Exemple #1
0
//
// From Guy Decoux [ruby-talk:144098]
//
static VALUE ts_each(VALUE *tmp) {
    return rb_funcall2(tmp[0], (ID)tmp[1], (int)tmp[2], (VALUE *)tmp[3]);
}
Exemple #2
0
void
callback(ffi_cif *cif, void *resp, void **args, void *ctx)
{
    VALUE self      = (VALUE)ctx;
    VALUE rbargs    = rb_iv_get(self, "@args");
    VALUE ctype     = rb_iv_get(self, "@ctype");
    int argc        = RARRAY_LENINT(rbargs);
    VALUE params    = rb_ary_tmp_new(argc);
    VALUE ret;
    VALUE cPointer;
    int i, type;

    cPointer = rb_const_get(mFiddle, rb_intern("Pointer"));

    for (i = 0; i < argc; i++) {
        type = NUM2INT(RARRAY_PTR(rbargs)[i]);
        switch (type) {
        case TYPE_VOID:
            argc = 0;
            break;
        case TYPE_INT:
            rb_ary_push(params, INT2NUM(*(int *)args[i]));
            break;
        case -TYPE_INT:
            rb_ary_push(params, UINT2NUM(*(unsigned int *)args[i]));
            break;
        case TYPE_VOIDP:
            rb_ary_push(params,
                        rb_funcall(cPointer, rb_intern("[]"), 1,
                                   PTR2NUM(*(void **)args[i])));
            break;
        case TYPE_LONG:
            rb_ary_push(params, LONG2NUM(*(long *)args[i]));
            break;
        case -TYPE_LONG:
            rb_ary_push(params, ULONG2NUM(*(unsigned long *)args[i]));
            break;
        case TYPE_CHAR:
            rb_ary_push(params, INT2NUM(*(signed char *)args[i]));
            break;
        case -TYPE_CHAR:
            rb_ary_push(params, UINT2NUM(*(unsigned char *)args[i]));
            break;
        case TYPE_SHORT:
            rb_ary_push(params, INT2NUM(*(signed short *)args[i]));
            break;
        case -TYPE_SHORT:
            rb_ary_push(params, UINT2NUM(*(unsigned short *)args[i]));
            break;
        case TYPE_DOUBLE:
            rb_ary_push(params, rb_float_new(*(double *)args[i]));
            break;
        case TYPE_FLOAT:
            rb_ary_push(params, rb_float_new(*(float *)args[i]));
            break;
#if HAVE_LONG_LONG
        case TYPE_LONG_LONG:
            rb_ary_push(params, LL2NUM(*(LONG_LONG *)args[i]));
            break;
        case -TYPE_LONG_LONG:
            rb_ary_push(params, ULL2NUM(*(unsigned LONG_LONG *)args[i]));
            break;
#endif
        default:
            rb_raise(rb_eRuntimeError, "closure args: %d", type);
        }
    }

    ret = rb_funcall2(self, rb_intern("call"), argc, RARRAY_PTR(params));
    RB_GC_GUARD(params);

    type = NUM2INT(ctype);
    switch (type) {
    case TYPE_VOID:
        break;
    case TYPE_LONG:
        *(long *)resp = NUM2LONG(ret);
        break;
    case -TYPE_LONG:
        *(unsigned long *)resp = NUM2ULONG(ret);
        break;
    case TYPE_CHAR:
    case TYPE_SHORT:
    case TYPE_INT:
        *(ffi_sarg *)resp = NUM2INT(ret);
        break;
    case -TYPE_CHAR:
    case -TYPE_SHORT:
    case -TYPE_INT:
        *(ffi_arg *)resp = NUM2UINT(ret);
        break;
    case TYPE_VOIDP:
        *(void **)resp = NUM2PTR(ret);
        break;
    case TYPE_DOUBLE:
        *(double *)resp = NUM2DBL(ret);
        break;
    case TYPE_FLOAT:
        *(float *)resp = (float)NUM2DBL(ret);
        break;
#if HAVE_LONG_LONG
    case TYPE_LONG_LONG:
        *(LONG_LONG *)resp = NUM2LL(ret);
        break;
    case -TYPE_LONG_LONG:
        *(unsigned LONG_LONG *)resp = NUM2ULL(ret);
        break;
#endif
    default:
        rb_raise(rb_eRuntimeError, "closure retval: %d", type);
    }
}
Exemple #3
0
static VALUE evalHelper(evalArg *arg)
{
	VALUE argv[] = { arg->string, Qnil, arg->filename };
	return rb_funcall2(Qnil, rb_intern("eval"), ARRAY_SIZE(argv), argv);
}
Exemple #4
0
/*
 * call-seq:
 *    Complex(x[, y])  ->  numeric
 *
 * Returns x+i*y;
 */
static VALUE
nucomp_f_complex(int argc, VALUE *argv, VALUE klass)
{
    return rb_funcall2(rb_cComplex, id_convert, argc, argv);
}
Exemple #5
0
static void
callback_invoke(ffi_cif* cif, void* retval, void** parameters, void* user_data)
{
    Closure* closure = (Closure *) user_data;
    Function* fn = (Function *) closure->info;
    FunctionType *cbInfo = fn->info;
    VALUE* rbParams;
    VALUE rbReturnValue;
    int i;

    rbParams = ALLOCA_N(VALUE, cbInfo->parameterCount);
    for (i = 0; i < cbInfo->parameterCount; ++i) {
        VALUE param;
        switch (cbInfo->parameterTypes[i]->nativeType) {
            case NATIVE_INT8:
                param = INT2NUM(*(int8_t *) parameters[i]);
                break;
            case NATIVE_UINT8:
                param = UINT2NUM(*(uint8_t *) parameters[i]);
                break;
            case NATIVE_INT16:
                param = INT2NUM(*(int16_t *) parameters[i]);
                break;
            case NATIVE_UINT16:
                param = UINT2NUM(*(uint16_t *) parameters[i]);
                break;
            case NATIVE_INT32:
                param = INT2NUM(*(int32_t *) parameters[i]);
                break;
            case NATIVE_UINT32:
                param = UINT2NUM(*(uint32_t *) parameters[i]);
                break;
            case NATIVE_INT64:
                param = LL2NUM(*(int64_t *) parameters[i]);
                break;
            case NATIVE_UINT64:
                param = ULL2NUM(*(uint64_t *) parameters[i]);
                break;
            case NATIVE_LONG:
                param = LONG2NUM(*(long *) parameters[i]);
                break;
            case NATIVE_ULONG:
                param = ULONG2NUM(*(unsigned long *) parameters[i]);
                break;
            case NATIVE_FLOAT32:
                param = rb_float_new(*(float *) parameters[i]);
                break;
            case NATIVE_FLOAT64:
                param = rb_float_new(*(double *) parameters[i]);
                break;
            case NATIVE_STRING:
                param = (*(void **) parameters[i] != NULL) ? rb_tainted_str_new2(*(char **) parameters[i]) : Qnil;
                break;
            case NATIVE_POINTER:
                param = rbffi_Pointer_NewInstance(*(void **) parameters[i]);
                break;
            case NATIVE_BOOL:
                param = (*(uint8_t *) parameters[i]) ? Qtrue : Qfalse;
                break;

