Exemple #1
0
int zd_mac_set_mac_address(struct net_device *netdev, void *p)
{
	int r;
	unsigned long flags;
	struct sockaddr *addr = p;
	struct zd_mac *mac = zd_netdev_mac(netdev);
	struct zd_chip *chip = &mac->chip;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	dev_dbg_f(zd_mac_dev(mac),
		  "Setting MAC to " MAC_FMT "\n", MAC_ARG(addr->sa_data));

	r = zd_write_mac_addr(chip, addr->sa_data);
	if (r)
		return r;

	spin_lock_irqsave(&mac->lock, flags);
	memcpy(netdev->dev_addr, addr->sa_data, ETH_ALEN);
	spin_unlock_irqrestore(&mac->lock, flags);

	return 0;
}
Exemple #2
0
static void rtl8180_bss_info_changed(struct ieee80211_hw *dev,
				     struct ieee80211_vif *vif,
				     struct ieee80211_bss_conf *info,
				     u32 changed)
{
	struct rtl8180_priv *priv = dev->priv;
	int i;

	if (changed & BSS_CHANGED_BSSID) {
		for (i = 0; i < ETH_ALEN; i++)
			rtl818x_iowrite8(priv, &priv->map->BSSID[i],
					 info->bssid[i]);

		if (is_valid_ether_addr(info->bssid))
			rtl818x_iowrite8(priv, &priv->map->MSR,
					 RTL818X_MSR_INFRA);
		else
			rtl818x_iowrite8(priv, &priv->map->MSR,
					 RTL818X_MSR_NO_LINK);
	}

	if (changed & BSS_CHANGED_ERP_SLOT && priv->rf->conf_erp)
	        priv->rf->conf_erp(dev, info);
}
Exemple #3
0
static int art_read_mac(struct device_d *dev, const char *file)
{
	int fd, rbytes;
	struct ar9300_eeprom eeprom;

	fd = open_and_lseek(file, O_RDONLY, AR93000_EPPROM_OFFSET);
	if (fd < 0) {
		dev_err(dev, "Failed to open eeprom path %s %d\n",
		       file, fd);
		return fd;
	}

	rbytes = read_full(fd, &eeprom, sizeof(eeprom));
	close(fd);
	if (rbytes < sizeof(eeprom)) {
		dev_err(dev, "Failed to read %s\n", file);
		return rbytes < 0 ? rbytes : -EIO;
	}

	dev_dbg(dev, "ART version: %x.%x\n",
		 eeprom.eeprom_version, eeprom.template_version);
	dev_dbg(dev, "mac: %02x:%02x:%02x:%02x:%02x:%02x\n",
	       eeprom.mac_addr[0],
	       eeprom.mac_addr[1],
	       eeprom.mac_addr[2],
	       eeprom.mac_addr[3],
	       eeprom.mac_addr[4],
	       eeprom.mac_addr[5]);

	if (!is_valid_ether_addr(&eeprom.mac_addr[0])) {
		dev_err(dev, "bad MAC addr\n");
		return -EILSEQ;
	}

	return art_set_mac(dev, &eeprom);
}
Exemple #4
0
static int vlan_validate(struct nlattr *tb[], struct nlattr *data[])
{
    struct ifla_vlan_flags *flags;
    u16 id;
    int err;

    if (tb[IFLA_ADDRESS]) {
        if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
            return -EINVAL;
        if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
            return -EADDRNOTAVAIL;
    }

    if (!data)
        return -EINVAL;

    if (data[IFLA_VLAN_ID]) {
        id = nla_get_u16(data[IFLA_VLAN_ID]);
        if (id >= VLAN_VID_MASK)
            return -ERANGE;
    }
    if (data[IFLA_VLAN_FLAGS]) {
        flags = nla_data(data[IFLA_VLAN_FLAGS]);
        if ((flags->flags & flags->mask) &
                ~(VLAN_FLAG_REORDER_HDR | VLAN_FLAG_GVRP))
            return -EINVAL;
    }

    err = vlan_validate_qos_map(data[IFLA_VLAN_INGRESS_QOS]);
    if (err < 0)
        return err;
    err = vlan_validate_qos_map(data[IFLA_VLAN_EGRESS_QOS]);
    if (err < 0)
        return err;
    return 0;
}
int br_add_if(struct net_bridge *br, struct net_device *dev)
{
	struct net_bridge_port *p;

	if (dev->br_port != NULL)
		return -EBUSY;

#if 0
	if (dev->flags & IFF_LOOPBACK || dev->type != ARPHRD_ETHER)
		return -EINVAL;
#endif

	if (dev->hard_start_xmit == br_dev_xmit)
		return -ELOOP;

	if (!is_valid_ether_addr(dev->dev_addr))
		return -EADDRNOTAVAIL;

	dev_hold(dev);
	write_lock_bh(&br->lock);
	if ((p = new_nbp(br, dev)) == NULL) {
		write_unlock_bh(&br->lock);
		dev_put(dev);
		return -EXFULL;
	}

	dev_set_promiscuity(dev, 1);

	br_stp_recalculate_bridge_id(br);
	br_fdb_insert(br, p, dev->dev_addr, 1);
	if ((br->dev.flags & IFF_UP) && (dev->flags & IFF_UP))
		br_stp_enable_port(p);
	write_unlock_bh(&br->lock);

	return 0;
}
Exemple #6
0
static int ks8842_set_mac(struct net_device *netdev, void *p)
{
	struct ks8842_adapter *adapter = netdev_priv(netdev);
	unsigned long flags;
	struct sockaddr *addr = p;
	char *mac = (u8 *)addr->sa_data;
	int i;

	dev_dbg(&adapter->pdev->dev, "%s: entry\n", __func__);

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, mac, netdev->addr_len);

	spin_lock_irqsave(&adapter->lock, flags);
	for (i = 0; i < ETH_ALEN; i++) {
		ks8842_write8(adapter, 2, mac[ETH_ALEN - i - 1], REG_MARL + i);
		ks8842_write8(adapter, 39, mac[ETH_ALEN - i - 1],
			REG_MACAR1 + i);
	}
	spin_unlock_irqrestore(&adapter->lock, flags);
	return 0;
}
Exemple #7
0
int board_eth_init(bd_t *bis)
{
	int rv, n = 0;
#ifdef CONFIG_DRIVER_TI_CPSW
	uint8_t mac_addr[6];
	uint32_t mac_hi, mac_lo;

	if (!eth_getenv_enetaddr("ethaddr", mac_addr)) {
		printf("<ethaddr> not set. Reading from E-fuse\n");
		/* try reading mac address from efuse */
		mac_lo = readl(&cdev->macid0l);
		mac_hi = readl(&cdev->macid0h);
		mac_addr[0] = mac_hi & 0xFF;
		mac_addr[1] = (mac_hi & 0xFF00) >> 8;
		mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
		mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
		mac_addr[4] = mac_lo & 0xFF;
		mac_addr[5] = (mac_lo & 0xFF00) >> 8;

		if (is_valid_ether_addr(mac_addr))
			eth_setenv_enetaddr("ethaddr", mac_addr);
		else
			goto try_usbether;
	}
static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;
	u16 word;
	u8 *mac;

	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2400pci_eepromregister_read;
	eeprom.register_write = rt2400pci_eepromregister_write;
	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));

	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
	if (!is_valid_ether_addr(mac)) {
		random_ether_addr(mac);
		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
	if (word == 0xffff) {
		ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
		return -EINVAL;
	}

	return 0;
}
Exemple #9
0
int mac_read_from_eeprom(void)
{
    const u8 *mac;
    const char *mac_txt;

    if (read_eeprom()) {
        printf("I2C EEPROM read failed.\n");
        return -1;
    }

    if (!eeprom_is_valid) {
        printf("I2C EEPROM content not valid\n");
        return -1;
    }

    mac = NULL;
    switch (eeprom_version) {
    case 1:
    case 2:
        mac = (const u8 *)&eeprom_content.macaddress;
        break;
    }

    if (mac && is_valid_ether_addr(mac)) {
        eth_setenv_enetaddr("ethaddr", mac);
        if (mac_diag) {
            mac_txt = getenv("ethaddr");
            if (mac_txt)
                printf("DIAG: MAC value [%s]\n", mac_txt);
            else
                printf("DIAG: failed to setup MAC env\n");
        }
    }

    return 0;
}
int igb_vmdq_open(struct net_device *dev)
{
	struct igb_vmdq_adapter *vadapter = netdev_priv(dev);
	struct igb_adapter *adapter = vadapter->real_adapter;
	struct net_device *main_netdev = adapter->netdev;
	int hw_queue = vadapter->rx_ring->queue_index +
		       adapter->vfs_allocated_count;

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		DPRINTK(DRV, WARNING,
			"Open %s before opening this device.\n",
			main_netdev->name);
		return -EAGAIN;
	}
	netif_carrier_off(dev);
	vadapter->tx_ring->vmdq_netdev = dev;
	vadapter->rx_ring->vmdq_netdev = dev;
	if (is_valid_ether_addr(dev->dev_addr)) {
		igb_del_mac_filter(adapter, dev->dev_addr, hw_queue);
		igb_add_mac_filter(adapter, dev->dev_addr, hw_queue);
	}
	netif_carrier_on(dev);
	return 0;
}
Exemple #11
0
int bnxt_get_vf_config(struct net_device *dev, int vf_id,
		       struct ifla_vf_info *ivi)
{
	struct bnxt *bp = netdev_priv(dev);
	struct bnxt_vf_info *vf;
	int rc;

	rc = bnxt_vf_ndo_prep(bp, vf_id);
	if (rc)
		return rc;

	ivi->vf = vf_id;
	vf = &bp->pf.vf[vf_id];

	if (is_valid_ether_addr(vf->mac_addr))
		memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN);
	else
		memcpy(&ivi->mac, vf->vf_mac_addr, ETH_ALEN);
	ivi->max_tx_rate = vf->max_tx_rate;
	ivi->min_tx_rate = vf->min_tx_rate;
	ivi->vlan = vf->vlan;
	if (vf->flags & BNXT_VF_QOS)
		ivi->qos = vf->vlan >> VLAN_PRIO_SHIFT;
	else
Exemple #12
0
int bnx2x_vfpf_acquire(struct bnx2x *bp, u8 tx_count, u8 rx_count)
{
	int rc = 0, attempts = 0;
	struct vfpf_acquire_tlv *req = &bp->vf2pf_mbox->req.acquire;
	struct pfvf_acquire_resp_tlv *resp = &bp->vf2pf_mbox->resp.acquire_resp;
	u32 vf_id;
	bool resources_acquired = false;

	/* clear mailbox and prep first tlv */
	bnx2x_vfpf_prep(bp, &req->first_tlv, CHANNEL_TLV_ACQUIRE, sizeof(*req));

	if (bnx2x_get_vf_id(bp, &vf_id)) {
		rc = -EAGAIN;
		goto out;
	}

	req->vfdev_info.vf_id = vf_id;
	req->vfdev_info.vf_os = 0;

	req->resc_request.num_rxqs = rx_count;
	req->resc_request.num_txqs = tx_count;
	req->resc_request.num_sbs = bp->igu_sb_cnt;
	req->resc_request.num_mac_filters = VF_ACQUIRE_MAC_FILTERS;
	req->resc_request.num_mc_filters = VF_ACQUIRE_MC_FILTERS;

