Exemple #1
0
static void rose_del_route_by_neigh(struct rose_neigh *rose_neigh)
{
	struct rose_route *rose_route, *s;

	rose_neigh->restarted = 0;

	rose_stop_t0timer(rose_neigh);
	rose_start_ftimer(rose_neigh);

	skb_queue_purge(&rose_neigh->queue);

	rose_route = rose_route_list;

	while (rose_route != NULL) {
		if ((rose_route->neigh1 == rose_neigh && rose_route->neigh2 == rose_neigh) ||
		    (rose_route->neigh1 == rose_neigh && rose_route->neigh2 == NULL)       ||
		    (rose_route->neigh2 == rose_neigh && rose_route->neigh1 == NULL)) {
			s = rose_route->next;
			rose_remove_route(rose_route);
			rose_route = s;
			continue;
		}

		if (rose_route->neigh1 == rose_neigh) {
			rose_route->neigh1->use--;
			rose_route->neigh1 = NULL;
			rose_transmit_clear_request(rose_route->neigh2, rose_route->lci2, ROSE_OUT_OF_ORDER, 0);
		}

		if (rose_route->neigh2 == rose_neigh) {
			rose_route->neigh2->use--;
			rose_route->neigh2 = NULL;
			rose_transmit_clear_request(rose_route->neigh1, rose_route->lci1, ROSE_OUT_OF_ORDER, 0);
		}

		rose_route = rose_route->next;
	}
}
Exemple #2
0
static void nci_rf_deactivate_ntf_packet(struct nci_dev *ndev,
					 struct sk_buff *skb)
{
	struct nci_rf_deactivate_ntf *ntf = (void *) skb->data;

	pr_debug("entry, type 0x%x, reason 0x%x\n", ntf->type, ntf->reason);

	/* drop tx data queue */
	skb_queue_purge(&ndev->tx_q);

	/* drop partial rx data packet */
	if (ndev->rx_data_reassembly) {
		kfree_skb(ndev->rx_data_reassembly);
		ndev->rx_data_reassembly = NULL;
	}

	/* complete the data exchange transaction, if exists */
	if (test_bit(NCI_DATA_EXCHANGE, &ndev->flags))
		nci_data_exchange_complete(ndev, NULL, -EIO);

	switch (ntf->type) {
	case NCI_DEACTIVATE_TYPE_IDLE_MODE:
		nci_clear_target_list(ndev);
		atomic_set(&ndev->state, NCI_IDLE);
		break;
	case NCI_DEACTIVATE_TYPE_SLEEP_MODE:
	case NCI_DEACTIVATE_TYPE_SLEEP_AF_MODE:
		atomic_set(&ndev->state, NCI_W4_HOST_SELECT);
		break;
	case NCI_DEACTIVATE_TYPE_DISCOVERY:
		nci_clear_target_list(ndev);
		atomic_set(&ndev->state, NCI_DISCOVERY);
		break;
	}

	nci_req_complete(ndev, NCI_STATUS_OK);
}
Exemple #3
0
static void
eicon_freecard(eicon_card *card) {
	int i;

	for(i = 0; i < (card->nchannels + 1); i++) {
		skb_queue_purge(&card->bch[i].e.X);
		skb_queue_purge(&card->bch[i].e.R);
	}
	skb_queue_purge(&card->sndq);
	skb_queue_purge(&card->rcvq);
	skb_queue_purge(&card->rackq);
	skb_queue_purge(&card->sackq);
	skb_queue_purge(&card->statq);

#ifdef CONFIG_ISDN_DRV_EICON_PCI
	kfree(card->sbufp);
	kfree(card->sbuf);
	kfree(card->dbuf);
#endif
	kfree(card->bch);
	kfree(card);
}
Exemple #4
0
static int
w6692_bctrl(struct mISDNchannel *ch, u32 cmd, void *arg)
{
	struct bchannel *bch = container_of(ch, struct bchannel, ch);
	struct w6692_ch *bc = container_of(bch, struct w6692_ch, bch);
	struct w6692_hw *card = bch->hw;
	int ret = -EINVAL;
	u_long flags;

	pr_debug("%s: %s cmd:%x %p\n", card->name, __func__, cmd, arg);
	switch (cmd) {
	case CLOSE_CHANNEL:
		test_and_clear_bit(FLG_OPEN, &bch->Flags);
		if (test_bit(FLG_ACTIVE, &bch->Flags)) {
			spin_lock_irqsave(&card->lock, flags);
			mISDN_freebchannel(bch);
			w6692_mode(bc, ISDN_P_NONE);
			spin_unlock_irqrestore(&card->lock, flags);
		} else {
			skb_queue_purge(&bch->rqueue);
			bch->rcount = 0;
		}
		ch->protocol = ISDN_P_NONE;
		ch->peer = NULL;
		module_put(THIS_MODULE);
		ret = 0;
		break;
	case CONTROL_CHANNEL:
		ret = channel_bctrl(bch, arg);
		break;
	default:
		pr_info("%s: %s unknown prim(%x)\n",
			card->name, __func__, cmd);
	}
	return ret;
}
static void sigd_close(struct atm_vcc *vcc)
{
	struct hlist_node *node;
	struct sock *s;
	int i;

	DPRINTK("sigd_close\n");
	sigd = NULL;
	if (skb_peek(&sk_atm(vcc)->sk_receive_queue))
		printk(KERN_ERR "sigd_close: closing with requests pending\n");
	skb_queue_purge(&sk_atm(vcc)->sk_receive_queue);

	read_lock(&vcc_sklist_lock);
	for(i = 0; i < VCC_HTABLE_SIZE; ++i) {
		struct hlist_head *head = &vcc_hash[i];

		sk_for_each(s, node, head) {
			struct atm_vcc *vcc = atm_sk(s);

			purge_vcc(vcc);
		}
	}
	read_unlock(&vcc_sklist_lock);
}
void mem_handle_cp_crash(struct mem_link_device *mld, enum modem_state state)
{
	struct link_device *ld = &mld->link_dev;
	struct modem_ctl *mc = ld->mc;
	int i;