            case NATIVE_FUNCTION:
            case NATIVE_CALLBACK:
                param = rbffi_NativeValue_ToRuby(cbInfo->parameterTypes[i],
                     rb_ary_entry(cbInfo->rbParameterTypes, i), parameters[i], Qnil);
                break;
            default:
                param = Qnil;
                break;
        }
        rbParams[i] = param;
    }
    rbReturnValue = rb_funcall2(fn->rbProc, id_call, cbInfo->parameterCount, rbParams);
    if (rbReturnValue == Qnil || TYPE(rbReturnValue) == T_NIL) {
        memset(retval, 0, cbInfo->ffiReturnType->size);
    } else switch (cbInfo->returnType->nativeType) {
        case NATIVE_INT8:
        case NATIVE_INT16:
        case NATIVE_INT32:
            *((ffi_sarg *) retval) = NUM2INT(rbReturnValue);
            break;
        case NATIVE_UINT8:
        case NATIVE_UINT16:
        case NATIVE_UINT32:
            *((ffi_arg *) retval) = NUM2UINT(rbReturnValue);
            break;
        case NATIVE_INT64:
            *((int64_t *) retval) = NUM2LL(rbReturnValue);
            break;
        case NATIVE_UINT64:
            *((uint64_t *) retval) = NUM2ULL(rbReturnValue);
            break;
        case NATIVE_LONG:
            *((ffi_sarg *) retval) = NUM2LONG(rbReturnValue);
            break;
        case NATIVE_ULONG:
            *((ffi_arg *) retval) = NUM2ULONG(rbReturnValue);
            break;
        case NATIVE_FLOAT32:
            *((float *) retval) = (float) NUM2DBL(rbReturnValue);
            break;
        case NATIVE_FLOAT64:
            *((double *) retval) = NUM2DBL(rbReturnValue);
            break;
        case NATIVE_POINTER:
            if (TYPE(rbReturnValue) == T_DATA && rb_obj_is_kind_of(rbReturnValue, rbffi_PointerClass)) {
                *((void **) retval) = ((AbstractMemory *) DATA_PTR(rbReturnValue))->address;
            } else {
                // Default to returning NULL if not a value pointer object.  handles nil case as well
                *((void **) retval) = NULL;
            }
            break;

        case NATIVE_BOOL:
            *((ffi_arg *) retval) = rbReturnValue == Qtrue;
            break;

        case NATIVE_FUNCTION:
        case NATIVE_CALLBACK:
            if (TYPE(rbReturnValue) == T_DATA && rb_obj_is_kind_of(rbReturnValue, rbffi_PointerClass)) {

                *((void **) retval) = ((AbstractMemory *) DATA_PTR(rbReturnValue))->address;

            } else if (rb_obj_is_kind_of(rbReturnValue, rb_cProc) || rb_respond_to(rbReturnValue, id_call)) {
                VALUE function;

                function = rbffi_Function_ForProc(cbInfo->rbReturnType, rbReturnValue);

                *((void **) retval) = ((AbstractMemory *) DATA_PTR(function))->address;
            } else {
                *((void **) retval) = NULL;
            }
            break;

        default:
            *((ffi_arg *) retval) = 0;
            break;
    }
}
Exemple #6
0
static VALUE
variadic_initialize(VALUE self, VALUE rbFunction, VALUE rbParameterTypes, VALUE rbReturnType, VALUE options)
{
    VariadicInvoker* invoker = NULL;
    VALUE retval = Qnil;
    VALUE convention = Qnil;
    VALUE fixed = Qnil;
#if defined(X86_WIN32)
    VALUE rbConventionStr;
#endif
    int i;

    Check_Type(options, T_HASH);
    convention = rb_hash_aref(options, ID2SYM(rb_intern("convention")));

    Data_Get_Struct(self, VariadicInvoker, invoker);
    invoker->rbEnums = rb_hash_aref(options, ID2SYM(rb_intern("enums")));
    invoker->rbAddress = rbFunction;
    invoker->function = rbffi_AbstractMemory_Cast(rbFunction, rbffi_PointerClass)->address;

#if defined(X86_WIN32)
    rbConventionStr = rb_funcall2(convention, rb_intern("to_s"), 0, NULL);
    invoker->abi = (RTEST(convention) && strcmp(StringValueCStr(rbConventionStr), "stdcall") == 0)
                   ? FFI_STDCALL : FFI_DEFAULT_ABI;
#else
    invoker->abi = FFI_DEFAULT_ABI;
#endif

    invoker->rbReturnType = rbffi_Type_Lookup(rbReturnType);
    if (!RTEST(invoker->rbReturnType)) {
        VALUE typeName = rb_funcall2(rbReturnType, rb_intern("inspect"), 0, NULL);
        rb_raise(rb_eTypeError, "Invalid return type (%s)", RSTRING_PTR(typeName));
    }

