void
FiniteStrainPlasticBase::checkJacobian()
{
  _console << "\n ++++++++++++++ \nChecking the Jacobian\n";
  outputAndCheckDebugParameters();

  RankFourTensor E_inv = _elasticity_tensor[_qp].invSymm();
  RankTwoTensor delta_dp = -E_inv*_fspb_debug_stress;

  std::vector<std::vector<Real> > jac;
  calculateJacobian(_fspb_debug_stress, _fspb_debug_intnl, _fspb_debug_pm, E_inv, jac);

  std::vector<std::vector<Real> > fdjac;
  fdJacobian(_fspb_debug_stress, _intnl_old[_qp], _fspb_debug_intnl, _fspb_debug_pm, delta_dp, E_inv, fdjac);

  _console << "Hand-coded Jacobian:\n";
  for (unsigned row = 0 ; row < jac.size() ; ++row)
  {
    for (unsigned col = 0 ; col < jac.size() ; ++col)
      _console << jac[row][col] << " ";
    _console << "\n";
  }

  _console << "Finite difference Jacobian:\n";
  for (unsigned row = 0 ; row < fdjac.size() ; ++row)
  {
    for (unsigned col = 0 ; col < fdjac.size() ; ++col)
      _console << fdjac[row][col] << " ";
    _console << "\n";
  }
}
void
MultiPlasticityDebugger::checkJacobian(const RankFourTensor & E_inv,
                                       const std::vector<Real> & intnl_old)
{
  Moose::err << "\n\n+++++++++++++++++++++\nChecking the Jacobian\n+++++++++++++++++++++\n";
  outputAndCheckDebugParameters();

  std::vector<bool> act;
  act.assign(_num_surfaces, true);
  std::vector<bool> deactivated_due_to_ld;
  deactivated_due_to_ld.assign(_num_surfaces, false);

  RankTwoTensor delta_dp = -E_inv * _fspb_debug_stress;

  std::vector<std::vector<Real>> jac;
  calculateJacobian(_fspb_debug_stress,
                    _fspb_debug_intnl,
                    _fspb_debug_pm,
                    E_inv,
                    act,
                    deactivated_due_to_ld,
                    jac);

  std::vector<std::vector<Real>> fdjac;
  fdJacobian(_fspb_debug_stress,
             intnl_old,
             _fspb_debug_intnl,
             _fspb_debug_pm,
             delta_dp,
             E_inv,
             false,
             fdjac);

  Real L2_numer = 0;
  Real L2_denom = 0;
  for (unsigned row = 0; row < jac.size(); ++row)
    for (unsigned col = 0; col < jac.size(); ++col)
    {
      L2_numer += Utility::pow<2>(jac[row][col] - fdjac[row][col]);
      L2_denom += Utility::pow<2>(jac[row][col] + fdjac[row][col]);
    }
  Moose::err << "\nRelative L2norm = " << std::sqrt(L2_numer / L2_denom) / 0.5 << "\n";

  Moose::err << "\nHand-coded Jacobian:\n";
  for (unsigned row = 0; row < jac.size(); ++row)
  {
    for (unsigned col = 0; col < jac.size(); ++col)
      Moose::err << jac[row][col] << " ";
    Moose::err << "\n";
  }

  Moose::err << "Finite difference Jacobian:\n";
  for (unsigned row = 0; row < fdjac.size(); ++row)
  {
    for (unsigned col = 0; col < fdjac.size(); ++col)
      Moose::err << fdjac[row][col] << " ";
    Moose::err << "\n";
  }
}
void
MultiPlasticityDebugger::checkSolution(const RankFourTensor & E_inv)
{
  Moose::err << "\n\n+++++++++++++++++++++\nChecking the Solution\n";
  Moose::err << "(Ie, checking Ax = b)\n+++++++++++++++++++++\n";
  outputAndCheckDebugParameters();

  std::vector<bool> act;
  act.assign(_num_surfaces, true);
  std::vector<bool> deactivated_due_to_ld;
  deactivated_due_to_ld.assign(_num_surfaces, false);

  RankTwoTensor delta_dp = -E_inv * _fspb_debug_stress;

  std::vector<Real> orig_rhs;
  calculateRHS(_fspb_debug_stress,
               _fspb_debug_intnl,
               _fspb_debug_intnl,
               _fspb_debug_pm,
               delta_dp,
               orig_rhs,
               act,
               true,
               deactivated_due_to_ld);

  Moose::err << "\nb = ";
  for (unsigned i = 0; i < orig_rhs.size(); ++i)
    Moose::err << orig_rhs[i] << " ";
  Moose::err << "\n\n";

  std::vector<std::vector<Real>> jac_coded;
  calculateJacobian(_fspb_debug_stress,
                    _fspb_debug_intnl,
                    _fspb_debug_pm,
                    E_inv,
                    act,
                    deactivated_due_to_ld,
                    jac_coded);

