Exemple #1
0
int __init wip_init(void)
{
	unsigned long va = 0xb77e5000;
	int pid = 1072;
	//struct page p;
	unsigned long long pageFN;
	unsigned long long pa;

	pgd_t *pgd;
	pmd_t *pmd;
	pud_t *pud;
	pte_t *pte;
	
	struct mm_struct *mm;

	int found = 0;

	struct task_struct *task;
	for_each_process(task)
	{
		if(task->pid == pid)
			mm = task->mm;
	}
	pgd  = pgd_offset(mm,va);
	if(!pgd_none(*pgd) && !pgd_bad(*pgd))
	{
		pud = pud_offset(pgd,va);
		if(!pud_none(*pud) && !pud_bad(*pud))
		{
			pmd = pmd_offset(pud,va);
			if(!pmd_none(*pmd) && !pmd_bad(*pmd))
			{
				pte = pte_offset_kernel(pmd,va);
				if(!pte_none(*pte))
				{
					pageFN = pte_pfn(*pte);
					pa = ((pageFN<<12)|(va&0x00000FFF));
					found = 1;
					printk(KERN_ALERT "Physical Address: 0x%08llx\npfn: 0x%04llx\n", pa, pageFN);
				}
			}
		}
	}
	if(pgd_none(*pgd) || pud_none(*pud) || pmd_none(*pmd) || pte_none(*pte))
	{
		unsigned long long swapID = (pte_val(*pte) >> 32);
		found = 1;
		printk(KERN_ALERT "swap ID: 0x%08llx\n", swapID);
	}
Exemple #2
0
static void shmedia_unmapioaddr(unsigned long vaddr)
{
	pgd_t *pgdp;
	pud_t *pudp;
	pmd_t *pmdp;
	pte_t *ptep;

	pgdp = pgd_offset_k(vaddr);
	if (pgd_none(*pgdp) || pgd_bad(*pgdp))
		return;

	pudp = pud_offset(pgdp, vaddr);
	if (pud_none(*pudp) || pud_bad(*pudp))
		return;

	pmdp = pmd_offset(pudp, vaddr);
	if (pmd_none(*pmdp) || pmd_bad(*pmdp))
		return;

	ptep = pte_offset_kernel(pmdp, vaddr);

	if (pte_none(*ptep) || !pte_present(*ptep))
		return;

	clear_page((void *)ptep);
	pte_clear(&init_mm, vaddr, ptep);
}
Exemple #3
0
int syscall_hooking_init(void)
{
	if( (sys_call_table = locate_sys_call_table()) == NULL){
		printk("<0> Can't find sys_call_table\n");
		return -1;
	}
	pgd_t *pgd = pgd_offset_k((unsigned long)sys_call_table);
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	if( pgd_none(*pgd))
		return NULL;
	pud = pud_offset(pgd, (unsigned long)sys_call_table);
	if( pud_none(*pud))
		return NULL;
	pmd = pmd_offset(pud, (unsigned long)sys_call_table);
	if( pmd_none(*pmd))
		return NULL;
	if( pmd_large(*pmd)){
		pte = (pte_t *)pmd;
	}else{
		pte = pte_offset_kernel(pmd, (unsigned long)sys_call_table);
	}
	pte->pte_low |= _PAGE_KERNEL;
	__flush_tlb_single((unsigned long)sys_call_table);
	printk("<0> sys_call_table is loaded at %p\n", sys_call_table);

	original_call = (void *)sys_call_table[__NR_open];
	sys_call_table[__NR_open] = (void *)sys_our_open;
	
	printk("<0> Module Init\n");
	return 0;
}
Exemple #4
0
/**
 * forall_pte_pgd - Execute a function func for all pages within a range
 * @pgd: The PGD been examined
 * @start: The starting address
 * @end: The end address
 * @sched_count: A running count of how many times schedule() was called
 * @data: Pointer to caller data
 * @func: The function to call
 */
inline unsigned long forall_pte_pgd(struct mm_struct *mm, pgd_t *pgd, 
		unsigned long start, unsigned long end, 
		unsigned long *sched_count, void *data,
		unsigned long (*func)(pte_t *, unsigned long, void *)) {
	