    Data_Get_Struct(rbReturnType, Type, invoker->returnType);

    invoker->paramCount = -1;

    fixed = rb_ary_new2(RARRAY_LEN(rbParameterTypes) - 1);
    for (i = 0; i < RARRAY_LEN(rbParameterTypes); ++i) {
        VALUE entry = rb_ary_entry(rbParameterTypes, i);
        VALUE rbType = rbffi_Type_Lookup(entry);
        Type* type;

        if (!RTEST(rbType)) {
            VALUE typeName = rb_funcall2(entry, rb_intern("inspect"), 0, NULL);
            rb_raise(rb_eTypeError, "Invalid parameter type (%s)", RSTRING_PTR(typeName));
        }
        Data_Get_Struct(rbType, Type, type);
        if (type->nativeType != NATIVE_VARARGS) {
            rb_ary_push(fixed, entry);
        }
    }
    /*
     * @fixed and @type_map are used by the parameter mangling ruby code
     */
    rb_iv_set(self, "@fixed", fixed);
    rb_iv_set(self, "@type_map", rb_hash_aref(options, ID2SYM(rb_intern("type_map"))));

    return retval;
}
static VALUE
eval_expression(VALUE args)
{
  return rb_funcall2(rb_mKernel, idEval, 2, RARRAY_PTR(args));
}
/*
 * call-seq:
 *     Digest::Class.bubblebabble(string, ...) -> hash_string
 *
 * Returns the BubbleBabble encoded hash value of a given _string_.
 */
static VALUE
rb_digest_class_s_bubblebabble(int argc, VALUE *argv, VALUE klass)
{
    return bubblebabble_str_new(rb_funcall2(klass, id_digest, argc, argv));
}
Exemple #9
0
VALUE
rbffi_NativeValue_ToRuby(Type* type, VALUE rbType, const void* ptr)
{
    switch (type->nativeType) {
        case NATIVE_VOID:
            return Qnil;
        case NATIVE_INT8:
          return INT2NUM((signed char) *(ffi_sarg *) ptr);
        case NATIVE_INT16:
          return INT2NUM((signed short) *(ffi_sarg *) ptr);
        case NATIVE_INT32:
          return INT2NUM((signed int) *(ffi_sarg *) ptr);
        case NATIVE_LONG:
            return LONG2NUM((signed long) *(ffi_sarg *) ptr);
        case NATIVE_INT64:
            return LL2NUM(*(signed long long *) ptr);

        case NATIVE_UINT8:
          return UINT2NUM((unsigned char) *(ffi_arg *) ptr);
        case NATIVE_UINT16:
          return UINT2NUM((unsigned short) *(ffi_arg *) ptr);
        case NATIVE_UINT32:
          return UINT2NUM((unsigned int) *(ffi_arg *) ptr);
        case NATIVE_ULONG:
            return ULONG2NUM((unsigned long) *(ffi_arg *) ptr);
        case NATIVE_UINT64:
            return ULL2NUM(*(unsigned long long *) ptr);

        case NATIVE_FLOAT32:
            return rb_float_new(*(float *) ptr);
        case NATIVE_FLOAT64:
            return rb_float_new(*(double *) ptr);

        case NATIVE_LONGDOUBLE:
	  return rbffi_longdouble_new(*(long double *) ptr);

        case NATIVE_STRING:
            return (*(void **) ptr != NULL) ? rb_tainted_str_new2(*(char **) ptr) : Qnil;
        case NATIVE_POINTER:
            return rbffi_Pointer_NewInstance(*(void **) ptr);
        case NATIVE_BOOL:
            return ((unsigned char) *(ffi_arg *) ptr) ? Qtrue : Qfalse;
        
        case NATIVE_FUNCTION:
        case NATIVE_CALLBACK: {
            return *(void **) ptr != NULL 
                    ? rbffi_Function_NewInstance(rbType, rbffi_Pointer_NewInstance(*(void **) ptr))
                    : Qnil;
        }

        case NATIVE_STRUCT: {
            StructByValue* sbv = (StructByValue *)type;
            AbstractMemory* mem;
            VALUE rbMemory = rbffi_MemoryPointer_NewInstance(1, sbv->base.ffiType->size, false);

            Data_Get_Struct(rbMemory, AbstractMemory, mem);
            memcpy(mem->address, ptr, sbv->base.ffiType->size);
            RB_GC_GUARD(rbMemory);
            RB_GC_GUARD(rbType);

            return rb_class_new_instance(1, &rbMemory, sbv->rbStructClass);
        }

        case NATIVE_MAPPED: {
            /*
             * For mapped types, first convert to the real native type, then upcall to
             * ruby to convert to the expected return type
             */
            MappedType* m = (MappedType *) type;
            VALUE values[2], rbReturnValue;

            values[0] = rbffi_NativeValue_ToRuby(m->type, m->rbType, ptr);
            values[1] = Qnil;
            

            rbReturnValue = rb_funcall2(m->rbConverter, id_from_native, 2, values);
            RB_GC_GUARD(values[0]);
            RB_GC_GUARD(rbType);
            
            return rbReturnValue;
        }
    
        default:
            rb_raise(rb_eRuntimeError, "Unknown type: %d", type->nativeType);
            return Qnil;
    }
}
Exemple #10
0
/**
 * this function will safely be executed (gvl acquired)
 * this should not create a blocking/bottleneck situation since the access to rb_mKernel is
 * mutex-protected by proxenet before
 *
 *
 */
static void* _safe_call_func(void* arg)
{
        struct proxenet_ruby_args* args = (struct proxenet_ruby_args*) arg;
        VALUE rRet = rb_funcall2(args->rVM, args->rFunc, 3, args->rArgs);
        return (void*)rRet;
}
Exemple #11
0
/*
 * call-seq:
 *     Digest::Class.hexdigest(string[, ...]) -> hash_string
 *
 * Returns the hex-encoded hash value of a given _string_.  This is
 * almost equivalent to
 * Digest.hexencode(Digest::Class.new(*parameters).digest(string)).
 */
static VALUE
rb_digest_class_s_hexdigest(int argc, VALUE *argv, VALUE klass)
{
    return hexencode_str_new(rb_funcall2(klass, id_digest, argc, argv));
}
Exemple #12
0
static VALUE
fntype_initialize(int argc, VALUE* argv, VALUE self)
{
    FunctionType *fnInfo;
    ffi_status status;
    VALUE rbReturnType = Qnil, rbParamTypes = Qnil, rbOptions = Qnil;
    VALUE rbEnums = Qnil, rbConvention = Qnil, rbBlocking = Qnil;
#if defined(_WIN32) || defined(__WIN32__)
    VALUE rbConventionStr;
#endif
    int i, nargs;

    nargs = rb_scan_args(argc, argv, "21", &rbReturnType, &rbParamTypes, &rbOptions);
    if (nargs >= 3 && rbOptions != Qnil) {
        rbConvention = rb_hash_aref(rbOptions, ID2SYM(rb_intern("convention")));
        rbEnums = rb_hash_aref(rbOptions, ID2SYM(rb_intern("enums")));
        rbBlocking = rb_hash_aref(rbOptions, ID2SYM(rb_intern("blocking")));
    }

    Check_Type(rbParamTypes, T_ARRAY);