	/* Disable normal IPC */
	set_magic(mld, MEM_CRASH_MAGIC);
	set_access(mld, 0);

	if (!wake_lock_active(&mld->dump_wlock))
		wake_lock(&mld->dump_wlock);

	stop_net_ifaces(ld);

	/* Purge the skb_txq in every IPC device (IPC_FMT, IPC_RAW, etc.) */
	for (i = 0; i < MAX_SIPC5_DEV; i++)
		skb_queue_purge(mld->dev[i]->skb_txq);

	if (cp_online(mc))
		set_modem_state(mld, state);

	mld->forced_cp_crash = false;
}
Exemple #7
0
static int mptp_release(struct socket *sock)
{
	struct sock *sk = sock->sk;
	struct mptp_sock *ssk = mptp_sk(sk);

	if (unlikely(!sk))
		return 0;

	mptp_unhash(ssk->src);

	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);

	synchronize_net();

	sock_orphan(sk);
	sock->sk = NULL;

	skb_queue_purge(&sk->sk_receive_queue);

	log_debug("mptp_release sock=%p\n", sk);
	sock_put(sk);

	return 0;
}
Exemple #8
0
static void nci_rf_deactivate_ntf_packet(struct nci_dev *ndev,
					 struct sk_buff *skb)
{
	struct nci_rf_deactivate_ntf *ntf = (void *) skb->data;

	pr_debug("entry, type 0x%x, reason 0x%x\n", ntf->type, ntf->reason);

	/* drop tx data queue */
	skb_queue_purge(&ndev->tx_q);

	/* drop partial rx data packet */
	if (ndev->rx_data_reassembly) {
		kfree_skb(ndev->rx_data_reassembly);
		ndev->rx_data_reassembly = NULL;
	}

	/* complete the data exchange transaction, if exists */
	if (test_bit(NCI_DATA_EXCHANGE, &ndev->flags))
		nci_data_exchange_complete(ndev, NULL, -EIO);

	nci_clear_target_list(ndev);
	atomic_set(&ndev->state, NCI_IDLE);
	nci_req_complete(ndev, NCI_STATUS_OK);
}
Exemple #9
0
static int netlink_release(struct socket *sock)
{
	struct sock *sk = sock->sk;

	if (!sk)
		return 0;

	netlink_remove(sk);

	spin_lock(&sk->protinfo.af_netlink->cb_lock);
	if (sk->protinfo.af_netlink->cb) {
		sk->protinfo.af_netlink->cb->done(sk->protinfo.af_netlink->cb);
		netlink_destroy_callback(sk->protinfo.af_netlink->cb);
		sk->protinfo.af_netlink->cb = NULL;
		__sock_put(sk);
	}
	spin_unlock(&sk->protinfo.af_netlink->cb_lock);

	/* OK. Socket is unlinked, and, therefore,
	   no new packets will arrive */

	sock_orphan(sk);
	sock->sk = NULL;
	wake_up_interruptible_all(&sk->protinfo.af_netlink->wait);

	skb_queue_purge(&sk->write_queue);

	if (sk->protinfo.af_netlink->pid && !sk->protinfo.af_netlink->groups) {
		struct netlink_notify n = { protocol:sk->protocol,
		                            pid:sk->protinfo.af_netlink->pid };
		notifier_call_chain(&netlink_chain, NETLINK_URELEASE, &n);
	}	
	
	sock_put(sk);
	return 0;
}
Exemple #10
0
static void
teql_destroy(struct Qdisc *sch)
{
	struct Qdisc *q, *prev;
	struct teql_sched_data *dat = qdisc_priv(sch);
	struct teql_master *master = dat->m;

	prev = master->slaves;
	if (prev) {
		do {
			q = NEXT_SLAVE(prev);
			if (q == sch) {
				NEXT_SLAVE(prev) = NEXT_SLAVE(q);
				if (q == master->slaves) {
					master->slaves = NEXT_SLAVE(q);
					if (q == master->slaves) {
						struct netdev_queue *txq;
						spinlock_t *root_lock;

						txq = netdev_get_tx_queue(master->dev, 0);
						master->slaves = NULL;

						root_lock = qdisc_root_sleeping_lock(txq->qdisc);
						spin_lock_bh(root_lock);
						qdisc_reset(txq->qdisc);
						spin_unlock_bh(root_lock);
					}
				}
				skb_queue_purge(&dat->q);
				teql_neigh_release(xchg(&dat->ncache, NULL));
				break;
			}

		} while ((prev = q) != master->slaves);
	}
}
Exemple #11
0
static void rose_remove_neigh(struct rose_neigh *rose_neigh)
{
	struct rose_neigh *s;
	unsigned long flags;

	rose_stop_ftimer(rose_neigh);
	rose_stop_t0timer(rose_neigh);

	skb_queue_purge(&rose_neigh->queue);

	save_flags(flags); cli();

	if ((s = rose_neigh_list) == rose_neigh) {
		rose_neigh_list = rose_neigh->next;
		restore_flags(flags);
		if (rose_neigh->digipeat != NULL)
			kfree(rose_neigh->digipeat);
		kfree(rose_neigh);
		return;
	}

	while (s != NULL && s->next != NULL) {
		if (s->next == rose_neigh) {
			s->next = rose_neigh->next;
			restore_flags(flags);
			if (rose_neigh->digipeat != NULL)
				kfree(rose_neigh->digipeat);
			kfree(rose_neigh);
			return;
		}