	/* pf 2 vf bulletin board address */
	req->bulletin_addr = bp->pf2vf_bulletin_mapping;

	/* add list termination tlv */
	bnx2x_add_tlv(bp, req, req->first_tlv.tl.length, CHANNEL_TLV_LIST_END,
		      sizeof(struct channel_list_end_tlv));

	/* output tlvs list */
	bnx2x_dp_tlv_list(bp, req);

	while (!resources_acquired) {
		DP(BNX2X_MSG_SP, "attempting to acquire resources\n");

		/* send acquire request */
		rc = bnx2x_send_msg2pf(bp,
				       &resp->hdr.status,
				       bp->vf2pf_mbox_mapping);

		/* PF timeout */
		if (rc)
			goto out;

		/* copy acquire response from buffer to bp */
		memcpy(&bp->acquire_resp, resp, sizeof(bp->acquire_resp));

		attempts++;

		/* test whether the PF accepted our request. If not, humble the
		 * the request and try again.
		 */
		if (bp->acquire_resp.hdr.status == PFVF_STATUS_SUCCESS) {
			DP(BNX2X_MSG_SP, "resources acquired\n");
			resources_acquired = true;
		} else if (bp->acquire_resp.hdr.status ==
			   PFVF_STATUS_NO_RESOURCE &&
			   attempts < VF_ACQUIRE_THRESH) {
			DP(BNX2X_MSG_SP,
			   "PF unwilling to fulfill resource request. Try PF recommended amount\n");

			/* humble our request */
			req->resc_request.num_txqs =
				bp->acquire_resp.resc.num_txqs;
			req->resc_request.num_rxqs =
				bp->acquire_resp.resc.num_rxqs;
			req->resc_request.num_sbs =
				bp->acquire_resp.resc.num_sbs;
			req->resc_request.num_mac_filters =
				bp->acquire_resp.resc.num_mac_filters;
			req->resc_request.num_vlan_filters =
				bp->acquire_resp.resc.num_vlan_filters;
			req->resc_request.num_mc_filters =
				bp->acquire_resp.resc.num_mc_filters;

			/* Clear response buffer */
			memset(&bp->vf2pf_mbox->resp, 0,
			       sizeof(union pfvf_tlvs));
		} else {
			/* PF reports error */
			BNX2X_ERR("Failed to get the requested amount of resources: %d. Breaking...\n",
				  bp->acquire_resp.hdr.status);
			rc = -EAGAIN;
			goto out;
		}
	}

	/* get HW info */
	bp->common.chip_id |= (bp->acquire_resp.pfdev_info.chip_num & 0xffff);
	bp->link_params.chip_id = bp->common.chip_id;
	bp->db_size = bp->acquire_resp.pfdev_info.db_size;
	bp->common.int_block = INT_BLOCK_IGU;
	bp->common.chip_port_mode = CHIP_2_PORT_MODE;
	bp->igu_dsb_id = -1;
	bp->mf_ov = 0;
	bp->mf_mode = 0;
	bp->common.flash_size = 0;
	bp->flags |=
		NO_WOL_FLAG | NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG | NO_FCOE_FLAG;
	bp->igu_sb_cnt = 1;
	bp->igu_base_sb = bp->acquire_resp.resc.hw_sbs[0].hw_sb_id;
	strlcpy(bp->fw_ver, bp->acquire_resp.pfdev_info.fw_ver,
		sizeof(bp->fw_ver));

	if (is_valid_ether_addr(bp->acquire_resp.resc.current_mac_addr))
		memcpy(bp->dev->dev_addr,
		       bp->acquire_resp.resc.current_mac_addr,
		       ETH_ALEN);

out:
	bnx2x_vfpf_finalize(bp, &req->first_tlv);
	return rc;
}
Exemple #13
0
static void _rtl_init_mac80211(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
	struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw));
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
	struct ieee80211_supported_band *sband;


	if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY && rtlhal->bandset ==
	    BAND_ON_BOTH) {
		/* 1: 2.4 G bands */
		/* <1> use  mac->bands as mem for hw->wiphy->bands */
		sband = &(rtlmac->bands[IEEE80211_BAND_2GHZ]);

		/* <2> set hw->wiphy->bands[IEEE80211_BAND_2GHZ]
		 * to default value(1T1R) */
		memcpy(&(rtlmac->bands[IEEE80211_BAND_2GHZ]), &rtl_band_2ghz,
				sizeof(struct ieee80211_supported_band));

		/* <3> init ht cap base on ant_num */
		_rtl_init_hw_ht_capab(hw, &sband->ht_cap);

		/* <4> set mac->sband to wiphy->sband */
		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;

		/* 2: 5 G bands */
		/* <1> use  mac->bands as mem for hw->wiphy->bands */
		sband = &(rtlmac->bands[IEEE80211_BAND_5GHZ]);

		/* <2> set hw->wiphy->bands[IEEE80211_BAND_5GHZ]
		 * to default value(1T1R) */
		memcpy(&(rtlmac->bands[IEEE80211_BAND_5GHZ]), &rtl_band_5ghz,
				sizeof(struct ieee80211_supported_band));

		/* <3> init ht cap base on ant_num */
		_rtl_init_hw_ht_capab(hw, &sband->ht_cap);

		/* <4> set mac->sband to wiphy->sband */
		hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
	} else {
		if (rtlhal->current_bandtype == BAND_ON_2_4G) {
			/* <1> use  mac->bands as mem for hw->wiphy->bands */
			sband = &(rtlmac->bands[IEEE80211_BAND_2GHZ]);

			/* <2> set hw->wiphy->bands[IEEE80211_BAND_2GHZ]
			 * to default value(1T1R) */
			memcpy(&(rtlmac->bands[IEEE80211_BAND_2GHZ]),
				 &rtl_band_2ghz,
				 sizeof(struct ieee80211_supported_band));

			/* <3> init ht cap base on ant_num */
			_rtl_init_hw_ht_capab(hw, &sband->ht_cap);

			/* <4> set mac->sband to wiphy->sband */
			hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
		} else if (rtlhal->current_bandtype == BAND_ON_5G) {
			/* <1> use  mac->bands as mem for hw->wiphy->bands */
			sband = &(rtlmac->bands[IEEE80211_BAND_5GHZ]);

			/* <2> set hw->wiphy->bands[IEEE80211_BAND_5GHZ]
			 * to default value(1T1R) */
			memcpy(&(rtlmac->bands[IEEE80211_BAND_5GHZ]),
				 &rtl_band_5ghz,
				 sizeof(struct ieee80211_supported_band));

			/* <3> init ht cap base on ant_num */
			_rtl_init_hw_ht_capab(hw, &sband->ht_cap);

			/* <4> set mac->sband to wiphy->sband */
			hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
		} else {
			RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "Err BAND %d\n",
				 rtlhal->current_bandtype);
		}
	}
	/* <5> set hw caps */
	hw->flags = IEEE80211_HW_SIGNAL_DBM |
	    IEEE80211_HW_RX_INCLUDES_FCS |
	    IEEE80211_HW_AMPDU_AGGREGATION |
	    IEEE80211_HW_CONNECTION_MONITOR |
	    /* IEEE80211_HW_SUPPORTS_CQM_RSSI | */
	    IEEE80211_HW_REPORTS_TX_ACK_STATUS | 0;

	/* swlps or hwlps has been set in diff chip in init_sw_vars */
	if (rtlpriv->psc.swctrl_lps)
		hw->flags |= IEEE80211_HW_SUPPORTS_PS |
			IEEE80211_HW_PS_NULLFUNC_STACK |
			/* IEEE80211_HW_SUPPORTS_DYNAMIC_PS | */
			0;

	hw->wiphy->interface_modes =
	    BIT(NL80211_IFTYPE_AP) |
	    BIT(NL80211_IFTYPE_STATION) |
	    BIT(NL80211_IFTYPE_ADHOC);

	hw->wiphy->rts_threshold = 2347;

	hw->queues = AC_MAX;
	hw->extra_tx_headroom = RTL_TX_HEADER_SIZE;

	/* TODO: Correct this value for our hw */
	/* TODO: define these hard code value */
	hw->channel_change_time = 100;
	hw->max_listen_interval = 10;
	hw->max_rate_tries = 4;
	/* hw->max_rates = 1; */
	hw->sta_data_size = sizeof(struct rtl_sta_info);

	/* <6> mac address */
	if (is_valid_ether_addr(rtlefuse->dev_addr)) {
		SET_IEEE80211_PERM_ADDR(hw, rtlefuse->dev_addr);
	} else {
		u8 rtlmac1[] = { 0x00, 0xe0, 0x4c, 0x81, 0x92, 0x00 };
		get_random_bytes((rtlmac1 + (ETH_ALEN - 1)), 1);
		SET_IEEE80211_PERM_ADDR(hw, rtlmac1);
	}

}
/*
 * Return NULL if skb is handled
 * note: already called with rcu_read_lock
 */
rx_handler_result_t br_handle_frame(struct sk_buff **pskb)
{
	struct net_bridge_port *p;
	struct sk_buff *skb = *pskb;
	const unsigned char *dest = eth_hdr(skb)->h_dest;
	br_should_route_hook_t *rhook;

	if (unlikely(skb->pkt_type == PACKET_LOOPBACK))
		return RX_HANDLER_PASS;

	if (!is_valid_ether_addr(eth_hdr(skb)->h_source))
		goto drop;

	skb = skb_share_check(skb, GFP_ATOMIC);
	if (!skb)
		return RX_HANDLER_CONSUMED;

	p = br_port_get_rcu(skb->dev);

	if (unlikely(is_link_local_ether_addr(dest))) {
		/*
		 * See IEEE 802.1D Table 7-10 Reserved addresses
		 *
		 * Assignment		 		Value
		 * Bridge Group Address		01-80-C2-00-00-00
		 * (MAC Control) 802.3		01-80-C2-00-00-01
		 * (Link Aggregation) 802.3	01-80-C2-00-00-02
		 * 802.1X PAE address		01-80-C2-00-00-03
		 *
		 * 802.1AB LLDP 		01-80-C2-00-00-0E
		 *
		 * Others reserved for future standardization
		 */
		switch (dest[5]) {
		case 0x00:	/* Bridge Group Address */
			/* If STP is turned off,
			   then must forward to keep loop detection */
			if (p->br->stp_enabled == BR_NO_STP)
				goto forward;
			break;

		case 0x01:	/* IEEE MAC (Pause) */
			goto drop;

		default:
			/* Allow selective forwarding for most other protocols */
			if (p->br->group_fwd_mask & (1u << dest[5]))
				goto forward;
		}