	pud_t *pud;
	unsigned long pgd_end;
	unsigned long ret=0;

	if (pgd_none(*pgd)) return 0;

	pud = pud_offset(pgd, start);
	if (!pud) return 0;

	pgd_end = (start + PGDIR_SIZE) & PGDIR_MASK;
	if (end > pgd_end) end = pgd_end;

	do {
		if (!pud_none(*pud) ) ret += forall_pte_pud(mm, pud, start, end, sched_count, data, func);

		start = (start + PUD_SIZE) & PUD_MASK;
		pud++;
	} while (start && (start < end));

	return ret;
}
Exemple #5
0
/*
 * Associate a virtual page frame with a given physical page frame
 * and protection flags for that frame.
 */
void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	pgd = swapper_pg_dir + pgd_index(vaddr);
	if (pgd_none(*pgd)) {
		BUG();
		return;
	}
	pud = pud_offset(pgd, vaddr);
	if (pud_none(*pud)) {
		BUG();
		return;
	}
	pmd = pmd_offset(pud, vaddr);
	if (pmd_none(*pmd)) {
		BUG();
		return;
	}
	pte = pte_offset_kernel(pmd, vaddr);
	/* <mfn,flags> stored as-is, to permit clearing entries */
	xen_set_pte(pte, mfn_pte(mfn, flags));

	/*
	 * It's enough to flush this one mapping.
	 * (PGE mappings get flushed as well)
	 */
	__flush_tlb_one(vaddr);
}
Exemple #6
0
static inline int filemap_sync_pmd_range(pud_t * pud,
	unsigned long address, unsigned long end, 
	struct vm_area_struct *vma, unsigned int flags)
{
	pmd_t * pmd;
	int error;

	if (pud_none(*pud))
		return 0;
	if (pud_bad(*pud)) {
		pud_ERROR(*pud);
		pud_clear(pud);
		return 0;
	}
	pmd = pmd_offset(pud, address);
	if ((address & PUD_MASK) != (end & PUD_MASK))
		end = (address & PUD_MASK) + PUD_SIZE;
	error = 0;
	do {
		error |= filemap_sync_pte_range(pmd, address, end, vma, flags);
		address = (address + PMD_SIZE) & PMD_MASK;
		pmd++;
	} while (address && (address < end));
	return error;
}
Exemple #7
0
static struct page* my_follow_page(struct vm_area_struct *vma, unsigned long addr) {
	pud_t *pud = NULL;
	pmd_t *pmd = NULL;
	pgd_t *pgd = NULL;
	pte_t *pte = NULL;
	spinlock_t *ptl = NULL;
	struct page* page = NULL;
	struct mm_struct *mm = current->mm;
	pgd = pgd_offset(current->mm, addr);
	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) {
		goto out;
	}
	pud = pud_offset(pgd, addr);
	if (pud_none(*pud) || unlikely(pud_bad(*pud))) {
		goto out;
	}
	printk("aaaa\n");
	pmd = pmd_offset(pud, addr);
	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) {
		goto out;
	}
	pte = pte_offset_map_lock(current->mm, pmd, addr, &ptl);
	printk("bbbb\n");
	if (!pte) goto out;
	printk("cccc\n");
	if (!pte_present(*pte)) goto unlock;
	page = pfn_to_page(pte_pfn(*pte));
	if (!page) goto unlock;
	get_page(page);
unlock:
	pte_unmap_unlock(pte, ptl);
out:
	return page;
}
/*
 * When built with CONFIG_DEBUG_PAGEALLOC and CONFIG_HIBERNATION, this function
 * is used to determine if a linear map page has been marked as not-valid by
 * CONFIG_DEBUG_PAGEALLOC. Walk the page table and check the PTE_VALID bit.
 * This is based on kern_addr_valid(), which almost does what we need.
 *
 * Because this is only called on the kernel linear map,  p?d_sect() implies
 * p?d_present(). When debug_pagealloc is enabled, sections mappings are
 * disabled.
 */
bool kernel_page_present(struct page *page)
{
	pgd_t *pgdp;
	pud_t *pudp, pud;
	pmd_t *pmdp, pmd;
	pte_t *ptep;
	unsigned long addr = (unsigned long)page_address(page);