		s = s->next;
	}

	restore_flags(flags);
}
Exemple #12
0
void eemcs_ipc_state_callback_func(EEMCS_STATE state){
    switch(state){
        case EEMCS_EXCEPTION:
        case EEMCS_GATE: //MD reset
            if (eemcs_ipc_inst.md_is_ready){
                int i;
                eemcs_ipc_inst.md_is_ready = 0;
                for(i=0; i<EEMCS_IPCD_MAX_NUM;i++){
                    DBGLOG( IPCD, TRA, "ipc_state_callback: Clean device(%s) when ipc_sta=%d", \
						eemcs_ipc_inst.ipc_node[i].dev_name, state);
                    skb_queue_purge(&eemcs_ipc_inst.ipc_node[i].rx_skb_list);
                    atomic_set(&eemcs_ipc_inst.ipc_node[i].rx_pkt_cnt, 0);
                }               
            }
            break;
        case EEMCS_BOOTING_DONE:
            DBGLOG( IPCD, TRA, "ipc_state_callback: MD booting DONE");
            wake_up_interruptible(&eemcs_ipc_inst.state_waitq);
            eemcs_ipc_inst.md_is_ready = 1;
            break; 
        default:
            break;
    }
}
Exemple #13
0
static int eemcs_ipc_kern_open(int id)
{
    int ret = 0;
    DEBUG_LOG_FUNCTION_ENTRY;
    if (id >= EEMCS_IPCD_MAX_NUM || id < 0){
        DBGLOG(IPCD,ERR,"Wrong minor num(%d)", id);
        return -EINVAL;
    }
	DBGLOG(IPCD,DEF,"ipc_kern_open: deivce(%s) iminor(%d)", \
        eemcs_ipc_inst.ipc_node[id].dev_name, id);

    //4 <1> check multiple open
    if(IPCD_CLOSE != atomic_read(&eemcs_ipc_inst.ipc_node[id].dev_state)){
        DBGLOG(IPCD, ERR, "PORT%d multi-open fail!", id);
        return -EIO;
    }
    //4 <2>  clear the rx_skb_list
    skb_queue_purge(&eemcs_ipc_inst.ipc_node[id].rx_skb_list);
    atomic_set(&eemcs_ipc_inst.ipc_node[id].rx_pkt_cnt, 0);
    
    atomic_set(&eemcs_ipc_inst.ipc_node[id].dev_state, IPCD_KERNEL);
    DEBUG_LOG_FUNCTION_LEAVE;
	return ret;
}
/*
 * Prototype    : exit_oamkernel
 * Description  : oam kernel exit
 * Input        : void
 * Return Value : void
 * Calls        :
 * Called By    :
 *
 *   History        :
 *   1.Date         : 2012/5/23
 *     Author       : kf74033
 *     Modification : Created function
 *
 */
void __exit exit_oamkernel(void)
{
    #ifdef SDT_OAM_FOR_1151
	{
	oam_sdt_unregister(&tx_action);
    kfree(tx_action);
	}
	#else
	hwifi_rx_extern_unregister(HCC_OAM_TEST);
    #endif
    if (gst_kerenlglobal.pst_nlsk != NULL)
    {
        OS_SOCK_RELEASE(gst_kerenlglobal.pst_nlsk->sk_socket);
    }

    OS_MEM_KFREE(gst_kerenlglobal.puc_data);

    destroy_workqueue(gst_kerenlglobal.oam_rx_workqueue);
    skb_queue_purge(&gst_kerenlglobal.rx_wifi_dbg_seq);

    OAM_INFO("oamkernel remove ok.\n");

    return;
}
Exemple #15
0
static void
l2_connected(struct FsmInst *fi, int event, void *arg)
{
	struct layer2	*l2 = fi->userdata;
	struct sk_buff	*skb = arg;
	int pr = -1;

	if (!get_PollFlag(l2, skb)) {
		l2_mdl_error_ua(fi, event, arg);
		return;
	}
	dev_kfree_skb(skb);
	if (test_and_clear_bit(FLG_PEND_REL, &l2->flag))
		l2_disconnect(fi, event, NULL);
	if (test_and_clear_bit(FLG_L3_INIT, &l2->flag)) {
		pr = DL_ESTABLISH_CNF;
	} else if (l2->vs != l2->va) {
		skb_queue_purge(&l2->i_queue);
		pr = DL_ESTABLISH_IND;
	}
	stop_t200(l2, 5);
	l2->vr = 0;
	l2->vs = 0;
	l2->va = 0;
	l2->sow = 0;
	mISDN_FsmChangeState(fi, ST_L2_7);
	mISDN_FsmAddTimer(&l2->t203, l2->T203, EV_L2_T203, NULL, 4);
	if (pr != -1)
		l2up_create(l2, pr, 0, NULL);

	if (skb_queue_len(&l2->i_queue) && cansend(l2))
		mISDN_FsmEvent(fi, EV_L2_ACK_PULL, NULL);

	if (l2->tm)
		l2_tei(l2, MDL_STATUS_UP_IND, 0);
}
Exemple #16
0
static void
bch_l2l1(struct hisax_if *ifc, int pr, void *arg)
{
	struct hfc4s8s_btype *bch = ifc->priv;
	struct hfc4s8s_l1 *l1 = bch->l1p;
	struct sk_buff *skb = (struct sk_buff *) arg;
	long mode = (long) arg;
	u_long flags;

	switch (pr) {

		case (PH_DATA | REQUEST):
			if (!l1->enabled || (bch->mode == L1_MODE_NULL)) {
				dev_kfree_skb(skb);
				break;
			}
			spin_lock_irqsave(&l1->lock, flags);
			skb_queue_tail(&bch->tx_queue, skb);
			if (!bch->tx_skb && (bch->tx_cnt <= 0)) {
				l1->hw->mr.r_irq_fifo_blx[l1->st_num] |=
				    ((bch->bchan == 1) ? 1 : 4);
				spin_unlock_irqrestore(&l1->lock, flags);
				schedule_work(&l1->hw->tqueue);
			} else
				spin_unlock_irqrestore(&l1->lock, flags);
			break;

		case (PH_ACTIVATE | REQUEST):
		case (PH_DEACTIVATE | REQUEST):
			if (!l1->enabled)
				break;
			if (pr == (PH_DEACTIVATE | REQUEST))
				mode = L1_MODE_NULL;

			switch (mode) {
				case L1_MODE_HDLC:
					spin_lock_irqsave(&l1->lock,
							  flags);
					l1->hw->mr.timer_usg_cnt++;
					l1->hw->mr.
					    fifo_slow_timer_service[l1->
								    st_num]
					    |=
					    ((bch->bchan ==
					      1) ? 0x2 : 0x8);
					Write_hfc8(l1->hw, R_FIFO,
						   (l1->st_num * 8 +
						    ((bch->bchan ==
						      1) ? 0 : 2)));
					wait_busy(l1->hw);
					Write_hfc8(l1->hw, A_CON_HDLC, 0xc);	/* HDLC mode, flag fill, connect ST */
					Write_hfc8(l1->hw, A_SUBCH_CFG, 0);	/* 8 bits */
					Write_hfc8(l1->hw, A_IRQ_MSK, 1);	/* enable TX interrupts for hdlc */
					Write_hfc8(l1->hw, A_INC_RES_FIFO, 2);	/* reset fifo */
					wait_busy(l1->hw);

