol[bestcand]));

   /* perform the branching */
   SCIPdebugMessage(" -> %d cands, selected cand %d: variable <%s> (solval=%g, score=%g)\n",
      nlpcands, bestcand, SCIPvarGetName(lpcands[bestcand]), lpcandssol[bestcand], bestscore);

   /* perform the branching */
   SCIP_CALL( SCIPbranchVar(scip, lpcands[bestcand], NULL, NULL, NULL) );
   *result = SCIP_BRANCHED;

   return SCIP_OKAY;
}
Exemple #2
0
/** searches and adds integral objective cuts that separate the given primal solution */
static
SCIP_RETCODE separateCuts(
   SCIP*                 scip,               /**< SCIP data structure */ 
   SCIP_SEPA*            sepa,               /**< the intobj separator */
   SCIP_SOL*             sol,                /**< the solution that should be separated, or NULL for LP solution */
   SCIP_RESULT*          result              /**< pointer to store the result */
   )
{
   SCIP_SEPADATA* sepadata;
   SCIP_Real objval;
   SCIP_Real intbound;
   SCIP_Bool infeasible;
   SCIP_Bool tightened;

   assert(result != NULL);
   assert(*result == SCIP_DIDNOTRUN);

   /* if the objective value may be fractional, we cannot do anything */
   if( !SCIPisObjIntegral(scip) )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;

   /* if the current objective value is integral, there is no integral objective value cut */
   if( sol == NULL )
      objval = SCIPretransformObj(scip, SCIPgetLPObjval(scip));
   else
      objval = SCIPgetSolOrigObj(scip, sol);
   if( SCIPisFeasIntegral(scip, objval) )
      return SCIP_OKAY;

   sepadata = SCIPsepaGetData(sepa);
   assert(sepadata != NULL);

   /* the objective value is fractional: create the objective value inequality, if not yet existing */
   SCIP_CALL( createObjRow(scip, sepa, sepadata) );

   /* adjust the bounds of the objective value variable */
   if( SCIPgetObjsense(scip) == SCIP_OBJSENSE_MINIMIZE )
   {
      intbound = SCIPceil(scip, objval) - sepadata->setoff;
      SCIP_CALL( SCIPtightenVarLb(scip, sepadata->objvar, intbound, FALSE, &infeasible, &tightened) );
      SCIPdebugMessage("new objective variable lower bound: <%s>[%g,%g]\n",
         SCIPvarGetName(sepadata->objvar), SCIPvarGetLbLocal(sepadata->objvar), SCIPvarGetUbLocal(sepadata->objvar));
   }
   else
   {
      intbound = SCIPfloor(scip, objval) - sepadata->setoff;
      SCIP_CALL( SCIPtightenVarUb(scip, sepadata->objvar, intbound, FALSE, &infeasible, &tightened) );
      SCIPdebugMessage("new objective variable upper bound: <%s>[%g,%g]\n",
         SCIPvarGetName(sepadata->objvar), SCIPvarGetLbLocal(sepadata->objvar), SCIPvarGetUbLocal(sepadata->objvar));
   }

   /* add the objective value inequality as a cut to the LP */
   if( infeasible )
      *result = SCIP_CUTOFF;
   else
   {
      if( !SCIProwIsInLP(sepadata->objrow) )
      {
         SCIP_CALL( SCIPaddCut(scip, sol, sepadata->objrow, FALSE, &infeasible) );
      }
      if ( infeasible )
         *result = SCIP_CUTOFF;
      else if ( tightened )
         *result = SCIP_REDUCEDDOM;
      else
         *result = SCIP_SEPARATED;
   }

   return SCIP_OKAY;
}
/** perform randomized rounding of the given solution. Domain propagation is optionally applied after every rounding
 *  step
 */
static
SCIP_RETCODE performRandRounding(
   SCIP*                 scip,               /**< SCIP main data structure */
   SCIP_HEURDATA*        heurdata,           /**< heuristic data */
   SCIP_SOL*             sol,                /**< solution to round */
   SCIP_VAR**            cands,              /**< candidate variables */
   int                   ncands,             /**< number of candidates */
   SCIP_Bool             propagate,          /**< should the rounding be propagated? */
   SCIP_RESULT*          result              /**< pointer to store the result of the heuristic call */
   )
{
   int c;
   SCIP_Bool stored;
   SCIP_VAR** permutedcands;
   SCIP_Bool cutoff;

   assert(heurdata != NULL);

   /* start probing tree before rounding begins */
   if( propagate )
   {
      SCIP_CALL( SCIPstartProbing(scip) );
      SCIPenableVarHistory(scip);
   }

   /* copy and permute the candidate array */
   SCIP_CALL( SCIPduplicateBufferArray(scip, &permutedcands, cands, ncands) );

   assert(permutedcands != NULL);

   SCIPpermuteArray((void **)permutedcands, 0, ncands, &heurdata->randseed);
   cutoff = FALSE;

   /* loop over candidates and perform randomized rounding and optionally probing. */
   for (c = 0; c < ncands && !cutoff; ++c)
   {
      SCIP_VAR* var;
      SCIP_Real oldsolval;
      SCIP_Real newsolval;
      SCIP_Bool mayrounddown;
      SCIP_Bool mayroundup;
      SCIP_Longint ndomreds;
      SCIP_Real lb;
      SCIP_Real ub;
      SCIP_Real ceilval;
      SCIP_Real floorval;

      /* get next variable from permuted candidate array */
      var = permutedcands[c];
      oldsolval = SCIPgetSolVal(scip, sol, var);
      lb = SCIPvarGetLbLocal(var);
      ub = SCIPvarGetUbLocal(var);

      assert( ! SCIPisFeasIntegral(scip, oldsolval) );
      assert( SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN );

      mayrounddown = SCIPvarMayRoundDown(var);
      mayroundup = SCIPvarMayRoundUp(var);
      ceilval = SCIPfeasCeil(scip, oldsolval);
      floorval = SCIPfeasFloor(scip, oldsolval);

      SCIPdebugMessage("rand rounding heuristic: var <%s>, val=%g, rounddown=%u, roundup=%u\n",
         SCIPvarGetName(var), oldsolval, mayrounddown, mayroundup);

      /* abort if rounded ceil and floor value lie outside the variable domain. Otherwise, check if
       * bounds allow only one rounding direction, anyway */
      if( lb > ceilval + 0.5 || ub < floorval - 0.5 )
      {
         cutoff = TRUE;
         break;
      }
      else if( SCIPisFeasEQ(scip, lb, ceilval) )
      {
         /* only rounding up possible */
         assert(SCIPisFeasGE(scip, ub, ceilval));
         newsolval = ceilval;
      }
      else if( SCIPisFeasEQ(scip, ub, floorval) )
      {
         /* only rounding down possible */
         assert(SCIPisFeasLE(scip,lb, floorval));
         newsolval = floorval;
      }
      else if( !heurdata->usesimplerounding || !(mayroundup || mayrounddown) )
      {
         /* the standard randomized rounding */
         SCIP_Real randnumber;

         randnumber = SCIPgetRandomReal(0.0, 1.0, &heurdata->randseed);
         if( randnumber <= oldsolval - floorval )
            newsolval = ceilval;
         else
            newsolval = floorval;
      }
      /* choose rounding direction, if possible, or use the only direction guaranteed to be feasible */
      else if( mayrounddown && mayroundup )
      {
         /* we can round in both directions: round in objective function direction */
         if ( SCIPvarGetObj(var) >= 0.0 )
            newsolval = floorval;
         else
            newsolval = ceilval;
      }
      else if( mayrounddown )
         newsolval = floorval;
      else
      {
         assert(mayroundup);
         newsolval = ceilval;
      }

      assert(SCIPisFeasLE(scip, lb, newsolval));
      assert(SCIPisFeasGE(scip, ub, newsolval));

      /* if propagation is enabled, fix the candidate variable to its rounded value and propagate the solution */
      if( propagate )
      {
         SCIP_Bool lbadjust;
         SCIP_Bool ubadjust;

         lbadjust = SCIPisGT(scip, newsolval, lb);
         ubadjust = SCIPisLT(scip, newsolval, ub);

         assert( lbadjust || ubadjust || SCIPisFeasEQ(scip, lb, ub));

         /* enter a new probing node if the variable was not already fixed before */
         if( lbadjust || ubadjust )
         {
            SCIP_RETCODE retcode;

            if( SCIPisStopped(scip) )
               break;

            retcode = SCIPnewProbingNode(scip);
            if( retcode == SCIP_MAXDEPTHLEVEL )
               break;

            SCIP_CALL( retcode );

            /* tighten the bounds to fix the variable for the probing node */
            if( lbadjust )
            {
               SCIP_CALL( SCIPchgVarLbProbing(scip, var, newsolval) );
            }
            if( ubadjust )
            {
               SCIP_CALL( SCIPchgVarUbProbing(scip, var, newsolval) );
            }

            /* call propagation routines for the reduced problem */
            SCIP_CALL( SCIPpropagateProbing(scip, heurdata->maxproprounds, &cutoff, &ndomreds) );
         }
      }
      /* store new solution value */
      SCIP_CALL( SCIPsetSolVal(scip, sol, var, newsolval) );
   }

   /* if no cutoff was detected, the solution is a candidate to be checked for feasibility */
   if( !cutoff && ! SCIPisStopped(scip) )
   {
      if( SCIPallColsInLP(scip) )
      {
         /* check solution for feasibility, and add it to solution store if possible
          * neither integrality nor feasibility of LP rows has to be checked, because all fractional
          * variables were already moved in feasible direction to the next integer
          */
         SCIP_CALL( SCIPtrySol(scip, sol, FALSE, FALSE, FALSE, TRUE, &stored) );
      }
      else
      {
         /* if there are variables which are not present in the LP, e.g., for
          * column generation, we need to check their bounds
          */
         SCIP_CALL( SCIPtrySol(scip, sol, FALSE, TRUE, FALSE, TRUE, &stored) );
      }

      if( stored )
      {
#ifdef SCIP_DEBUG
         SCIPdebugMessage("found feasible rounded solution:\n");
         SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) );
#endif
         *result = SCIP_FOUNDSOL;
      }
   }

   assert( !propagate || SCIPinProbing(scip) );

   /* exit probing mode and free locally allocated memory */
   if( propagate )
   {
      SCIP_CALL( SCIPendProbing(scip) );
   }

   SCIPfreeBufferArray(scip, &permutedcands);

   return SCIP_OKAY;
}
Exemple #4
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecIndicator)
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;
   int nfoundsols = 0;

   assert( heur != NULL );
   assert( scip != NULL );
   assert( result != NULL );

   *result = SCIP_DIDNOTRUN;

   if ( SCIPgetSubscipDepth(scip) > 0 )
      return SCIP_OKAY;

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert( heurdata != NULL );

   /* call heuristic, if solution candidate is available */
   if ( heurdata->solcand != NULL )
   {
      assert( heurdata->nindconss > 0 );
      assert( heurdata->indconss != NULL );

      /* The heuristic will only be successful if there are no integral variables and no binary variables except the
       * indicator variables. */
      if ( SCIPgetNIntVars(scip) > 0 || heurdata->nindconss < SCIPgetNBinVars(scip) )
         return SCIP_OKAY;

      SCIP_CALL( trySolCandidate(scip, heur, heurdata, heurdata->nindconss, heurdata->indconss, heurdata->solcand, &nfoundsols) );

      if ( nfoundsols > 0 )
         *result = SCIP_FOUNDSOL;
      else
         *result = SCIP_DIDNOTFIND;

      /* free memory */
      SCIPfreeBlockMemoryArray(scip, &(heurdata->solcand), heurdata->nindconss);
      SCIPfreeBlockMemoryArray(scip, &(heurdata->indconss), heurdata->nindconss);
   }
   else
   {
      SCIP_CONS** indconss;
      SCIP_Bool* solcand;
      SCIP_SOL* bestsol;
      int nindconss;
      int i;

      if ( heurdata->indicatorconshdlr == NULL )
         return SCIP_OKAY;

      /* check whether a new best solution has been found */
      bestsol = SCIPgetBestSol(scip);
      if ( bestsol == heurdata->lastsol )
         return SCIP_OKAY;
      heurdata->lastsol = bestsol;

      /* avoid solutions produced by this heuristic */
      if ( SCIPsolGetHeur(bestsol) == heur )
         return SCIP_OKAY;