    Data_Get_Struct(self, FunctionType, fnInfo);
    fnInfo->parameterCount = (int) RARRAY_LEN(rbParamTypes);
    fnInfo->parameterTypes = xcalloc(fnInfo->parameterCount, sizeof(*fnInfo->parameterTypes));
    fnInfo->ffiParameterTypes = xcalloc(fnInfo->parameterCount, sizeof(ffi_type *));
    fnInfo->nativeParameterTypes = xcalloc(fnInfo->parameterCount, sizeof(*fnInfo->nativeParameterTypes));
    fnInfo->rbParameterTypes = rb_ary_new2(fnInfo->parameterCount);
    fnInfo->rbEnums = rbEnums;
    fnInfo->blocking = RTEST(rbBlocking);
    fnInfo->hasStruct = false;

    for (i = 0; i < fnInfo->parameterCount; ++i) {
        VALUE entry = rb_ary_entry(rbParamTypes, i);
        VALUE type = rbffi_Type_Lookup(entry);

        if (!RTEST(type)) {
            VALUE typeName = rb_funcall2(entry, rb_intern("inspect"), 0, NULL);
            rb_raise(rb_eTypeError, "Invalid parameter type (%s)", RSTRING_PTR(typeName));
        }

        if (rb_obj_is_kind_of(type, rbffi_FunctionTypeClass)) {
            REALLOC_N(fnInfo->callbackParameters, VALUE, fnInfo->callbackCount + 1);
            fnInfo->callbackParameters[fnInfo->callbackCount++] = type;
        }

        if (rb_obj_is_kind_of(type, rbffi_StructByValueClass)) {
            fnInfo->hasStruct = true;
        }

        rb_ary_push(fnInfo->rbParameterTypes, type);
        Data_Get_Struct(type, Type, fnInfo->parameterTypes[i]);
        fnInfo->ffiParameterTypes[i] = fnInfo->parameterTypes[i]->ffiType;
        fnInfo->nativeParameterTypes[i] = fnInfo->parameterTypes[i]->nativeType;
    }

    fnInfo->rbReturnType = rbffi_Type_Lookup(rbReturnType);
    if (!RTEST(fnInfo->rbReturnType)) {
        VALUE typeName = rb_funcall2(rbReturnType, rb_intern("inspect"), 0, NULL);
        rb_raise(rb_eTypeError, "Invalid return type (%s)", RSTRING_PTR(typeName));
    }
    
    if (rb_obj_is_kind_of(fnInfo->rbReturnType, rbffi_StructByValueClass)) {
        fnInfo->hasStruct = true;
    }

    Data_Get_Struct(fnInfo->rbReturnType, Type, fnInfo->returnType);
    fnInfo->ffiReturnType = fnInfo->returnType->ffiType;


#if defined(_WIN32) || defined(__WIN32__)
    rbConventionStr = (rbConvention != Qnil) ? rb_funcall2(rbConvention, rb_intern("to_s"), 0, NULL) : Qnil;
    fnInfo->abi = (rbConventionStr != Qnil && strcmp(StringValueCStr(rbConventionStr), "stdcall") == 0)
            ? FFI_STDCALL : FFI_DEFAULT_ABI;
#else
    fnInfo->abi = FFI_DEFAULT_ABI;
#endif

    status = ffi_prep_cif(&fnInfo->ffi_cif, fnInfo->abi, fnInfo->parameterCount,
            fnInfo->ffiReturnType, fnInfo->ffiParameterTypes);
    switch (status) {
        case FFI_BAD_ABI:
            rb_raise(rb_eArgError, "Invalid ABI specified");
        case FFI_BAD_TYPEDEF:
            rb_raise(rb_eArgError, "Invalid argument type specified");
        case FFI_OK:
            break;
        default:
            rb_raise(rb_eArgError, "Unknown FFI error");
    }

    fnInfo->invoke = rbffi_GetInvoker(fnInfo);

    return self;
}
VALUE
rbclt_callback_func_invoke (RBCLTCallbackFunc *func, int arg_count,
			    const VALUE *argv)
{
  return rb_funcall2 (func->proc, id_call, arg_count, argv);
}
/**
 * Call a ruby function with parameters
 *
 * @arg the callback structure
 * @return the value returned the called ruby function
 */
VALUE FunCallWrap(VALUE rdata) {
  struct my_callback* data = (struct my_callback*) rdata;
  return rb_funcall2(data->obj,data->method_id,data->nargs,data->args);
}
Exemple #15
0
static VALUE
pkcs11_library_new(int argc, VALUE *argv, VALUE self)
{
  return rb_funcall2(cPKCS11, sNEW, argc, argv);
}
Exemple #16
0
void
rbffi_SetupCallParams(int argc, VALUE* argv, int paramCount, Type** paramTypes,
        FFIStorage* paramStorage, void** ffiValues,
        VALUE* callbackParameters, int callbackCount, VALUE enums)
{
    VALUE callbackProc = Qnil;
    FFIStorage* param = &paramStorage[0];
    int i, argidx, cbidx, argCount;

    if (unlikely(paramCount != -1 && paramCount != argc)) {
        if (argc == (paramCount - 1) && callbackCount == 1 && rb_block_given_p()) {
            callbackProc = rb_block_proc();
        } else {
            rb_raise(rb_eArgError, "wrong number of arguments (%d for %d)", argc, paramCount);
        }
    }

    argCount = paramCount != -1 ? paramCount : argc;

    for (i = 0, argidx = 0, cbidx = 0; i < argCount; ++i) {
        Type* paramType = paramTypes[i];
        int type;

        
        if (unlikely(paramType->nativeType == NATIVE_MAPPED)) {
            VALUE values[] = { argv[argidx], Qnil };
            argv[argidx] = rb_funcall2(((MappedType *) paramType)->rbConverter, id_to_native, 2, values);
            paramType = ((MappedType *) paramType)->type;
        }

        type = argidx < argc ? TYPE(argv[argidx]) : T_NONE;
        ffiValues[i] = param;

        switch (paramType->nativeType) {

            case NATIVE_INT8:
                param->s8 = NUM2INT(argv[argidx]);
                ++argidx;
                ADJ(param, INT8);
                break;


            case NATIVE_INT16:
                param->s16 = NUM2INT(argv[argidx]);
                ++argidx;
                ADJ(param, INT16);
                break;


            case NATIVE_INT32:
                if (unlikely(type == T_SYMBOL && enums != Qnil)) {
                    VALUE value = rb_funcall(enums, id_map_symbol, 1, argv[argidx]);
                    param->s32 = NUM2INT(value);