	pgdp = pgd_offset_k(addr);
	if (pgd_none(READ_ONCE(*pgdp)))
		return false;

	pudp = pud_offset(pgdp, addr);
	pud = READ_ONCE(*pudp);
	if (pud_none(pud))
		return false;
	if (pud_sect(pud))
		return true;

	pmdp = pmd_offset(pudp, addr);
	pmd = READ_ONCE(*pmdp);
	if (pmd_none(pmd))
		return false;
	if (pmd_sect(pmd))
		return true;

	ptep = pte_offset_kernel(pmdp, addr);
	return pte_valid(READ_ONCE(*ptep));
}
Exemple #9
0
int kthread_wss(void *data)
{
	unsigned long va;
	int ret;
	int wss;

	pgd_t *pgd;
	pmd_t *pmd;
	pud_t *pud;
	pte_t *ptep;
	
	struct task_struct *task;
	while(!kthread_should_stop())
	{
		printk(KERN_INFO "Checking process' WSS.\n");
		for_each_process(task)
		{
			wss = 0;
			if(task->mm != NULL)
			{
				struct vm_area_struct *temp = task->mm->mmap;
				while(temp)
				{
					if(temp->vm_flags & VM_IO){}
					else
					{
						for(va = temp->vm_start; va < temp->vm_end; va+=PAGE_SIZE)
						{
				  			pgd = pgd_offset(task->mm,va);
			 		  		if(pgd_none(*pgd))
								break;
							pud = pud_offset(pgd,va);
							if(pud_none(*pud))
								break;
							pmd = pmd_offset(pud,va);
							if(pmd_none(*pmd))
								break;
							ptep = pte_offset_map(pmd,va);
							ret = 0;
							if(pte_young(*ptep))
							{
								ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,												(unsigned long *) &ptep->pte);
								wss++;
							}
							if(ret)
							{
								pte_update(task->mm, va, ptep);
							}
							pte_unmap(ptep);
						}
					}
					temp = temp->vm_next;
				}
				printk(KERN_INFO "%i: %i\n", task->pid, wss);
			}
		}
	msleep(1000);
	}
	return 0;
}
Exemple #10
0
int kern_addr_valid(unsigned long addr) 
{ 
	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
       pgd_t *pgd;
       pud_t *pud;
       pmd_t *pmd;
       pte_t *pte;

	if (above != 0 && above != -1UL)
		return 0; 
	
	pgd = pgd_offset_k(addr);
	if (pgd_none(*pgd))
		return 0;

	pud = pud_offset(pgd, addr);
	if (pud_none(*pud))
		return 0; 

	pmd = pmd_offset(pud, addr);
	if (pmd_none(*pmd))
		return 0;
	if (pmd_large(*pmd))
		return pfn_valid(pmd_pfn(*pmd));

	pte = pte_offset_kernel(pmd, addr);
	if (pte_none(*pte))
		return 0;
	return pfn_valid(pte_pfn(*pte));
}
Exemple #11
0
static void __init kasan_populate_pud(pud_t *pud, unsigned long addr,
				      unsigned long end, int nid)
{
	pmd_t *pmd;
	unsigned long next;

	if (pud_none(*pud)) {
		void *p;

		if (boot_cpu_has(X86_FEATURE_GBPAGES) &&
		    ((end - addr) == PUD_SIZE) &&
		    IS_ALIGNED(addr, PUD_SIZE)) {
			p = early_alloc(PUD_SIZE, nid, false);
			if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL))
				return;
			else if (p)
				memblock_free(__pa(p), PUD_SIZE);
		}