		/* Deliver packet to local host only */
		if (NF_HOOK(NFPROTO_BRIDGE, NF_BR_LOCAL_IN, skb, skb->dev,
			    NULL, br_handle_local_finish)) {
			return RX_HANDLER_CONSUMED; /* consumed by filter */
		} else {
			*pskb = skb;
			return RX_HANDLER_PASS;	/* continue processing */
		}
	}

forward:
	switch (p->state) {
	case BR_STATE_FORWARDING:
		rhook = rcu_dereference(br_should_route_hook);
		if (rhook) {
			if ((*rhook)(skb)) {
				*pskb = skb;
				return RX_HANDLER_PASS;
			}
			dest = eth_hdr(skb)->h_dest;
		}
		/* fall through */
	case BR_STATE_LEARNING:
		if (ether_addr_equal(p->br->dev->dev_addr, dest))
			skb->pkt_type = PACKET_HOST;

		NF_HOOK(NFPROTO_BRIDGE, NF_BR_PRE_ROUTING, skb, skb->dev, NULL,
			br_handle_frame_finish);
		break;
	default:
drop:
		kfree_skb(skb);
	}
	return RX_HANDLER_CONSUMED;
}
Exemple #15
0
static int r92su_open(struct net_device *ndev)
{
	struct r92su *r92su = ndev->ml_priv;
	int err = -EAGAIN;

	if (!is_valid_ether_addr(ndev->dev_addr))
		return -EADDRNOTAVAIL;

	/* Since the firmware starts sending frames as soon as its initialized,
	 * we have to have a valid current_channel set, otherwise the rx-path
	 * would panic
	 */
	r92su->current_channel =
		&r92su->wdev.wiphy->bands[NL80211_BAND_2GHZ]->channels[0];

	err = r92su_load_firmware(r92su);
	if (err)
		return err;

	mutex_lock(&r92su->lock);
	if (!r92su_is_stopped(r92su)) {
		err = -EAGAIN;
		goto out;
	}

	err = r92su_hw_early_mac_setup(r92su);
	if (err)
		goto out;

	err = r92su_upload_firmware(r92su);
	if (err)
		goto out;

	/* uploading the firmware resets the c2h and h2c command counters */
	r92su_cmd_init(r92su);

	err = r92su_hw_late_mac_setup(r92su);
	if (err)
		goto out;

	err = r92su_init_mac(r92su);
	if (err)
		goto out;

	if (!r92su_is_stopped(r92su)) {
		err = -EAGAIN;
		goto out;
	}

	switch (r92su->wdev.iftype) {
	case NL80211_IFTYPE_MONITOR:
		r92su_set_state(r92su, R92SU_CONNECTED);
		break;

	default:
		r92su_set_state(r92su, R92SU_OPEN);
		break;
	}

	r92su_hw_queue_service_work(r92su);
out:
	mutex_unlock(&r92su->lock);
	return err;
}
Exemple #16
0
static int bgmac_fixed_phy_register(struct bgmac *bgmac)
{
	struct fixed_phy_status fphy_status = {
		.link = 1,
		.speed = SPEED_1000,
		.duplex = DUPLEX_FULL,
	};
	struct phy_device *phy_dev;
	int err;

	phy_dev = fixed_phy_register(PHY_POLL, &fphy_status, -1, NULL);
	if (!phy_dev || IS_ERR(phy_dev)) {
		bgmac_err(bgmac, "Failed to register fixed PHY device\n");
		return -ENODEV;
	}

	err = phy_connect_direct(bgmac->net_dev, phy_dev, bgmac_adjust_link,
				 PHY_INTERFACE_MODE_MII);
	if (err) {
		bgmac_err(bgmac, "Connecting PHY failed\n");
		return err;
	}

	bgmac->phy_dev = phy_dev;

	return err;
}

static int bgmac_mii_register(struct bgmac *bgmac)
{
	struct mii_bus *mii_bus;
	struct phy_device *phy_dev;
	char bus_id[MII_BUS_ID_SIZE + 3];
	int err = 0;

	if (bgmac_is_bcm4707_family(bgmac))
		return bgmac_fixed_phy_register(bgmac);

	mii_bus = mdiobus_alloc();
	if (!mii_bus)
		return -ENOMEM;

	mii_bus->name = "bgmac mii bus";
	sprintf(mii_bus->id, "%s-%d-%d", "bgmac", bgmac->core->bus->num,
		bgmac->core->core_unit);
	mii_bus->priv = bgmac;
	mii_bus->read = bgmac_mii_read;
	mii_bus->write = bgmac_mii_write;
	mii_bus->parent = &bgmac->core->dev;
	mii_bus->phy_mask = ~(1 << bgmac->phyaddr);

	err = mdiobus_register(mii_bus);
	if (err) {
		bgmac_err(bgmac, "Registration of mii bus failed\n");
		goto err_free_bus;
	}

	bgmac->mii_bus = mii_bus;

	/* Connect to the PHY */
	snprintf(bus_id, sizeof(bus_id), PHY_ID_FMT, mii_bus->id,
		 bgmac->phyaddr);
	phy_dev = phy_connect(bgmac->net_dev, bus_id, &bgmac_adjust_link,
			      PHY_INTERFACE_MODE_MII);
	if (IS_ERR(phy_dev)) {
		bgmac_err(bgmac, "PHY connection failed\n");
		err = PTR_ERR(phy_dev);
		goto err_unregister_bus;
	}
	bgmac->phy_dev = phy_dev;

	return err;

err_unregister_bus:
	mdiobus_unregister(mii_bus);
err_free_bus:
	mdiobus_free(mii_bus);
	return err;
}

static void bgmac_mii_unregister(struct bgmac *bgmac)
{
	struct mii_bus *mii_bus = bgmac->mii_bus;

	mdiobus_unregister(mii_bus);
	mdiobus_free(mii_bus);
}

/**************************************************
 * BCMA bus ops
 **************************************************/

/* http://bcm-v4.sipsolutions.net/mac-gbit/gmac/chipattach */
static int bgmac_probe(struct bcma_device *core)
{
	struct net_device *net_dev;
	struct bgmac *bgmac;
	struct ssb_sprom *sprom = &core->bus->sprom;
	u8 *mac;
	int err;

	switch (core->core_unit) {
	case 0:
		mac = sprom->et0mac;
		break;
	case 1:
		mac = sprom->et1mac;
		break;
	case 2:
		mac = sprom->et2mac;
		break;
	default:
		pr_err("Unsupported core_unit %d\n", core->core_unit);
		return -ENOTSUPP;
	}

	if (!is_valid_ether_addr(mac)) {
		dev_err(&core->dev, "Invalid MAC addr: %pM\n", mac);
		eth_random_addr(mac);
		dev_warn(&core->dev, "Using random MAC: %pM\n", mac);
	}

	/* This (reset &) enable is not preset in specs or reference driver but
	 * Broadcom does it in arch PCI code when enabling fake PCI device.
	 */
	bcma_core_enable(core, 0);

	/* Allocation and references */
	net_dev = alloc_etherdev(sizeof(*bgmac));
	if (!net_dev)
		return -ENOMEM;
	net_dev->netdev_ops = &bgmac_netdev_ops;
	net_dev->irq = core->irq;
	net_dev->ethtool_ops = &bgmac_ethtool_ops;
	bgmac = netdev_priv(net_dev);
	bgmac->net_dev = net_dev;
	bgmac->core = core;
	bcma_set_drvdata(core, bgmac);

	/* Defaults */
	memcpy(bgmac->net_dev->dev_addr, mac, ETH_ALEN);

	/* On BCM4706 we need common core to access PHY */
	if (core->id.id == BCMA_CORE_4706_MAC_GBIT &&
	    !core->bus->drv_gmac_cmn.core) {
		bgmac_err(bgmac, "GMAC CMN core not found (required for BCM4706)\n");
		err = -ENODEV;
		goto err_netdev_free;
	}
	bgmac->cmn = core->bus->drv_gmac_cmn.core;

	switch (core->core_unit) {
	case 0:
		bgmac->phyaddr = sprom->et0phyaddr;
		break;
	case 1:
		bgmac->phyaddr = sprom->et1phyaddr;
		break;
	case 2:
		bgmac->phyaddr = sprom->et2phyaddr;
		break;
	}
	bgmac->phyaddr &= BGMAC_PHY_MASK;
	if (bgmac->phyaddr == BGMAC_PHY_MASK) {
		bgmac_err(bgmac, "No PHY found\n");
		err = -ENODEV;
		goto err_netdev_free;
	}
	bgmac_info(bgmac, "Found PHY addr: %d%s\n", bgmac->phyaddr,
		   bgmac->phyaddr == BGMAC_PHY_NOREGS ? " (NOREGS)" : "");

	if (core->bus->hosttype == BCMA_HOSTTYPE_PCI) {
		bgmac_err(bgmac, "PCI setup not implemented\n");
		err = -ENOTSUPP;
		goto err_netdev_free;
	}

	bgmac_chip_reset(bgmac);

	/* For Northstar, we have to take all GMAC core out of reset */
	if (bgmac_is_bcm4707_family(bgmac)) {
		struct bcma_device *ns_core;
		int ns_gmac;

		/* Northstar has 4 GMAC cores */
		for (ns_gmac = 0; ns_gmac < 4; ns_gmac++) {
			/* As Northstar requirement, we have to reset all GMACs
			 * before accessing one. bgmac_chip_reset() call
			 * bcma_core_enable() for this core. Then the other
			 * three GMACs didn't reset.  We do it here.
			 */
			ns_core = bcma_find_core_unit(core->bus,
						      BCMA_CORE_MAC_GBIT,
						      ns_gmac);
			if (ns_core && !bcma_core_is_enabled(ns_core))
				bcma_core_enable(ns_core, 0);
		}
	}

	err = bgmac_dma_alloc(bgmac);
	if (err) {
		bgmac_err(bgmac, "Unable to alloc memory for DMA\n");
		goto err_netdev_free;
	}

	bgmac->int_mask = BGMAC_IS_ERRMASK | BGMAC_IS_RX | BGMAC_IS_TX_MASK;
	if (bcm47xx_nvram_getenv("et0_no_txint", NULL, 0) == 0)
		bgmac->int_mask &= ~BGMAC_IS_TX_MASK;