      /* The heuristic will only be successful if there are no integral variables and no binary variables except the
       * indicator variables. */
      if ( SCIPgetNIntVars(scip) > 0 || SCIPconshdlrGetNConss(heurdata->indicatorconshdlr) < SCIPgetNBinVars(scip) )
         return SCIP_OKAY;

      nindconss = SCIPconshdlrGetNConss(heurdata->indicatorconshdlr);
      if ( nindconss == 0 )
         return SCIP_OKAY;

      indconss = SCIPconshdlrGetConss(heurdata->indicatorconshdlr);
      assert( indconss != NULL );

      /* fill solutin candidate */
      SCIP_CALL( SCIPallocBufferArray(scip, &solcand, nindconss) );
      for (i = 0; i < nindconss; ++i)
      {
         SCIP_VAR* binvar;
         SCIP_Real val;

         solcand[i] = FALSE;
         if ( SCIPconsIsActive(indconss[i]) )
         {
            binvar = SCIPgetBinaryVarIndicator(indconss[i]);
            assert( binvar != NULL );

            val = SCIPgetSolVal(scip, bestsol, binvar);
            assert( SCIPisFeasIntegral(scip, val) );
            if ( val > 0.5 )
               solcand[i] = TRUE;
         }
      }

      SCIPdebugMessage("Trying to improve best solution of value %f.\n", SCIPgetSolOrigObj(scip, bestsol) );

      /* try one-opt heuristic */
      SCIP_CALL( tryOneOpt(scip, heur, heurdata, nindconss, indconss, solcand, &nfoundsols) );

      if ( nfoundsols > 0 )
         *result = SCIP_FOUNDSOL;
      else
         *result = SCIP_DIDNOTFIND;

      SCIPfreeBufferArray(scip, &solcand);
   }

   return SCIP_OKAY;
}
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecZirounding)
{  /*lint --e{715}*/
   SCIP_HEURDATA*     heurdata;
   SCIP_SOL*          sol;
   SCIP_VAR**         lpcands;
   SCIP_VAR**         zilpcands;

   SCIP_VAR**         slackvars;
   SCIP_Real*         upslacks;
   SCIP_Real*         downslacks;
   SCIP_Real*         activities;
   SCIP_Real*         slackvarcoeffs;
   SCIP_Bool*         rowneedsslackvar;

   SCIP_ROW**         rows;
   SCIP_Real*         lpcandssol;
   SCIP_Real*         solarray;

   SCIP_Longint       nlps;
   int                currentlpcands;
   int                nlpcands;
   int                nimplfracs;
   int                i;
   int                c;
   int                nslacks;
   int                nroundings;

   SCIP_RETCODE       retcode;

   SCIP_Bool          improvementfound;
   SCIP_Bool          numericalerror;

   assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
   assert(result != NULL);
   assert(SCIPhasCurrentNodeLP(scip));

   *result = SCIP_DIDNOTRUN;

   /* do not call heuristic of node was already detected to be infeasible */
   if( nodeinfeasible )
      return SCIP_OKAY;

   /* only call heuristic if an optimal LP-solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
   if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
      return SCIP_OKAY;

   /* get heuristic data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   /* Do not call heuristic if deactivation check is enabled and percentage of found solutions in relation
    * to number of calls falls below heurdata->stoppercentage */
   if( heurdata->stopziround && SCIPheurGetNCalls(heur) >= heurdata->minstopncalls
      && SCIPheurGetNSolsFound(heur)/(SCIP_Real)SCIPheurGetNCalls(heur) < heurdata->stoppercentage )
      return SCIP_OKAY;

   /* assure that heuristic has not already been called after the last LP had been solved */
   nlps = SCIPgetNLPs(scip);
   if( nlps == heurdata->lastlp )
      return SCIP_OKAY;

   heurdata->lastlp = nlps;

   /* get fractional variables */
   SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL, &nimplfracs) );
   nlpcands = nlpcands + nimplfracs;
   /* make sure that there is at least one fractional variable that should be integral */
   if( nlpcands == 0 )
      return SCIP_OKAY;

   assert(nlpcands > 0);
   assert(lpcands != NULL);
   assert(lpcandssol != NULL);

   /* get LP rows data */
   rows    = SCIPgetLPRows(scip);
   nslacks = SCIPgetNLPRows(scip);

   /* cannot do anything if LP is empty */
   if( nslacks == 0 )
      return SCIP_OKAY;

   assert(rows != NULL);
   assert(nslacks > 0);

   /* get the working solution from heuristic's local data */
   sol = heurdata->sol;
   assert(sol != NULL);

   *result = SCIP_DIDNOTFIND;

   solarray = NULL;
   zilpcands = NULL;

   retcode = SCIP_OKAY;
   /* copy the current LP solution to the working solution and allocate memory for local data */
   SCIP_CALL( SCIPlinkLPSol(scip, sol) );
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &solarray, nlpcands), TERMINATE);
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &zilpcands, nlpcands), TERMINATE);

   /* copy necessary data to local arrays */
   BMScopyMemoryArray(solarray, lpcandssol, nlpcands);
   BMScopyMemoryArray(zilpcands, lpcands, nlpcands);

   /* allocate buffer data arrays */
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &slackvars, nslacks), TERMINATE);
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &upslacks, nslacks), TERMINATE);
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &downslacks, nslacks), TERMINATE);
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &slackvarcoeffs, nslacks), TERMINATE);
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &rowneedsslackvar, nslacks), TERMINATE);
   SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &activities, nslacks), TERMINATE);

   BMSclearMemoryArray(slackvars, nslacks);
   BMSclearMemoryArray(slackvarcoeffs, nslacks);
   BMSclearMemoryArray(rowneedsslackvar, nslacks);

   numericalerror = FALSE;
   nroundings = 0;

   /* loop over fractional variables and involved LP rows to find all rows which require a slack variable */
   for( c = 0; c < nlpcands; ++c )
   {
      SCIP_VAR* cand;
      SCIP_ROW** candrows;
      int r;
      int ncandrows;

      cand = zilpcands[c];
      assert(cand != NULL);
      assert(SCIPcolGetLPPos(SCIPvarGetCol(cand)) >= 0);

      candrows = SCIPcolGetRows(SCIPvarGetCol(cand));
      ncandrows = SCIPcolGetNLPNonz(SCIPvarGetCol(cand));

      assert(candrows == NULL || ncandrows > 0);

      for( r = 0; r < ncandrows; ++r )
      {
         int rowpos;

         assert(candrows != NULL); /* to please flexelint */
         assert(candrows[r] != NULL);
         rowpos = SCIProwGetLPPos(candrows[r]);

         if( rowpos >= 0 && SCIPisFeasEQ(scip, SCIProwGetLhs(candrows[r]), SCIProwGetRhs(candrows[r])) )
         {
            rowneedsslackvar[rowpos] = TRUE;
            SCIPdebugMessage("  Row %s needs slack variable for variable %s\n", SCIProwGetName(candrows[r]), SCIPvarGetName(cand));
         }
      }
   }

   /* calculate row slacks for every every row that belongs to the current LP and ensure, that the current solution
    * has no violated constraint -- if any constraint is violated, i.e. a slack is significantly smaller than zero,
    * this will cause the termination of the heuristic because Zirounding does not provide feasibility recovering
    */
   for( i = 0; i < nslacks; ++i )
   {
      SCIP_ROW*          row;
      SCIP_Real          lhs;
      SCIP_Real          rhs;

      row = rows[i];

      assert(row != NULL);

      lhs = SCIProwGetLhs(row);
      rhs = SCIProwGetRhs(row);

      /* get row activity */
      activities[i] = SCIPgetRowActivity(scip, row);
      assert(SCIPisFeasLE(scip, lhs, activities[i]) && SCIPisFeasLE(scip, activities[i], rhs));

      /* in special case if LHS or RHS is (-)infinity slacks have to be initialized as infinity */
      if( SCIPisInfinity(scip, -lhs) )
         downslacks[i] = SCIPinfinity(scip);
      else
         downslacks[i] = activities[i] - lhs;

      if( SCIPisInfinity(scip, rhs) )
         upslacks[i] = SCIPinfinity(scip);
      else
         upslacks[i] = rhs - activities[i];

      SCIPdebugMessage("lhs:%5.2f <= act:%5.2g <= rhs:%5.2g --> down: %5.2g, up:%5.2g\n", lhs, activities[i], rhs, downslacks[i], upslacks[i]);

      /* row is an equation. Try to find a slack variable in the row, i.e.,
       * a continuous variable which occurs only in this row. If no such variable exists,
       * there is no hope for an IP-feasible solution in this round
       */
      if( SCIPisFeasEQ(scip, lhs, rhs) && rowneedsslackvar[i] )
      {
         /* @todo: This is only necessary for rows containing fractional variables. */
         rowFindSlackVar(scip, row, &(slackvars[i]), &(slackvarcoeffs[i]));

         if( slackvars[i] == NULL )
         {
            SCIPdebugMessage("No slack variable found for equation %s, terminating ZI Round heuristic\n", SCIProwGetName(row));
            goto TERMINATE;
         }
         else
         {
            SCIP_Real ubslackvar;
            SCIP_Real lbslackvar;
            SCIP_Real solvalslackvar;
            SCIP_Real coeffslackvar;
            SCIP_Real ubgap;
            SCIP_Real lbgap;

            assert(SCIPvarGetType(slackvars[i]) == SCIP_VARTYPE_CONTINUOUS);
            solvalslackvar = SCIPgetSolVal(scip, sol, slackvars[i]);
            ubslackvar = SCIPvarGetUbGlobal(slackvars[i]);
            lbslackvar = SCIPvarGetLbGlobal(slackvars[i]);

            coeffslackvar = slackvarcoeffs[i];
            assert(!SCIPisFeasZero(scip, coeffslackvar));

            ubgap = ubslackvar - solvalslackvar;
            lbgap = solvalslackvar - lbslackvar;

            if( SCIPisFeasZero(scip, ubgap) )
              ubgap = 0.0;
            if( SCIPisFeasZero(scip, lbgap) )
              lbgap = 0.0;

            if( SCIPisFeasPositive(scip, coeffslackvar) )
            {
              if( !SCIPisInfinity(scip, lbslackvar) )
                upslacks[i] += coeffslackvar * lbgap;
              else
                upslacks[i] = SCIPinfinity(scip);
              if( !SCIPisInfinity(scip, ubslackvar) )
                downslacks[i] += coeffslackvar * ubgap;
              else
                downslacks[i] = SCIPinfinity(scip);
            }
            else
            {
               if( !SCIPisInfinity(scip, ubslackvar) )
                  upslacks[i] -= coeffslackvar * ubgap;
               else
                  upslacks[i] = SCIPinfinity(scip);
               if( !SCIPisInfinity(scip, lbslackvar) )
                  downslacks[i] -= coeffslackvar * lbgap;
               else
                  downslacks[i] = SCIPinfinity(scip);
            }
            SCIPdebugMessage("  Slack variable for row %s at pos %d: %g <= %s = %g <= %g; Coeff %g, upslack = %g, downslack = %g  \n",
               SCIProwGetName(row), SCIProwGetLPPos(row), lbslackvar, SCIPvarGetName(slackvars[i]), solvalslackvar, ubslackvar, coeffslackvar,
               upslacks[i], downslacks[i]);
         }
      }
      /* due to numerical inaccuracies, the rows might be feasible, even if the slacks are
       * significantly smaller than zero -> terminate
       */
      if( SCIPisFeasLT(scip, upslacks[i], 0.0) || SCIPisFeasLT(scip, downslacks[i], 0.0) )
         goto TERMINATE;
   }

   assert(nslacks == 0 || (upslacks != NULL && downslacks != NULL && activities != NULL));

   /* initialize number of remaining variables and flag to enter the main loop */
   currentlpcands = nlpcands;
   improvementfound = TRUE;

   /* iterate over variables as long as there are fractional variables left */
   while( currentlpcands > 0 && improvementfound && (heurdata->maxroundingloops == -1 || nroundings < heurdata->maxroundingloops) )
   {  /*lint --e{850}*/
      improvementfound = FALSE;
      nroundings++;
      SCIPdebugMessage("zirounding enters while loop for %d time with %d candidates left. \n", nroundings, currentlpcands);