                } else {
                    param->s32 = NUM2INT(argv[argidx]);
                }

                ++argidx;
                ADJ(param, INT32);
                break;


            case NATIVE_BOOL:
                if (type != T_TRUE && type != T_FALSE) {
                    rb_raise(rb_eTypeError, "wrong argument type  (expected a boolean parameter)");
                }
                param->s8 = argv[argidx++] == Qtrue;
                ADJ(param, INT8);
                break;


            case NATIVE_UINT8:
                param->u8 = NUM2UINT(argv[argidx]);
                ADJ(param, INT8);
                ++argidx;
                break;


            case NATIVE_UINT16:
                param->u16 = NUM2UINT(argv[argidx]);
                ADJ(param, INT16);
                ++argidx;
                break;


            case NATIVE_UINT32:
                param->u32 = NUM2UINT(argv[argidx]);
                ADJ(param, INT32);
                ++argidx;
                break;


            case NATIVE_INT64:
                param->i64 = NUM2LL(argv[argidx]);
                ADJ(param, INT64);
                ++argidx;
                break;


            case NATIVE_UINT64:
                param->u64 = NUM2ULL(argv[argidx]);
                ADJ(param, INT64);
                ++argidx;
                break;

            case NATIVE_LONG:
                *(ffi_sarg *) param = NUM2LONG(argv[argidx]);
                ADJ(param, LONG);
                ++argidx;
                break;

            case NATIVE_ULONG:
                *(ffi_arg *) param = NUM2ULONG(argv[argidx]);
                ADJ(param, LONG);
                ++argidx;
                break;

            case NATIVE_FLOAT32:
                param->f32 = (float) NUM2DBL(argv[argidx]);
                ADJ(param, FLOAT32);
                ++argidx;
                break;

            case NATIVE_FLOAT64:
                param->f64 = NUM2DBL(argv[argidx]);
                ADJ(param, FLOAT64);
                ++argidx;
                break;

            case NATIVE_LONGDOUBLE:
                param->ld = rbffi_num2longdouble(argv[argidx]);
                ADJ(param, LONGDOUBLE);
                ++argidx;
                break;


            case NATIVE_STRING:
                if (type == T_NIL) {
                    param->ptr = NULL; 
                
                } else {
                    if (rb_safe_level() >= 1 && OBJ_TAINTED(argv[argidx])) {
                        rb_raise(rb_eSecurityError, "Unsafe string parameter");
                    }

                    param->ptr = StringValueCStr(argv[argidx]);
                }

                ADJ(param, ADDRESS);
                ++argidx;
                break;

            case NATIVE_POINTER:
            case NATIVE_BUFFER_IN:
            case NATIVE_BUFFER_OUT:
            case NATIVE_BUFFER_INOUT:
                param->ptr = getPointer(argv[argidx++], type);
                ADJ(param, ADDRESS);
                break;


            case NATIVE_FUNCTION:
            case NATIVE_CALLBACK:
                if (callbackProc != Qnil) {
                    param->ptr = callback_param(callbackProc, callbackParameters[cbidx++]);
                } else {
                    param->ptr = callback_param(argv[argidx], callbackParameters[cbidx++]);
                    ++argidx;
                }
                ADJ(param, ADDRESS);
                break;

            case NATIVE_STRUCT:
                ffiValues[i] = getPointer(argv[argidx++], type);
                break;

            default:
                rb_raise(rb_eArgError, "Invalid parameter type: %d", paramType->nativeType);
        }
    }
}
static inline VALUE
vm_call_method(rb_thread_t *th, rb_control_frame_t *cfp,
	       int num, const rb_block_t *blockptr, VALUE flag,
	       ID id, const rb_method_entry_t *me, VALUE recv)
{
    VALUE val;

  start_method_dispatch:

    if (me != 0) {
	if ((me->flag == 0)) {
	  normal_method_dispatch:
	    switch (me->def->type) {
	      case VM_METHOD_TYPE_ISEQ:{
		vm_setup_method(th, cfp, recv, num, blockptr, flag, me);
		return Qundef;
	      }
	      case VM_METHOD_TYPE_NOTIMPLEMENTED:
	      case VM_METHOD_TYPE_CFUNC:{
		val = vm_call_cfunc(th, cfp, num, recv, blockptr, me);
		break;
	      }
	      case VM_METHOD_TYPE_ATTRSET:{
		if (num != 1) {
		    rb_raise(rb_eArgError, "wrong number of arguments (%d for 1)", num);
		}
		val = rb_ivar_set(recv, me->def->body.attr.id, *(cfp->sp - 1));
		cfp->sp -= 2;
		break;
	      }
	      case VM_METHOD_TYPE_IVAR:{
		if (num != 0) {
		    rb_raise(rb_eArgError, "wrong number of arguments (%d for 0)", num);
		}
		val = rb_attr_get(recv, me->def->body.attr.id);
		cfp->sp -= 1;
		break;
	      }
	      case VM_METHOD_TYPE_MISSING:{
		VALUE *argv = ALLOCA_N(VALUE, num+1);
		argv[0] = ID2SYM(me->def->original_id);
		MEMCPY(argv+1, cfp->sp - num, VALUE, num);
		cfp->sp += - num - 1;
		th->passed_block = blockptr;
		val = rb_funcall2(recv, rb_intern("method_missing"), num+1, argv);
		break;
	      }
	      case VM_METHOD_TYPE_BMETHOD:{
		VALUE *argv = ALLOCA_N(VALUE, num);
		MEMCPY(argv, cfp->sp - num, VALUE, num);
		cfp->sp += - num - 1;
		val = vm_call_bmethod(th, recv, num, argv, blockptr, me);
		break;
	      }
	      case VM_METHOD_TYPE_ZSUPER:{
		VALUE klass = RCLASS_SUPER(me->klass);
		me = rb_method_entry(klass, id);

		if (me != 0) {
		    goto normal_method_dispatch;
		}
		else {
		    goto start_method_dispatch;
		}
	      }
	      case VM_METHOD_TYPE_OPTIMIZED:{
		switch (me->def->body.optimize_type) {
		  case OPTIMIZED_METHOD_TYPE_SEND: {
		    rb_control_frame_t *reg_cfp = cfp;
		    rb_num_t i = num - 1;
		    VALUE sym;