					Write_hfc8(l1->hw, R_FIFO,
						   (l1->st_num * 8 +
						    ((bch->bchan ==
						      1) ? 1 : 3)));
					wait_busy(l1->hw);
					Write_hfc8(l1->hw, A_CON_HDLC, 0xc);	/* HDLC mode, flag fill, connect ST */
					Write_hfc8(l1->hw, A_SUBCH_CFG, 0);	/* 8 bits */
					Write_hfc8(l1->hw, A_IRQ_MSK, 1);	/* enable RX interrupts for hdlc */
					Write_hfc8(l1->hw, A_INC_RES_FIFO, 2);	/* reset fifo */

					Write_hfc8(l1->hw, R_ST_SEL,
						   l1->st_num);
					l1->hw->mr.r_ctrl0 |=
					    (bch->bchan & 3);
					Write_hfc8(l1->hw, A_ST_CTRL0,
						   l1->hw->mr.r_ctrl0);
					bch->mode = L1_MODE_HDLC;
					spin_unlock_irqrestore(&l1->lock,
							       flags);

					bch->b_if.ifc.l1l2(&bch->b_if.ifc,
							   PH_ACTIVATE |
							   INDICATION,
							   NULL);
					break;

				case L1_MODE_TRANS:
					spin_lock_irqsave(&l1->lock,
							  flags);
					l1->hw->mr.
					    fifo_rx_trans_enables[l1->
								  st_num]
					    |=
					    ((bch->bchan ==
					      1) ? 0x2 : 0x8);
					l1->hw->mr.timer_usg_cnt++;
					Write_hfc8(l1->hw, R_FIFO,
						   (l1->st_num * 8 +
						    ((bch->bchan ==
						      1) ? 0 : 2)));
					wait_busy(l1->hw);
					Write_hfc8(l1->hw, A_CON_HDLC, 0xf);	/* Transparent mode, 1 fill, connect ST */
					Write_hfc8(l1->hw, A_SUBCH_CFG, 0);	/* 8 bits */
					Write_hfc8(l1->hw, A_IRQ_MSK, 0);	/* disable TX interrupts */
					Write_hfc8(l1->hw, A_INC_RES_FIFO, 2);	/* reset fifo */
					wait_busy(l1->hw);

					Write_hfc8(l1->hw, R_FIFO,
						   (l1->st_num * 8 +
						    ((bch->bchan ==
						      1) ? 1 : 3)));
					wait_busy(l1->hw);
					Write_hfc8(l1->hw, A_CON_HDLC, 0xf);	/* Transparent mode, 1 fill, connect ST */
					Write_hfc8(l1->hw, A_SUBCH_CFG, 0);	/* 8 bits */
					Write_hfc8(l1->hw, A_IRQ_MSK, 0);	/* disable RX interrupts */
					Write_hfc8(l1->hw, A_INC_RES_FIFO, 2);	/* reset fifo */

					Write_hfc8(l1->hw, R_ST_SEL,
						   l1->st_num);
					l1->hw->mr.r_ctrl0 |=
					    (bch->bchan & 3);
					Write_hfc8(l1->hw, A_ST_CTRL0,
						   l1->hw->mr.r_ctrl0);
					bch->mode = L1_MODE_TRANS;
					spin_unlock_irqrestore(&l1->lock,
							       flags);

					bch->b_if.ifc.l1l2(&bch->b_if.ifc,
							   PH_ACTIVATE |
							   INDICATION,
							   NULL);
					break;

				default:
					if (bch->mode == L1_MODE_NULL)
						break;
					spin_lock_irqsave(&l1->lock,
							  flags);
					l1->hw->mr.
					    fifo_slow_timer_service[l1->
								    st_num]
					    &=
					    ~((bch->bchan ==
					       1) ? 0x3 : 0xc);
					l1->hw->mr.
					    fifo_rx_trans_enables[l1->
								  st_num]
					    &=
					    ~((bch->bchan ==
					       1) ? 0x3 : 0xc);
					l1->hw->mr.timer_usg_cnt--;
					Write_hfc8(l1->hw, R_FIFO,
						   (l1->st_num * 8 +
						    ((bch->bchan ==
						      1) ? 0 : 2)));
					wait_busy(l1->hw);
					Write_hfc8(l1->hw, A_IRQ_MSK, 0);	/* disable TX interrupts */
					wait_busy(l1->hw);
					Write_hfc8(l1->hw, R_FIFO,
						   (l1->st_num * 8 +
						    ((bch->bchan ==
						      1) ? 1 : 3)));
					wait_busy(l1->hw);
					Write_hfc8(l1->hw, A_IRQ_MSK, 0);	/* disable RX interrupts */
					Write_hfc8(l1->hw, R_ST_SEL,
						   l1->st_num);
					l1->hw->mr.r_ctrl0 &=
					    ~(bch->bchan & 3);
					Write_hfc8(l1->hw, A_ST_CTRL0,
						   l1->hw->mr.r_ctrl0);
					spin_unlock_irqrestore(&l1->lock,
							       flags);

					bch->mode = L1_MODE_NULL;
					bch->b_if.ifc.l1l2(&bch->b_if.ifc,
							   PH_DEACTIVATE |
							   INDICATION,
							   NULL);
					if (bch->tx_skb) {
						dev_kfree_skb(bch->tx_skb);
						bch->tx_skb = NULL;
					}
					if (bch->rx_skb) {
						dev_kfree_skb(bch->rx_skb);
						bch->rx_skb = NULL;
					}
					skb_queue_purge(&bch->tx_queue);
					bch->tx_cnt = 0;
					bch->rx_ptr = NULL;
					break;
			}