      /* check for every remaining fractional variable if a shifting decreases ZI-value of the variable */
      for( c = 0; c < currentlpcands; ++c )
      {
         SCIP_VAR* var;
         SCIP_Real oldsolval;
         SCIP_Real upperbound;
         SCIP_Real lowerbound;
         SCIP_Real up;
         SCIP_Real down;
         SCIP_Real ziup;
         SCIP_Real zidown;
         SCIP_Real zicurrent;
         SCIP_Real shiftval;

         DIRECTION direction;

         /* get values from local data */
         oldsolval = solarray[c];
         var = zilpcands[c];

         assert(!SCIPisFeasIntegral(scip, oldsolval));
         assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);

         /* calculate bounds for variable and make sure that there are no numerical inconsistencies */
         upperbound = SCIPinfinity(scip);
         lowerbound = SCIPinfinity(scip);
         calculateBounds(scip, var, oldsolval, &upperbound, &lowerbound, upslacks, downslacks, nslacks, &numericalerror);

         if( numericalerror )
            goto TERMINATE;

         /* calculate the possible values after shifting */
         up   = oldsolval + upperbound;
         down = oldsolval - lowerbound;

         /* if the variable is integer or implicit binary, do not shift further than the nearest integer */
         if( SCIPvarGetType(var) != SCIP_VARTYPE_BINARY)
         {
            SCIP_Real ceilx;
            SCIP_Real floorx;

            ceilx = SCIPfeasCeil(scip, oldsolval);
            floorx = SCIPfeasFloor(scip, oldsolval);
            up   = MIN(up, ceilx);
            down = MAX(down, floorx);
         }

         /* calculate necessary values */
         ziup      = getZiValue(scip, up);
         zidown    = getZiValue(scip, down);
         zicurrent = getZiValue(scip, oldsolval);

         /* calculate the shifting direction that reduces ZI-value the most,
          * if both directions improve ZI-value equally, take the direction which improves the objective
          */
         if( SCIPisFeasLT(scip, zidown, zicurrent) || SCIPisFeasLT(scip, ziup, zicurrent) )
         {
            if( SCIPisFeasEQ(scip,ziup, zidown) )
               direction  = SCIPisFeasGE(scip, SCIPvarGetObj(var), 0.0) ? DIRECTION_DOWN : DIRECTION_UP;
            else if( SCIPisFeasLT(scip, zidown, ziup) )
               direction = DIRECTION_DOWN;
            else
               direction = DIRECTION_UP;

            /* once a possible shifting direction and value have been found, variable value is updated */
            shiftval = (direction == DIRECTION_UP ? up - oldsolval : down - oldsolval);

            /* this improves numerical stability in some cases */
            if( direction == DIRECTION_UP )
               shiftval = MIN(shiftval, upperbound);
            else
               shiftval = MIN(shiftval, lowerbound);
            /* update the solution */
            solarray[c] = direction == DIRECTION_UP ? up : down;
            SCIP_CALL( SCIPsetSolVal(scip, sol, var, solarray[c]) );

            /* update the rows activities and slacks */
            SCIP_CALL( updateSlacks(scip, sol, var, shiftval, upslacks,
                  downslacks, activities, slackvars, slackvarcoeffs, nslacks) );

            SCIPdebugMessage("zirounding update step : %d var index, oldsolval=%g, shiftval=%g\n",
               SCIPvarGetIndex(var), oldsolval, shiftval);
            /* since at least one improvement has been found, heuristic will enter main loop for another time because the improvement
             * might affect many LP rows and their current slacks and thus make further rounding steps possible */
            improvementfound = TRUE;
         }

         /* if solution value of variable has become feasibly integral due to rounding step,
          * variable is put at the end of remaining candidates array so as not to be considered in future loops
          */
         if( SCIPisFeasIntegral(scip, solarray[c]) )
         {
            zilpcands[c] = zilpcands[currentlpcands - 1];
            solarray[c] = solarray[currentlpcands - 1];
            currentlpcands--;

            /* counter is decreased if end of candidates array has not been reached yet */
            if( c < currentlpcands )
               c--;
         }
         else if( nroundings == heurdata->maxroundingloops - 1 )
            goto TERMINATE;
      }
   }

   /* in case that no candidate is left for rounding after the final main loop
    * the found solution has to be checked for feasibility in the original problem
    */
   if( currentlpcands == 0 )
   {
      SCIP_Bool stored;
      SCIP_CALL(SCIPtrySol(scip, sol, FALSE, FALSE, TRUE, FALSE, &stored));
      if( stored )
      {
#ifdef SCIP_DEBUG
         SCIPdebugMessage("found feasible rounded solution:\n");
         SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) );
#endif
         SCIPstatisticMessage("  ZI Round solution value: %g \n", SCIPgetSolOrigObj(scip, sol));

         *result = SCIP_FOUNDSOL;
      }
   }

   /* free memory for all locally allocated data */
 TERMINATE:
   SCIPfreeBufferArrayNull(scip, &activities);
   SCIPfreeBufferArrayNull(scip, &rowneedsslackvar);
   SCIPfreeBufferArrayNull(scip, &slackvarcoeffs);
   SCIPfreeBufferArrayNull(scip, &downslacks);
   SCIPfreeBufferArrayNull(scip, &upslacks);
   SCIPfreeBufferArrayNull(scip, &slackvars);
   SCIPfreeBufferArrayNull(scip, &zilpcands);
   SCIPfreeBufferArrayNull(scip, &solarray);

   return retcode;
}
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecSimplerounding) /*lint --e{715}*/
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;
   SCIP_SOL* sol;
   SCIP_VAR** lpcands;
   SCIP_Real* lpcandssol;
   SCIP_Longint nlps;
   int nlpcands;
   int c;

   assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
   assert(result != NULL);
   assert(SCIPhasCurrentNodeLP(scip));

   *result = SCIP_DIDNOTRUN;

   /* only call heuristic, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* get heuristic data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   /* on our first call or after each pricing round, calculate the number of roundable variables */
   if( heurdata->nroundablevars == -1  || heurtiming == SCIP_HEURTIMING_DURINGPRICINGLOOP )
   {
      SCIP_VAR** vars;
      int nvars;
      int nroundablevars;
      int i;

      vars = SCIPgetVars(scip);
      nvars = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip);
      nroundablevars = 0;
      for( i = 0; i < nvars; ++i )
      {
         if( SCIPvarMayRoundDown(vars[i]) || SCIPvarMayRoundUp(vars[i]) )
            nroundablevars++;
      }
      heurdata->nroundablevars = nroundablevars;
   }

   /* don't call heuristic if there are no roundable variables; except we are called during pricing, in this case we
    * want to detect a (mixed) integer (LP) solution which is primal feasible */
   if( heurdata->nroundablevars == 0 && heurtiming != SCIP_HEURTIMING_DURINGPRICINGLOOP )
      return SCIP_OKAY;

   /* don't call heuristic, if we have already processed the current LP solution */
   nlps = SCIPgetNLPs(scip);
   if( nlps == heurdata->lastlp )
      return SCIP_OKAY;
   heurdata->lastlp = nlps;

   /* get fractional variables, that should be integral */
   SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL) );

   /* only call heuristic, if LP solution is fractional; except we are called during pricing, in this case we
    * want to detect a (mixed) integer (LP) solution which is primal feasible */
   if( nlpcands == 0  && heurtiming != SCIP_HEURTIMING_DURINGPRICINGLOOP )
      return SCIP_OKAY;

   /* don't call heuristic, if there are more fractional variables than roundable ones */
   if( nlpcands > heurdata->nroundablevars )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;

   SCIPdebugMessage("executing simple rounding heuristic: %d fractionals\n", nlpcands);

   /* get the working solution from heuristic's local data */
   sol = heurdata->sol;
   assert(sol != NULL);

   /* copy the current LP solution to the working solution */
   SCIP_CALL( SCIPlinkLPSol(scip, sol) );

   /* round all roundable fractional columns in the corresponding direction as long as no unroundable column was found */
   for( c = 0; c < nlpcands; ++c )
   {
      SCIP_VAR* var;
      SCIP_Real oldsolval;
      SCIP_Real newsolval;
      SCIP_Bool mayrounddown;
      SCIP_Bool mayroundup;

      oldsolval = lpcandssol[c];
      assert(!SCIPisFeasIntegral(scip, oldsolval));
      var = lpcands[c];
      assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);
      mayrounddown = SCIPvarMayRoundDown(var);
      mayroundup = SCIPvarMayRoundUp(var);
      SCIPdebugMessage("simple rounding heuristic: var <%s>, val=%g, rounddown=%u, roundup=%u\n",
         SCIPvarGetName(var), oldsolval, mayrounddown, mayroundup);

      /* choose rounding direction */
      if( mayrounddown && mayroundup )
      {
         /* we can round in both directions: round in objective function direction */
         if( SCIPvarGetObj(var) >= 0.0 )
            newsolval = SCIPfeasFloor(scip, oldsolval);
         else
            newsolval = SCIPfeasCeil(scip, oldsolval);
      }
      else if( mayrounddown )
         newsolval = SCIPfeasFloor(scip, oldsolval);
      else if( mayroundup )
         newsolval = SCIPfeasCeil(scip, oldsolval);
      else
         break;

      /* store new solution value */
      SCIP_CALL( SCIPsetSolVal(scip, sol, var, newsolval) );
   }

   /* check, if rounding was successful */
   if( c == nlpcands )
   {
      SCIP_Bool stored;

      /* check solution for feasibility, and add it to solution store if possible
       * neither integrality nor feasibility of LP rows has to be checked, because all fractional
       * variables were already moved in feasible direction to the next integer
       */
      SCIP_CALL( SCIPtrySol(scip, sol, FALSE, FALSE, FALSE, FALSE, &stored) );

      if( stored )
      {
#ifdef SCIP_DEBUG
         SCIPdebugMessage("found feasible rounded solution:\n");
         SCIPprintSol(scip, sol, NULL, FALSE);
#endif
         *result = SCIP_FOUNDSOL;
      }
   }

   return SCIP_OKAY;
}
Exemple #7
0
/** creates a subproblem for subscip by fixing a number of variables */
static
SCIP_RETCODE createSubproblem(
   SCIP*                 scip,               /**< original SCIP data structure                                   */
   SCIP*                 subscip,            /**< SCIP data structure for the subproblem                         */
   SCIP_VAR**            subvars,            /**< the variables of the subproblem                                */
   SCIP_Real             minfixingrate,      /**< percentage of integer variables that have to be fixed          */
   SCIP_Bool             binarybounds,       /**< should general integers get binary bounds [floor(.),ceil(.)] ? */
   SCIP_Bool             uselprows,          /**< should subproblem be created out of the rows in the LP rows?   */
   SCIP_Bool*            success             /**< pointer to store whether the problem was created successfully  */
   )
{
   SCIP_VAR** vars;                          /* original SCIP variables */

   SCIP_Real fixingrate;

   int nvars;
   int nbinvars;
   int nintvars;
   int i;
   int fixingcounter;

   assert(scip != NULL);
   assert(subscip != NULL);
   assert(subvars != NULL);

   assert(0.0 <= minfixingrate && minfixingrate <= 1.0);

   /* get required variable data */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) );

   fixingcounter = 0;

   /* change bounds of variables of the subproblem */
   for( i = 0; i < nbinvars + nintvars; i++ )
   {
      SCIP_Real lpsolval;
      SCIP_Real lb;
      SCIP_Real ub;

      /* get the current LP solution for each variable */
      lpsolval = SCIPgetRelaxSolVal(scip, vars[i]);

      if( SCIPisFeasIntegral(scip, lpsolval) )
      {
         /* fix variables to current LP solution if it is integral,
          * use exact integral value, if the variable is only integral within numerical tolerances
          */
         lb = SCIPfloor(scip, lpsolval+0.5);
         ub = lb;
         fixingcounter++;
      }
      else if( binarybounds )
      {
         /* if the sub problem should be a binary problem, change the bounds to nearest integers */
         lb = SCIPfeasFloor(scip,lpsolval);
         ub = SCIPfeasCeil(scip,lpsolval);
      }
      else
      {
         /* otherwise just copy bounds */
         lb =  SCIPvarGetLbGlobal(vars[i]);
         ub =  SCIPvarGetUbGlobal(vars[i]);
      }