	/* TODO: reset the external phy. Specs are needed */
	bgmac_phy_reset(bgmac);

	bgmac->has_robosw = !!(core->bus->sprom.boardflags_lo &
			       BGMAC_BFL_ENETROBO);
	if (bgmac->has_robosw)
		bgmac_warn(bgmac, "Support for Roboswitch not implemented\n");

	if (core->bus->sprom.boardflags_lo & BGMAC_BFL_ENETADM)
		bgmac_warn(bgmac, "Support for ADMtek ethernet switch not implemented\n");

	netif_napi_add(net_dev, &bgmac->napi, bgmac_poll, BGMAC_WEIGHT);

	err = bgmac_mii_register(bgmac);
	if (err) {
		bgmac_err(bgmac, "Cannot register MDIO\n");
		goto err_dma_free;
	}

	net_dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
	net_dev->hw_features = net_dev->features;
	net_dev->vlan_features = net_dev->features;

	err = register_netdev(bgmac->net_dev);
	if (err) {
		bgmac_err(bgmac, "Cannot register net device\n");
		goto err_mii_unregister;
	}

	netif_carrier_off(net_dev);

	return 0;

err_mii_unregister:
	bgmac_mii_unregister(bgmac);
err_dma_free:
	bgmac_dma_free(bgmac);

err_netdev_free:
	bcma_set_drvdata(core, NULL);
	free_netdev(net_dev);

	return err;
}

static void bgmac_remove(struct bcma_device *core)
{
	struct bgmac *bgmac = bcma_get_drvdata(core);

	unregister_netdev(bgmac->net_dev);
	bgmac_mii_unregister(bgmac);
	netif_napi_del(&bgmac->napi);
	bgmac_dma_free(bgmac);
	bcma_set_drvdata(core, NULL);
	free_netdev(bgmac->net_dev);
}

static struct bcma_driver bgmac_bcma_driver = {
	.name		= KBUILD_MODNAME,
	.id_table	= bgmac_bcma_tbl,
	.probe		= bgmac_probe,
	.remove		= bgmac_remove,
};

static int __init bgmac_init(void)
{
	int err;

	err = bcma_driver_register(&bgmac_bcma_driver);
	if (err)
		return err;
	pr_info("Broadcom 47xx GBit MAC driver loaded\n");

	return 0;
}
Exemple #17
0
/******************************************************************************
 * struct platform_driver functions
 *****************************************************************************/
static int ftmac100_probe(struct platform_device *pdev)
{
	struct resource *res;
	int irq;
	struct net_device *netdev;
	struct ftmac100 *priv;
	int err;

	if (!pdev)
		return -ENODEV;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res)
		return -ENXIO;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

	/* setup net_device */
	netdev = alloc_etherdev(sizeof(*priv));
	if (!netdev) {
		err = -ENOMEM;
		goto err_alloc_etherdev;
	}

	SET_NETDEV_DEV(netdev, &pdev->dev);
	netdev->ethtool_ops = &ftmac100_ethtool_ops;
	netdev->netdev_ops = &ftmac100_netdev_ops;

	platform_set_drvdata(pdev, netdev);

	/* setup private data */
	priv = netdev_priv(netdev);
	priv->netdev = netdev;
	priv->dev = &pdev->dev;

	spin_lock_init(&priv->tx_lock);

	/* initialize NAPI */
	netif_napi_add(netdev, &priv->napi, ftmac100_poll, 64);

	/* map io memory */
	priv->res = request_mem_region(res->start, resource_size(res),
				       dev_name(&pdev->dev));
	if (!priv->res) {
		dev_err(&pdev->dev, "Could not reserve memory region\n");
		err = -ENOMEM;
		goto err_req_mem;
	}

	priv->base = ioremap(res->start, resource_size(res));
	if (!priv->base) {
		dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
		err = -EIO;
		goto err_ioremap;
	}

	priv->irq = irq;

	/* initialize struct mii_if_info */
	priv->mii.phy_id	= 0;
	priv->mii.phy_id_mask	= 0x1f;
	priv->mii.reg_num_mask	= 0x1f;
	priv->mii.dev		= netdev;
	priv->mii.mdio_read	= ftmac100_mdio_read;
	priv->mii.mdio_write	= ftmac100_mdio_write;

	/* register network device */
	err = register_netdev(netdev);
	if (err) {
		dev_err(&pdev->dev, "Failed to register netdev\n");
		goto err_register_netdev;
	}

	netdev_info(netdev, "irq %d, mapped at %p\n", priv->irq, priv->base);

	if (!is_valid_ether_addr(netdev->dev_addr)) {
		eth_hw_addr_random(netdev);
		netdev_info(netdev, "generated random MAC address %pM\n",
			    netdev->dev_addr);
	}

	return 0;

err_register_netdev:
	iounmap(priv->base);
err_ioremap:
	release_resource(priv->res);
err_req_mem:
	netif_napi_del(&priv->napi);
	free_netdev(netdev);
err_alloc_etherdev:
	return err;
}
Exemple #18
0
static int __devinit bfin_mac_probe(struct platform_device *pdev)
{
	struct net_device *ndev;
	struct bfin_mac_local *lp;
	struct platform_device *pd;
	int rc;

	ndev = alloc_etherdev(sizeof(struct bfin_mac_local));
	if (!ndev) {
		dev_err(&pdev->dev, "Cannot allocate net device!\n");
		return -ENOMEM;
	}

	SET_NETDEV_DEV(ndev, &pdev->dev);
	platform_set_drvdata(pdev, ndev);
	lp = netdev_priv(ndev);

	/* Grab the MAC address in the MAC */
	*(__le32 *) (&(ndev->dev_addr[0])) = cpu_to_le32(bfin_read_EMAC_ADDRLO());
	*(__le16 *) (&(ndev->dev_addr[4])) = cpu_to_le16((u16) bfin_read_EMAC_ADDRHI());

	/* probe mac */
	/*todo: how to proble? which is revision_register */
	bfin_write_EMAC_ADDRLO(0x12345678);
	if (bfin_read_EMAC_ADDRLO() != 0x12345678) {
		dev_err(&pdev->dev, "Cannot detect Blackfin on-chip ethernet MAC controller!\n");
		rc = -ENODEV;
		goto out_err_probe_mac;
	}


	/*
	 * Is it valid? (Did bootloader initialize it?)
	 * Grab the MAC from the board somehow
	 * this is done in the arch/blackfin/mach-bfxxx/boards/eth_mac.c
	 */
	if (!is_valid_ether_addr(ndev->dev_addr))
		bfin_get_ether_addr(ndev->dev_addr);

	/* If still not valid, get a random one */
	if (!is_valid_ether_addr(ndev->dev_addr))
		random_ether_addr(ndev->dev_addr);

	setup_mac_addr(ndev->dev_addr);

	if (!pdev->dev.platform_data) {
		dev_err(&pdev->dev, "Cannot get platform device bfin_mii_bus!\n");
		rc = -ENODEV;
		goto out_err_probe_mac;
	}
	pd = pdev->dev.platform_data;
	lp->mii_bus = platform_get_drvdata(pd);
	lp->mii_bus->priv = ndev;

	rc = mii_probe(ndev);
	if (rc) {
		dev_err(&pdev->dev, "MII Probe failed!\n");
		goto out_err_mii_probe;
	}

	/* Fill in the fields of the device structure with ethernet values. */
	ether_setup(ndev);

	ndev->netdev_ops = &bfin_mac_netdev_ops;
	ndev->ethtool_ops = &bfin_mac_ethtool_ops;

	spin_lock_init(&lp->lock);

	/* now, enable interrupts */
	/* register irq handler */
	rc = request_irq(IRQ_MAC_RX, bfin_mac_interrupt,
			IRQF_DISABLED, "EMAC_RX", ndev);
	if (rc) {
		dev_err(&pdev->dev, "Cannot request Blackfin MAC RX IRQ!\n");
		rc = -EBUSY;
		goto out_err_request_irq;
	}

	rc = register_netdev(ndev);
	if (rc) {
		dev_err(&pdev->dev, "Cannot register net device!\n");
		goto out_err_reg_ndev;
	}

	/* now, print out the card info, in a short format.. */
	dev_info(&pdev->dev, "%s, Version %s\n", DRV_DESC, DRV_VERSION);

	return 0;

out_err_reg_ndev:
	free_irq(IRQ_MAC_RX, ndev);
out_err_request_irq:
out_err_mii_probe:
	mdiobus_unregister(lp->mii_bus);
	mdiobus_free(lp->mii_bus);
	peripheral_free_list(pin_req);
out_err_probe_mac:
	platform_set_drvdata(pdev, NULL);
	free_netdev(ndev);

	return rc;
}
Exemple #19
0
/**
 * attach to the WL device.
 *
 * Attach to the WL device identified by vendor and device parameters.
 * regs is a host accessible memory address pointing to WL device registers.
 *
 * is called in brcms_bcma_probe() context, therefore no locking required.
 */
static struct brcms_info *brcms_attach(struct bcma_device *pdev)
{
	struct brcms_info *wl = NULL;
	int unit, err;
	struct ieee80211_hw *hw;
	u8 perm[ETH_ALEN];

	unit = n_adapters_found;
	err = 0;

	if (unit < 0)
		return NULL;

	/* allocate private info */
	hw = bcma_get_drvdata(pdev);
	if (hw != NULL)
		wl = hw->priv;
	if (WARN_ON(hw == NULL) || WARN_ON(wl == NULL))
		return NULL;
	wl->wiphy = hw->wiphy;

	atomic_set(&wl->callbacks, 0);

	init_waitqueue_head(&wl->tx_flush_wq);

	/* setup the bottom half handler */
	tasklet_init(&wl->tasklet, brcms_dpc, (unsigned long) wl);

	spin_lock_init(&wl->lock);
	spin_lock_init(&wl->isr_lock);

	/* common load-time initialization */
	wl->wlc = brcms_c_attach((void *)wl, pdev, unit, false, &err);
	if (!wl->wlc) {
		wiphy_err(wl->wiphy, "%s: attach() failed with code %d\n",
			  KBUILD_MODNAME, err);
		goto fail;
	}
	wl->pub = brcms_c_pub(wl->wlc);

	wl->pub->ieee_hw = hw;

	/* register our interrupt handler */
	if (request_irq(pdev->irq, brcms_isr,
			IRQF_SHARED, KBUILD_MODNAME, wl)) {
		wiphy_err(wl->wiphy, "wl%d: request_irq() failed\n", unit);
		goto fail;
	}
	wl->irq = pdev->irq;

	/* register module */
	brcms_c_module_register(wl->pub, "linux", wl, NULL);

	if (ieee_hw_init(hw)) {
		wiphy_err(wl->wiphy, "wl%d: %s: ieee_hw_init failed!\n", unit,
			  __func__);
		goto fail;
	}

	brcms_c_regd_init(wl->wlc);

	memcpy(perm, &wl->pub->cur_etheraddr, ETH_ALEN);
	if (WARN_ON(!is_valid_ether_addr(perm)))
		goto fail;
	SET_IEEE80211_PERM_ADDR(hw, perm);

	err = ieee80211_register_hw(hw);
	if (err)
		wiphy_err(wl->wiphy, "%s: ieee80211_register_hw failed, status"
			  "%d\n", __func__, err);

	if (wl->pub->srom_ccode[0] &&
	    regulatory_hint(wl->wiphy, wl->pub->srom_ccode))
		wiphy_err(wl->wiphy, "%s: regulatory hint failed\n", __func__);

	brcms_debugfs_attach(wl->pub);
	brcms_debugfs_create_files(wl->pub);
	n_adapters_found++;
	return wl;

fail:
	brcms_free(wl);
	return NULL;
}
/**
 * et131x_set_mac_addr - handler to change the MAC address for the device
 * @netdev: device whose MAC is to be changed
 * @new_mac: the desired MAC address
 *
 * Returns 0 on success, errno on failure (as defined in errno.h)
 *
 * IMPLEMENTED BY : blux http://berndlux.de 22.01.2007 21:14
 */
int et131x_set_mac_addr(struct net_device *netdev, void *new_mac)
{
	int result = 0;
	struct et131x_adapter *adapter = netdev_priv(netdev);
	struct sockaddr *address = new_mac;