			/* timer is only used when at least one b channel */
			/* is set up to transparent mode */
			if (l1->hw->mr.timer_usg_cnt) {
				Write_hfc8(l1->hw, R_IRQMSK_MISC,
					   M_TI_IRQMSK);
			} else {
				Write_hfc8(l1->hw, R_IRQMSK_MISC, 0);
			}

			break;

		default:
			printk(KERN_INFO
			       "HFC-4S/8S: Unknown B-chan cmd 0x%x received, ignored\n",
			       pr);
			break;
	}
	if (!l1->enabled)
		bch->b_if.ifc.l1l2(&bch->b_if.ifc,
				   PH_DEACTIVATE | INDICATION, NULL);
}				/* bch_l2l1 */
static void
W6692_l1hw(struct PStack *st, int pr, void *arg)
{
	struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
	struct sk_buff *skb = arg;
	int val;

	switch (pr) {
		case (PH_DATA | REQUEST):
			if (cs->debug & DEB_DLOG_HEX)
				LogFrame(cs, skb->data, skb->len);
			if (cs->debug & DEB_DLOG_VERBOSE)
				dlogframe(cs, skb, 0);
			if (cs->tx_skb) {
				skb_queue_tail(&cs->sq, skb);
#ifdef L2FRAME_DEBUG		/* psa */
				if (cs->debug & L1_DEB_LAPD)
					Logl2Frame(cs, skb, "PH_DATA Queued", 0);
#endif
			} else {
				cs->tx_skb = skb;
				cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG		/* psa */
				if (cs->debug & L1_DEB_LAPD)
					Logl2Frame(cs, skb, "PH_DATA", 0);
#endif
				W6692_fill_fifo(cs);
			}
			break;
		case (PH_PULL | INDICATION):
			if (cs->tx_skb) {
				if (cs->debug & L1_DEB_WARN)
					debugl1(cs, " l2l1 tx_skb exist this shouldn't happen");
				skb_queue_tail(&cs->sq, skb);
				break;
			}
			if (cs->debug & DEB_DLOG_HEX)
				LogFrame(cs, skb->data, skb->len);
			if (cs->debug & DEB_DLOG_VERBOSE)
				dlogframe(cs, skb, 0);
			cs->tx_skb = skb;
			cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG		/* psa */
			if (cs->debug & L1_DEB_LAPD)
				Logl2Frame(cs, skb, "PH_DATA_PULLED", 0);
#endif
			W6692_fill_fifo(cs);
			break;
		case (PH_PULL | REQUEST):
#ifdef L2FRAME_DEBUG		/* psa */
			if (cs->debug & L1_DEB_LAPD)
				debugl1(cs, "-> PH_REQUEST_PULL");
#endif
			if (!cs->tx_skb) {
				test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
				st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
			} else
				test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
			break;
		case (HW_RESET | REQUEST):
			if ((cs->dc.w6692.ph_state == W_L1IND_DRD))
				ph_command(cs, W_L1CMD_ECK);
			else {
				ph_command(cs, W_L1CMD_RST);
				cs->dc.w6692.ph_state = W_L1CMD_RST;
				W6692_new_ph(cs);
			}
			break;
		case (HW_ENABLE | REQUEST):
			ph_command(cs, W_L1CMD_ECK);
			break;
		case (HW_INFO3 | REQUEST):
			ph_command(cs, W_L1CMD_AR8);
			break;
		case (HW_TESTLOOP | REQUEST):
			val = 0;
			if (1 & (long) arg)
				val |= 0x0c;
			if (2 & (long) arg)
				val |= 0x3;
			/* !!! not implemented yet */
			break;
		case (HW_DEACTIVATE | RESPONSE):
			skb_queue_purge(&cs->rq);
			skb_queue_purge(&cs->sq);
			if (cs->tx_skb) {
				dev_kfree_skb_any(cs->tx_skb);
				cs->tx_skb = NULL;
			}
			if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
				del_timer(&cs->dbusytimer);
			if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
				W6692_sched_event(cs, D_CLEARBUSY);
			break;
		default:
			if (cs->debug & L1_DEB_WARN)
				debugl1(cs, "W6692_l1hw unknown %04x", pr);
			break;
	}
}
void __exit nr_loopback_clear(void)
{
	del_timer_sync(&loopback_timer);
	skb_queue_purge(&loopback_queue);
}
void usbnet_purge_paused_rxq(struct usbnet *dev)
{
	skb_queue_purge(&dev->rxq_pause);
}
Exemple #20
0
void hisax_unregister(struct hisax_d_if *hisax_d_if)
{
	cards[hisax_d_if->cs->cardnr].typ = 0;
	HiSax_closecard(hisax_d_if->cs->cardnr);
	skb_queue_purge(&hisax_d_if->erq);
}
Exemple #21
0
int ipv6_setsockopt(struct sock *sk, int level, int optname,
		    char __user *optval, int optlen)
{
	struct ipv6_pinfo *np = inet6_sk(sk);
	int val, valbool;
	int retv = -ENOPROTOOPT;

	if (level == SOL_IP && sk->sk_type != SOCK_RAW)
		return udp_prot.setsockopt(sk, level, optname, optval, optlen);

	if(level!=SOL_IPV6)
		goto out;

	if (optval == NULL)
		val=0;
	else if (get_user(val, (int __user *) optval))
		return -EFAULT;

	valbool = (val!=0);

	lock_sock(sk);

	switch (optname) {

	case IPV6_ADDRFORM:
		if (val == PF_INET) {
			struct ipv6_txoptions *opt;
			struct sk_buff *pktopt;

			if (sk->sk_protocol != IPPROTO_UDP &&
			    sk->sk_protocol != IPPROTO_TCP)
				break;

			if (sk->sk_state != TCP_ESTABLISHED) {
				retv = -ENOTCONN;
				break;
			}

			if (ipv6_only_sock(sk) ||
			    !(ipv6_addr_type(&np->daddr) & IPV6_ADDR_MAPPED)) {
				retv = -EADDRNOTAVAIL;
				break;
			}

			fl6_free_socklist(sk);
			ipv6_sock_mc_close(sk);