      /* perform the bound change */
      SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], lb) );
      SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], ub) );
   }

   /* abort, if all integer variables were fixed (which should not happen for MIP) */
   if( fixingcounter == nbinvars + nintvars )
   {
      *success = FALSE;
      return SCIP_OKAY;
   }
   else
      fixingrate = fixingcounter / (SCIP_Real)(MAX(nbinvars + nintvars, 1));
   SCIPdebugMessage("fixing rate: %g = %d of %d\n", fixingrate, fixingcounter, nbinvars + nintvars);

   /* abort, if the amount of fixed variables is insufficient */
   if( fixingrate < minfixingrate )
   {
      *success = FALSE;
      return SCIP_OKAY;
   }

   if( uselprows )
   {
      SCIP_ROW** rows;                          /* original scip rows                         */
      int nrows;

      /* get the rows and their number */
      SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );

      /* copy all rows to linear constraints */
      for( i = 0; i < nrows; i++ )
      {
         SCIP_CONS* cons;
         SCIP_VAR** consvars;
         SCIP_COL** cols;
         SCIP_Real constant;
         SCIP_Real lhs;
         SCIP_Real rhs;
         SCIP_Real* vals;
         int nnonz;
         int j;

         /* ignore rows that are only locally valid */
         if( SCIProwIsLocal(rows[i]) )
            continue;

         /* get the row's data */
         constant = SCIProwGetConstant(rows[i]);
         lhs = SCIProwGetLhs(rows[i]) - constant;
         rhs = SCIProwGetRhs(rows[i]) - constant;
         vals = SCIProwGetVals(rows[i]);
         nnonz = SCIProwGetNNonz(rows[i]);
         cols = SCIProwGetCols(rows[i]);

         assert( lhs <= rhs );

         /* allocate memory array to be filled with the corresponding subproblem variables */
         SCIP_CALL( SCIPallocBufferArray(subscip, &consvars, nnonz) );
         for( j = 0; j < nnonz; j++ )
            consvars[j] = subvars[SCIPvarGetProbindex(SCIPcolGetVar(cols[j]))];

         /* create a new linear constraint and add it to the subproblem */
         SCIP_CALL( SCIPcreateConsLinear(subscip, &cons, SCIProwGetName(rows[i]), nnonz, consvars, vals, lhs, rhs,
               TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) );
         SCIP_CALL( SCIPaddCons(subscip, cons) );
         SCIP_CALL( SCIPreleaseCons(subscip, &cons) );

         /* free temporary memory */
         SCIPfreeBufferArray(subscip, &consvars);
      }
   }

   *success = TRUE;
   return SCIP_OKAY;
}
/** returns a fractional variable, that has most impact on rows in opposite direction, i.e. that is most crucial to
 *  fix in the other direction;
 *  if variables have equal impact, chooses the one with best objective value improvement in corresponding direction;
 *  rounding in a direction is forbidden, if this forces the objective value over the upper bound
 */
static
SCIP_RETCODE selectEssentialRounding(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_SOL*             sol,                /**< primal solution */
   SCIP_Real             minobj,             /**< minimal objective value possible after rounding remaining fractional vars */
   SCIP_VAR**            lpcands,            /**< fractional variables in LP */
   int                   nlpcands,           /**< number of fractional variables in LP */
   SCIP_VAR**            roundvar,           /**< pointer to store the rounding variable, returns NULL if impossible */
   SCIP_Real*            oldsolval,          /**< old (fractional) solution value of rounding variable */
   SCIP_Real*            newsolval           /**< new (rounded) solution value of rounding variable */
   )
{
   SCIP_VAR* var;
   SCIP_Real solval;
   SCIP_Real roundval;
   SCIP_Real obj;
   SCIP_Real deltaobj;
   SCIP_Real bestdeltaobj;
   int maxnlocks;
   int nlocks;
   int v;

   assert(roundvar != NULL);
   assert(oldsolval != NULL);
   assert(newsolval != NULL);

   /* select rounding variable */
   maxnlocks = -1;
   bestdeltaobj = SCIPinfinity(scip);
   *roundvar = NULL;
   for( v = 0; v < nlpcands; ++v )
   {
      var = lpcands[v];
      assert(SCIPvarGetType(var) == SCIP_VARTYPE_BINARY || SCIPvarGetType(var) == SCIP_VARTYPE_INTEGER);

      solval = SCIPgetSolVal(scip, sol, var);
      if( !SCIPisFeasIntegral(scip, solval) )
      {
         obj = SCIPvarGetObj(var);

         /* rounding down */
         nlocks = SCIPvarGetNLocksUp(var);
         if( nlocks >= maxnlocks )
         {
            roundval = SCIPfeasFloor(scip, solval);
            deltaobj = obj * (roundval - solval);
            if( (nlocks > maxnlocks || deltaobj < bestdeltaobj) && minobj - obj < SCIPgetCutoffbound(scip) )
            {
               maxnlocks = nlocks;
               bestdeltaobj = deltaobj;
               *roundvar = var;
               *oldsolval = solval;
               *newsolval = roundval;
            }
         }

         /* rounding up */
         nlocks = SCIPvarGetNLocksDown(var);
         if( nlocks >= maxnlocks )
         {
            roundval = SCIPfeasCeil(scip, solval);
            deltaobj = obj * (roundval - solval);
            if( (nlocks > maxnlocks || deltaobj < bestdeltaobj) && minobj + obj < SCIPgetCutoffbound(scip) )
            {
               maxnlocks = nlocks;
               bestdeltaobj = deltaobj;
               *roundvar = var;
               *oldsolval = solval;
               *newsolval = roundval;
            }
         }
      }
   }

   return SCIP_OKAY;
}
Exemple #9
0
/** create the extra constraint of local branching and add it to subscip */
static
SCIP_RETCODE addLocalBranchingConstraint(
   SCIP*                 scip,               /**< SCIP data structure of the original problem   */
   SCIP*                 subscip,            /**< SCIP data structure of the subproblem         */
   SCIP_VAR**            subvars,            /**< variables of the subproblem                   */
   SCIP_HEURDATA*        heurdata            /**< heuristic's data structure                    */
   )
{
   SCIP_CONS* cons;                        /* local branching constraint to create */
   SCIP_VAR** consvars;
   SCIP_VAR** vars;
   SCIP_SOL* bestsol;

   int nbinvars;
   int i;
   SCIP_Real lhs;
   SCIP_Real rhs;
   SCIP_Real* consvals;
   char consname[SCIP_MAXSTRLEN];

   (void) SCIPsnprintf(consname, SCIP_MAXSTRLEN, "%s_localbranchcons", SCIPgetProbName(scip));

   /* get the data of the variables and the best solution */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, NULL, &nbinvars, NULL, NULL, NULL) );
   bestsol = SCIPgetBestSol(scip);
   assert( bestsol != NULL );

   /* memory allocation */
   SCIP_CALL( SCIPallocBufferArray(scip, &consvars, nbinvars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &consvals, nbinvars) );

   /* set initial left and right hand sides of local branching constraint */
   lhs = (SCIP_Real)heurdata->emptyneighborhoodsize + 1.0;
   rhs = (SCIP_Real)heurdata->curneighborhoodsize;

   /* create the distance (to incumbent) function of the binary variables */
   for( i = 0; i < nbinvars; i++ )
   {
      SCIP_Real solval;

      solval = SCIPgetSolVal(scip, bestsol, vars[i]);
      assert( SCIPisFeasIntegral(scip,solval) );

      /* is variable i  part of the binary support of bestsol? */
      if( SCIPisFeasEQ(scip,solval,1.0) )
      {
         consvals[i] = -1.0;
         rhs -= 1.0;
         lhs -= 1.0;
      }
      else
         consvals[i] = 1.0;
      consvars[i] = subvars[i];
      assert( SCIPvarGetType(consvars[i]) == SCIP_VARTYPE_BINARY );
   }

   /* creates localbranching constraint and adds it to subscip */
   SCIP_CALL( SCIPcreateConsLinear(subscip, &cons, consname, nbinvars, consvars, consvals,
         lhs, rhs, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) );
   SCIP_CALL( SCIPaddCons(subscip, cons) );
   SCIP_CALL( SCIPreleaseCons(subscip, &cons) );

   /* free local memory */
   SCIPfreeBufferArray(scip, &consvals);
   SCIPfreeBufferArray(scip, &consvars);

   return SCIP_OKAY;
}
/** selects a variable and fixes it to its current pseudo solution value */
static
SCIP_RETCODE fixVariable(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_VAR**            pseudocands,        /**< array of unfixed variables */
   int                   npseudocands,       /**< number of unfixed variables */
   SCIP_Real             large               /**< large value to be used instead of infinity */
   )
{
   SCIP_VAR* var;
   SCIP_Real bestscore;
   SCIP_Real score;
   SCIP_Real solval;
   int bestcand;
   int ncands;
   int c;

   assert(pseudocands != NULL);
   assert(npseudocands > 0);

   /* if existing, choose one of the highest priority binary variables; if no high priority binary variables
    * exist, choose a variable among all unfixed integral variables
    */
   ncands = SCIPgetNPrioPseudoBranchBins(scip);
   if( ncands == 0 )
      ncands = npseudocands;

   /* select variable to tighten the domain for */
   bestscore = -SCIPinfinity(scip);
   bestcand = -1;
   for( c = 0; c < ncands; ++c )
   {
      score = SCIPgetVarAvgInferenceScore(scip, pseudocands[c]);
      if( score > bestscore )
      {
         bestscore = score;
         bestcand = c;
      }
   }
   assert(bestcand != -1);

   /* fix variable to its current pseudo solution value */
   var = pseudocands[bestcand];
   solval = SCIPgetVarSol(scip, var);

   /* adapt solution value if it is infinite */
   if( SCIPisInfinity(scip, solval) )
   {
      SCIP_Real lb;
      assert(SCIPisInfinity(scip, SCIPvarGetUbLocal(var)));
      lb = SCIPvarGetLbLocal(var);

      /* adapt fixing value by changing it to a large value */
      if( SCIPisInfinity(scip, -lb) )
         solval = SCIPceil(scip, large);
      else if( !SCIPisInfinity(scip, SCIPceil(scip, lb+large)) )
         solval = SCIPceil(scip, lb+large);
   }
   else if( SCIPisInfinity(scip, -solval) )
   {
      SCIP_Real ub;
      assert(SCIPisInfinity(scip, -SCIPvarGetLbLocal(var)));
      ub = SCIPvarGetUbLocal(var);

      /* adapt fixing value by changing it to a large negative value */
      if( SCIPisInfinity(scip, ub) )
         solval = SCIPfloor(scip, -large);
      else if( !SCIPisInfinity(scip, -SCIPfloor(scip, ub-large)) )
         solval = SCIPfloor(scip, ub-large);
   }

   assert(SCIPisFeasIntegral(scip, solval)); /* in probing, we always have the pseudo solution */
   SCIPdebugMessage(" -> fixed variable <%s>[%g,%g] = %g (%d candidates left)\n",
      SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), solval, npseudocands - 1);
   SCIP_CALL( SCIPfixVarProbing(scip, var, solval) );

   return SCIP_OKAY;
}
/** returns a variable, that pushes activity of the row in the given direction with minimal negative impact on other rows;
 *  if variables have equal impact, chooses the one with best objective value improvement in corresponding direction;
 *  rounding in a direction is forbidden, if this forces the objective value over the upper bound
 */
static
SCIP_RETCODE selectRounding(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_SOL*             sol,                /**< primal solution */
   SCIP_Real             minobj,             /**< minimal objective value possible after rounding remaining fractional vars */
   SCIP_ROW*             row,                /**< LP row */
   int                   direction,          /**< should the activity be increased (+1) or decreased (-1)? */
   SCIP_VAR**            roundvar,           /**< pointer to store the rounding variable, returns NULL if impossible */
   SCIP_Real*            oldsolval,          /**< pointer to store old (fractional) solution value of rounding variable */
   SCIP_Real*            newsolval           /**< pointer to store new (rounded) solution value of rounding variable */
   )
{
   SCIP_COL* col;
   SCIP_VAR* var;
   SCIP_Real val;
   SCIP_COL** rowcols;
   SCIP_Real* rowvals;
   SCIP_Real solval;
   SCIP_Real roundval;
   SCIP_Real obj;
   SCIP_Real deltaobj;
   SCIP_Real bestdeltaobj;
   SCIP_VARTYPE vartype;
   int nrowcols;
   int nlocks;
   int minnlocks;
   int c;

   assert(direction == +1 || direction == -1);
   assert(roundvar != NULL);
   assert(oldsolval != NULL);
   assert(newsolval != NULL);