	/* begin blux */

	if (adapter == NULL)
		return -ENODEV;

	/* Make sure the requested MAC is valid */
	if (!is_valid_ether_addr(address->sa_data))
		return -EINVAL;

	/* Stop the netif queue */
	netif_stop_queue(netdev);

	/* Stop the Tx and Rx DMA engines */
	et131x_rx_dma_disable(adapter);
	et131x_tx_dma_disable(adapter);

	/* Disable device interrupts */
	et131x_disable_interrupts(adapter);
	et131x_handle_send_interrupt(adapter);
	et131x_handle_recv_interrupt(adapter);

	/* Set the new MAC */
	/* netdev->set_mac_address  = &new_mac; */
	/* netdev->mtu = new_mtu; */

	memcpy(netdev->dev_addr, address->sa_data, netdev->addr_len);

	printk(KERN_INFO "%s: Setting MAC address to %pM\n",
			netdev->name, netdev->dev_addr);

	/* Free Rx DMA memory */
	et131x_adapter_memory_free(adapter);

	/* Set the config parameter for Jumbo Packet support */
	/* adapter->RegistryJumboPacket = new_mtu + 14; */
	/* blux: not needet here, we'll change the MAC */

	et131x_soft_reset(adapter);

	/* Alloc and init Rx DMA memory */
	result = et131x_adapter_memory_alloc(adapter);
	if (result != 0) {
		dev_err(&adapter->pdev->dev,
			"Change MAC failed; couldn't re-alloc DMA memory\n");
		return result;
	}

	et131x_init_send(adapter);

	et131x_hwaddr_init(adapter);

	/* Init the device with the new settings */
	et131x_adapter_setup(adapter);

	/* Enable interrupts */
	if (adapter->Flags & fMP_ADAPTER_INTERRUPT_IN_USE)
		et131x_enable_interrupts(adapter);

	/* Restart the Tx and Rx DMA engines */
	et131x_rx_dma_enable(adapter);
	et131x_tx_dma_enable(adapter);

	/* Restart the netif queue */
	netif_wake_queue(netdev);
	return result;
}
Exemple #21
0
int bgmac_phy_connect_direct(struct bgmac *bgmac)
{
	struct fixed_phy_status fphy_status = {
		.link = 1,
		.speed = SPEED_1000,
		.duplex = DUPLEX_FULL,
	};
	struct phy_device *phy_dev;
	int err;

	phy_dev = fixed_phy_register(PHY_POLL, &fphy_status, -1, NULL);
	if (!phy_dev || IS_ERR(phy_dev)) {
		dev_err(bgmac->dev, "Failed to register fixed PHY device\n");
		return -ENODEV;
	}

	err = phy_connect_direct(bgmac->net_dev, phy_dev, bgmac_adjust_link,
				 PHY_INTERFACE_MODE_MII);
	if (err) {
		dev_err(bgmac->dev, "Connecting PHY failed\n");
		return err;
	}

	return err;
}
EXPORT_SYMBOL_GPL(bgmac_phy_connect_direct);

struct bgmac *bgmac_alloc(struct device *dev)
{
	struct net_device *net_dev;
	struct bgmac *bgmac;

	/* Allocation and references */
	net_dev = devm_alloc_etherdev(dev, sizeof(*bgmac));
	if (!net_dev)
		return NULL;

	net_dev->netdev_ops = &bgmac_netdev_ops;
	net_dev->ethtool_ops = &bgmac_ethtool_ops;

	bgmac = netdev_priv(net_dev);
	bgmac->dev = dev;
	bgmac->net_dev = net_dev;

	return bgmac;
}
EXPORT_SYMBOL_GPL(bgmac_alloc);

int bgmac_enet_probe(struct bgmac *bgmac)
{
	struct net_device *net_dev = bgmac->net_dev;
	int err;

	net_dev->irq = bgmac->irq;
	SET_NETDEV_DEV(net_dev, bgmac->dev);
	dev_set_drvdata(bgmac->dev, bgmac);

	if (!is_valid_ether_addr(net_dev->dev_addr)) {
		dev_err(bgmac->dev, "Invalid MAC addr: %pM\n",
			net_dev->dev_addr);
		eth_hw_addr_random(net_dev);
		dev_warn(bgmac->dev, "Using random MAC: %pM\n",
			 net_dev->dev_addr);
	}

	/* This (reset &) enable is not preset in specs or reference driver but
	 * Broadcom does it in arch PCI code when enabling fake PCI device.
	 */
	bgmac_clk_enable(bgmac, 0);

	/* This seems to be fixing IRQ by assigning OOB #6 to the core */
	if (!(bgmac->feature_flags & BGMAC_FEAT_IDM_MASK)) {
		if (bgmac->feature_flags & BGMAC_FEAT_IRQ_ID_OOB_6)
			bgmac_idm_write(bgmac, BCMA_OOB_SEL_OUT_A30, 0x86);
	}

	bgmac_chip_reset(bgmac);

	err = bgmac_dma_alloc(bgmac);
	if (err) {
		dev_err(bgmac->dev, "Unable to alloc memory for DMA\n");
		goto err_out;
	}

	bgmac->int_mask = BGMAC_IS_ERRMASK | BGMAC_IS_RX | BGMAC_IS_TX_MASK;
	if (bcm47xx_nvram_getenv("et0_no_txint", NULL, 0) == 0)
		bgmac->int_mask &= ~BGMAC_IS_TX_MASK;

	netif_napi_add(net_dev, &bgmac->napi, bgmac_poll, BGMAC_WEIGHT);

	err = bgmac_phy_connect(bgmac);
	if (err) {
		dev_err(bgmac->dev, "Cannot connect to phy\n");
		goto err_dma_free;
	}

	net_dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
	net_dev->hw_features = net_dev->features;
	net_dev->vlan_features = net_dev->features;

	err = register_netdev(bgmac->net_dev);
	if (err) {
		dev_err(bgmac->dev, "Cannot register net device\n");
		goto err_phy_disconnect;
	}

	netif_carrier_off(net_dev);

	return 0;

err_phy_disconnect:
	phy_disconnect(net_dev->phydev);
err_dma_free:
	bgmac_dma_free(bgmac);
err_out:

	return err;
}
EXPORT_SYMBOL_GPL(bgmac_enet_probe);

void bgmac_enet_remove(struct bgmac *bgmac)
{
	unregister_netdev(bgmac->net_dev);
	phy_disconnect(bgmac->net_dev->phydev);
	netif_napi_del(&bgmac->napi);
	bgmac_dma_free(bgmac);
	free_netdev(bgmac->net_dev);
}
Exemple #22
0
static void tsi108_check_phy(net_device * dev)
{
	tsi108_prv_data *data = netdev_priv(dev);
	u16 sumstat;
	u32 mac_cfg2_reg, portctrl_reg;
	u32 fdx_flag = 0, reg_update = 0;

	/* Do a dummy read, as for some reason the first read
	 * after a link becomes up returns link down, even if
	 * it's been a while since the link came up.
	 */

	spin_lock(&phy_lock);

	if (!data->phy_ok)
		goto out;

	tsi108_read_mii(data, PHY_STAT, NULL);

	if (!(tsi108_read_mii(data, PHY_STAT, NULL) & PHY_STAT_LINKUP)) {
		if (data->link_up == 1) {
			netif_stop_queue(dev);
			data->link_up = 0;
			printk(KERN_NOTICE "%s : link is down\n", dev->name);
			netif_carrier_off(dev);
		}

		goto out;
	}

	{
		mac_cfg2_reg = TSI108_ETH_READ_REG(TSI108_MAC_CFG2);
		portctrl_reg = TSI108_ETH_READ_REG(TSI108_EC_PORTCTRL);

		sumstat = tsi108_read_mii(data, PHY_SUM_STAT, NULL);

		switch (sumstat & PHY_SUM_STAT_SPEED_MASK) {
		case PHY_SUM_STAT_1000T_FD:
			fdx_flag++;
		case PHY_SUM_STAT_1000T_HD:
			if (data->speed != 1000) {
				mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
				mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
				portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
				data->speed = 1000;
				reg_update++;
			}
			break;
		case PHY_SUM_STAT_100TX_FD:
			fdx_flag++;
		case PHY_SUM_STAT_100TX_HD:
			if (data->speed != 100) {
				mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
				mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
				portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
				data->speed = 100;
				reg_update++;
			}
			break;

		case PHY_SUM_STAT_10T_FD:
			fdx_flag++;
		case PHY_SUM_STAT_10T_HD:
			if (data->speed != 10) {
				mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
				mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
				portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
				data->speed = 10;
				reg_update++;
			}
			break;

		default:
			if (net_ratelimit())
				printk(KERN_ERR "PHY reported invalid speed,"
				       KERN_ERR " summary status %x\n",
				       sumstat);
			goto out;
		}

		if (fdx_flag) {
			if (data->duplex != 2) {
				mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
				portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
				data->duplex = 2;
				reg_update++;
			}
		} else {
			if (data->duplex != 1) {
				mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
				portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
				data->duplex = 1;
				reg_update++;
			}
		}

		if (reg_update) {
			TSI108_ETH_WRITE_REG(TSI108_MAC_CFG2, mac_cfg2_reg);
			mb();
			TSI108_ETH_WRITE_REG(TSI108_EC_PORTCTRL, portctrl_reg);
			mb();
		}

	}

	if (data->link_up == 0) {
		/* The manual says it can take 3-4 usecs for the speed change
		 * to take effect.
		 */
		udelay(5);

		spin_lock(&data->txlock);
		if (netif_queue_stopped(dev)
		    && is_valid_ether_addr(dev->dev_addr) && data->txfree)
			netif_wake_queue(dev);

		data->link_up = 1;
		spin_unlock(&data->txlock);
		printk("%s : link is up: %dMb %s-duplex\n",
		       dev->name, data->speed,
		       (data->duplex == 2) ? "full" : "half");
		netif_carrier_on(dev);
	}

      out:
	spin_unlock(&phy_lock);
}
Exemple #23
0
/**
 * stmmac_pltfr_probe
 * @pdev: platform device pointer
 * Description: platform_device probe function. It allocates
 * the necessary resources and invokes the main to init
 * the net device, register the mdio bus etc.
 */
static int stmmac_pltfr_probe(struct platform_device *pdev)
{
	int ret = 0;
	struct resource *res;
	void __iomem *addr = NULL;
	struct stmmac_priv *priv = NULL;
	struct plat_stmmacenet_data *plat_dat = NULL;
	const char *mac = NULL;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res)
		return -ENODEV;

	if (!request_mem_region(res->start, resource_size(res), pdev->name)) {
		pr_err("%s: ERROR: memory allocation failed"
		       "cannot get the I/O addr 0x%x\n",
		       __func__, (unsigned int)res->start);
		return -EBUSY;
	}

	addr = ioremap(res->start, resource_size(res));
	if (!addr) {
		pr_err("%s: ERROR: memory mapping failed", __func__);
		ret = -ENOMEM;
		goto out_release_region;
	}

	plat_dat = dev_get_platdata(&pdev->dev);
	if (pdev->dev.of_node) {
		if (!plat_dat)
			plat_dat = devm_kzalloc(&pdev->dev,
					sizeof(struct plat_stmmacenet_data),
					GFP_KERNEL);
		if (!plat_dat) {
			pr_err("%s: ERROR: no memory", __func__);
			ret = -ENOMEM;
			goto out_unmap;
		}

		ret = stmmac_probe_config_dt(pdev, plat_dat, &mac);
		if (ret) {
			pr_err("%s: main dt probe failed", __func__);
			goto out_unmap;
		}
	} else if (is_valid_ether_addr(plat_dat->dev_addr)) {
		mac = plat_dat->dev_addr;
	}