			if (sk->sk_protocol == IPPROTO_TCP) {
				struct tcp_sock *tp = tcp_sk(sk);

				local_bh_disable();
				sock_prot_dec_use(sk->sk_prot);
				sock_prot_inc_use(&tcp_prot);
				local_bh_enable();
				sk->sk_prot = &tcp_prot;
				tp->af_specific = &ipv4_specific;
				sk->sk_socket->ops = &inet_stream_ops;
				sk->sk_family = PF_INET;
				tcp_sync_mss(sk, tp->pmtu_cookie);
			} else {
				local_bh_disable();
				sock_prot_dec_use(sk->sk_prot);
				sock_prot_inc_use(&udp_prot);
				local_bh_enable();
				sk->sk_prot = &udp_prot;
				sk->sk_socket->ops = &inet_dgram_ops;
				sk->sk_family = PF_INET;
			}
			opt = xchg(&np->opt, NULL);
			if (opt)
				sock_kfree_s(sk, opt, opt->tot_len);
			pktopt = xchg(&np->pktoptions, NULL);
			if (pktopt)
				kfree_skb(pktopt);

			sk->sk_destruct = inet_sock_destruct;
#ifdef INET_REFCNT_DEBUG
			atomic_dec(&inet6_sock_nr);
#endif
			module_put(THIS_MODULE);
			retv = 0;
			break;
		}
		goto e_inval;

	case IPV6_V6ONLY:
		if (inet_sk(sk)->num)
			goto e_inval;
		np->ipv6only = valbool;
		retv = 0;
		break;

	case IPV6_PKTINFO:
		np->rxopt.bits.rxinfo = valbool;
		retv = 0;
		break;

	case IPV6_HOPLIMIT:
		np->rxopt.bits.rxhlim = valbool;
		retv = 0;
		break;

	case IPV6_RTHDR:
		if (val < 0 || val > 2)
			goto e_inval;
		np->rxopt.bits.srcrt = val;
		retv = 0;
		break;

	case IPV6_HOPOPTS:
		np->rxopt.bits.hopopts = valbool;
		retv = 0;
		break;

	case IPV6_DSTOPTS:
		np->rxopt.bits.dstopts = valbool;
		retv = 0;
		break;

	case IPV6_FLOWINFO:
		np->rxopt.bits.rxflow = valbool;
		retv = 0;
		break;

	case IPV6_PKTOPTIONS:
	{
		struct ipv6_txoptions *opt = NULL;
		struct msghdr msg;
		struct flowi fl;
		int junk;

		fl.fl6_flowlabel = 0;
		fl.oif = sk->sk_bound_dev_if;

		if (optlen == 0)
			goto update;

		/* 1K is probably excessive
		 * 1K is surely not enough, 2K per standard header is 16K.
		 */
		retv = -EINVAL;
		if (optlen > 64*1024)
			break;

		opt = sock_kmalloc(sk, sizeof(*opt) + optlen, GFP_KERNEL);
		retv = -ENOBUFS;
		if (opt == NULL)
			break;

		memset(opt, 0, sizeof(*opt));
		opt->tot_len = sizeof(*opt) + optlen;
		retv = -EFAULT;
		if (copy_from_user(opt+1, optval, optlen))
			goto done;

		msg.msg_controllen = optlen;
		msg.msg_control = (void*)(opt+1);

		retv = datagram_send_ctl(&msg, &fl, opt, &junk);
		if (retv)
			goto done;
update:
		retv = 0;
		if (sk->sk_type == SOCK_STREAM) {
			if (opt) {
				struct tcp_sock *tp = tcp_sk(sk);
				if (!((1 << sk->sk_state) &
				      (TCPF_LISTEN | TCPF_CLOSE))
				    && inet_sk(sk)->daddr != LOOPBACK4_IPV6) {
					tp->ext_header_len = opt->opt_flen + opt->opt_nflen;
					tcp_sync_mss(sk, tp->pmtu_cookie);
				}
			}
			opt = xchg(&np->opt, opt);
			sk_dst_reset(sk);
		} else {
			write_lock(&sk->sk_dst_lock);
			opt = xchg(&np->opt, opt);
			write_unlock(&sk->sk_dst_lock);
			sk_dst_reset(sk);
		}

done:
		if (opt)
			sock_kfree_s(sk, opt, opt->tot_len);
		break;
	}
	case IPV6_UNICAST_HOPS:
		if (val > 255 || val < -1)
			goto e_inval;
		np->hop_limit = val;
		retv = 0;
		break;

	case IPV6_MULTICAST_HOPS:
		if (sk->sk_type == SOCK_STREAM)
			goto e_inval;
		if (val > 255 || val < -1)
			goto e_inval;
		np->mcast_hops = val;
		retv = 0;
		break;

	case IPV6_MULTICAST_LOOP:
		np->mc_loop = valbool;
		retv = 0;
		break;

	case IPV6_MULTICAST_IF:
		if (sk->sk_type == SOCK_STREAM)
			goto e_inval;
		if (sk->sk_bound_dev_if && sk->sk_bound_dev_if != val)
			goto e_inval;

		if (__dev_get_by_index(val) == NULL) {
			retv = -ENODEV;
			break;
		}
		np->mcast_oif = val;
		retv = 0;
		break;
	case IPV6_ADD_MEMBERSHIP:
	case IPV6_DROP_MEMBERSHIP:
	{
		struct ipv6_mreq mreq;

		retv = -EFAULT;
		if (copy_from_user(&mreq, optval, sizeof(struct ipv6_mreq)))
			break;

		if (optname == IPV6_ADD_MEMBERSHIP)
			retv = ipv6_sock_mc_join(sk, mreq.ipv6mr_ifindex, &mreq.ipv6mr_multiaddr);
		else
			retv = ipv6_sock_mc_drop(sk, mreq.ipv6mr_ifindex, &mreq.ipv6mr_multiaddr);
		break;
	}
	case IPV6_JOIN_ANYCAST:
	case IPV6_LEAVE_ANYCAST:
	{
		struct ipv6_mreq mreq;

		if (optlen != sizeof(struct ipv6_mreq))
			goto e_inval;