		p = early_alloc(PAGE_SIZE, nid, true);
		pud_populate(&init_mm, pud, p);
	}

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (!pmd_large(*pmd))
			kasan_populate_pmd(pmd, addr, next, nid);
	} while (pmd++, addr = next, addr != end);
}
Exemple #12
0
/**
 * kvm_mips_walk_pgd() - Walk page table with optional allocation.
 * @pgd:	Page directory pointer.
 * @addr:	Address to index page table using.
 * @cache:	MMU page cache to allocate new page tables from, or NULL.
 *
 * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
 * address @addr. If page tables don't exist for @addr, they will be created
 * from the MMU cache if @cache is not NULL.
 *
 * Returns:	Pointer to pte_t corresponding to @addr.
 *		NULL if a page table doesn't exist for @addr and !@cache.
 *		NULL if a page table allocation failed.
 */
static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
				unsigned long addr)
{
	pud_t *pud;
	pmd_t *pmd;

	pgd += pgd_index(addr);
	if (pgd_none(*pgd)) {
		/* Not used on MIPS yet */
		BUG();
		return NULL;
	}
	pud = pud_offset(pgd, addr);
	if (pud_none(*pud)) {
		pmd_t *new_pmd;

		if (!cache)
			return NULL;
		new_pmd = mmu_memory_cache_alloc(cache);
		pmd_init((unsigned long)new_pmd,
			 (unsigned long)invalid_pte_table);
		pud_populate(NULL, pud, new_pmd);
	}
	pmd = pmd_offset(pud, addr);
	if (pmd_none(*pmd)) {
		pte_t *new_pte;

		if (!cache)
			return NULL;
		new_pte = mmu_memory_cache_alloc(cache);
		clear_page(new_pte);
		pmd_populate_kernel(NULL, pmd, new_pte);
	}
	return pte_offset(pmd, addr);
}
Exemple #13
0
static int copy_pud(pgd_t *dst_pgdp, pgd_t *src_pgdp, unsigned long start,
		    unsigned long end)
{
	pud_t *dst_pudp;
	pud_t *src_pudp;
	unsigned long next;
	unsigned long addr = start;

	if (pgd_none(READ_ONCE(*dst_pgdp))) {
		dst_pudp = (pud_t *)get_safe_page(GFP_ATOMIC);
		if (!dst_pudp)
			return -ENOMEM;
		pgd_populate(&init_mm, dst_pgdp, dst_pudp);
	}
	dst_pudp = pud_offset(dst_pgdp, start);

	src_pudp = pud_offset(src_pgdp, start);
	do {
		pud_t pud = READ_ONCE(*src_pudp);

		next = pud_addr_end(addr, end);
		if (pud_none(pud))
			continue;
		if (pud_table(pud)) {
			if (copy_pmd(dst_pudp, src_pudp, addr, next))
				return -ENOMEM;
		} else {
			set_pud(dst_pudp,
				__pud(pud_val(pud) & ~PMD_SECT_RDONLY));
		}
	} while (dst_pudp++, src_pudp++, addr = next, addr != end);

	return 0;
}
Exemple #14
0
/*
 * Associate a virtual page frame with a given physical page frame
 * and protection flags for that frame.
 */
static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	pgd = swapper_pg_dir + pgd_index(vaddr);
	if (pgd_none(*pgd)) {
		BUG();
		return;
	}
	pud = pud_offset(pgd, vaddr);
	if (pud_none(*pud)) {
		BUG();
		return;
	}
	pmd = pmd_offset(pud, vaddr);
	if (pmd_none(*pmd)) {
		BUG();
		return;
	}
	pte = pte_offset_kernel(pmd, vaddr);
	/* <pfn,flags> stored as-is, to permit clearing entries */
	set_pte(pte, pfn_pte(pfn, flags));

	/*
	 * It's enough to flush this one mapping.
	 * This appears conservative since it is only called
	 * from __set_fixmap.
	 */
	local_flush_tlb_page(NULL, vaddr, PAGE_SIZE);
}
void __init page_table_range_init(unsigned long start, unsigned long end,
					 pgd_t *pgd_base)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	int pgd_idx;
	unsigned long vaddr;

	vaddr = start & PMD_MASK;
	end = (end + PMD_SIZE - 1) & PMD_MASK;
	pgd_idx = pgd_index(vaddr);
	pgd = pgd_base + pgd_idx;

	for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) {
		BUG_ON(pgd_none(*pgd));
		pud = pud_offset(pgd, 0);
		BUG_ON(pud_none(*pud));
		pmd = pmd_offset(pud, 0);