  Moose::err
      << "Before checking Ax=b is correct, check that the Jacobians given below are equal.\n";
  Moose::err
      << "The hand-coded Jacobian is used in calculating the solution 'x', given 'b' above.\n";
  Moose::err << "Note that this only includes degrees of freedom that aren't deactivated due to "
                "linear dependence.\n";
  Moose::err << "Hand-coded Jacobian:\n";
  for (unsigned row = 0; row < jac_coded.size(); ++row)
  {
    for (unsigned col = 0; col < jac_coded.size(); ++col)
      Moose::err << jac_coded[row][col] << " ";
    Moose::err << "\n";
  }

  deactivated_due_to_ld.assign(_num_surfaces,
                               false); // this potentially gets changed by nrStep, below
  RankTwoTensor dstress;
  std::vector<Real> dpm;
  std::vector<Real> dintnl;
  nrStep(_fspb_debug_stress,
         _fspb_debug_intnl,
         _fspb_debug_intnl,
         _fspb_debug_pm,
         E_inv,
         delta_dp,
         dstress,
         dpm,
         dintnl,
         act,
         deactivated_due_to_ld);

  std::vector<bool> active_not_deact(_num_surfaces);
  for (unsigned surface = 0; surface < _num_surfaces; ++surface)
    active_not_deact[surface] = !deactivated_due_to_ld[surface];

  std::vector<Real> x;
  x.assign(orig_rhs.size(), 0);
  unsigned ind = 0;
  for (unsigned i = 0; i < 3; ++i)
    for (unsigned j = 0; j <= i; ++j)
      x[ind++] = dstress(i, j);
  for (unsigned surface = 0; surface < _num_surfaces; ++surface)
    if (active_not_deact[surface])
      x[ind++] = dpm[surface];
  for (unsigned model = 0; model < _num_models; ++model)
    if (anyActiveSurfaces(model, active_not_deact))
      x[ind++] = dintnl[model];

  mooseAssert(ind == orig_rhs.size(),
              "Incorrect extracting of changes from NR solution in the "
              "finite-difference checking of nrStep");

  Moose::err << "\nThis yields x =";
  for (unsigned i = 0; i < orig_rhs.size(); ++i)
    Moose::err << x[i] << " ";
  Moose::err << "\n";

  std::vector<std::vector<Real>> jac_fd;
  fdJacobian(_fspb_debug_stress,
             _fspb_debug_intnl,
             _fspb_debug_intnl,
             _fspb_debug_pm,
             delta_dp,
             E_inv,
             true,
             jac_fd);

  Moose::err << "\nThe finite-difference Jacobian is used to multiply by this 'x',\n";
  Moose::err << "in order to check that the solution is correct\n";
  Moose::err << "Finite-difference Jacobian:\n";
  for (unsigned row = 0; row < jac_fd.size(); ++row)
  {
    for (unsigned col = 0; col < jac_fd.size(); ++col)
      Moose::err << jac_fd[row][col] << " ";
    Moose::err << "\n";
  }

  Real L2_numer = 0;
  Real L2_denom = 0;
  for (unsigned row = 0; row < jac_coded.size(); ++row)
    for (unsigned col = 0; col < jac_coded.size(); ++col)
    {
      L2_numer += Utility::pow<2>(jac_coded[row][col] - jac_fd[row][col]);
      L2_denom += Utility::pow<2>(jac_coded[row][col] + jac_fd[row][col]);
    }
  Moose::err << "Relative L2norm of the hand-coded and finite-difference Jacobian is "
             << std::sqrt(L2_numer / L2_denom) / 0.5 << "\n";

  std::vector<Real> fd_times_x;
  fd_times_x.assign(orig_rhs.size(), 0);
  for (unsigned row = 0; row < orig_rhs.size(); ++row)
    for (unsigned col = 0; col < orig_rhs.size(); ++col)
      fd_times_x[row] += jac_fd[row][col] * x[col];

  Moose::err << "\n(Finite-difference Jacobian)*x =\n";
  for (unsigned i = 0; i < orig_rhs.size(); ++i)
    Moose::err << fd_times_x[i] << " ";
  Moose::err << "\n";
  Moose::err << "Recall that b = \n";
  for (unsigned i = 0; i < orig_rhs.size(); ++i)
    Moose::err << orig_rhs[i] << " ";
  Moose::err << "\n";

  L2_numer = 0;
  L2_denom = 0;
  for (unsigned i = 0; i < orig_rhs.size(); ++i)
  {
    L2_numer += Utility::pow<2>(orig_rhs[i] - fd_times_x[i]);
    L2_denom += Utility::pow<2>(orig_rhs[i] + fd_times_x[i]);
  }
  Moose::err << "\nRelative L2norm of these is " << std::sqrt(L2_numer / L2_denom) / 0.5 << "\n";
}