		retv = -EFAULT;
		if (copy_from_user(&mreq, optval, sizeof(struct ipv6_mreq)))
			break;

		if (optname == IPV6_JOIN_ANYCAST)
			retv = ipv6_sock_ac_join(sk, mreq.ipv6mr_ifindex, &mreq.ipv6mr_acaddr);
		else
			retv = ipv6_sock_ac_drop(sk, mreq.ipv6mr_ifindex, &mreq.ipv6mr_acaddr);
		break;
	}
	case MCAST_JOIN_GROUP:
	case MCAST_LEAVE_GROUP:
	{
		struct group_req greq;
		struct sockaddr_in6 *psin6;

		retv = -EFAULT;
		if (copy_from_user(&greq, optval, sizeof(struct group_req)))
			break;
		if (greq.gr_group.ss_family != AF_INET6) {
			retv = -EADDRNOTAVAIL;
			break;
		}
		psin6 = (struct sockaddr_in6 *)&greq.gr_group;
		if (optname == MCAST_JOIN_GROUP)
			retv = ipv6_sock_mc_join(sk, greq.gr_interface,
				&psin6->sin6_addr);
		else
			retv = ipv6_sock_mc_drop(sk, greq.gr_interface,
				&psin6->sin6_addr);
		break;
	}
	case MCAST_JOIN_SOURCE_GROUP:
	case MCAST_LEAVE_SOURCE_GROUP:
	case MCAST_BLOCK_SOURCE:
	case MCAST_UNBLOCK_SOURCE:
	{
		struct group_source_req greqs;
		int omode, add;

		if (optlen != sizeof(struct group_source_req))
			goto e_inval;
		if (copy_from_user(&greqs, optval, sizeof(greqs))) {
			retv = -EFAULT;
			break;
		}
		if (greqs.gsr_group.ss_family != AF_INET6 ||
		    greqs.gsr_source.ss_family != AF_INET6) {
			retv = -EADDRNOTAVAIL;
			break;
		}
		if (optname == MCAST_BLOCK_SOURCE) {
			omode = MCAST_EXCLUDE;
			add = 1;
		} else if (optname == MCAST_UNBLOCK_SOURCE) {
			omode = MCAST_EXCLUDE;
			add = 0;
		} else if (optname == MCAST_JOIN_SOURCE_GROUP) {
			struct sockaddr_in6 *psin6;

			psin6 = (struct sockaddr_in6 *)&greqs.gsr_group;
			retv = ipv6_sock_mc_join(sk, greqs.gsr_interface,
				&psin6->sin6_addr);
			if (retv)
				break;
			omode = MCAST_INCLUDE;
			add = 1;
		} else /*IP_DROP_SOURCE_MEMBERSHIP */ {
			omode = MCAST_INCLUDE;
			add = 0;
		}
		retv = ip6_mc_source(add, omode, sk, &greqs);
		break;
	}
	case MCAST_MSFILTER:
	{
		extern int sysctl_optmem_max;
		extern int sysctl_mld_max_msf;
		struct group_filter *gsf;

		if (optlen < GROUP_FILTER_SIZE(0))
			goto e_inval;
		if (optlen > sysctl_optmem_max) {
			retv = -ENOBUFS;
			break;
		}
		gsf = (struct group_filter *)kmalloc(optlen,GFP_KERNEL);
		if (gsf == 0) {
			retv = -ENOBUFS;
			break;
		}
		retv = -EFAULT;
		if (copy_from_user(gsf, optval, optlen)) {
			kfree(gsf);
			break;
		}
		/* numsrc >= (4G-140)/128 overflow in 32 bits */
		if (gsf->gf_numsrc >= 0x1ffffffU ||
		    gsf->gf_numsrc > sysctl_mld_max_msf) {
			kfree(gsf);
			retv = -ENOBUFS;
			break;
		}
		if (GROUP_FILTER_SIZE(gsf->gf_numsrc) > optlen) {
			kfree(gsf);
			retv = -EINVAL;
			break;
		}
		retv = ip6_mc_msfilter(sk, gsf);
		kfree(gsf);

		break;
	}
	case IPV6_ROUTER_ALERT:
		retv = ip6_ra_control(sk, val, NULL);
		break;
	case IPV6_MTU_DISCOVER:
		if (val<0 || val>2)
			goto e_inval;
		np->pmtudisc = val;
		retv = 0;
		break;
	case IPV6_MTU:
		if (val && val < IPV6_MIN_MTU)
			goto e_inval;
		np->frag_size = val;
		retv = 0;
		break;
	case IPV6_RECVERR:
		np->recverr = valbool;
		if (!val)
			skb_queue_purge(&sk->sk_error_queue);
		retv = 0;
		break;
	case IPV6_FLOWINFO_SEND:
		np->sndflow = valbool;
		retv = 0;
		break;
	case IPV6_FLOWLABEL_MGR:
		retv = ipv6_flowlabel_opt(sk, optval, optlen);
		break;
	case IPV6_IPSEC_POLICY:
	case IPV6_XFRM_POLICY:
		retv = -EPERM;
		if (!capable(CAP_NET_ADMIN))
			break;
		retv = xfrm_user_policy(sk, optname, optval, optlen);
		break;

#ifdef CONFIG_NETFILTER
	default:
		retv = nf_setsockopt(sk, PF_INET6, optname, optval, 
					    optlen);
		break;
#endif