		if (!pmd_present(*pmd)) {
			pte_t *pte_table;
			pte_table = (pte_t *)alloc_bootmem_low_pages(PAGE_SIZE);
			memset(pte_table, 0, PAGE_SIZE);
			pmd_populate_kernel(&init_mm, pmd, pte_table);
		}

		vaddr += PMD_SIZE;
	}
}
Exemple #16
0
/*
 * Walk a vmap address to the struct page it maps.
 */
struct page *vmalloc_to_page(const void *vmalloc_addr)
{
	unsigned long addr = (unsigned long) vmalloc_addr;
	struct page *page = NULL;
	pgd_t *pgd = pgd_offset_k(addr);

	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));

	if (!pgd_none(*pgd)) {
		pud_t *pud = pud_offset(pgd, addr);
		if (!pud_none(*pud)) {
			pmd_t *pmd = pmd_offset(pud, addr);
			if (!pmd_none(*pmd)) {
				pte_t *ptep, pte;

				ptep = pte_offset_map(pmd, addr);
				pte = *ptep;
				if (pte_present(pte))
					page = pte_page(pte);
				pte_unmap(ptep);
			}
		}
	}
	return page;
}
/*
 * Associate a virtual page frame with a given physical page frame 
 * and protection flags for that frame.
 */ 
void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	pgd = swapper_pg_dir + pgd_index(vaddr);
	if (pgd_none(*pgd)) {
		BUG();
		return;
	}
	pud = pud_offset(pgd, vaddr);
	if (pud_none(*pud)) {
		BUG();
		return;
	}
	pmd = pmd_offset(pud, vaddr);
	if (pmd_none(*pmd)) {
		BUG();
		return;
	}
	pte = pte_offset_kernel(pmd, vaddr);
	if (!pte_none(pteval))
		set_pte_at(&init_mm, vaddr, pte, pteval);
	else
		pte_clear(&init_mm, vaddr, pte);

	/*
	 * It's enough to flush this one mapping.
	 * (PGE mappings get flushed as well)
	 */
	__flush_tlb_one(vaddr);
}
Exemple #18
0
struct page *vmalloc_to_page(const void *vmalloc_addr)
{
	unsigned long addr = (unsigned long) vmalloc_addr;
	struct page *page = NULL;
	pgd_t *pgd = pgd_offset_k(addr);

	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));

	if (!pgd_none(*pgd)) {
		pud_t *pud = pud_offset(pgd, addr);
		if (!pud_none(*pud)) {
			pmd_t *pmd = pmd_offset(pud, addr);
			if (!pmd_none(*pmd)) {
				pte_t *ptep, pte;

				ptep = pte_offset_map(pmd, addr);
				pte = *ptep;
				if (pte_present(pte))
					page = pte_page(pte);
				pte_unmap(ptep);
			}
		}
	}
	return page;
}
Exemple #19
0
static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
		       phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next, start_addr = addr;
	pud_t *pud, *start_pud;

	start_pud = pud = pud_offset(pgd, addr);
	do {
		next = kvm_pud_addr_end(addr, end);
		if (!pud_none(*pud)) {
			if (pud_huge(*pud)) {
				pud_t old_pud = *pud;

				pud_clear(pud);
				kvm_tlb_flush_vmid_ipa(kvm, addr);

				kvm_flush_dcache_pud(old_pud);

				put_page(virt_to_page(pud));
			} else {
				unmap_pmds(kvm, pud, addr, next);
			}
		}
	} while (pud++, addr = next, addr != end);

	if (kvm_pud_table_empty(kvm, start_pud))
		clear_pgd_entry(kvm, pgd, start_addr);
}
Exemple #20
0
static int copy_pmd(pud_t *dst_pud, pud_t *src_pud, unsigned long start,
		    unsigned long end)
{
	pmd_t *src_pmd;
	pmd_t *dst_pmd;
	unsigned long next;
	unsigned long addr = start;

