void hal::os::Clock::ReadCounters(s64 & tsc, s64 & pc) { u64 rdtsc_a, rdtsc_b; LARGE_INTEGER pca; int count = 0; again: rdtsc_a = __rdtsc(); ::NtQueryPerformanceCounter(&pca, 0); rdtsc_b = __rdtsc(); if (rdtsc_b - rdtsc_a > 100000 && count++ < 5 ) goto again; tsc = s64((rdtsc_a + rdtsc_b)/2ULL); pc = s64(pca.QuadPart); }
XRCORE_API BOOL is_stack_ptr ( void* _ptr) { int local_value = 0; void* ptr_refsound = _ptr; void* ptr_local = &local_value; ptrdiff_t difference = (ptrdiff_t)_abs(s64(ptrdiff_t(ptr_local) - ptrdiff_t(ptr_refsound))); return (difference < (512*1024)); }
void ForceExceptionCheck(s64 cycles) { if (s64(DowncountToCycles(PowerPC::ppcState.downcount)) > cycles) { // downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int here. g_slicelength -= (DowncountToCycles(PowerPC::ppcState.downcount) - (int)cycles); // Account for cycles already executed by adjusting the g_slicelength PowerPC::ppcState.downcount = CyclesToDowncount((int)cycles); } }
hal::os::Clock::Clock(int) { ULONG dummy; s64 pca, pcb, pcf, tsca, tscb; f64 interval; int const times = 16; int const retries = 5; ::NtQueryTimerResolution(&dummy, &m_max_resolution, &m_old_resolution); ::NtSetTimerResolution(m_max_resolution, TRUE, &dummy); ::NtQueryPerformanceCounter((PLARGE_INTEGER)&pca, (PLARGE_INTEGER)&pcf); m_qpc_frequency = f64(pcf); m_qpc_factor = 1000000.0 / m_qpc_frequency; m_qpc_resolution = f64(m_max_resolution) / 10.0; m_tsc_frequency = 0; f64 frequency = 0.0; __ThreadPriority(THREAD_PRIORITY_TIME_CRITICAL) { for (int j = 0; j < times; ++j) { for (int i = 0; i < retries; ++i) { ReadCounters(tsca, pca); do { ReadCounters(tscb, pcb); interval = f64(pcb - pca) * m_qpc_factor; } while (interval < 1000.0); if (interval < 1001.0) { frequency += f64(tscb - tsca) / interval; break; } } } } m_tsc_frequency = s64(frequency / f64(times)); }
int Database_SQLite3::busyHandler(void *data, int count) { s64 &first_time = reinterpret_cast<s64 *>(data)[0]; s64 &prev_time = reinterpret_cast<s64 *>(data)[1]; s64 cur_time = getTimeMs(); if (count == 0) { first_time = cur_time; prev_time = first_time; } else { while (cur_time < prev_time) cur_time += s64(1)<<32; } if (cur_time - first_time < BUSY_INFO_TRESHOLD) { ; // do nothing } else if (cur_time - first_time >= BUSY_INFO_TRESHOLD && prev_time - first_time < BUSY_INFO_TRESHOLD) { infostream << "SQLite3 database has been locked for " << cur_time - first_time << " ms." << std::endl; } else if (cur_time - first_time >= BUSY_WARNING_TRESHOLD && prev_time - first_time < BUSY_WARNING_TRESHOLD) { warningstream << "SQLite3 database has been locked for " << cur_time - first_time << " ms." << std::endl; } else if (cur_time - first_time >= BUSY_ERROR_TRESHOLD && prev_time - first_time < BUSY_ERROR_TRESHOLD) { errorstream << "SQLite3 database has been locked for " << cur_time - first_time << " ms; this causes lag." << std::endl; } else if (cur_time - first_time >= BUSY_FATAL_TRESHOLD && prev_time - first_time < BUSY_FATAL_TRESHOLD) { errorstream << "SQLite3 database has been locked for " << cur_time - first_time << " ms - giving up!" << std::endl; } else if ((cur_time - first_time) / BUSY_ERROR_INTERVAL != (prev_time - first_time) / BUSY_ERROR_INTERVAL) { // Safety net: keep reporting every BUSY_ERROR_INTERVAL errorstream << "SQLite3 database has been locked for " << (cur_time - first_time) / 1000 << " seconds!" << std::endl; } prev_time = cur_time; // Make sqlite transaction fail if delay exceeds BUSY_FATAL_TRESHOLD return cur_time - first_time < BUSY_FATAL_TRESHOLD; }