   /* get row entries */
   rowcols = SCIProwGetCols(row);
   rowvals = SCIProwGetVals(row);
   nrowcols = SCIProwGetNLPNonz(row);

   /* select rounding variable */
   minnlocks = INT_MAX;
   bestdeltaobj = SCIPinfinity(scip);
   *roundvar = NULL;
   for( c = 0; c < nrowcols; ++c )
   {
      col = rowcols[c];
      var = SCIPcolGetVar(col);

      vartype = SCIPvarGetType(var);
      if( vartype == SCIP_VARTYPE_BINARY || vartype == SCIP_VARTYPE_INTEGER )
      {
         solval = SCIPgetSolVal(scip, sol, var);

         if( !SCIPisFeasIntegral(scip, solval) )
         {
            val = rowvals[c];
            obj = SCIPvarGetObj(var);

            if( direction * val < 0.0 )
            {
               /* rounding down */
               nlocks = SCIPvarGetNLocksDown(var);
               if( nlocks <= minnlocks )
               {
                  roundval = SCIPfeasFloor(scip, solval);
                  deltaobj = obj * (roundval - solval);
                  if( (nlocks < minnlocks || deltaobj < bestdeltaobj) && minobj - obj < SCIPgetCutoffbound(scip) )
                  {
                     minnlocks = nlocks;
                     bestdeltaobj = deltaobj;
                     *roundvar = var;
                     *oldsolval = solval;
                     *newsolval = roundval;
                  }
               }
            }
            else
            {
               /* rounding up */
               assert(direction * val > 0.0);
               nlocks = SCIPvarGetNLocksUp(var);
               if( nlocks <= minnlocks )
               {
                  roundval = SCIPfeasCeil(scip, solval);
                  deltaobj = obj * (roundval - solval);
                  if( (nlocks < minnlocks || deltaobj < bestdeltaobj) && minobj + obj < SCIPgetCutoffbound(scip) )
                  {
                     minnlocks = nlocks;
                     bestdeltaobj = deltaobj;
                     *roundvar = var;
                     *oldsolval = solval;
                     *newsolval = roundval;
                  }
               }
            }
         }
      }
   }

   return SCIP_OKAY;
}
Exemple #12
0
/**
 * Selects a variable from a set of candidates by strong branching
 *
 *  @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
 *          SCIP_Retcode "SCIP_RETCODE" for a complete list of error codes.
 *
 * @note The variables in the lpcands array must have a fractional value in the current LP solution
 */
SCIP_RETCODE SCIPselectVarPseudoStrongBranching(
   SCIP*                 scip,               /**< original SCIP data structure                        */
   SCIP_VAR**            pseudocands,        /**< branching candidates                                */
   SCIP_Bool*            skipdown,           /**< should down branchings be skipped? */
   SCIP_Bool*            skipup,             /**< should up branchings be skipped? */
   int                   npseudocands,       /**< number of branching candidates                      */
   int                   npriopseudocands,   /**< number of priority branching candidates             */
   SCIP_Bool             allowaddcons,       /**< is the branching rule allowed to add constraints?   */
   int*                  bestpseudocand,     /**< best candidate for branching                        */
   SCIP_Real*            bestdown,           /**< objective value of the down branch for bestcand     */
   SCIP_Real*            bestup,             /**< objective value of the up branch for bestcand       */
   SCIP_Real*            bestscore,          /**< score for bestcand                                  */
   SCIP_Bool*            bestdownvalid,      /**< is bestdown a valid dual bound for the down branch? */
   SCIP_Bool*            bestupvalid,        /**< is bestup a valid dual bound for the up branch?     */
   SCIP_Real*            provedbound,        /**< proved dual bound for current subtree               */
   SCIP_RESULT*          result              /**< result pointer                                      */
   )
{
   SCIP_Real lpobjval;
   SCIP_Bool allcolsinlp;
   SCIP_Bool exactsolve;
#ifndef NDEBUG
   SCIP_Real cutoffbound;
   cutoffbound = SCIPgetCutoffbound(scip);
#endif


   assert(scip != NULL);
   assert(pseudocands != NULL);
   assert(bestpseudocand != NULL);
   assert(skipdown != NULL);
   assert(skipup != NULL);
   assert(bestdown != NULL);
   assert(bestup != NULL);
   assert(bestscore != NULL);
   assert(bestdownvalid != NULL);
   assert(bestupvalid != NULL);
   assert(provedbound != NULL);
   assert(result != NULL);
   assert(SCIPgetLPSolstat(scip) == SCIP_LPSOLSTAT_OPTIMAL);

   /* get current LP objective bound of the local sub problem and global cutoff bound */
   lpobjval = SCIPgetLPObjval(scip);

   /* check, if we want to solve the problem exactly, meaning that strong branching information is not useful
    * for cutting off sub problems and improving lower bounds of children
    */
   exactsolve = SCIPisExactSolve(scip);

   /* check, if all existing columns are in LP, and thus the strong branching results give lower bounds */
   allcolsinlp = SCIPallColsInLP(scip);

   /* if only one candidate exists, choose this one without applying strong branching */
   *bestpseudocand = 0;
   *bestdown = lpobjval;
   *bestup = lpobjval;
   *bestdownvalid = TRUE;
   *bestupvalid = TRUE;
   *bestscore = -SCIPinfinity(scip);
   *provedbound = lpobjval;
   if( npseudocands > 1 )
   {
      SCIP_BRANCHRULE* branchrule;
      SCIP_BRANCHRULEDATA* branchruledata;

      SCIP_Real solval;
      SCIP_Real down;
      SCIP_Real up;
      SCIP_Real downgain;
      SCIP_Real upgain;
      SCIP_Real score;
      SCIP_Bool integral;
      SCIP_Bool lperror;
      SCIP_Bool downvalid;
      SCIP_Bool upvalid;
      SCIP_Bool downinf;
      SCIP_Bool upinf;
      SCIP_Bool downconflict;
      SCIP_Bool upconflict;
      int nsbcalls;
      int i;
      int c;

      branchrule = SCIPfindBranchrule(scip, BRANCHRULE_NAME);
      assert(branchrule != NULL);

      /* get branching rule data */
      branchruledata = SCIPbranchruleGetData(branchrule);
      assert(branchruledata != NULL);


      /* initialize strong branching */
      SCIP_CALL( SCIPstartStrongbranch(scip, FALSE) );

      /* search the full strong candidate:
       * cycle through the candidates, starting with the position evaluated in the last run
       */
      nsbcalls = 0;
      for( i = 0, c = branchruledata->lastcand; i < npseudocands; ++i, ++c )
      {
         c = c % npseudocands;
         assert(pseudocands[c] != NULL);

         /* we can only apply strong branching on COLUMN variables that are in the current LP */
         if( !SCIPvarIsInLP(pseudocands[c]) )
            continue;

         solval = SCIPvarGetLPSol(pseudocands[c]);
         integral = SCIPisFeasIntegral(scip, solval);

         SCIPdebugMessage("applying strong branching on %s variable <%s>[%g,%g] with solution %g\n",
            integral ? "integral" : "fractional", SCIPvarGetName(pseudocands[c]), SCIPvarGetLbLocal(pseudocands[c]),
            SCIPvarGetUbLocal(pseudocands[c]), solval);

         up = -SCIPinfinity(scip);
         down = -SCIPinfinity(scip);

         if( integral )
         {
            SCIP_CALL( SCIPgetVarStrongbranchInt(scip, pseudocands[c], INT_MAX,
                  skipdown[c] ? NULL : &down, skipup[c] ? NULL : &up, &downvalid, &upvalid, &downinf, &upinf, &downconflict, &upconflict, &lperror) );
         }
         else
         {
            SCIP_CALL( SCIPgetVarStrongbranchFrac(scip, pseudocands[c], INT_MAX,
                  skipdown[c] ? NULL : &down, skipup[c] ? NULL : &up, &downvalid, &upvalid, &downinf, &upinf, &downconflict, &upconflict, &lperror) );
         }
         nsbcalls++;

         /* display node information line in root node */
         if( SCIPgetDepth(scip) == 0 && nsbcalls % 100 == 0 )
         {
            SCIP_CALL( SCIPprintDisplayLine(scip, NULL, SCIP_VERBLEVEL_HIGH, TRUE) );
         }

         /* check for an error in strong branching */
         if( lperror )
         {
            SCIPverbMessage(scip, SCIP_VERBLEVEL_HIGH, NULL,
               "(node %"SCIP_LONGINT_FORMAT") error in strong branching call for variable <%s> with solution %g\n",
               SCIPgetNNodes(scip), SCIPvarGetName(pseudocands[c]), solval);
            break;
         }

         /* evaluate strong branching */
         down = MAX(down, lpobjval);
         up = MAX(up, lpobjval);
         downgain = down - lpobjval;
         upgain = up - lpobjval;
         assert(!allcolsinlp || exactsolve || !downvalid || downinf == SCIPisGE(scip, down, cutoffbound));
         assert(!allcolsinlp || exactsolve || !upvalid || upinf == SCIPisGE(scip, up, cutoffbound));
         assert(downinf || !downconflict);
         assert(upinf || !upconflict);

         /* check if there are infeasible roundings */
         if( downinf || upinf )
         {
            assert(allcolsinlp);
            assert(!exactsolve);

            /* if for both infeasibilities, a conflict constraint was created, we don't need to fix the variable by hand,
             * but better wait for the next propagation round to fix them as an inference, and potentially produce a
             * cutoff that can be analyzed
             */
            if( allowaddcons && downinf == downconflict && upinf == upconflict )
            {
               *result = SCIP_CONSADDED;
               break; /* terminate initialization loop, because constraint was added */
            }
            else if( downinf && upinf )
            {
               if( integral )
               {
                  SCIP_Bool infeasible;
                  SCIP_Bool fixed;

                  /* both bound changes are infeasible: variable can be fixed to its current value */
                  SCIP_CALL( SCIPfixVar(scip, pseudocands[c], solval, &infeasible, &fixed) );
                  assert(!infeasible);
                  assert(fixed);
                  *result = SCIP_REDUCEDDOM;
                  SCIPdebugMessage(" -> integral variable <%s> is infeasible in both directions\n",
                     SCIPvarGetName(pseudocands[c]));
                  break; /* terminate initialization loop, because LP was changed */
               }
               else
               {
                  /* both roundings are infeasible: the node is infeasible */
                  *result = SCIP_CUTOFF;
                  SCIPdebugMessage(" -> fractional variable <%s> is infeasible in both directions\n",
                     SCIPvarGetName(pseudocands[c]));
                  break; /* terminate initialization loop, because node is infeasible */
               }
            }
            else if( downinf )
            {
               SCIP_Real newlb;

               /* downwards rounding is infeasible -> change lower bound of variable to upward rounding */
               newlb = SCIPfeasCeil(scip, solval);
               if( SCIPvarGetLbLocal(pseudocands[c]) < newlb - 0.5 )
               {
                  SCIP_CALL( SCIPchgVarLb(scip, pseudocands[c], newlb) );
                  *result = SCIP_REDUCEDDOM;
                  SCIPdebugMessage(" -> variable <%s> is infeasible in downward branch\n", SCIPvarGetName(pseudocands[c]));
                  break; /* terminate initialization loop, because LP was changed */
               }
            }
            else
            {
               SCIP_Real newub;

               /* upwards rounding is infeasible -> change upper bound of variable to downward rounding */
               assert(upinf);
               newub = SCIPfeasFloor(scip, solval);
               if( SCIPvarGetUbLocal(pseudocands[c]) > newub + 0.5 )
               {
                  SCIP_CALL( SCIPchgVarUb(scip, pseudocands[c], newub) );
                  *result = SCIP_REDUCEDDOM;
                  SCIPdebugMessage(" -> variable <%s> is infeasible in upward branch\n", SCIPvarGetName(pseudocands[c]));
                  break; /* terminate initialization loop, because LP was changed */
               }
            }
         }
         else if( allcolsinlp && !exactsolve && downvalid && upvalid )
         {
            SCIP_Real minbound;