	if (pud_none(*dst_pud)) {
		dst_pmd = (pmd_t *)get_safe_page(GFP_ATOMIC);
		if (!dst_pmd)
			return -ENOMEM;
		pud_populate(&init_mm, dst_pud, dst_pmd);
	}
	dst_pmd = pmd_offset(dst_pud, start);

	src_pmd = pmd_offset(src_pud, start);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none(*src_pmd))
			continue;
		if (pmd_table(*src_pmd)) {
			if (copy_pte(dst_pmd, src_pmd, addr, next))
				return -ENOMEM;
		} else {
			set_pmd(dst_pmd,
				__pmd(pmd_val(*src_pmd) & ~PMD_SECT_RDONLY));
		}
	} while (dst_pmd++, src_pmd++, addr = next, addr != end);

	return 0;
}
Exemple #21
0
static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
		int write, struct page **pages, int *nr)
{
	unsigned long next;
	pud_t *pudp;

	pudp = pud_offset(&pgd, addr);
	do {
		pud_t pud = READ_ONCE(*pudp);

		next = pud_addr_end(addr, end);
		if (pud_none(pud))
			return 0;
		if (pud_huge(pud)) {
			if (!gup_hugepte((pte_t *)pudp, PUD_SIZE, addr, next,
					 write, pages, nr))
				return 0;
		} else if (is_hugepd(pudp)) {
			if (!gup_hugepd((hugepd_t *)pudp, PUD_SHIFT,
					addr, next, write, pages, nr))
				return 0;
		} else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
			return 0;
	} while (pudp++, addr = next, addr != end);

	return 1;
}
Exemple #22
0
/* Unmap a kernel mapping if it exists. This is useful to avoid prefetches
   from the CPU leading to inconsistent cache lines. address and size
   must be aligned to 2MB boundaries. 
   Does nothing when the mapping doesn't exist. */
void __init clear_kernel_mapping(unsigned long address, unsigned long size) 
{
	unsigned long end = address + size;

	BUG_ON(address & ~LARGE_PAGE_MASK);
	BUG_ON(size & ~LARGE_PAGE_MASK); 
	
	for (; address < end; address += LARGE_PAGE_SIZE) { 
		pgd_t *pgd = pgd_offset_k(address);
		pud_t *pud;
		pmd_t *pmd;
		if (pgd_none(*pgd))
			continue;
		pud = pud_offset(pgd, address);
		if (pud_none(*pud))
			continue; 
		pmd = pmd_offset(pud, address);
		if (!pmd || pmd_none(*pmd))
			continue; 
		if (0 == (pmd_val(*pmd) & _PAGE_PSE)) { 
			/* Could handle this, but it should not happen currently. */
			printk(KERN_ERR 
	       "clear_kernel_mapping: mapping has been split. will leak memory\n"); 
			pmd_ERROR(*pmd); 
		}
		set_pmd(pmd, __pmd(0)); 		
	}
	__flush_tlb_all();
} 
Exemple #23
0
static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
{
	pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
	if (pud_none(*pud))
		assign_pmd(pud, alloc_pmd());
	return pmd_offset(pud, va);
}
/*
 * When built with CONFIG_DEBUG_PAGEALLOC and CONFIG_HIBERNATION, this function
 * is used to determine if a linear map page has been marked as not-valid by
 * CONFIG_DEBUG_PAGEALLOC. Walk the page table and check the PTE_VALID bit.
 * This is based on kern_addr_valid(), which almost does what we need.
 *
 * Because this is only called on the kernel linear map,  p?d_sect() implies
 * p?d_present(). When debug_pagealloc is enabled, sections mappings are
 * disabled.
 */
bool kernel_page_present(struct page *page)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	unsigned long addr = (unsigned long)page_address(page);

	pgd = pgd_offset_k(addr);
	if (pgd_none(*pgd))
		return false;

	pud = pud_offset(pgd, addr);
	if (pud_none(*pud))
		return false;
	if (pud_sect(*pud))
		return true;

	pmd = pmd_offset(pud, addr);
	if (pmd_none(*pmd))
		return false;
	if (pmd_sect(*pmd))
		return true;