float CLevel::GetEnvironmentGameDayTimeSec() { return (float(s64(GetEnvironmentGameTime() % (24*60*60*1000)))/1000.f); }
u32 CLevel::GetGameDayTimeMS() { return (u32(s64(GetGameTime() % (24*60*60*1000)))); }
constexpr int64_t SX64(int64_t x) { return (x & s64(0x0000800000000000U)) ? x | s64(0xffff000000000000U) : x & s64(0x0000ffffffffffffU); }
***************************************************************************************/ #include "emu.h" #include "es5510.h" #include "es5510d.h" #include "cpu/m68000/m68000.h" #include "debugger.h" #include <cstdio> #include <algorithm> static constexpr int32_t MIN_24 = -(1 << 23); static constexpr int32_t MAX_24 = (1 << 23) - 1; static constexpr int64_t MIN_48 = -(s64(1) << 47); static constexpr int64_t MAX_48 = (s64(1) << 47) - 1; #define SIGN_BIT_24 (0x00800000) #define GET_SIGN_BIT_24(x) ((x) & SIGN_BIT_24) #define IS_NEGATIVE(x) (((x) & SIGN_BIT_24) != 0) #define CARRY_OUT_24 (0x01000000) constexpr int32_t SX(int32_t x) { return IS_NEGATIVE(x) ? x | 0xff000000 : x & 0x00ffffff; } constexpr int32_t SC(int32_t x) { return x & 0x00ffffff; } constexpr int64_t SX64(int64_t x) { return (x & s64(0x0000800000000000U)) ? x | s64(0xffff000000000000U) : x & s64(0x0000ffffffffffffU); } //constexpr int64_t SC64(int64_t x) { return x & s64(0x0000ffffffffffffU); } #define VERBOSE 0 #define VERBOSE_EXEC 0
bool test(bool is_kernel_exact = true) { // types typedef typename K::FT FT; typedef typename K::Line_3 Line; typedef typename K::Point_3 Point; typedef typename K::Segment_3 Segment; typedef typename K::Ray_3 Ray; typedef typename K::Line_3 Line; typedef typename K::Triangle_3 Triangle; /* ------------------------------------- // Test data is something like that (in t supporting plane) // Triangle is (p1,p2,p3) // // +E +1 // / \ // +C 6+ +8 +4 +B // / 9++7 \ // 3+-------+5--+2 // // +F +A ------------------------------------- */ Point p1(FT(1.), FT(0.), FT(0.)); Point p2(FT(0.), FT(1.), FT(0.)); Point p3(FT(0.), FT(0.), FT(1.)); Triangle t(p1,p2,p3); // Edges of t Segment s12(p1,p2); Segment s21(p2,p1); Segment s13(p1,p3); Segment s23(p2,p3); Segment s32(p3,p2); Segment s31(p3,p1); bool b = test_aux(is_kernel_exact,t,s12,"t-s12",s12); b &= test_aux(is_kernel_exact,t,s21,"t-s21",s21); b &= test_aux(is_kernel_exact,t,s13,"t-s13",s13); b &= test_aux(is_kernel_exact,t,s23,"t-s23",s23); // Inside points Point p4(FT(0.5), FT(0.5), FT(0.)); Point p5(FT(0.), FT(0.75), FT(0.25)); Point p6(FT(0.5), FT(0.), FT(0.5)); Point p7(FT(0.25), FT(0.625), FT(0.125)); Point p8(FT(0.5), FT(0.25), FT(0.25)); Segment s14(p1,p4); Segment s41(p4,p1); Segment s24(p2,p4); Segment s42(p4,p2); Segment s15(p1,p5); Segment s25(p2,p5); Segment s34(p3,p4); Segment s35(p3,p5); Segment s36(p3,p6); Segment s45(p4,p5); Segment s16(p1,p6); Segment s26(p2,p6); Segment s62(p6,p2); Segment s46(p4,p6); Segment s48(p4,p8); Segment s56(p5,p6); Segment s65(p6,p5); Segment s64(p6,p4); Segment