		    if (num == 0) {
			rb_raise(rb_eArgError, "no method name given");
		    }

		    sym = TOPN(i);
		    id = SYMBOL_P(sym) ? SYM2ID(sym) : rb_to_id(sym);
		    /* shift arguments */
		    if (i > 0) {
			MEMMOVE(&TOPN(i), &TOPN(i-1), VALUE, i);
		    }
		    me = rb_method_entry(CLASS_OF(recv), id);
		    num -= 1;
		    DEC_SP(1);
		    flag |= VM_CALL_FCALL_BIT | VM_CALL_OPT_SEND_BIT;

		    goto start_method_dispatch;
		  }
		  case OPTIMIZED_METHOD_TYPE_CALL: {
		    rb_proc_t *proc;
		    int argc = num;
		    VALUE *argv = ALLOCA_N(VALUE, num);
		    GetProcPtr(recv, proc);
		    MEMCPY(argv, cfp->sp - num, VALUE, num);
		    cfp->sp -= num + 1;

		    val = rb_vm_invoke_proc(th, proc, proc->block.self, argc, argv, blockptr);
		    break;
		  }
		  default:
		    rb_bug("eval_invoke_method: unsupported optimized method type (%d)",
			   me->def->body.optimize_type);
		}
		break;
	      }
	      default:{
		rb_bug("eval_invoke_method: unsupported method type (%d)", me->def->type);
		break;
	      }
	    }
	}
	else {
	    int noex_safe;

	    if (!(flag & VM_CALL_FCALL_BIT) &&
		(me->flag & NOEX_MASK) & NOEX_PRIVATE) {
		int stat = NOEX_PRIVATE;

		if (flag & VM_CALL_VCALL_BIT) {
		    stat |= NOEX_VCALL;
		}
		val = vm_method_missing(th, id, recv, num, blockptr, stat);
	    }
	    else if (!(flag & VM_CALL_OPT_SEND_BIT) && (me->flag & NOEX_MASK) & NOEX_PROTECTED) {
		VALUE defined_class = me->klass;

		if (RB_TYPE_P(defined_class, T_ICLASS)) {
		    defined_class = RBASIC(defined_class)->klass;
		}

		if (!rb_obj_is_kind_of(cfp->self, defined_class)) {
		    val = vm_method_missing(th, id, recv, num, blockptr, NOEX_PROTECTED);
		}
		else {
		    goto normal_method_dispatch;
		}
	    }
	    else if ((noex_safe = NOEX_SAFE(me->flag)) > th->safe_level &&
		     (noex_safe > 2)) {
		rb_raise(rb_eSecurityError, "calling insecure method: %s", rb_id2name(id));
	    }
	    else {
		goto normal_method_dispatch;
	    }
	}
    }
    else {
	/* method missing */
	int stat = 0;
	if (flag & VM_CALL_VCALL_BIT) {
	    stat |= NOEX_VCALL;
	}
	if (flag & VM_CALL_SUPER_BIT) {
	    stat |= NOEX_SUPER;
	}
	if (id == idMethodMissing) {
	    VALUE *argv = ALLOCA_N(VALUE, num);
	    vm_method_missing_args(th, argv, num - 1, 0, stat);
	    rb_raise_method_missing(th, num, argv, recv, stat);
	}
	else {
	    val = vm_method_missing(th, id, recv, num, blockptr, stat);
	}
    }

    RUBY_VM_CHECK_INTS();
    return val;
}
Exemple #18
0
static VALUE lp_respond_to_missing(int argc, VALUE* argv, VALUE self) {
  VALUE obj = lp_get_resolv(self);

  return rb_funcall2(obj, id_respond_to, argc, argv);
}
Exemple #19
0
static VALUE
lazy_flat_map_i(VALUE i, VALUE yielder, int argc, VALUE *argv)
{
    return rb_funcall2(yielder, id_yield, argc, argv);
}
Exemple #20
0
static VALUE
bdb_deleg_each(VALUE *tmp)
{
    return rb_funcall2(tmp[0], id_send, (int)tmp[1], (VALUE *)tmp[2]);
}
static void ruby_funcall(xmlXPathParserContextPtr ctx, int nargs)
{
  VALUE xpath_handler = Qnil;
  VALUE result;
  VALUE *argv;
  VALUE doc;
  VALUE node_set = Qnil;
  xmlNodeSetPtr xml_node_set = NULL;
  xmlXPathObjectPtr obj;
  int i;
  nokogiriNodeSetTuple *node_set_tuple;

  assert(ctx);
  assert(ctx->context);
  assert(ctx->context->userData);
  assert(ctx->context->doc);
  assert(DOC_RUBY_OBJECT_TEST(ctx->context->doc));

  xpath_handler = (VALUE)(ctx->context->userData);

  argv = (VALUE *)calloc((size_t)nargs, sizeof(VALUE));
  for (i = 0 ; i < nargs ; ++i) {
    rb_gc_register_address(&argv[i]);
  }

  doc = DOC_RUBY_OBJECT(ctx->context->doc);

  if (nargs > 0) {
    i = nargs - 1;
    do {
      obj = valuePop(ctx);
      switch(obj->type) {
        case XPATH_STRING:
          argv[i] = NOKOGIRI_STR_NEW2(obj->stringval);
          break;
        case XPATH_BOOLEAN:
          argv[i] = obj->boolval == 1 ? Qtrue : Qfalse;
          break;
        case XPATH_NUMBER:
          argv[i] = rb_float_new(obj->floatval);
          break;
        case XPATH_NODESET:
          argv[i] = Nokogiri_wrap_xml_node_set(obj->nodesetval, doc);
          break;
        default:
          argv[i] = NOKOGIRI_STR_NEW2(xmlXPathCastToString(obj));
      }
      xmlXPathFreeNodeSetList(obj);
    } while(i-- > 0);
  }

  result = rb_funcall2(
      xpath_handler,
      rb_intern((const char *)ctx->context->function),
      nargs,
      argv
  );

  for (i = 0 ; i < nargs ; ++i) {
    rb_gc_unregister_address(&argv[i]);
  }
  free(argv);