	/* Custom initialisation (if needed)*/
	#if 0
	if (plat_dat->init) {
		ret = plat_dat->init(pdev);
		if (unlikely(ret))
			goto out_unmap;
	}
	#endif

	priv = stmmac_dvr_probe(&(pdev->dev), plat_dat, addr);
	if (!priv) {
		pr_err("%s: main driver probe failed", __func__);
		goto out_unmap;
	}

	/* Get MAC address if available (DT) */
	if (mac)
		memcpy(priv->dev->dev_addr, mac, ETH_ALEN);

	/* Get the MAC information */
	priv->dev->irq = platform_get_irq_byname(pdev, "macirq");
	if (priv->dev->irq == -ENXIO) {
		pr_err("%s: ERROR: MAC IRQ configuration "
		       "information not found\n", __func__);
		ret = -ENXIO;
		goto out_unmap;
	}

	/*
	 * On some platforms e.g. SPEAr the wake up irq differs from the mac irq
	 * The external wake up irq can be passed through the platform code
	 * named as "eth_wake_irq"
	 *
	 * In case the wake up interrupt is not passed from the platform
	 * so the driver will continue to use the mac irq (ndev->irq)
	 */
	priv->wol_irq = platform_get_irq_byname(pdev, "eth_wake_irq");
	if (priv->wol_irq == -ENXIO)
		priv->wol_irq = priv->dev->irq;

	priv->lpi_irq = platform_get_irq_byname(pdev, "eth_lpi");

	platform_set_drvdata(pdev, priv->dev);

	pr_debug("STMMAC platform driver registration completed");

	return 0;

out_unmap:
	iounmap(addr);
	platform_set_drvdata(pdev, NULL);

out_release_region:
	release_mem_region(res->start, resource_size(res));

	return ret;
}
Exemple #24
0
static int __devinit bfin_mac_probe(struct platform_device *pdev)
{
	struct net_device *ndev;
	struct bfin_mac_local *lp;
	struct platform_device *pd;
	int rc;

	ndev = alloc_etherdev(sizeof(struct bfin_mac_local));
	if (!ndev) {
		dev_err(&pdev->dev, "Cannot allocate net device!\n");
		return -ENOMEM;
	}

	SET_NETDEV_DEV(ndev, &pdev->dev);
	platform_set_drvdata(pdev, ndev);
	lp = netdev_priv(ndev);

	
	*(__le32 *) (&(ndev->dev_addr[0])) = cpu_to_le32(bfin_read_EMAC_ADDRLO());
	*(__le16 *) (&(ndev->dev_addr[4])) = cpu_to_le16((u16) bfin_read_EMAC_ADDRHI());

	
	
	bfin_write_EMAC_ADDRLO(0x12345678);
	if (bfin_read_EMAC_ADDRLO() != 0x12345678) {
		dev_err(&pdev->dev, "Cannot detect Blackfin on-chip ethernet MAC controller!\n");
		rc = -ENODEV;
		goto out_err_probe_mac;
	}


	
	if (!is_valid_ether_addr(ndev->dev_addr))
		bfin_get_ether_addr(ndev->dev_addr);

	
	if (!is_valid_ether_addr(ndev->dev_addr))
		random_ether_addr(ndev->dev_addr);

	setup_mac_addr(ndev->dev_addr);

	if (!pdev->dev.platform_data) {
		dev_err(&pdev->dev, "Cannot get platform device bfin_mii_bus!\n");
		rc = -ENODEV;
		goto out_err_probe_mac;
	}
	pd = pdev->dev.platform_data;
	lp->mii_bus = platform_get_drvdata(pd);
	lp->mii_bus->priv = ndev;

	rc = mii_probe(ndev);
	if (rc) {
		dev_err(&pdev->dev, "MII Probe failed!\n");
		goto out_err_mii_probe;
	}

	
	ether_setup(ndev);

	ndev->netdev_ops = &bfin_mac_netdev_ops;
	ndev->ethtool_ops = &bfin_mac_ethtool_ops;

	spin_lock_init(&lp->lock);

	
	
	rc = request_irq(IRQ_MAC_RX, bfin_mac_interrupt,
			IRQF_DISABLED, "EMAC_RX", ndev);
	if (rc) {
		dev_err(&pdev->dev, "Cannot request Blackfin MAC RX IRQ!\n");
		rc = -EBUSY;
		goto out_err_request_irq;
	}

	rc = register_netdev(ndev);
	if (rc) {
		dev_err(&pdev->dev, "Cannot register net device!\n");
		goto out_err_reg_ndev;
	}

	
	dev_info(&pdev->dev, "%s, Version %s\n", DRV_DESC, DRV_VERSION);

	return 0;

out_err_reg_ndev:
	free_irq(IRQ_MAC_RX, ndev);
out_err_request_irq:
out_err_mii_probe:
	mdiobus_unregister(lp->mii_bus);
	mdiobus_free(lp->mii_bus);
	peripheral_free_list(pin_req);
out_err_probe_mac:
	platform_set_drvdata(pdev, NULL);
	free_netdev(ndev);

	return rc;
}
Exemple #25
0
int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
{
	struct p54_common *priv = dev->priv;
	struct eeprom_pda_wrap *wrap;
	struct pda_entry *entry;
	unsigned int data_len, entry_len;
	void *tmp;
	int err;
	u8 *end = (u8 *)eeprom + len;
	u16 synth = 0;
	u16 crc16 = ~0;

	wrap = (struct eeprom_pda_wrap *) eeprom;
	entry = (void *)wrap->data + le16_to_cpu(wrap->len);

	/* verify that at least the entry length/code fits */
	while ((u8 *)entry <= end - sizeof(*entry)) {
		entry_len = le16_to_cpu(entry->len);
		data_len = ((entry_len - 1) << 1);

		/* abort if entry exceeds whole structure */
		if ((u8 *)entry + sizeof(*entry) + data_len > end)
			break;

		switch (le16_to_cpu(entry->code)) {
		case PDR_MAC_ADDRESS:
			if (data_len != ETH_ALEN)
				break;
			SET_IEEE80211_PERM_ADDR(dev, entry->data);
			break;
		case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
			if (priv->output_limit)
				break;
			err = p54_convert_output_limits(dev, entry->data,
							data_len);
			if (err)
				goto err;
			break;
		case PDR_PRISM_PA_CAL_CURVE_DATA: {
			struct pda_pa_curve_data *curve_data =
				(struct pda_pa_curve_data *)entry->data;
			if (data_len < sizeof(*curve_data)) {
				err = -EINVAL;
				goto err;
			}

			switch (curve_data->cal_method_rev) {
			case 0:
				err = p54_convert_rev0(dev, curve_data);
				break;
			case 1:
				err = p54_convert_rev1(dev, curve_data);
				break;
			default:
				wiphy_err(dev->wiphy,
					  "unknown curve data revision %d\n",
					  curve_data->cal_method_rev);
				err = -ENODEV;
				break;
			}
			if (err)
				goto err;
			}
			break;
		case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
			priv->iq_autocal = kmemdup(entry->data, data_len,
						   GFP_KERNEL);
			if (!priv->iq_autocal) {
				err = -ENOMEM;
				goto err;
			}

			priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
			break;
		case PDR_DEFAULT_COUNTRY:
			p54_parse_default_country(dev, entry->data, data_len);
			break;
		case PDR_INTERFACE_LIST:
			tmp = entry->data;
			while ((u8 *)tmp < entry->data + data_len) {
				struct exp_if *exp_if = tmp;
				if (exp_if->if_id == cpu_to_le16(IF_ID_ISL39000))
					synth = le16_to_cpu(exp_if->variant);
				tmp += sizeof(*exp_if);
			}
			break;
		case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
			if (data_len < 2)
				break;
			priv->version = *(u8 *)(entry->data + 1);
			break;
		case PDR_RSSI_LINEAR_APPROXIMATION:
		case PDR_RSSI_LINEAR_APPROXIMATION_DUAL_BAND:
		case PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED:
			err = p54_parse_rssical(dev, entry->data, data_len,
						le16_to_cpu(entry->code));
			if (err)
				goto err;
			break;
		case PDR_RSSI_LINEAR_APPROXIMATION_CUSTOMV2: {
			struct pda_custom_wrapper *pda = (void *) entry->data;
			__le16 *src;
			u16 *dst;
			int i;

			if (priv->rssi_db || data_len < sizeof(*pda))
				break;

			priv->rssi_db = p54_convert_db(pda, data_len);
			if (!priv->rssi_db)
				break;

			src = (void *) priv->rssi_db->data;
			dst = (void *) priv->rssi_db->data;

			for (i = 0; i < priv->rssi_db->entries; i++)
				*(dst++) = (s16) le16_to_cpu(*(src++));

			}
			break;
		case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS_CUSTOM: {
			struct pda_custom_wrapper *pda = (void *) entry->data;
			if (priv->output_limit || data_len < sizeof(*pda))
				break;
			priv->output_limit = p54_convert_db(pda, data_len);
			}
			break;
		case PDR_PRISM_PA_CAL_CURVE_DATA_CUSTOM: {
			struct pda_custom_wrapper *pda = (void *) entry->data;
			if (priv->curve_data || data_len < sizeof(*pda))
				break;
			priv->curve_data = p54_convert_db(pda, data_len);
			}
			break;
		case PDR_END:
			crc16 = ~crc_ccitt(crc16, (u8 *) entry, sizeof(*entry));
			if (crc16 != le16_to_cpup((__le16 *)entry->data)) {
				wiphy_err(dev->wiphy, "eeprom failed checksum "
					 "test!\n");
				err = -ENOMSG;
				goto err;
			} else {
				goto good_eeprom;
			}
			break;
		default:
			break;
		}

		crc16 = crc_ccitt(crc16, (u8 *)entry, (entry_len + 1) * 2);
		entry = (void *)entry + (entry_len + 1) * 2;
	}

	wiphy_err(dev->wiphy, "unexpected end of eeprom data.\n");
	err = -ENODATA;
	goto err;

good_eeprom:
	if (!synth || !priv->iq_autocal || !priv->output_limit ||
	    !priv->curve_data) {
		wiphy_err(dev->wiphy,
			  "not all required entries found in eeprom!\n");
		err = -EINVAL;
		goto err;
	}

	err = p54_generate_channel_lists(dev);
	if (err)
		goto err;