	pte = pte_offset_kernel(pmd, addr);
	return pte_valid(*pte);
}
/*
 * Dump out the page tables associated with 'addr' in mm 'mm'.
 */
void show_pte(struct mm_struct *mm, unsigned long addr)
{
    pgd_t *pgd;

    if (!mm)
        mm = &init_mm;

    pr_alert("pgd = %p\n", mm->pgd);
    pgd = pgd_offset(mm, addr);
    pr_alert("[%08lx] *pgd=%016llx", addr, pgd_val(*pgd));

    do {
        pud_t *pud;
        pmd_t *pmd;
        pte_t *pte;

        if (pgd_none(*pgd) || pgd_bad(*pgd))
            break;

        pud = pud_offset(pgd, addr);
        if (pud_none(*pud) || pud_bad(*pud))
            break;

        pmd = pmd_offset(pud, addr);
        printk(", *pmd=%016llx", pmd_val(*pmd));
        if (pmd_none(*pmd) || pmd_bad(*pmd))
            break;

        pte = pte_offset_map(pmd, addr);
        printk(", *pte=%016llx", pte_val(*pte));
        pte_unmap(pte);
    } while(0);

    printk("\n");
}
Exemple #26
0
static void idmap_add_pmd(pud_t *pud, unsigned long addr, unsigned long end,
	unsigned long prot)
{
	pmd_t *pmd;
	unsigned long next;

	if (pud_none_or_clear_bad(pud) || (pud_val(*pud) & L_PGD_SWAPPER)) {
		pmd = pmd_alloc_one(&init_mm, addr);
		if (!pmd) {
			pr_warning("Failed to allocate identity pmd.\n");
			return;
		}
		/*
		 * Copy the original PMD to ensure that the PMD entries for
		 * the kernel image are preserved.
		 */
		if (!pud_none(*pud))
			memcpy(pmd, pmd_offset(pud, 0),
			       PTRS_PER_PMD * sizeof(pmd_t));
		pud_populate(&init_mm, pud, pmd);
		pmd += pmd_index(addr);
	} else
		pmd = pmd_offset(pud, addr);

	do {
		next = pmd_addr_end(addr, end);
		*pmd = __pmd((addr & PMD_MASK) | prot);
		flush_pmd_entry(pmd);
	} while (pmd++, addr = next, addr != end);
}
static int
pin_page_for_write(const void __user *_addr, pte_t **ptep, spinlock_t **ptlp)
{
	unsigned long addr = (unsigned long)_addr;
	pgd_t *pgd;
	pmd_t *pmd;
	pte_t *pte;
	pud_t *pud;
	spinlock_t *ptl;

	pgd = pgd_offset(current->mm, addr);
	if (unlikely(pgd_none(*pgd) || pgd_bad(*pgd)))
		return 0;

	pud = pud_offset(pgd, addr);
	if (unlikely(pud_none(*pud) || pud_bad(*pud)))
		return 0;

	pmd = pmd_offset(pud, addr);
	if (unlikely(pmd_none(*pmd) || pmd_bad(*pmd)))
		return 0;

	pte = pte_offset_map_lock(current->mm, pmd, addr, &ptl);
	if (unlikely(!pte_present(*pte) || !pte_young(*pte) ||
	    !pte_write(*pte) || !pte_dirty(*pte))) {
		pte_unmap_unlock(pte, ptl);
		return 0;
	}

	*ptep = pte;
	*ptlp = ptl;

	return 1;
}
static void walk_pmd(struct pg_state *st, pud_t *pud, unsigned long start)
{
        pmd_t *pmd = pmd_offset(pud, 0);
        unsigned long addr;
        unsigned i;

        for (i = 0; i < PTRS_PER_PMD; i++, pmd++) {
                addr = start + i * PMD_SIZE;
#ifdef CONFIG_ARM64
		if (pmd_none(*pmd) || pmd_sect (*pmd)) {
#else
		if (pmd_none(*pmd) || pmd_large(*pmd) || !pmd_present(*pmd)) {
#endif
                        note_page(st, addr, 3, pmd_val(*pmd));
                } else {
                        walk_pte(st, pmd, addr);
		}
#ifdef CONFIG_ARM
                if (SECTION_SIZE < PMD_SIZE && pmd_large(pmd[1])) 
                        note_page(st, addr + SECTION_SIZE, 3, pmd_val(pmd[1]));
#endif
        }
}