            /* the minimal lower bound of both children is a proved lower bound of the current subtree */
            minbound = MIN(down, up);
            *provedbound = MAX(*provedbound, minbound);
         }

         /* check for a better score, if we are within the maximum priority candidates */
         if( c < npriopseudocands )
         {
            if( integral )
            {

               if( skipdown[c] )
               {
                  downgain = 0.0;
                  score = SCIPgetBranchScore(scip, pseudocands[c], downgain, upgain);
               }
               else if( skipup[c] )
               {
                  upgain = 0.0;
                  score = SCIPgetBranchScore(scip, pseudocands[c], downgain, upgain);
               }
               else
               {
                  SCIP_Real gains[3];

                  gains[0] = downgain;
                  gains[1] = 0.0;
                  gains[2] = upgain;
                  score = SCIPgetBranchScoreMultiple(scip, pseudocands[c], 3, gains);
               }
            }
            else
               score = SCIPgetBranchScore(scip, pseudocands[c], downgain, upgain);

            if( score > *bestscore )
            {
               *bestpseudocand = c;
               *bestdown = down;
               *bestup = up;
               *bestdownvalid = downvalid;
               *bestupvalid = upvalid;
               *bestscore = score;
            }
         }
         else
            score = 0.0;

         /* update pseudo cost values */
         if( !downinf )
         {
            SCIP_CALL( SCIPupdateVarPseudocost(scip, pseudocands[c],
                  solval-SCIPfeasCeil(scip, solval-1.0), downgain, 1.0) );
         }
         if( !upinf )
         {
            SCIP_CALL( SCIPupdateVarPseudocost(scip, pseudocands[c],
                  solval-SCIPfeasFloor(scip, solval+1.0), upgain, 1.0) );
         }

         SCIPdebugMessage(" -> var <%s> (solval=%g, downgain=%g, upgain=%g, score=%g) -- best: <%s> (%g)\n",
            SCIPvarGetName(pseudocands[c]), solval, downgain, upgain, score,
            SCIPvarGetName(pseudocands[*bestpseudocand]), *bestscore);
      }

      /* remember last evaluated candidate */
      branchruledata->lastcand = c;

      /* end strong branching */
      SCIP_CALL( SCIPendStrongbranch(scip) );
   }

   return SCIP_OKAY;
}
Exemple #13
0
/** arbitrary primal solution separation method of separator */
static
SCIP_DECL_SEPAEXECSOL(sepaExecsolImpliedbounds)
{  /*lint --e{715}*/
   SCIP_VAR** vars;
   SCIP_VAR** fracvars;
   SCIP_Real* solvals;
   SCIP_Real* fracvals;
   SCIP_Bool cutoff;
   int nvars;
   int nbinvars;
   int nfracs;
   int ncuts;
   int i;

   assert(sepa != NULL);
   assert(scip != NULL);

   *result = SCIP_DIDNOTRUN;

   /* gets active problem variables */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, NULL, NULL, NULL) );
   if( nbinvars == 0 )
      return SCIP_OKAY;

   /* get solution values for all variables */
   SCIP_CALL( SCIPallocBufferArray(scip, &solvals, nvars) );
   SCIP_CALL( SCIPgetSolVals(scip, sol, nvars, vars, solvals) );

   /* get binary problem variables that are fractional in given solution */
   SCIP_CALL( SCIPallocBufferArray(scip, &fracvars, nbinvars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &fracvals, nbinvars) );
   nfracs = 0;
   for( i = 0; i < nbinvars; ++i )
   {
      if( !SCIPisFeasIntegral(scip, solvals[i]) )
      {
         fracvars[nfracs] = vars[i];
         fracvals[nfracs] = solvals[i];
         nfracs++;
      }
   }

   /* call the cut separation */
   ncuts = 0;
   cutoff = FALSE;

   if( nfracs > 0 )
   {
      SCIP_CALL( separateCuts(scip, sepa, sol, solvals, fracvars, fracvals, nfracs, &cutoff, &ncuts) );
   }

   /* adjust result code */
   if ( cutoff )
      *result = SCIP_CUTOFF;
   else if ( ncuts > 0 )
      *result = SCIP_SEPARATED;
   else
      *result = SCIP_DIDNOTFIND;

   /* free temporary memory */
   SCIPfreeBufferArray(scip, &fracvals);
   SCIPfreeBufferArray(scip, &fracvars);
   SCIPfreeBufferArray(scip, &solvals);

   return SCIP_OKAY;
}
Exemple #14
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecShifting) /*lint --e{715}*/
{   /*lint --e{715}*/
    SCIP_HEURDATA* heurdata;
    SCIP_SOL* sol;
    SCIP_VAR** lpcands;
    SCIP_Real* lpcandssol;
    SCIP_ROW** lprows;
    SCIP_Real* activities;
    SCIP_ROW** violrows;
    SCIP_Real* nincreases;
    SCIP_Real* ndecreases;
    int* violrowpos;
    int* nfracsinrow;
    SCIP_Real increaseweight;
    SCIP_Real obj;
    SCIP_Real bestshiftval;
    SCIP_Real minobj;
    int nlpcands;
    int nlprows;
    int nvars;
    int nfrac;
    int nviolrows;
    int nprevviolrows;
    int minnviolrows;
    int nnonimprovingshifts;
    int c;
    int r;
    SCIP_Longint nlps;
    SCIP_Longint ncalls;
    SCIP_Longint nsolsfound;
    SCIP_Longint nnodes;

    assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
    assert(scip != NULL);
    assert(result != NULL);
    assert(SCIPhasCurrentNodeLP(scip));

    *result = SCIP_DIDNOTRUN;

    /* only call heuristic, if an optimal LP solution is at hand */
    if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
        return SCIP_OKAY;

    /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
    if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
        return SCIP_OKAY;

    /* get heuristic data */
    heurdata = SCIPheurGetData(heur);
    assert(heurdata != NULL);

    /* don't call heuristic, if we have already processed the current LP solution */
    nlps = SCIPgetNLPs(scip);
    if( nlps == heurdata->lastlp )
        return SCIP_OKAY;
    heurdata->lastlp = nlps;

    /* don't call heuristic, if it was not successful enough in the past */
    ncalls = SCIPheurGetNCalls(heur);
    nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + SCIPheurGetNSolsFound(heur);
    nnodes = SCIPgetNNodes(scip);
    if( nnodes % ((ncalls/100)/(nsolsfound+1)+1) != 0 )
        return SCIP_OKAY;

    /* get fractional variables, that should be integral */
    /* todo check if heuristic should include implicit integer variables for its calculations */
    SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL, NULL) );
    nfrac = nlpcands;

    /* only call heuristic, if LP solution is fractional */
    if( nfrac == 0 )
        return SCIP_OKAY;

    *result = SCIP_DIDNOTFIND;

    /* get LP rows */
    SCIP_CALL( SCIPgetLPRowsData(scip, &lprows, &nlprows) );

    SCIPdebugMessage("executing shifting heuristic: %d LP rows, %d fractionals\n", nlprows, nfrac);

    /* get memory for activities, violated rows, and row violation positions */
    nvars = SCIPgetNVars(scip);
    SCIP_CALL( SCIPallocBufferArray(scip, &activities, nlprows) );
    SCIP_CALL( SCIPallocBufferArray(scip, &violrows, nlprows) );
    SCIP_CALL( SCIPallocBufferArray(scip, &violrowpos, nlprows) );
    SCIP_CALL( SCIPallocBufferArray(scip, &nfracsinrow, nlprows) );
    SCIP_CALL( SCIPallocBufferArray(scip, &nincreases, nvars) );
    SCIP_CALL( SCIPallocBufferArray(scip, &ndecreases, nvars) );
    BMSclearMemoryArray(nfracsinrow, nlprows);
    BMSclearMemoryArray(nincreases, nvars);
    BMSclearMemoryArray(ndecreases, nvars);

    /* get the activities for all globally valid rows;
     * the rows should be feasible, but due to numerical inaccuracies in the LP solver, they can be violated
     */
    nviolrows = 0;
    for( r = 0; r < nlprows; ++r )
    {
        SCIP_ROW* row;

        row = lprows[r];
        assert(SCIProwGetLPPos(row) == r);

        if( !SCIProwIsLocal(row) )
        {
            activities[r] = SCIPgetRowActivity(scip, row);
            if( SCIPisFeasLT(scip, activities[r], SCIProwGetLhs(row))
                    || SCIPisFeasGT(scip, activities[r], SCIProwGetRhs(row)) )
            {
                violrows[nviolrows] = row;
                violrowpos[r] = nviolrows;
                nviolrows++;
            }
            else
                violrowpos[r] = -1;
        }
    }

    /* calc the current number of fractional variables in rows */
    for( c = 0; c < nlpcands; ++c )
        addFracCounter(nfracsinrow, nlprows, lpcands[c], +1);

    /* get the working solution from heuristic's local data */
    sol = heurdata->sol;
    assert(sol != NULL);

    /* copy the current LP solution to the working solution */
    SCIP_CALL( SCIPlinkLPSol(scip, sol) );

    /* calculate the minimal objective value possible after rounding fractional variables */
    minobj = SCIPgetSolTransObj(scip, sol);
    assert(minobj < SCIPgetCutoffbound(scip));
    for( c = 0; c < nlpcands; ++c )
    {
        obj = SCIPvarGetObj(lpcands[c]);
        bestshiftval = obj > 0.0 ? SCIPfeasFloor(scip, lpcandssol[c]) : SCIPfeasCeil(scip, lpcandssol[c]);
        minobj += obj * (bestshiftval - lpcandssol[c]);
    }

    /* try to shift remaining variables in order to become/stay feasible */
    nnonimprovingshifts = 0;
    minnviolrows = INT_MAX;
    increaseweight = 1.0;
    while( (nfrac > 0 || nviolrows > 0) && nnonimprovingshifts < MAXSHIFTINGS )
    {
        SCIP_VAR* shiftvar;
        SCIP_Real oldsolval;
        SCIP_Real newsolval;
        SCIP_Bool oldsolvalisfrac;
        int probindex;

        SCIPdebugMessage("shifting heuristic: nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g), cutoff=%g\n",
                         nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj),
                         SCIPretransformObj(scip, SCIPgetCutoffbound(scip)));

        nprevviolrows = nviolrows;

        /* choose next variable to process:
         *  - if a violated row exists, shift a variable decreasing the violation, that has least impact on other rows
         *  - otherwise, shift a variable, that has strongest devastating impact on rows in opposite direction
         */
        shiftvar = NULL;
        oldsolval = 0.0;
        newsolval = 0.0;
        if( nviolrows > 0 && (nfrac == 0 || nnonimprovingshifts < MAXSHIFTINGS-1) )
        {
            SCIP_ROW* row;
            int rowidx;
            int rowpos;
            int direction;

            rowidx = -1;
            rowpos = -1;
            row = NULL;
            if( nfrac > 0 )
            {
                for( rowidx = nviolrows-1; rowidx >= 0; --rowidx )
                {
                    row = violrows[rowidx];
                    rowpos = SCIProwGetLPPos(row);
                    assert(violrowpos[rowpos] == rowidx);
                    if( nfracsinrow[rowpos] > 0 )
                        break;
                }
            }
            if( rowidx == -1 )
            {
                rowidx = SCIPgetRandomInt(0, nviolrows-1, &heurdata->randseed);
                row = violrows[rowidx];
                rowpos = SCIProwGetLPPos(row);
                assert(0 <= rowpos && rowpos < nlprows);
                assert(violrowpos[rowpos] == rowidx);
                assert(nfracsinrow[rowpos] == 0);
            }
            assert(violrowpos[rowpos] == rowidx);

            SCIPdebugMessage("shifting heuristic: try to fix violated row <%s>: %g <= %g <= %g\n",
                             SCIProwGetName(row), SCIProwGetLhs(row), activities[rowpos], SCIProwGetRhs(row));
            SCIPdebug( SCIP_CALL( SCIPprintRow(scip, row, NULL) ) );

            /* get direction in which activity must be shifted */
            assert(SCIPisFeasLT(scip, activities[rowpos], SCIProwGetLhs(row))
                   || SCIPisFeasGT(scip, activities[rowpos], SCIProwGetRhs(row)));
            direction = SCIPisFeasLT(scip, activities[rowpos], SCIProwGetLhs(row)) ? +1 : -1;