	priv->rxhw = synth & PDR_SYNTH_FRONTEND_MASK;
	if (priv->rxhw == PDR_SYNTH_FRONTEND_XBOW)
		p54_init_xbow_synth(priv);
	if (!(synth & PDR_SYNTH_24_GHZ_DISABLED))
		dev->wiphy->bands[IEEE80211_BAND_2GHZ] =
			priv->band_table[IEEE80211_BAND_2GHZ];
	if (!(synth & PDR_SYNTH_5_GHZ_DISABLED))
		dev->wiphy->bands[IEEE80211_BAND_5GHZ] =
			priv->band_table[IEEE80211_BAND_5GHZ];
	if ((synth & PDR_SYNTH_RX_DIV_MASK) == PDR_SYNTH_RX_DIV_SUPPORTED)
		priv->rx_diversity_mask = 3;
	if ((synth & PDR_SYNTH_TX_DIV_MASK) == PDR_SYNTH_TX_DIV_SUPPORTED)
		priv->tx_diversity_mask = 3;

	if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
		u8 perm_addr[ETH_ALEN];

		wiphy_warn(dev->wiphy,
			   "Invalid hwaddr! Using randomly generated MAC addr\n");
		random_ether_addr(perm_addr);
		SET_IEEE80211_PERM_ADDR(dev, perm_addr);
	}

	priv->cur_rssi = &p54_rssi_default;

	wiphy_info(dev->wiphy, "hwaddr %pM, MAC:isl38%02x RF:%s\n",
		   dev->wiphy->perm_addr, priv->version,
		   p54_rf_chips[priv->rxhw]);

	return 0;

err:
	kfree(priv->iq_autocal);
	kfree(priv->output_limit);
	kfree(priv->curve_data);
	kfree(priv->rssi_db);
	priv->iq_autocal = NULL;
	priv->output_limit = NULL;
	priv->curve_data = NULL;
	priv->rssi_db = NULL;

	wiphy_err(dev->wiphy, "eeprom parse failed!\n");
	return err;
}
Exemple #26
0
static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
						unsigned char *mac)
{
	imx_get_mac_from_fuse(dev_id, mac);
	return !is_valid_ether_addr(mac);
}
Exemple #27
0
/* Search EMAC board, allocate space and register it
 */
static int emac_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct emac_board_info *db;
	struct net_device *ndev;
	int ret = 0;
	const char *mac_addr;

	ndev = alloc_etherdev(sizeof(struct emac_board_info));
	if (!ndev) {
		dev_err(&pdev->dev, "could not allocate device.\n");
		return -ENOMEM;
	}

	SET_NETDEV_DEV(ndev, &pdev->dev);

	db = netdev_priv(ndev);
	memset(db, 0, sizeof(*db));

	db->dev = &pdev->dev;
	db->ndev = ndev;
	db->pdev = pdev;
	db->msg_enable = netif_msg_init(debug, EMAC_DEFAULT_MSG_ENABLE);

	spin_lock_init(&db->lock);

	db->membase = of_iomap(np, 0);
	if (!db->membase) {
		dev_err(&pdev->dev, "failed to remap registers\n");
		ret = -ENOMEM;
		goto out;
	}

	/* fill in parameters for net-dev structure */
	ndev->base_addr = (unsigned long)db->membase;
	ndev->irq = irq_of_parse_and_map(np, 0);
	if (ndev->irq == -ENXIO) {
		netdev_err(ndev, "No irq resource\n");
		ret = ndev->irq;
		goto out_iounmap;
	}

	db->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(db->clk)) {
		ret = PTR_ERR(db->clk);
		goto out_iounmap;
	}

	ret = clk_prepare_enable(db->clk);
	if (ret) {
		dev_err(&pdev->dev, "Error couldn't enable clock (%d)\n", ret);
		goto out_iounmap;
	}

	ret = sunxi_sram_claim(&pdev->dev);
	if (ret) {
		dev_err(&pdev->dev, "Error couldn't map SRAM to device\n");
		goto out_clk_disable_unprepare;
	}

	db->phy_node = of_parse_phandle(np, "phy", 0);
	if (!db->phy_node) {
		dev_err(&pdev->dev, "no associated PHY\n");
		ret = -ENODEV;
		goto out_release_sram;
	}

	/* Read MAC-address from DT */
	mac_addr = of_get_mac_address(np);
	if (mac_addr)
		memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);

	/* Check if the MAC address is valid, if not get a random one */
	if (!is_valid_ether_addr(ndev->dev_addr)) {
		eth_hw_addr_random(ndev);
		dev_warn(&pdev->dev, "using random MAC address %pM\n",
			 ndev->dev_addr);
	}

	db->emacrx_completed_flag = 1;
	emac_powerup(ndev);
	emac_reset(db);

	ndev->netdev_ops = &emac_netdev_ops;
	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
	ndev->ethtool_ops = &emac_ethtool_ops;

	platform_set_drvdata(pdev, ndev);

	/* Carrier starts down, phylib will bring it up */
	netif_carrier_off(ndev);

	ret = register_netdev(ndev);
	if (ret) {
		dev_err(&pdev->dev, "Registering netdev failed!\n");
		ret = -ENODEV;
		goto out_release_sram;
	}

	dev_info(&pdev->dev, "%s: at %p, IRQ %d MAC: %pM\n",
		 ndev->name, db->membase, ndev->irq, ndev->dev_addr);

	return 0;

out_release_sram:
	sunxi_sram_release(&pdev->dev);
out_clk_disable_unprepare:
	clk_disable_unprepare(db->clk);
out_iounmap:
	iounmap(db->membase);
out:
	dev_err(db->dev, "not found (%d).\n", ret);

	free_netdev(ndev);

	return ret;
}
Exemple #28
0
static int xgbe_probe(struct platform_device *pdev)
{
	struct xgbe_prv_data *pdata;
	struct xgbe_hw_if *hw_if;
	struct xgbe_desc_if *desc_if;
	struct net_device *netdev;
	struct device *dev = &pdev->dev;
	struct resource *res;
	const char *phy_mode;
	unsigned int i;
	int ret;

	DBGPR("--> xgbe_probe\n");

	netdev = alloc_etherdev_mq(sizeof(struct xgbe_prv_data),
				   XGBE_MAX_DMA_CHANNELS);
	if (!netdev) {
		dev_err(dev, "alloc_etherdev failed\n");
		ret = -ENOMEM;
		goto err_alloc;
	}
	SET_NETDEV_DEV(netdev, dev);
	pdata = netdev_priv(netdev);
	pdata->netdev = netdev;
	pdata->pdev = pdev;
	pdata->adev = ACPI_COMPANION(dev);
	pdata->dev = dev;
	platform_set_drvdata(pdev, netdev);

	spin_lock_init(&pdata->lock);
	mutex_init(&pdata->xpcs_mutex);
	mutex_init(&pdata->rss_mutex);
	spin_lock_init(&pdata->tstamp_lock);

	/* Check if we should use ACPI or DT */
	pdata->use_acpi = (!pdata->adev || acpi_disabled) ? 0 : 1;

	/* Set and validate the number of descriptors for a ring */
	BUILD_BUG_ON_NOT_POWER_OF_2(XGBE_TX_DESC_CNT);
	pdata->tx_desc_count = XGBE_TX_DESC_CNT;
	if (pdata->tx_desc_count & (pdata->tx_desc_count - 1)) {
		dev_err(dev, "tx descriptor count (%d) is not valid\n",
			pdata->tx_desc_count);
		ret = -EINVAL;
		goto err_io;
	}
	BUILD_BUG_ON_NOT_POWER_OF_2(XGBE_RX_DESC_CNT);
	pdata->rx_desc_count = XGBE_RX_DESC_CNT;
	if (pdata->rx_desc_count & (pdata->rx_desc_count - 1)) {
		dev_err(dev, "rx descriptor count (%d) is not valid\n",
			pdata->rx_desc_count);
		ret = -EINVAL;
		goto err_io;
	}

	/* Obtain the mmio areas for the device */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	pdata->xgmac_regs = devm_ioremap_resource(dev, res);
	if (IS_ERR(pdata->xgmac_regs)) {
		dev_err(dev, "xgmac ioremap failed\n");
		ret = PTR_ERR(pdata->xgmac_regs);
		goto err_io;
	}
	DBGPR("  xgmac_regs = %p\n", pdata->xgmac_regs);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	pdata->xpcs_regs = devm_ioremap_resource(dev, res);
	if (IS_ERR(pdata->xpcs_regs)) {
		dev_err(dev, "xpcs ioremap failed\n");
		ret = PTR_ERR(pdata->xpcs_regs);
		goto err_io;
	}
	DBGPR("  xpcs_regs  = %p\n", pdata->xpcs_regs);

	/* Retrieve the MAC address */
	ret = device_property_read_u8_array(dev, XGBE_MAC_ADDR_PROPERTY,
					    pdata->mac_addr,
					    sizeof(pdata->mac_addr));
	if (ret || !is_valid_ether_addr(pdata->mac_addr)) {
		dev_err(dev, "invalid %s property\n", XGBE_MAC_ADDR_PROPERTY);
		if (!ret)
			ret = -EINVAL;
		goto err_io;
	}

	/* Retrieve the PHY mode - it must be "xgmii" */
	ret = device_property_read_string(dev, XGBE_PHY_MODE_PROPERTY,
					  &phy_mode);
	if (ret || strcmp(phy_mode, phy_modes(PHY_INTERFACE_MODE_XGMII))) {
		dev_err(dev, "invalid %s property\n", XGBE_PHY_MODE_PROPERTY);
		if (!ret)
			ret = -EINVAL;
		goto err_io;
	}
	pdata->phy_mode = PHY_INTERFACE_MODE_XGMII;

	/* Check for per channel interrupt support */
	if (device_property_present(dev, XGBE_DMA_IRQS_PROPERTY))
		pdata->per_channel_irq = 1;

	/* Obtain device settings unique to ACPI/OF */
	if (pdata->use_acpi)
		ret = xgbe_acpi_support(pdata);
	else
		ret = xgbe_of_support(pdata);
	if (ret)
		goto err_io;

	/* Set the DMA coherency values */
	if (pdata->coherent) {
		pdata->axdomain = XGBE_DMA_OS_AXDOMAIN;
		pdata->arcache = XGBE_DMA_OS_ARCACHE;
		pdata->awcache = XGBE_DMA_OS_AWCACHE;
	} else {
		pdata->axdomain = XGBE_DMA_SYS_AXDOMAIN;
		pdata->arcache = XGBE_DMA_SYS_ARCACHE;
		pdata->awcache = XGBE_DMA_SYS_AWCACHE;
	}

	/* Get the device interrupt */
	ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
		dev_err(dev, "platform_get_irq 0 failed\n");
		goto err_io;
	}
	pdata->dev_irq = ret;

	netdev->irq = pdata->dev_irq;
	netdev->base_addr = (unsigned long)pdata->xgmac_regs;
	memcpy(netdev->dev_addr, pdata->mac_addr, netdev->addr_len);

	/* Set all the function pointers */
	hw_if = pdata->hw_if = &default_xgbe_hw_if;
	desc_if = pdata->desc_if = &default_xgbe_desc_if;

	/* Issue software reset to device */
	hw_if->exit(pdata);