s17(p1,p7); Segment s67(p6,p7); Segment s68(p6,p8); Segment s86(p8,p6); Segment s78(p7,p8); Segment s87(p8,p7); b &= test_aux(is_kernel_exact,t,s14,"t-s14",s14); b &= test_aux(is_kernel_exact,t,s41,"t-s41",s41); b &= test_aux(is_kernel_exact,t,s24,"t-s24",s24); b &= test_aux(is_kernel_exact,t,s42,"t-s42",s42); b &= test_aux(is_kernel_exact,t,s15,"t-s15",s15); b &= test_aux(is_kernel_exact,t,s25,"t-s25",s25); b &= test_aux(is_kernel_exact,t,s34,"t-s34",s34); b &= test_aux(is_kernel_exact,t,s35,"t-s35",s35); b &= test_aux(is_kernel_exact,t,s36,"t-s36",s36); b &= test_aux(is_kernel_exact,t,s45,"t-s45",s45); b &= test_aux(is_kernel_exact,t,s16,"t-s16",s16); b &= test_aux(is_kernel_exact,t,s26,"t-s26",s26); b &= test_aux(is_kernel_exact,t,s62,"t-s62",s62); b &= test_aux(is_kernel_exact,t,s46,"t-s46",s46); b &= test_aux(is_kernel_exact,t,s65,"t-s65",s65); b &= test_aux(is_kernel_exact,t,s64,"t-s64",s64); b &= test_aux(is_kernel_exact,t,s48,"t-s48",s48); b &= test_aux(is_kernel_exact,t,s56,"t-s56",s56); b &= test_aux(is_kernel_exact,t,s17,"t-t17",s17); b &= test_aux(is_kernel_exact,t,s67,"t-t67",s67); b &= test_aux(is_kernel_exact,t,s68,"t-s68",s68); b &= test_aux(is_kernel_exact,t,s86,"t-s86",s86); b &= test_aux(is_kernel_exact,t,s78,"t-t78",s78); b &= test_aux(is_kernel_exact,t,s87,"t-t87",s87); // Outside points (in triangle plane) Point pA(FT(-0.5), FT(1.), FT(0.5)); Point pB(FT(0.5), FT(1.), FT(-0.5)); Point pC(FT(0.5), FT(-0.5), FT(1.)); Point pE(FT(1.), FT(-1.), FT(1.)); Point pF(FT(-1.), FT(0.), FT(2.)); Segment sAB(pA,pB); Segment sBC(pB,pC); Segment s2E(p2,pE); Segment sE2(pE,p2); Segment s2A(p2,pA); Segment s6E(p6,pE); Segment sB8(pB,p8); Segment sC8(pC,p8); Segment s8C(p8,pC); Segment s1F(p1,pF); Segment sF6(pF,p6); b &= test_aux(is_kernel_exact,t,sAB,"t-sAB",p2); b &= test_aux(is_kernel_exact,t,sBC,"t-sBC",s46); b &= test_aux(is_kernel_exact,t,s2E,"t-s2E",s26); b &= test_aux(is_kernel_exact,t,sE2,"t-sE2",s62); b &= test_aux(is_kernel_exact,t,s2A,"t-s2A",p2); b &= test_aux(is_kernel_exact,t,s6E,"t-s6E",p6); b &= test_aux(is_kernel_exact,t,sB8,"t-sB8",s48); b &= test_aux(is_kernel_exact,t,sC8,"t-sC8",s68); b &= test_aux(is_kernel_exact,t,s8C,"t-s8C",s86); b &= test_aux(is_kernel_exact,t,s1F,"t-s1F",s13); b &= test_aux(is_kernel_exact,t,sF6,"t-sF6",s36); // Outside triangle plane Point pa(FT(0.), FT(0.), FT(0.)); Point pb(FT(2.), FT(0.), FT(0.)); Point pc(FT(1.), FT(0.), FT(1.)); Point pe(FT(1.), FT(0.5), FT(0.5)); Segment sab(pa,pb); Segment sac(pa,pc); Segment sae(pa,pe); Segment sa8(pa,p8); Segment sb2(pb,p2); b &= test_aux(is_kernel_exact,t,sab,"t-sab",p1); b &= test_aux(is_kernel_exact,t,sac,"t-sac",p6); b &= test_aux(is_kernel_exact,t,sae,"t-sae",p8); b &= test_aux(is_kernel_exact,t,sa8,"t-sa8",p8); b &= test_aux(is_kernel_exact,t,sb2,"t-sb2",p2); // ----------------------------------- // ray queries // ----------------------------------- // Edges of t Ray r12(p1,p2); Ray r21(p2,p1); Ray r13(p1,p3); Ray r23(p2,p3); b &= test_aux(is_kernel_exact,t,r12,"t-r12",s12); b &= test_aux(is_kernel_exact,t,r21,"t-r21",s21); b &= test_aux(is_kernel_exact,t,r13,"t-r13",s13); b &= test_aux(is_kernel_exact,t,r23,"t-r23",s23); // In triangle Point p9_(FT(0.), FT(0.5), FT(0.5)); Point