            /* search a variable that can shift the activity in the necessary direction */
            SCIP_CALL( selectShifting(scip, sol, row, activities[rowpos], direction,
                                      nincreases, ndecreases, increaseweight, &shiftvar, &oldsolval, &newsolval) );
        }

        if( shiftvar == NULL && nfrac > 0 )
        {
            SCIPdebugMessage("shifting heuristic: search rounding variable and try to stay feasible\n");
            SCIP_CALL( selectEssentialRounding(scip, sol, minobj, lpcands, nlpcands, &shiftvar, &oldsolval, &newsolval) );
        }

        /* check, whether shifting was possible */
        if( shiftvar == NULL || SCIPisEQ(scip, oldsolval, newsolval) )
        {
            SCIPdebugMessage("shifting heuristic:  -> didn't find a shifting variable\n");
            break;
        }

        SCIPdebugMessage("shifting heuristic:  -> shift var <%s>[%g,%g], type=%d, oldval=%g, newval=%g, obj=%g\n",
                         SCIPvarGetName(shiftvar), SCIPvarGetLbGlobal(shiftvar), SCIPvarGetUbGlobal(shiftvar), SCIPvarGetType(shiftvar),
                         oldsolval, newsolval, SCIPvarGetObj(shiftvar));

        /* update row activities of globally valid rows */
        SCIP_CALL( updateActivities(scip, activities, violrows, violrowpos, &nviolrows, nlprows,
                                    shiftvar, oldsolval, newsolval) );
        if( nviolrows >= nprevviolrows )
            nnonimprovingshifts++;
        else if( nviolrows < minnviolrows )
        {
            minnviolrows = nviolrows;
            nnonimprovingshifts = 0;
        }

        /* store new solution value and decrease fractionality counter */
        SCIP_CALL( SCIPsetSolVal(scip, sol, shiftvar, newsolval) );

        /* update fractionality counter and minimal objective value possible after shifting remaining variables */
        oldsolvalisfrac = !SCIPisFeasIntegral(scip, oldsolval)
                          && (SCIPvarGetType(shiftvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(shiftvar) == SCIP_VARTYPE_INTEGER);
        obj = SCIPvarGetObj(shiftvar);
        if( (SCIPvarGetType(shiftvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(shiftvar) == SCIP_VARTYPE_INTEGER)
                && oldsolvalisfrac )
        {
            assert(SCIPisFeasIntegral(scip, newsolval));
            nfrac--;
            nnonimprovingshifts = 0;
            minnviolrows = INT_MAX;
            addFracCounter(nfracsinrow, nlprows, shiftvar, -1);

            /* the rounding was already calculated into the minobj -> update only if rounding in "wrong" direction */
            if( obj > 0.0 && newsolval > oldsolval )
                minobj += obj;
            else if( obj < 0.0 && newsolval < oldsolval )
                minobj -= obj;
        }
        else
        {
            /* update minimal possible objective value */
            minobj += obj * (newsolval - oldsolval);
        }

        /* update increase/decrease arrays */
        if( !oldsolvalisfrac )
        {
            probindex = SCIPvarGetProbindex(shiftvar);
            assert(0 <= probindex && probindex < nvars);
            increaseweight *= WEIGHTFACTOR;
            if( newsolval < oldsolval )
                ndecreases[probindex] += increaseweight;
            else
                nincreases[probindex] += increaseweight;
            if( increaseweight >= 1e+09 )
            {
                int i;

                for( i = 0; i < nvars; ++i )
                {
                    nincreases[i] /= increaseweight;
                    ndecreases[i] /= increaseweight;
                }
                increaseweight = 1.0;
            }
        }

        SCIPdebugMessage("shifting heuristic:  -> nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g)\n",
                         nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj));
    }

    /* check, if the new solution is feasible */
    if( nfrac == 0 && nviolrows == 0 )
    {
        SCIP_Bool stored;

        /* check solution for feasibility, and add it to solution store if possible
         * neither integrality nor feasibility of LP rows has to be checked, because this is already
         * done in the shifting heuristic itself; however, we better check feasibility of LP rows,
         * because of numerical problems with activity updating
         */
        SCIP_CALL( SCIPtrySol(scip, sol, FALSE, FALSE, FALSE, TRUE, &stored) );

        if( stored )
        {
            SCIPdebugMessage("found feasible shifted solution:\n");
            SCIPdebug( SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) ) );
            *result = SCIP_FOUNDSOL;
        }
    }

    /* free memory buffers */
    SCIPfreeBufferArray(scip, &ndecreases);
    SCIPfreeBufferArray(scip, &nincreases);
    SCIPfreeBufferArray(scip, &nfracsinrow);
    SCIPfreeBufferArray(scip, &violrowpos);
    SCIPfreeBufferArray(scip, &violrows);
    SCIPfreeBufferArray(scip, &activities);

    return SCIP_OKAY;
}
Exemple #15
0
/** returns a variable, that pushes activity of the row in the given direction with minimal negative impact on other rows;
 *  if variables have equal impact, chooses the one with best objective value improvement in corresponding direction;
 *  prefer fractional integers over other variables in order to become integral during the process;
 *  shifting in a direction is forbidden, if this forces the objective value over the upper bound, or if the variable
 *  was already shifted in the opposite direction
 */
static
SCIP_RETCODE selectShifting(
    SCIP*                 scip,               /**< SCIP data structure */
    SCIP_SOL*             sol,                /**< primal solution */
    SCIP_ROW*             row,                /**< LP row */
    SCIP_Real             rowactivity,        /**< activity of LP row */
    int                   direction,          /**< should the activity be increased (+1) or decreased (-1)? */
    SCIP_Real*            nincreases,         /**< array with weighted number of increasings per variables */
    SCIP_Real*            ndecreases,         /**< array with weighted number of decreasings per variables */
    SCIP_Real             increaseweight,     /**< current weight of increase/decrease updates */
    SCIP_VAR**            shiftvar,           /**< pointer to store the shifting variable, returns NULL if impossible */
    SCIP_Real*            oldsolval,          /**< pointer to store old solution value of shifting variable */
    SCIP_Real*            newsolval           /**< pointer to store new (shifted) solution value of shifting variable */
)
{
    SCIP_COL** rowcols;
    SCIP_Real* rowvals;
    int nrowcols;
    SCIP_Real activitydelta;
    SCIP_Real bestshiftscore;
    SCIP_Real bestdeltaobj;
    int c;

    assert(direction == +1 || direction == -1);
    assert(nincreases != NULL);
    assert(ndecreases != NULL);
    assert(shiftvar != NULL);
    assert(oldsolval != NULL);
    assert(newsolval != NULL);

    /* get row entries */
    rowcols = SCIProwGetCols(row);
    rowvals = SCIProwGetVals(row);
    nrowcols = SCIProwGetNLPNonz(row);

    /* calculate how much the activity must be shifted in order to become feasible */
    activitydelta = (direction == +1 ? SCIProwGetLhs(row) - rowactivity : SCIProwGetRhs(row) - rowactivity);
    assert((direction == +1 && SCIPisPositive(scip, activitydelta))
           || (direction == -1 && SCIPisNegative(scip, activitydelta)));

    /* select shifting variable */
    bestshiftscore = SCIP_REAL_MAX;
    bestdeltaobj = SCIPinfinity(scip);
    *shiftvar = NULL;
    *newsolval = 0.0;
    *oldsolval = 0.0;
    for( c = 0; c < nrowcols; ++c )
    {
        SCIP_COL* col;
        SCIP_VAR* var;
        SCIP_Real val;
        SCIP_Real solval;
        SCIP_Real shiftval;
        SCIP_Real shiftscore;
        SCIP_Bool isinteger;
        SCIP_Bool isfrac;
        SCIP_Bool increase;

        col = rowcols[c];
        var = SCIPcolGetVar(col);
        val = rowvals[c];
        assert(!SCIPisZero(scip, val));
        solval = SCIPgetSolVal(scip, sol, var);

        isinteger = (SCIPvarGetType(var) == SCIP_VARTYPE_BINARY || SCIPvarGetType(var) == SCIP_VARTYPE_INTEGER);
        isfrac = isinteger && !SCIPisFeasIntegral(scip, solval);
        increase = (direction * val > 0.0);

        /* calculate the score of the shifting (prefer smaller values) */
        if( isfrac )
            shiftscore = increase ? -1.0 / (SCIPvarGetNLocksUp(var) + 1.0) :
                         -1.0 / (SCIPvarGetNLocksDown(var) + 1.0);
        else
        {
            int probindex;
            probindex = SCIPvarGetProbindex(var);

            if( increase )
                shiftscore = ndecreases[probindex]/increaseweight;
            else
                shiftscore = nincreases[probindex]/increaseweight;
            if( isinteger )
                shiftscore += 1.0;
        }

        if( shiftscore <= bestshiftscore )
        {
            SCIP_Real deltaobj;

            if( !increase )
            {
                /* shifting down */
                assert(direction * val < 0.0);
                if( isfrac )
                    shiftval = SCIPfeasFloor(scip, solval);
                else
                {
                    SCIP_Real lb;

                    assert(activitydelta/val < 0.0);
                    shiftval = solval + activitydelta/val;
                    assert(shiftval <= solval); /* may be equal due to numerical digit erasement in the subtraction */
                    if( SCIPvarIsIntegral(var) )
                        shiftval = SCIPfeasFloor(scip, shiftval);
                    lb = SCIPvarGetLbGlobal(var);
                    shiftval = MAX(shiftval, lb);
                }
            }
            else
            {
                /* shifting up */
                assert(direction * val > 0.0);
                if( isfrac )
                    shiftval = SCIPfeasCeil(scip, solval);
                else
                {
                    SCIP_Real ub;

                    assert(activitydelta/val > 0.0);
                    shiftval = solval + activitydelta/val;
                    assert(shiftval >= solval); /* may be equal due to numerical digit erasement in the subtraction */
                    if( SCIPvarIsIntegral(var) )
                        shiftval = SCIPfeasCeil(scip, shiftval);
                    ub = SCIPvarGetUbGlobal(var);
                    shiftval = MIN(shiftval, ub);
                }
            }

            if( SCIPisEQ(scip, shiftval, solval) )
                continue;

            deltaobj = SCIPvarGetObj(var) * (shiftval - solval);
            if( shiftscore < bestshiftscore || deltaobj < bestdeltaobj )
            {
                bestshiftscore = shiftscore;
                bestdeltaobj = deltaobj;
                *shiftvar = var;
                *oldsolval = solval;
                *newsolval = shiftval;
            }
        }
    }

    return SCIP_OKAY;
}
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecRootsoldiving) /*lint --e{715}*/
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;
   SCIP_VAR** vars;
   SCIP_Real* rootsol;
   SCIP_Real* objchgvals;
   int* softroundings;
   int* intvalrounds;
   int nvars;
   int nbinvars;
   int nintvars;
   int nlpcands;
   SCIP_LPSOLSTAT lpsolstat;
   SCIP_Real absstartobjval;
   SCIP_Real objstep;
   SCIP_Real alpha;
   SCIP_Real oldobj;
   SCIP_Real newobj;
   SCIP_Bool lperror;
   SCIP_Bool lpsolchanged;
   SCIP_Longint nsolsfound;
   SCIP_Longint ncalls;
   SCIP_Longint nlpiterations;
   SCIP_Longint maxnlpiterations;
   int depth;
   int maxdepth;
   int maxdivedepth;
   int divedepth;
   int startnlpcands;
   int ncycles;
   int i;

   assert(heur != NULL);
   assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);
   assert(SCIPhasCurrentNodeLP(scip));

   *result = SCIP_DELAYED;

   /* only call heuristic, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */
   if( !SCIPisLPSolBasic(scip) )
      return SCIP_OKAY;

   /* don't dive two times at the same node */
   if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTRUN;

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   /* only apply heuristic, if only a few solutions have been found */
   if( heurdata->maxsols >= 0 && SCIPgetNSolsFound(scip) >= heurdata->maxsols )
      return SCIP_OKAY;

   /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */
   depth = SCIPgetDepth(scip);
   maxdepth = SCIPgetMaxDepth(scip);
   maxdepth = MAX(maxdepth, 30);
   if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth )
      return SCIP_OKAY;