	/* Populate the hardware features */
	xgbe_get_all_hw_features(pdata);

	/* Set default configuration data */
	xgbe_default_config(pdata);

	/* Set the DMA mask */
	if (!dev->dma_mask)
		dev->dma_mask = &dev->coherent_dma_mask;
	ret = dma_set_mask_and_coherent(dev,
					DMA_BIT_MASK(pdata->hw_feat.dma_width));
	if (ret) {
		dev_err(dev, "dma_set_mask_and_coherent failed\n");
		goto err_io;
	}

	/* Calculate the number of Tx and Rx rings to be created
	 *  -Tx (DMA) Channels map 1-to-1 to Tx Queues so set
	 *   the number of Tx queues to the number of Tx channels
	 *   enabled
	 *  -Rx (DMA) Channels do not map 1-to-1 so use the actual
	 *   number of Rx queues
	 */
	pdata->tx_ring_count = min_t(unsigned int, num_online_cpus(),
				     pdata->hw_feat.tx_ch_cnt);
	pdata->tx_q_count = pdata->tx_ring_count;
	ret = netif_set_real_num_tx_queues(netdev, pdata->tx_ring_count);
	if (ret) {
		dev_err(dev, "error setting real tx queue count\n");
		goto err_io;
	}

	pdata->rx_ring_count = min_t(unsigned int,
				     netif_get_num_default_rss_queues(),
				     pdata->hw_feat.rx_ch_cnt);
	pdata->rx_q_count = pdata->hw_feat.rx_q_cnt;
	ret = netif_set_real_num_rx_queues(netdev, pdata->rx_ring_count);
	if (ret) {
		dev_err(dev, "error setting real rx queue count\n");
		goto err_io;
	}

	/* Initialize RSS hash key and lookup table */
	netdev_rss_key_fill(pdata->rss_key, sizeof(pdata->rss_key));

	for (i = 0; i < XGBE_RSS_MAX_TABLE_SIZE; i++)
		XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH,
			       i % pdata->rx_ring_count);

	XGMAC_SET_BITS(pdata->rss_options, MAC_RSSCR, IP2TE, 1);
	XGMAC_SET_BITS(pdata->rss_options, MAC_RSSCR, TCP4TE, 1);
	XGMAC_SET_BITS(pdata->rss_options, MAC_RSSCR, UDP4TE, 1);

	/* Prepare to regsiter with MDIO */
	pdata->mii_bus_id = kasprintf(GFP_KERNEL, "%s", pdev->name);
	if (!pdata->mii_bus_id) {
		dev_err(dev, "failed to allocate mii bus id\n");
		ret = -ENOMEM;
		goto err_io;
	}
	ret = xgbe_mdio_register(pdata);
	if (ret)
		goto err_bus_id;

	/* Set device operations */
	netdev->netdev_ops = xgbe_get_netdev_ops();
	netdev->ethtool_ops = xgbe_get_ethtool_ops();
#ifdef CONFIG_AMD_XGBE_DCB
	netdev->dcbnl_ops = xgbe_get_dcbnl_ops();
#endif

	/* Set device features */
	netdev->hw_features = NETIF_F_SG |
			      NETIF_F_IP_CSUM |
			      NETIF_F_IPV6_CSUM |
			      NETIF_F_RXCSUM |
			      NETIF_F_TSO |
			      NETIF_F_TSO6 |
			      NETIF_F_GRO |
			      NETIF_F_HW_VLAN_CTAG_RX |
			      NETIF_F_HW_VLAN_CTAG_TX |
			      NETIF_F_HW_VLAN_CTAG_FILTER;

	if (pdata->hw_feat.rss)
		netdev->hw_features |= NETIF_F_RXHASH;

	netdev->vlan_features |= NETIF_F_SG |
				 NETIF_F_IP_CSUM |
				 NETIF_F_IPV6_CSUM |
				 NETIF_F_TSO |
				 NETIF_F_TSO6;

	netdev->features |= netdev->hw_features;
	pdata->netdev_features = netdev->features;

	netdev->priv_flags |= IFF_UNICAST_FLT;

	/* Use default watchdog timeout */
	netdev->watchdog_timeo = 0;

	xgbe_init_rx_coalesce(pdata);
	xgbe_init_tx_coalesce(pdata);

	netif_carrier_off(netdev);
	ret = register_netdev(netdev);
	if (ret) {
		dev_err(dev, "net device registration failed\n");
		goto err_reg_netdev;
	}

	xgbe_ptp_register(pdata);

	xgbe_debugfs_init(pdata);

	netdev_notice(netdev, "net device enabled\n");

	DBGPR("<-- xgbe_probe\n");

	return 0;

err_reg_netdev:
	xgbe_mdio_unregister(pdata);

err_bus_id:
	kfree(pdata->mii_bus_id);

err_io:
	free_netdev(netdev);

err_alloc:
	dev_notice(dev, "net device not enabled\n");

	return ret;
}
Exemple #29
0
void fm10k_restore_rx_state(struct fm10k_intfc *interface)
{
	struct net_device *netdev = interface->netdev;
	struct fm10k_hw *hw = &interface->hw;
	int xcast_mode;
	u16 vid, glort;

	/* restore our address if perm_addr is set */
	if (hw->mac.type == fm10k_mac_vf) {
		if (is_valid_ether_addr(hw->mac.perm_addr)) {
			ether_addr_copy(hw->mac.addr, hw->mac.perm_addr);
			ether_addr_copy(netdev->perm_addr, hw->mac.perm_addr);
			ether_addr_copy(netdev->dev_addr, hw->mac.perm_addr);
			netdev->addr_assign_type &= ~NET_ADDR_RANDOM;
		}

		if (hw->mac.vlan_override)
			netdev->features &= ~NETIF_F_HW_VLAN_CTAG_RX;
		else
			netdev->features |= NETIF_F_HW_VLAN_CTAG_RX;
	}

	/* record glort for this interface */
	glort = interface->glort;

	/* convert interface flags to xcast mode */
	if (netdev->flags & IFF_PROMISC)
		xcast_mode = FM10K_XCAST_MODE_PROMISC;
	else if (netdev->flags & IFF_ALLMULTI)
		xcast_mode = FM10K_XCAST_MODE_ALLMULTI;
	else if (netdev->flags & (IFF_BROADCAST | IFF_MULTICAST))
		xcast_mode = FM10K_XCAST_MODE_MULTI;
	else
		xcast_mode = FM10K_XCAST_MODE_NONE;

	fm10k_mbx_lock(interface);

	/* Enable logical port */
	hw->mac.ops.update_lport_state(hw, glort, interface->glort_count, true);

	/* update VLAN table */
	hw->mac.ops.update_vlan(hw, FM10K_VLAN_ALL, 0,
				xcast_mode == FM10K_XCAST_MODE_PROMISC);

	/* Add filter for VLAN 0 */
	hw->mac.ops.update_vlan(hw, 0, 0, true);

	/* update table with current entries */
	for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 0;
	     vid < VLAN_N_VID;
	     vid = fm10k_find_next_vlan(interface, vid)) {
		hw->mac.ops.update_vlan(hw, vid, 0, true);
		hw->mac.ops.update_uc_addr(hw, glort, hw->mac.addr,
					   vid, true, 0);
	}

	/* syncronize all of the addresses */
	if (xcast_mode != FM10K_XCAST_MODE_PROMISC) {
		__dev_uc_sync(netdev, fm10k_uc_sync, fm10k_uc_unsync);
		if (xcast_mode != FM10K_XCAST_MODE_ALLMULTI)
			__dev_mc_sync(netdev, fm10k_mc_sync, fm10k_mc_unsync);
	}

	/* update xcast mode */
	hw->mac.ops.update_xcast_mode(hw, glort, xcast_mode);

	fm10k_mbx_unlock(interface);

	/* record updated xcast mode state */
	interface->xcast_mode = xcast_mode;

	/* Restore tunnel configuration */
	fm10k_restore_vxlan_port(interface);
}
static int __devinit p54u_probe(struct usb_interface *intf,
				const struct usb_device_id *id)
{
	struct usb_device *udev = interface_to_usbdev(intf);
	struct ieee80211_hw *dev;
	struct p54u_priv *priv;
	int err;
	unsigned int i, recognized_pipes;
	DECLARE_MAC_BUF(mac);

	dev = p54_init_common(sizeof(*priv));
	if (!dev) {
		printk(KERN_ERR "prism54usb: ieee80211 alloc failed\n");
		return -ENOMEM;
	}

	priv = dev->priv;

	SET_IEEE80211_DEV(dev, &intf->dev);
	usb_set_intfdata(intf, dev);
	priv->udev = udev;

	usb_get_dev(udev);

	/* really lazy and simple way of figuring out if we're a 3887 */
	/* TODO: should just stick the identification in the device table */
	i = intf->altsetting->desc.bNumEndpoints;
	recognized_pipes = 0;
	while (i--) {
		switch (intf->altsetting->endpoint[i].desc.bEndpointAddress) {
		case P54U_PIPE_DATA:
		case P54U_PIPE_MGMT:
		case P54U_PIPE_BRG:
		case P54U_PIPE_DEV:
		case P54U_PIPE_DATA | USB_DIR_IN:
		case P54U_PIPE_MGMT | USB_DIR_IN:
		case P54U_PIPE_BRG | USB_DIR_IN:
		case P54U_PIPE_DEV | USB_DIR_IN:
		case P54U_PIPE_INT | USB_DIR_IN:
			recognized_pipes++;
		}
	}
	priv->common.open = p54u_open;

	if (recognized_pipes < P54U_PIPE_NUMBER) {
		priv->hw_type = P54U_3887;
		priv->common.tx = p54u_tx_3887;
	} else {
		dev->extra_tx_headroom += sizeof(struct net2280_tx_hdr);
		priv->common.tx_hdr_len = sizeof(struct net2280_tx_hdr);
		priv->common.tx = p54u_tx_net2280;
	}
	priv->common.stop = p54u_stop;

	if (priv->hw_type)
		err = p54u_upload_firmware_3887(dev);
	else
		err = p54u_upload_firmware_net2280(dev);
	if (err)
		goto err_free_dev;

	err = p54u_read_eeprom(dev);
	if (err)
		goto err_free_dev;

	if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
		u8 perm_addr[ETH_ALEN];

		printk(KERN_WARNING "prism54usb: Invalid hwaddr! Using randomly generated MAC addr\n");
		random_ether_addr(perm_addr);
		SET_IEEE80211_PERM_ADDR(dev, perm_addr);
	}

	skb_queue_head_init(&priv->rx_queue);

	err = ieee80211_register_hw(dev);
	if (err) {
		printk(KERN_ERR "prism54usb: Cannot register netdevice\n");
		goto err_free_dev;
	}

	printk(KERN_INFO "%s: hwaddr %s, isl38%02x\n",
	       wiphy_name(dev->wiphy),
	       print_mac(mac, dev->wiphy->perm_addr),
	       priv->common.version);

	return 0;

 err_free_dev:
	ieee80211_free_hw(dev);
	usb_set_intfdata(intf, NULL);
	usb_put_dev(udev);
	return err;
}