p9(FT(0.25), FT(0.375), FT(0.375)); Ray r14(p1,p4); Ray r41(p4,p1); Ray r24(p2,p4); Ray r42(p4,p2); Ray r15(p1,p5); Ray r25(p2,p5); Ray r34(p3,p4); Ray r35(p3,p5); Ray r36(p3,p6); Ray r45(p4,p5); Ray r16(p1,p6); Ray r26(p2,p6); Ray r62(p6,p2); Ray r46(p4,p6); Ray r48(p4,p8); Ray r56(p5,p6); Ray r47(p4,p7); Ray r89(p8,p9); Ray r86(p8,p6); Ray r68(p6,p8); Segment r89_res(p8,p9_); b &= test_aux(is_kernel_exact,t,r14,"t-r14",s12); b &= test_aux(is_kernel_exact,t,r41,"t-r41",s41); b &= test_aux(is_kernel_exact,t,r24,"t-r24",s21); b &= test_aux(is_kernel_exact,t,r42,"t-r42",s42); b &= test_aux(is_kernel_exact,t,r15,"t-r15",s15); b &= test_aux(is_kernel_exact,t,r25,"t-r25",s23); b &= test_aux(is_kernel_exact,t,r34,"t-r34",s34); b &= test_aux(is_kernel_exact,t,r35,"t-r35",s32); b &= test_aux(is_kernel_exact,t,r36,"t-r36",s31); b &= test_aux(is_kernel_exact,t,r45,"t-r45",s45); b &= test_aux(is_kernel_exact,t,r16,"t-r16",s13); b &= test_aux(is_kernel_exact,t,r26,"t-r26",s26); b &= test_aux(is_kernel_exact,t,r62,"t-r62",s62); b &= test_aux(is_kernel_exact,t,r46,"t-r46",s46); b &= test_aux(is_kernel_exact,t,r48,"t-r48",s46); b &= test_aux(is_kernel_exact,t,r56,"t-r56",s56); b &= test_aux(is_kernel_exact,t,r47,"t-r47",s45); b &= test_aux(is_kernel_exact,t,r89,"t-t89",r89_res); b &= test_aux(is_kernel_exact,t,r68,"t-r68",s64); b &= test_aux(is_kernel_exact,t,r86,"t-r86",s86); // Outside points (in triangre prane) Ray rAB(pA,pB); Ray rBC(pB,pC); Ray r2E(p2,pE); Ray rE2(pE,p2); Ray r2A(p2,pA); Ray r6E(p6,pE); Ray rB8(pB,p8); Ray rC8(pC,p8); Ray r8C(p8,pC); Ray r1F(p1,pF); Ray rF6(pF,p6); b &= test_aux(is_kernel_exact,t,rAB,"t-rAB",p2); b &= test_aux(is_kernel_exact,t,rBC,"t-rBC",s46); b &= test_aux(is_kernel_exact,t,r2E,"t-r2E",s26); b &= test_aux(is_kernel_exact,t,rE2,"t-rE2",s62); b &= test_aux(is_kernel_exact,t,r2A,"t-r2A",p2); b &= test_aux(is_kernel_exact,t,r6E,"t-r6E",p6); b &= test_aux(is_kernel_exact,t,rB8,"t-rB8",s46); b &= test_aux(is_kernel_exact,t,rC8,"t-rC8",s64); b &= test_aux(is_kernel_exact,t,r8C,"t-r8C",s86); b &= test_aux(is_kernel_exact,t,r1F,"t-r1F",s13); b &= test_aux(is_kernel_exact,t,rF6,"t-rF6",s31); // Outside triangle plane Ray rab(pa,pb); Ray rac(pa,pc); Ray rae(pa,pe); Ray ra8(pa,p8); Ray rb2(pb,p2); b &= test_aux(is_kernel_exact,t,rab,"t-rab",p1); b &= test_aux(is_kernel_exact,t,rac,"t-rac",p6); b &= test_aux(is_kernel_exact,t,rae,"t-rae",p8); b &= test_aux(is_kernel_exact,t,ra8,"t-ra8",p8); b &= test_aux(is_kernel_exact,t,rb2,"t-rb2",p2); // ----------------------------------- // Line queries // ----------------------------------- // Edges of t Line l12(p1,p2); Line l21(p2,p1); Line l13(p1,p3); Line l23(p2,p3); b &= test_aux(is_kernel_exact,t,l12,"t-l12",s12); b &= test_aux(is_kernel_exact,t,l21,"t-l21",s21); b &= test_aux(is_kernel_exact,t,l13,"t-l13",s13); b &= test_aux(is_kernel_exact,t,l23,"t-l23",s23); // In triangle Line l14(p1,p4); Line l41(p4,p1); Line l24(p2,p4); Line l42(p4,p2); Line l15(p1,p5); Line l25(p2,p5); Line l34(p3,p4); Line l35(p3,p5); Line l36(p3,p6); Line l45(p4,p5); Line l16(p1,p6); Line l26(p2,p6); Line l62(p6,p2); Line l46(p4,p6); Line l48(p4,p8); Line l56(p5,p6); Line l47(p4,p7); Line l89(p8,p9); Line l86(p8,p6); Line