   /* calculate the maximal number of LP iterations until heuristic is aborted */
   nlpiterations = SCIPgetNNodeLPIterations(scip);
   ncalls = SCIPheurGetNCalls(heur);
   nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess;
   maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations);
   maxnlpiterations += heurdata->maxlpiterofs;

   /* don't try to dive, if we took too many LP iterations during diving */
   if( heurdata->nlpiterations >= maxnlpiterations )
      return SCIP_OKAY;

   /* allow at least a certain number of LP iterations in this dive */
   maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER);

   /* get number of fractional variables, that should be integral */
   nlpcands = SCIPgetNLPBranchCands(scip);

   /* don't try to dive, if there are no fractional variables */
   if( nlpcands == 0 )
      return SCIP_OKAY;

   /* calculate the maximal diving depth */
   nvars = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip);
   if( SCIPgetNSolsFound(scip) == 0 )
      maxdivedepth = (int)(heurdata->depthfacnosol * nvars);
   else
      maxdivedepth = (int)(heurdata->depthfac * nvars);
   maxdivedepth = MAX(maxdivedepth, 10);

   *result = SCIP_DIDNOTFIND;

   /* get all variables of LP */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) );

   /* get root solution value of all binary and integer variables */
   SCIP_CALL( SCIPallocBufferArray(scip, &rootsol, nbinvars + nintvars) );
   for( i = 0; i < nbinvars + nintvars; i++ )
      rootsol[i] = SCIPvarGetRootSol(vars[i]);

   /* get current LP objective value, and calculate length of a single step in an objective coefficient */
   absstartobjval = SCIPgetLPObjval(scip);
   absstartobjval = ABS(absstartobjval);
   absstartobjval = MAX(absstartobjval, 1.0);
   objstep = absstartobjval / 10.0;

   /* initialize array storing the preferred soft rounding directions and counting the integral value rounds */
   SCIP_CALL( SCIPallocBufferArray(scip, &softroundings, nbinvars + nintvars) );
   BMSclearMemoryArray(softroundings, nbinvars + nintvars);
   SCIP_CALL( SCIPallocBufferArray(scip, &intvalrounds, nbinvars + nintvars) );
   BMSclearMemoryArray(intvalrounds, nbinvars + nintvars);

   /* allocate temporary memory for buffering objective changes */
   SCIP_CALL( SCIPallocBufferArray(scip, &objchgvals, nbinvars + nintvars) );

   /* start diving */
   SCIP_CALL( SCIPstartDive(scip) );

   SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing rootsoldiving heuristic: depth=%d, %d fractionals, dualbound=%g, maxnlpiterations=%"SCIP_LONGINT_FORMAT", maxdivedepth=%d, LPobj=%g, objstep=%g\n",
      SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), maxnlpiterations, maxdivedepth,
      SCIPgetLPObjval(scip), objstep);

   lperror = FALSE;
   divedepth = 0;
   lpsolstat = SCIP_LPSOLSTAT_OPTIMAL;
   alpha = heurdata->alpha;
   ncycles = 0;
   lpsolchanged = TRUE;
   startnlpcands = nlpcands;
   while( !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0 && ncycles < 10
      && (divedepth < 10
         || nlpcands <= startnlpcands - divedepth/2
         || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations))
      && !SCIPisStopped(scip) )
   {
      SCIP_Bool success;
      int hardroundingidx;
      int hardroundingdir;
      SCIP_Real hardroundingoldbd;
      SCIP_Real hardroundingnewbd;
      SCIP_Bool boundschanged;

      SCIP_RETCODE retcode;

      /* create solution from diving LP and try to round it */
      SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
      SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) );

      if( success )
      {
         SCIPdebugMessage("rootsoldiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol));

         /* try to add solution to SCIP */
         SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

         /* check, if solution was feasible and good enough */
         if( success )
         {
            SCIPdebugMessage(" -> solution was feasible and good enough\n");
            *result = SCIP_FOUNDSOL;
         }
      }

      divedepth++;
      hardroundingidx = -1;
      hardroundingdir = 0;
      hardroundingoldbd = 0.0;
      hardroundingnewbd = 0.0;
      boundschanged = FALSE;

      SCIPdebugMessage("dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT":\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations);

      /* round solution x* from diving LP:
       *   - x~_j = down(x*_j)    if x*_j is integer or binary variable and x*_j <= root solution_j
       *   - x~_j = up(x*_j)      if x*_j is integer or binary variable and x*_j  > root solution_j
       *   - x~_j = x*_j          if x*_j is continuous variable
       * change objective function in diving LP:
       *   - if x*_j is integral, or j is a continuous variable, set obj'_j = alpha * obj_j
       *   - otherwise, set obj'_j = alpha * obj_j + sign(x*_j - x~_j)
       */
      for( i = 0; i < nbinvars + nintvars; i++ )
      {
         SCIP_VAR* var;
         SCIP_Real solval;

         var = vars[i];
         oldobj = SCIPgetVarObjDive(scip, var);
         newobj = oldobj;

         solval =  SCIPvarGetLPSol(var);
         if( SCIPisFeasIntegral(scip, solval) )
         {
            /* if the variable became integral after a soft rounding, count the rounds; after a while, fix it to its
             * current integral value;
             * otherwise, fade out the objective value
             */
            if( softroundings[i] != 0 && lpsolchanged )
            {
               intvalrounds[i]++;
               if( intvalrounds[i] == 5 && SCIPgetVarLbDive(scip, var) < SCIPgetVarUbDive(scip, var) - 0.5 )
               {
                  /* use exact integral value, if the variable is only integral within numerical tolerances */
                  solval = SCIPfloor(scip, solval+0.5);
                  SCIPdebugMessage(" -> fixing <%s> = %g\n", SCIPvarGetName(var), solval);
                  SCIP_CALL( SCIPchgVarLbDive(scip, var, solval) );
                  SCIP_CALL( SCIPchgVarUbDive(scip, var, solval) );
                  boundschanged = TRUE;
               }
            }
            else
               newobj = alpha * oldobj;
         }
         else if( solval <= rootsol[i] )
         {
            /* if the variable was soft rounded most of the time downwards, round it downwards by changing the bounds;
             * otherwise, apply soft rounding by changing the objective value
             */
            softroundings[i]--;
            if( softroundings[i] <= -10 && hardroundingidx == -1 )
            {
               SCIPdebugMessage(" -> hard rounding <%s>[%g] <= %g\n",
                  SCIPvarGetName(var), solval, SCIPfeasFloor(scip, solval));
               hardroundingidx = i;
               hardroundingdir = -1;
               hardroundingoldbd = SCIPgetVarUbDive(scip, var);
               hardroundingnewbd = SCIPfeasFloor(scip, solval);
               SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingnewbd) );
               boundschanged = TRUE;
            }
            else
               newobj = alpha * oldobj + objstep;
         }
         else
         {
            /* if the variable was soft rounded most of the time upwards, round it upwards by changing the bounds;
             * otherwise, apply soft rounding by changing the objective value
             */
            softroundings[i]++;
            if( softroundings[i] >= +10 && hardroundingidx == -1 )
            {
               SCIPdebugMessage(" -> hard rounding <%s>[%g] >= %g\n",
                  SCIPvarGetName(var), solval, SCIPfeasCeil(scip, solval));
               hardroundingidx = i;
               hardroundingdir = +1;
               hardroundingoldbd = SCIPgetVarLbDive(scip, var);
               hardroundingnewbd = SCIPfeasCeil(scip, solval);
               SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingnewbd) );
               boundschanged = TRUE;
            }
            else
               newobj = alpha * oldobj - objstep;
         }

         /* remember the objective change */
         objchgvals[i] = newobj;
      }

      /* apply objective changes if there was no bound change */
      if( !boundschanged )
      {
         /* apply cached changes on integer variables */
         for( i = 0; i < nbinvars + nintvars; ++i )
         {
            SCIP_VAR* var;

            var = vars[i];
            SCIPdebugMessage(" -> i=%d  var <%s>, solval=%g, rootsol=%g, oldobj=%g, newobj=%g\n",
               i, SCIPvarGetName(var), SCIPvarGetLPSol(var), rootsol[i], SCIPgetVarObjDive(scip, var), objchgvals[i]);

            SCIP_CALL( SCIPchgVarObjDive(scip, var, objchgvals[i]) );
         }

         /* fade out the objective values of the continuous variables */
         for( i = nbinvars + nintvars; i < nvars; i++ )
         {
            SCIP_VAR* var;

            var = vars[i];
            oldobj = SCIPgetVarObjDive(scip, var);
            newobj = alpha * oldobj;

            SCIPdebugMessage(" -> i=%d  var <%s>, solval=%g, oldobj=%g, newobj=%g\n",
               i, SCIPvarGetName(var), SCIPvarGetLPSol(var), oldobj, newobj);

            SCIP_CALL( SCIPchgVarObjDive(scip, var, newobj) );
         }
      }

   SOLVEAGAIN:
      /* resolve the diving LP */
      nlpiterations = SCIPgetNLPIterations(scip);

      retcode = SCIPsolveDiveLP(scip,  MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror);
      lpsolstat = SCIPgetLPSolstat(scip);

      /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic.
       * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
       */
      if( retcode != SCIP_OKAY )
      {
#ifndef NDEBUG
         if( lpsolstat != SCIP_LPSOLSTAT_UNBOUNDEDRAY )
         {
            SCIP_CALL( retcode );
         }
#endif
         SCIPwarningMessage(scip, "Error while solving LP in Rootsoldiving heuristic; LP solve terminated with code <%d>\n", retcode);
         SCIPwarningMessage(scip, "This does not affect the remaining solution procedure --> continue\n");
      }

      if( lperror )
         break;

      /* update iteration count */
      heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations;

      /* if no LP iterations were performed, we stayed at the same solution -> count this cycling */
      lpsolchanged = (SCIPgetNLPIterations(scip) != nlpiterations);
      if( lpsolchanged )
         ncycles = 0;
      else if( !boundschanged ) /* do not count if integral variables have been fixed */
         ncycles++;

      /* get LP solution status and number of fractional variables, that should be integral */
      if( lpsolstat == SCIP_LPSOLSTAT_INFEASIBLE && hardroundingidx != -1 )
      {
         SCIP_VAR* var;

         var = vars[hardroundingidx];

         /* round the hard rounded variable to the opposite direction and resolve the LP */
         if( hardroundingdir == -1 )
         {
            SCIPdebugMessage(" -> opposite hard rounding <%s> >= %g\n", SCIPvarGetName(var), hardroundingnewbd + 1.0);
            SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingoldbd) );
            SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingnewbd + 1.0) );
         }
         else
         {
            SCIPdebugMessage(" -> opposite hard rounding <%s> <= %g\n", SCIPvarGetName(var), hardroundingnewbd - 1.0);
            SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingoldbd) );
            SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingnewbd - 1.0) );
         }
         hardroundingidx = -1;
         goto SOLVEAGAIN;
      }
      if( lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
         nlpcands = SCIPgetNLPBranchCands(scip);
      SCIPdebugMessage("   -> lpsolstat=%d, nfrac=%d\n", lpsolstat, nlpcands);
   }

   SCIPdebugMessage("---> diving finished: lpsolstat = %d, depth %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT"\n",
      lpsolstat, divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations);

   /* check if a solution has been found */
   if( nlpcands == 0 && !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
   {
      SCIP_Bool success;

      /* create solution from diving LP */
      SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
      SCIPdebugMessage("rootsoldiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol));

      /* try to add solution to SCIP */
      SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

      /* check, if solution was feasible and good enough */
      if( success )
      {
         SCIPdebugMessage(" -> solution was feasible and good enough\n");
         *result = SCIP_FOUNDSOL;
      }
   }

   /* end diving */
   SCIP_CALL( SCIPendDive(scip) );

   if( *result == SCIP_FOUNDSOL )
      heurdata->nsuccess++;

   /* free temporary memory */
   SCIPfreeBufferArray(scip, &objchgvals);
   SCIPfreeBufferArray(scip, &intvalrounds);
   SCIPfreeBufferArray(scip, &softroundings);
   SCIPfreeBufferArray(scip, &rootsol);

   SCIPdebugMessage("rootsoldiving heuristic finished\n");

   return SCIP_OKAY;
}