static void walk_pud(struct pg_state *st, pgd_t *pgd, unsigned long start)
{
        pud_t *pud = pud_offset(pgd, 0);
        unsigned long addr;
        unsigned i;

        for (i = 0; i < PTRS_PER_PUD; i++, pud++) {
                addr = start + i * PUD_SIZE;
#if defined CONFIG_ARM64 && !defined (CONFIG_ANDROID)
		if (pud_none (*pud) || pud_sect (*pud)) {
			note_page (st, addr, 2, pud_val (*pud));
		} else {
		       	walk_pmd (st, pud, addr);
		}
#else
                if (!pud_none(*pud)) {
			walk_pmd (st, pud, addr);
		} else {
			note_page (st, addr, 2, pud_val (*pud));
		}
#endif
        }
}
Exemple #29
0
asmlinkage long long sys_my_syscall(int pid, unsigned long long va)
{
	unsigned long long pageFN;
	unsigned long long pa;

	pgd_t *pgd;
	pmd_t *pmd;
	pud_t *pud;
	pte_t *pte;
	
	struct mm_struct *mm;

	int found = 0;

	struct task_struct *task;
	for_each_process(task)
	{
		if(task->pid == pid)
			mm = task->mm;
	}
	pgd  = pgd_offset(mm,va);
	if(!pgd_none(*pgd) && !pgd_bad(*pgd))
	{
		pud = pud_offset(pgd,va);
		if(!pud_none(*pud) && !pud_bad(*pud))
		{
			pmd = pmd_offset(pud,va);
			if(!pmd_none(*pmd) && !pmd_bad(*pmd))
			{
				pte = pte_offset_kernel(pmd,va);
				if(!pte_none(*pte))
				{
					pageFN = pte_pfn(*pte);
					pa = ((pageFN<<12)|(va&0x00000FFF));
					found = 1;
					return pa;
				}
			}
		}
	}
	if(pgd_none(*pgd) || pud_none(*pud) || pmd_none(*pmd) || pte_none(*pte))
	{
		unsigned long long swapID = (pte_val(*pte) >> 32);
		found = 1;
		return swapID;
	}
Exemple #30
0
static int handle_tlbmiss(struct mm_struct *mm,
              unsigned long long protection_flags,
              unsigned long long textaccess,
              unsigned long address)
{
    pgd_t *dir;
    pud_t *pud;
    pmd_t *pmd;
    pte_t *pte;
    pte_t entry;

    /* NB. The PGD currently only contains a single entry - there is no
       page table tree stored for the top half of the address space since
       virtual pages in that region should never be mapped in user mode.
       (In kernel mode, the only things in that region are the 512Mb super
       page (locked in), and vmalloc (modules) +  I/O device pages (handled
       by handle_vmalloc_fault), so no PGD for the upper half is required
       by kernel mode either).

       See how mm->pgd is allocated and initialised in pgd_alloc to see why
       the next test is necessary.  - RPC */
    if (address >= (unsigned long) TASK_SIZE)
        /* upper half - never has page table entries. */
        return 0;

    dir = pgd_offset(mm, address);
    if (pgd_none(*dir) || !pgd_present(*dir))
        return 0;
    if (!pgd_present(*dir))
        return 0;

    pud = pud_offset(dir, address);
    if (pud_none(*pud) || !pud_present(*pud))
        return 0;

    pmd = pmd_offset(pud, address);
    if (pmd_none(*pmd) || !pmd_present(*pmd))
        return 0;

    pte = pte_offset_kernel(pmd, address);
    entry = *pte;

    if (pte_none(entry) || !pte_present(entry))
        return 0;

    /*
     * If the page doesn't have sufficient protection bits set to
     * service the kind of fault being handled, there's not much
     * point doing the TLB refill.  Punt the fault to the general
     * handler.
     */
    if ((pte_val(entry) & protection_flags) != protection_flags)
        return 0;

        __do_tlb_refill(address, textaccess, pte);

    return 1;
}