l68(p6,p8); Segment l89_res(p1,p9_); b &= test_aux(is_kernel_exact,t,l14,"t-l14",s12); b &= test_aux(is_kernel_exact,t,l41,"t-l41",s21); b &= test_aux(is_kernel_exact,t,l24,"t-l24",s21); b &= test_aux(is_kernel_exact,t,l42,"t-l42",s12); b &= test_aux(is_kernel_exact,t,l15,"t-l15",s15); b &= test_aux(is_kernel_exact,t,l25,"t-l25",s23); b &= test_aux(is_kernel_exact,t,l34,"t-l34",s34); b &= test_aux(is_kernel_exact,t,l35,"t-l35",s32); b &= test_aux(is_kernel_exact,t,l36,"t-l36",s31); b &= test_aux(is_kernel_exact,t,l45,"t-l45",s45); b &= test_aux(is_kernel_exact,t,l16,"t-l16",s13); b &= test_aux(is_kernel_exact,t,l26,"t-l26",s26); b &= test_aux(is_kernel_exact,t,l62,"t-l62",s62); b &= test_aux(is_kernel_exact,t,l46,"t-l46",s46); b &= test_aux(is_kernel_exact,t,l48,"t-l48",s46); b &= test_aux(is_kernel_exact,t,l56,"t-l56",s56); b &= test_aux(is_kernel_exact,t,l47,"t-l47",s45); b &= test_aux(is_kernel_exact,t,l89,"t-t89",l89_res); b &= test_aux(is_kernel_exact,t,l68,"t-l68",s64); b &= test_aux(is_kernel_exact,t,l86,"t-l86",s46); // Outside points (in triangle plane) Line lAB(pA,pB); Line lBC(pB,pC); Line l2E(p2,pE); Line lE2(pE,p2); Line l2A(p2,pA); Line l6E(p6,pE); Line lB8(pB,p8); Line lC8(pC,p8); Line l8C(p8,pC); Line l1F(p1,pF); Line lF6(pF,p6); b &= test_aux(is_kernel_exact,t,lAB,"t-lAB",p2); b &= test_aux(is_kernel_exact,t,lBC,"t-lBC",s46); b &= test_aux(is_kernel_exact,t,l2E,"t-l2E",s26); b &= test_aux(is_kernel_exact,t,lE2,"t-lE2",s62); b &= test_aux(is_kernel_exact,t,l2A,"t-l2A",p2); b &= test_aux(is_kernel_exact,t,l6E,"t-l6E",s26); b &= test_aux(is_kernel_exact,t,lB8,"t-lB8",s46); b &= test_aux(is_kernel_exact,t,lC8,"t-lC8",s64); b &= test_aux(is_kernel_exact,t,l8C,"t-l8C",s46); b &= test_aux(is_kernel_exact,t,l1F,"t-l1F",s13); b &= test_aux(is_kernel_exact,t,lF6,"t-lF6",s31); // Outside triangle plane Line lab(pa,pb); Line lac(pa,pc); Line lae(pa,pe); Line la8(pa,p8); Line lb2(pb,p2); b &= test_aux(is_kernel_exact,t,lab,"t-lab",p1); b &= test_aux(is_kernel_exact,t,lac,"t-lac",p6); b &= test_aux(is_kernel_exact,t,lae,"t-lae",p8); b &= test_aux(is_kernel_exact,t,la8,"t-la8",p8); b &= test_aux(is_kernel_exact,t,lb2,"t-lb2",p2); return b; }
static EERIE_ANIM * TheaToEerie(const char * adr, size_t size, const res::path & file) { (void)size; // TODO use size LogDebug("Loading animation file " << file); size_t pos = 0; const THEA_HEADER * th = reinterpret_cast<const THEA_HEADER *>(adr + pos); if(th->version < 2014) { LogError << "Invalid TEA Version " << th->version << " in " << file; return NULL; } pos += sizeof(THEA_HEADER); EERIE_ANIM * eerie = new EERIE_ANIM(); LogDebug("TEA header size: " << sizeof(THEA_HEADER)); LogDebug("Identity " << th->identity); LogDebug("Version - " << th->version << " Frames " << th->nb_frames << " Groups " << th->nb_groups << " KeyFrames " << th->nb_key_frames); eerie->nb_groups = th->nb_groups; eerie->nb_key_frames = th->nb_key_frames; eerie->frames = allocStructZero<EERIE_FRAME>(th->nb_key_frames); eerie->groups = allocStructZero<EERIE_GROUP>(th->nb_key_frames * th->nb_groups); eerie->voidgroups = allocStructZero<unsigned char>(th->nb_groups); eerie->anim_time = AnimationDuration_ZERO; // Go For Keyframes read for(long i = 0; i < th->nb_key_frames; i++) { LogDebug("Loading keyframe " << i); THEA_KEYFRAME_2015 kf2015; const THEA_KEYFRAME_2015 * tkf2015; if(th->version >= 2015) { LogDebug(" New keyframe version THEA_KEYFRAME_2015:" << sizeof(THEA_KEYFRAME_2015)); tkf2015 = reinterpret_cast<const THEA_KEYFRAME_2015 *>(adr + pos); pos += sizeof(THEA_KEYFRAME_2015); } else { LogDebug(" Old keyframe version THEA_KEYFRAME_2014:" << sizeof(THEA_KEYFRAME_2014)); const THEA_KEYFRAME_2014 * tkf = reinterpret_cast<const THEA_KEYFRAME_2014 *>(adr + pos); pos += sizeof(THEA_KEYFRAME_2014); memset(&kf2015, 0, sizeof(THEA_KEYFRAME_2015)); kf2015.num_frame = tkf->num_frame; kf2015.flag_frame = tkf->flag_frame; kf2015.master_key_frame = tkf->master_key_frame; kf2015.key_frame = tkf->key_frame; kf2015.key_move = tkf->key_move; kf2015.key_orient = tkf->key_orient; kf2015.key_morph = tkf->key_morph; kf2015.time_frame = tkf->time_frame; tkf2015 = &kf2015; } eerie->frames[i].num_frame = tkf2015->num_frame; eerie->frames[i].f_rotate = (tkf2015->key_orient != 0); eerie->frames[i].f_translate = (tkf2015->key_move != 0); eerie->frames[i].time = AnimationDurationUs(s64(tkf2015->num_frame) * 1000 * 1000 / 24); arx_assert(tkf2015->flag_frame == -1 || tkf2015->flag_frame == 9); eerie->frames[i].stepSound = (tkf2015->flag_frame == 9); LogDebug(" pos " << pos << " - NumFr " << eerie->frames[i].num_frame << " MKF " << tkf2015->master_key_frame << " THEA_KEYFRAME " << sizeof(THEA_KEYFRAME_2014) << " TIME " << toS(eerie->frames[i].time) << "s -Move " << tkf2015->key_move << " Orient " << tkf2015->key_orient << " Morph " << tkf2015->key_morph); // Is There a Global translation ? if(tkf2015->key_move != 0) { const THEA_KEYMOVE * tkm = reinterpret_cast<const THEA_KEYMOVE *>(adr + pos); pos += sizeof(THEA_KEYMOVE); LogDebug(" -> move x " << tkm->x << " y " << tkm->y << " z " << tkm->z << " THEA_KEYMOVE:" << sizeof(THEA_KEYMOVE)); eerie->frames[i].translate = tkm->toVec3(); } // Is There a Global Rotation ? if(tkf2015->key_orient != 0) { pos += 8; // THEO_ANGLE const ArxQuat * quat = reinterpret_cast<const ArxQuat *>(adr + pos); pos += sizeof(ArxQuat); LogDebug(" -> rotate x " << quat->x << " y " << quat->y << " z " << quat->z << " w " << quat->w << " ArxQuat:" << sizeof(ArxQuat)); eerie->frames[i].quat = *quat; } // Is There a Global Morph ? (IGNORED!) if(tkf2015->key_morph != 0) { pos += 16; // THEA_MORPH } // Now go for Group Rotations/Translations/scaling for each GROUP for(long j = 0; j < th->nb_groups; j++) { const THEO_GROUPANIM * tga = reinterpret_cast<const THEO_GROUPANIM *>(adr + pos); pos += sizeof(THEO_GROUPANIM); EERIE_GROUP * eg = &eerie->groups[j + i * th->nb_groups]; eg->key = tga->key_group; eg->quat = tga->Quaternion; eg->translate = tga->translate.toVec3(); eg->zoom = tga->zoom.toVec3(); } // Now Read Sound Data included in this frame s32 num_sample = *reinterpret_cast<const s32 *>(adr + pos); pos += sizeof(s32); LogDebug(" -> num_sample " << num_sample << " s32:" << sizeof(s32)); eerie->frames[i].sample = -1; if(num_sample != -1) { const THEA_SAMPLE * ts = reinterpret_cast<const THEA_SAMPLE *>(adr + pos); pos += sizeof(THEA_SAMPLE); pos += ts->sample_size; LogDebug(" -> sample " << ts->sample_name << " size " << ts->sample_size << " THEA_SAMPLE:" << sizeof(THEA_SAMPLE)); eerie->frames[i].sample = ARX_SOUND_Load(res::path::load(util::loadString(ts->sample_name))); } pos += 4; // num_sfx } for(long i = 0; i < th->nb_key_frames; i++) { if(!eerie->frames[i].f_translate) { long k = i; while((k >= 0) && (!eerie->frames[k].f_translate)) { k--; } long j = i; while((j < th->nb_key_frames) && (!eerie->frames[j].f_translate)) { j++; } if((j < th->nb_key_frames) && (k >= 0)) { float r1 = GetTimeBetweenKeyFrames(eerie, k, i); float r2 = GetTimeBetweenKeyFrames(eerie, i, j); float tot = 1.f / (r1 + r2); r1 *= tot; r2 *= tot; eerie->frames[i].translate = eerie->frames[j].translate * r1 + eerie->frames[k].translate * r2; } } if(!eerie->frames[i].f_rotate) { long k = i; while((k >= 0) && (!eerie->frames[k].f_rotate)) { k--; } long j = i; while ((j < th->nb_key_frames) && (!eerie->frames[j].f_rotate)) { j++; } if ((j < th->nb_key_frames) && (k >= 0)) { float r1 = GetTimeBetweenKeyFrames(eerie, k, i); float r2 = GetTimeBetweenKeyFrames(eerie, i, j); float tot = 1.f / (r1 + r2); r1 *= tot; r2 *= tot; // TODO use overloaded operators eerie->frames[i].quat.w = eerie->frames[j].quat.w * r1 + eerie->frames[k].quat.w * r2; eerie->frames[i].quat.x = eerie->frames[j].quat.x * r1 + eerie->frames[k].quat.x * r2; eerie->frames[i].quat.y = eerie->frames[j].quat.y * r1 + eerie->frames[k].quat.y * r2; eerie->frames[i].quat.z = eerie->frames[j].quat.z * r1 + eerie->frames[k].quat.z * r2; } } } for(long i = 0; i < th->nb_key_frames; i++) { eerie->frames[i].f_translate = true; eerie->frames[i].f_rotate = true; } // Sets Flag for voidgroups (unmodified groups for whole animation) for(long i = 0; i < eerie->nb_groups; i++) { bool voidd = true; for(long j = 0; j < eerie->nb_key_frames; j++) { long pos = i + (j * eerie->nb_groups); if( eerie->groups[pos].quat != glm::quat() || eerie->groups[pos].translate != Vec3f_ZERO || eerie->groups[pos].zoom != Vec3f_ZERO) { voidd = false; break; } } if(voidd) { eerie->voidgroups[i] = 1; } } eerie->anim_time = AnimationDurationUs(s64(th->nb_frames) * 1000 * 1000 / 24); if(eerie->anim_time < AnimationDurationMs(1)) { eerie->anim_time = AnimationDurationMs(1); } LogDebug("Finished Conversion TEA -> EERIE - " << toS(eerie->anim_time) << " seconds"); return eerie; }
inline s64 random_i64() { return s64(random_u64()); }
void ConfuseSpell::Update() { Vec3f pos = entities[m_target]->pos; if(m_target != EntityHandle_Player) { pos.y += entities[m_target]->physics.cyl.height - 30.f; } ObjVertHandle idx = entities[m_target]->obj->fastaccess.head_group_origin; if(idx != ObjVertHandle()) { pos = entities[m_target]->obj->vertexlist3[idx.handleData()].v; pos.y -= 50.f; } eCurPos = pos; RenderMaterial mat; mat.setDepthTest(false); mat.setBlendType(RenderMaterial::Additive); mat.setTexture(tex_trail); Anglef stiteangle = Anglef(0.f, -glm::degrees(arxtime.now_f() * ( 1.0f / 500 )), 0.f); { AnimationDuration delta = AnimationDurationUs(s64(g_framedelay * 1000.f)); EERIEDrawAnimQuatUpdate(spapi, animlayer, stiteangle, eCurPos, delta, NULL, false); EERIEDrawAnimQuatRender(spapi, eCurPos, NULL, 0.f); } for(int i = 0; i < 6; i++) { PARTICLE_DEF * pd = createParticle(); if(!pd) { break; } Vec2f p = glm::diskRand(15.f); pd->ov = eCurPos + Vec3f(p.x, 0.f, p.y); pd->move = Vec3f(0.f, Random::getf(1.f, 4.f), 0.f); pd->siz = 0.25f; pd->tolive = Random::getu(2300, 3300); pd->tc = tex_p1; pd->m_flags = PARTICLE_GOLDRAIN | FADE_IN_AND_OUT | ROTATING | DISSIPATING; pd->m_rotation = 0.0000001f; Color3f baseColor = Color3f(0.4f, 0.2f, 0.4f); Color3f randomFactor = Color3f(0.4f, 0.6f, 0.4f); Color3f c = baseColor + randomColor3f() * randomFactor; while(glm::abs(c.r - c.g) > 0.3f && glm::abs(c.g - c.b) > 0.3f) { c = baseColor + randomColor3f() * randomFactor; } pd->rgb = c * Color3f(0.8f, 0.8f, 0.8f); } EERIE_LIGHT * light = dynLightCreate(m_light); if(light) { light->intensity = 1.3f; light->fallstart = 180.f; light->fallend = 420.f; light->rgb = Color3f(0.3f, 0.3f, 0.5f) + Color3f(0.2f, 0.f, 0.2f) * randomColor3f(); light->pos = eCurPos; light->duration = ArxDurationMs(200); light->extras = 0; } }
int fromS64(char* in, int length, char* out, int outMaxLength, char* pass){ s64(in, length, out, outMaxLength, pass, false); }
int toS64(char* in, int length, char* out, int outMaxLength, char* pass){ s64(in, length, out, outMaxLength, pass, true); }
/*============================================================================== * FUNCTION: DfaTest::testMeetInt * OVERVIEW: Test meeting IntegerTypes with various other types *============================================================================*/ void DfaTest::testMeetInt() { IntegerType i32(32, 1); IntegerType j32(32, 0); IntegerType u32(32, -1); IntegerType xint(0); IntegerType j16(16, 0); SizeType s32(32); SizeType s64(64); FloatType flt(32); PointerType pt(&flt); VoidType v; bool ch = false; i32.meetWith(&i32, ch, false); CPPUNIT_ASSERT(ch == false); std::ostringstream ost1; ost1 << &i32; std::string actual(ost1.str()); std::string expected("i32"); CPPUNIT_ASSERT_EQUAL(expected, actual); i32.meetWith(&j32, ch, false); CPPUNIT_ASSERT(ch == false); j32.meetWith(&i32, ch, false); CPPUNIT_ASSERT(ch == true); std::ostringstream ost2; ost2 << &i32; actual = ost2.str(); expected = "i32"; CPPUNIT_ASSERT_EQUAL(expected, actual); ch = false; j32.setSigned(0); j32.meetWith(&v, ch, false); CPPUNIT_ASSERT(ch == false); std::ostringstream ost2a; ost2a << &j32; actual = ost2a.str(); expected = "j32"; CPPUNIT_ASSERT_EQUAL(expected, actual); ch = false; j32.meetWith(&u32, ch, false); CPPUNIT_ASSERT(ch == true); std::ostringstream ost3; ost3 << &j32; actual = ost3.str(); expected = "u32"; CPPUNIT_ASSERT_EQUAL(expected, actual); ch = false; u32.meetWith(&s32, ch, false); CPPUNIT_ASSERT(ch == false); std::ostringstream ost4; ost4 << &u32; actual = ost4.str(); expected = "u32"; CPPUNIT_ASSERT_EQUAL(expected, actual); u32.meetWith(&s64, ch, false); CPPUNIT_ASSERT(ch == true); std::ostringstream ost5; ost5 << &u32; actual = ost5.str(); expected = "u64"; CPPUNIT_ASSERT_EQUAL(expected, actual); ch = false; Type *res = i32.meetWith(&flt, ch, false); CPPUNIT_ASSERT(ch == true); std::ostringstream ost6; ost6 << res; actual = ost6.str(); expected = "union"; CPPUNIT_ASSERT_EQUAL(expected, actual); ch = false; res = i32.meetWith(&pt, ch, false); CPPUNIT_ASSERT(ch == true); std::ostringstream ost7; ost7 << res; actual = ost7.str(); expected = "union"; CPPUNIT_ASSERT_EQUAL(expected, actual); }