  switch(TYPE(result)) {
    case T_FLOAT:
    case T_BIGNUM:
    case T_FIXNUM:
      xmlXPathReturnNumber(ctx, NUM2DBL(result));
      break;
    case T_STRING:
      xmlXPathReturnString(
          ctx,
          (xmlChar *)xmlXPathWrapCString(StringValuePtr(result))
      );
      break;
    case T_TRUE:
      xmlXPathReturnTrue(ctx);
      break;
    case T_FALSE:
      xmlXPathReturnFalse(ctx);
      break;
    case T_NIL:
      break;
    case T_ARRAY:
      {
        VALUE args[2];
	args[0] = doc;
	args[1] = result;
        node_set = rb_class_new_instance(2, args, cNokogiriXmlNodeSet);
        Data_Get_Struct(node_set, nokogiriNodeSetTuple, node_set_tuple);
	xml_node_set = node_set_tuple->node_set;
        xmlXPathReturnNodeSet(ctx, xmlXPathNodeSetMerge(NULL, xml_node_set));
      }
      break;
    case T_DATA:
      if(rb_obj_is_kind_of(result, cNokogiriXmlNodeSet)) {
        Data_Get_Struct(result, nokogiriNodeSetTuple, node_set_tuple);
	xml_node_set = node_set_tuple->node_set;
        /* Copy the node set, otherwise it will get GC'd. */
        xmlXPathReturnNodeSet(ctx, xmlXPathNodeSetMerge(NULL, xml_node_set));
        break;
      }
    default:
      rb_raise(rb_eRuntimeError, "Invalid return type");
  }
}
Exemple #22
0
/*
 * call-seq:
 *   io.getch(min: nil, time: nil)       -> char
 *
 * See IO#getch.
 */
static VALUE
io_getch(int argc, VALUE *argv, VALUE io)
{
    return rb_funcall2(io, rb_intern("getc"), argc, argv);
}
Exemple #23
0
DWORD CallbackFunction(CALLPARAM param, VALUE callback)
{
  VALUE v_proto, v_return, v_proc, v_retval;
  VALUE argv[20];
  int i, argc;
  char *a_proto;
  char *a_return;

  if(callback && !NIL_P(callback)){
    v_proto = rb_iv_get(callback, "@prototype");
    a_proto = RSTRING_PTR(v_proto);

    v_return = rb_iv_get(callback, "@return_type");
    a_return = RSTRING_PTR(v_return);

    v_proc = rb_iv_get(callback, "@function");
    argc = RSTRING_LEN(v_proto);

    for(i=0; i < RSTRING_LEN(v_proto); i++){
      argv[i] = Qnil;
      switch(a_proto[i]){
        case 'L':
          argv[i] = ULONG2NUM(param.params[i]);
          break;
        case 'P':
          if(param.params[i])
            argv[i] = rb_str_new2((char *)param.params[i]);
          break;
        case 'I':
          argv[i] = INT2NUM(param.params[i]);
          break;
        default:
          rb_raise(cAPIProtoError, "Illegal prototype '%s'", a_proto[i]);
      }
    }

    v_retval = rb_funcall2(v_proc, rb_intern("call"), argc, argv);

    /* Handle true and false explicitly, as some CALLBACK functions
     * require TRUE or FALSE to break out of loops, etc.
     */
    if(v_retval == Qtrue)
      return TRUE;
    else if(v_retval == Qfalse)
      return FALSE;

    switch (*a_return) {
      case 'I':
        return NUM2INT(v_retval);
        break;
      case 'L':
        return NUM2ULONG(v_retval);
        break;
      case 'S':
        return (unsigned long)RSTRING_PTR(v_retval);
        break;
      case 'P':
        if(NIL_P(v_retval)){
          return 0;
        }
        else if(FIXNUM_P(v_retval)){
          return NUM2ULONG(v_retval);
        }
        else{
          StringValue(v_retval);
          rb_str_modify(v_retval);
          return (unsigned long)StringValuePtr(v_retval);
        }
        break;
    }
  }

  return 0;
}
Exemple #24
0
static VALUE
do_sleep(VALUE args)
{
    struct sleep_call *p = (struct sleep_call *)args;
    return rb_funcall2(p->mutex, id_sleep, 1, &p->timeout);
}
/*
 * call-seq:
 *   unixsocket.recv_io([klass [, mode]]) => io
 *
 *   UNIXServer.open("/tmp/sock") {|serv|
 *     UNIXSocket.open("/tmp/sock") {|c|  
 *       s = serv.accept
 *
 *       c.send_io STDOUT 
 *       stdout = s.recv_io 
 *
 *       p STDOUT.fileno #=> 1
 *       p stdout.fileno #=> 7
 *
 *       stdout.puts "hello" # outputs "hello\n" to standard output.
 *     }
 *   }
 *
 */
static VALUE
unix_recv_io(int argc, VALUE *argv, VALUE sock)
{
    VALUE klass, mode;
    rb_io_t *fptr;
    struct iomsg_arg arg;
    struct iovec vec[2];
    char buf[1];

    int fd;
#if FD_PASSING_BY_MSG_CONTROL
    struct {
	struct cmsghdr hdr;
        char pad[8+sizeof(int)+8];
    } cmsg;
#endif

    rb_scan_args(argc, argv, "02", &klass, &mode);
    if (argc == 0)
	klass = rb_cIO;
    if (argc <= 1)
	mode = Qnil;

    GetOpenFile(sock, fptr);

    arg.msg.msg_name = NULL;
    arg.msg.msg_namelen = 0;

    vec[0].iov_base = buf;
    vec[0].iov_len = sizeof(buf);
    arg.msg.msg_iov = vec;
    arg.msg.msg_iovlen = 1;

#if FD_PASSING_BY_MSG_CONTROL
    arg.msg.msg_control = (caddr_t)&cmsg;
    arg.msg.msg_controllen = CMSG_SPACE(sizeof(int));
    arg.msg.msg_flags = 0;
    cmsg.hdr.cmsg_len = CMSG_LEN(sizeof(int));
    cmsg.hdr.cmsg_level = SOL_SOCKET;
    cmsg.hdr.cmsg_type = SCM_RIGHTS;
    fd = -1;
    memcpy(CMSG_DATA(&cmsg.hdr), &fd, sizeof(int));
#else
    arg.msg.msg_accrights = (caddr_t)&fd;
    arg.msg.msg_accrightslen = sizeof(fd);
    fd = -1;
#endif

    arg.fd = fptr->fd;
    rb_thread_wait_fd(arg.fd);
    if ((int)BLOCKING_REGION(recvmsg_blocking, &arg) == -1)
	rb_sys_fail("recvmsg(2)");

#if FD_PASSING_BY_MSG_CONTROL
    if (arg.msg.msg_controllen < sizeof(struct cmsghdr)) {
	rb_raise(rb_eSocket,
		 "file descriptor was not passed (msg_controllen=%d smaller than sizeof(struct cmsghdr)=%d)",
		 (int)arg.msg.msg_controllen, (int)sizeof(struct cmsghdr));
    }
    if (cmsg.hdr.cmsg_level != SOL_SOCKET) {
	rb_raise(rb_eSocket,
		 "file descriptor was not passed (cmsg_level=%d, %d expected)",
		 cmsg.hdr.cmsg_level, SOL_SOCKET);
    }
    if (cmsg.hdr.cmsg_type != SCM_RIGHTS) {
	rb_raise(rb_eSocket,
		 "file descriptor was not passed (cmsg_type=%d, %d expected)",
		 cmsg.hdr.cmsg_type, SCM_RIGHTS);
    }
    if (arg.msg.msg_controllen < CMSG_LEN(sizeof(int))) {
	rb_raise(rb_eSocket,
		 "file descriptor was not passed (msg_controllen=%d smaller than CMSG_LEN(sizeof(int))=%d)",
		 (int)arg.msg.msg_controllen, (int)CMSG_LEN(sizeof(int)));
    }
    if (CMSG_SPACE(sizeof(int)) < arg.msg.msg_controllen) {
	rb_raise(rb_eSocket,
		 "file descriptor was not passed (msg_controllen=%d bigger than CMSG_SPACE(sizeof(int))=%d)",
		 (int)arg.msg.msg_controllen, (int)CMSG_SPACE(sizeof(int)));
    }
    if (cmsg.hdr.cmsg_len != CMSG_LEN(sizeof(int))) {
	rsock_discard_cmsg_resource(&arg.msg);
	rb_raise(rb_eSocket,
		 "file descriptor was not passed (cmsg_len=%d, %d expected)",
		 (int)cmsg.hdr.cmsg_len, (int)CMSG_LEN(sizeof(int)));
    }
#else
    if (arg.msg.msg_accrightslen != sizeof(fd)) {
	rb_raise(rb_eSocket,
		 "file descriptor was not passed (accrightslen) : %d != %d",
		 arg.msg.msg_accrightslen, (int)sizeof(fd));
    }
#endif

#if FD_PASSING_BY_MSG_CONTROL
    memcpy(&fd, CMSG_DATA(&cmsg.hdr), sizeof(int));
#endif

    if (klass == Qnil)
	return INT2FIX(fd);
    else {
	ID for_fd;
	int ff_argc;
	VALUE ff_argv[2];
	CONST_ID(for_fd, "for_fd");
	ff_argc = mode == Qnil ? 1 : 2;
	ff_argv[0] = INT2FIX(fd);
	ff_argv[1] = mode;
        return rb_funcall2(klass, for_fd, ff_argc, ff_argv);
    }
}
Exemple #26
0
    static VALUE
do_func_call(VALUE ptr)
{
    struct proc_params_st *p = (struct proc_params_st *)ptr;
    return rb_funcall2(p->recv, p->mid, p->argc, p->argv);
}
Exemple #27
0
static VALUE rgssMainCb(VALUE block)
{
	rb_funcall2(block, rb_intern("call"), 0, 0);
	return Qnil;
}
Exemple #28
0
void
callback(ffi_cif *cif, void *resp, void **args, void *ctx)
{
    VALUE self      = (VALUE)ctx;
    VALUE rbargs    = rb_iv_get(self, "@args");
    VALUE ctype     = rb_iv_get(self, "@ctype");
    int argc        = RARRAY_LENINT(rbargs);
    VALUE *params   = xcalloc(argc, sizeof(VALUE *));
    VALUE ret;
    VALUE cPointer;
    int i, type;

    cPointer = rb_const_get(mFiddle, rb_intern("Pointer"));

    for (i = 0; i < argc; i++) {
        type = NUM2INT(RARRAY_PTR(rbargs)[i]);
        switch (type) {
	  case TYPE_VOID:
	    argc = 0;
	    break;
	  case TYPE_INT:
	    params[i] = INT2NUM(*(int *)args[i]);
	    break;
	  case TYPE_VOIDP:
            params[i] = rb_funcall(cPointer, rb_intern("[]"), 1,
              PTR2NUM(*(void **)args[i]));
	    break;
	  case TYPE_LONG:
	    params[i] = LONG2NUM(*(long *)args[i]);
	    break;
	  case TYPE_CHAR:
	    params[i] = INT2NUM(*(char *)args[i]);
	    break;
	  case TYPE_DOUBLE:
	    params[i] = rb_float_new(*(double *)args[i]);
	    break;
	  case TYPE_FLOAT:
	    params[i] = rb_float_new(*(float *)args[i]);
	    break;
#if HAVE_LONG_LONG
	  case TYPE_LONG_LONG:
	    params[i] = rb_ull2inum(*(unsigned LONG_LONG *)args[i]);
	    break;
#endif
	  default:
	    rb_raise(rb_eRuntimeError, "closure args: %d", type);
        }
    }

    ret = rb_funcall2(self, rb_intern("call"), argc, params);

    type = NUM2INT(ctype);
    switch (type) {
      case TYPE_VOID:
	break;
      case TYPE_LONG:
	*(long *)resp = NUM2LONG(ret);
	break;
      case TYPE_CHAR:
	*(char *)resp = NUM2INT(ret);
	break;
      case TYPE_VOIDP:
	*(void **)resp = NUM2PTR(ret);
	break;
      case TYPE_INT:
	*(int *)resp = NUM2INT(ret);
	break;
      case TYPE_DOUBLE:
	*(double *)resp = NUM2DBL(ret);
	break;
      case TYPE_FLOAT:
	*(float *)resp = (float)NUM2DBL(ret);
	break;
#if HAVE_LONG_LONG
      case TYPE_LONG_LONG:
	*(unsigned LONG_LONG *)resp = rb_big2ull(ret);
	break;
#endif
      default:
	rb_raise(rb_eRuntimeError, "closure retval: %d", type);
    }
    xfree(params);
}
Exemple #29
0
static VALUE
getc_call(VALUE io)
{
    return rb_funcall2(io, id_getc, 0, 0);
}
Exemple #30
0
/**
 * this function will safely be executed (gvl acquired)
 * this should not create a blocking/bottleneck situation since the access to rb_mKernel is
 * mutex-protected by proxenet before
 *
 * @return the result of rb_funcall2()
 */
static VALUE proxenet_safe_func_call(VALUE arg)
{
        struct proxenet_ruby_args* args = (struct proxenet_ruby_args*) arg;
        return rb_funcall2(args->rVM, args->rFunc, 3, args->rArgs);
}