	}
	release_sock(sk);

out:
	return retv;

e_inval:
	release_sock(sk);
	return -EINVAL;
}
Exemple #22
0
static int hci_vhci_flush(struct hci_dev *hdev)
{
	struct hci_vhci_struct *hci_vhci = (struct hci_vhci_struct *) hdev->driver_data;
	skb_queue_purge(&hci_vhci->readq);
	return 0;
}
Exemple #23
0
static int do_ipv6_setsockopt(struct sock *sk, int level, int optname,
		    char __user *optval, unsigned int optlen)
{
	struct ipv6_pinfo *np = inet6_sk(sk);
	struct net *net = sock_net(sk);
	int val, valbool;
	int retv = -ENOPROTOOPT;

	if (optval == NULL)
		val=0;
	else {
		if (optlen >= sizeof(int)) {
			if (get_user(val, (int __user *) optval))
				return -EFAULT;
		} else
			val = 0;
	}

	valbool = (val!=0);

	if (ip6_mroute_opt(optname))
		return ip6_mroute_setsockopt(sk, optname, optval, optlen);

	lock_sock(sk);

	switch (optname) {

	case IPV6_ADDRFORM:
		if (optlen < sizeof(int))
			goto e_inval;
		if (val == PF_INET) {
			struct ipv6_txoptions *opt;
			struct sk_buff *pktopt;

			if (sk->sk_type == SOCK_RAW)
				break;

			if (sk->sk_protocol == IPPROTO_UDP ||
			    sk->sk_protocol == IPPROTO_UDPLITE) {
				struct udp_sock *up = udp_sk(sk);
				if (up->pending == AF_INET6) {
					retv = -EBUSY;
					break;
				}
			} else if (sk->sk_protocol != IPPROTO_TCP)
				break;

			if (sk->sk_state != TCP_ESTABLISHED) {
				retv = -ENOTCONN;
				break;
			}

			if (ipv6_only_sock(sk) ||
			    !ipv6_addr_v4mapped(&np->daddr)) {
				retv = -EADDRNOTAVAIL;
				break;
			}

			fl6_free_socklist(sk);
			ipv6_sock_mc_close(sk);

			/*
			 * Sock is moving from IPv6 to IPv4 (sk_prot), so
			 * remove it from the refcnt debug socks count in the
			 * original family...
			 */
			sk_refcnt_debug_dec(sk);

			if (sk->sk_protocol == IPPROTO_TCP) {
				struct inet_connection_sock *icsk = inet_csk(sk);
				local_bh_disable();
				sock_prot_inuse_add(net, sk->sk_prot, -1);
				sock_prot_inuse_add(net, &tcp_prot, 1);
				local_bh_enable();
				sk->sk_prot = &tcp_prot;
				icsk->icsk_af_ops = &ipv4_specific;
				sk->sk_socket->ops = &inet_stream_ops;
				sk->sk_family = PF_INET;
				tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
			} else {
				struct proto *prot = &udp_prot;

				if (sk->sk_protocol == IPPROTO_UDPLITE)
					prot = &udplite_prot;
				local_bh_disable();
				sock_prot_inuse_add(net, sk->sk_prot, -1);
				sock_prot_inuse_add(net, prot, 1);
				local_bh_enable();
				sk->sk_prot = prot;
				sk->sk_socket->ops = &inet_dgram_ops;
				sk->sk_family = PF_INET;
			}
			opt = xchg(&np->opt, NULL);
			if (opt)
				sock_kfree_s(sk, opt, opt->tot_len);
			pktopt = xchg(&np->pktoptions, NULL);
			kfree_skb(pktopt);

			sk->sk_destruct = inet_sock_destruct;
			/*
			 * ... and add it to the refcnt debug socks count
			 * in the new family. -acme
			 */
			sk_refcnt_debug_inc(sk);
			module_put(THIS_MODULE);
			retv = 0;
			break;
		}
		goto e_inval;

	case IPV6_V6ONLY:
		if (optlen < sizeof(int) ||
		    inet_sk(sk)->inet_num)
			goto e_inval;
		np->ipv6only = valbool;
		retv = 0;
		break;

	case IPV6_RECVPKTINFO:
		if (optlen < sizeof(int))
			goto e_inval;
		np->rxopt.bits.rxinfo = valbool;
		retv = 0;
		break;

	case IPV6_2292PKTINFO:
		if (optlen < sizeof(int))
			goto e_inval;
		np->rxopt.bits.rxoinfo = valbool;
		retv = 0;
		break;

	case IPV6_RECVHOPLIMIT:
		if (optlen < sizeof(int))
			goto e_inval;
		np->rxopt.bits.rxhlim = valbool;
		retv = 0;
		break;

	case IPV6_2292HOPLIMIT:
		if (optlen < sizeof(int))
			goto e_inval;
		np->rxopt.bits.rxohlim = valbool;
		retv = 0;
		break;

	case IPV6_RECVRTHDR:
		if (optlen < sizeof(int))
			goto e_inval;
		np->rxopt.bits.srcrt = valbool;
		retv = 0;
		break;

	case IPV6_2292RTHDR:
		if (optlen < sizeof(int))
			goto e_inval;
		np->rxopt.bits.osrcrt = valbool;
		retv = 0;
		break;

	case IPV6_RECVHOPOPTS:
		if (optlen < sizeof(int))
			goto e_inval;
		np->rxopt.bits.hopopts = valbool;
		retv = 0;
		break;

	case IPV6_2292HOPOPTS:
		if (optlen < sizeof(int))
			goto e_inval;
		np->rxopt.bits.ohopopts = valbool;
		retv = 0;
		break;

	case IPV6_RECVDSTOPTS:
		if (optlen < sizeof(int))
			goto e_inval;
		np->rxopt.bits.dstopts = valbool;
		retv = 0;
		break;

	case IPV6_2292DSTOPTS:
		if (optlen < sizeof(int))
			goto e_inval;
		np->rxopt.bits.odstopts = valbool;
		retv = 0;
		break;

	case IPV6_TCLASS:
		if (optlen < sizeof(int))
			goto e_inval;
		if (val < -1 || val > 0xff)
			goto e_inval;
		/* RFC 3542, 6.5: default traffic class of 0x0 */
		if (val == -1)
			val = 0;
		np->tclass = val;
		retv = 0;
		break;

	case IPV6_RECVTCLASS:
		if (optlen < sizeof(int))
			goto e_inval;
		np->rxopt.bits.rxtclass = valbool;
		retv = 0;
		break;

	case IPV6_FLOWINFO:
		if (optlen < sizeof(int))
			goto e_inval;
		np->rxopt.bits.rxflow = valbool;
		retv = 0;
		break;

	case IPV6_RECVPATHMTU:
		if (optlen < sizeof(int))
			goto e_inval;
		np->rxopt.bits.rxpmtu = valbool;
		retv = 0;
		break;

	case IPV6_TRANSPARENT:
		if (valbool && !ns_capable(net->user_ns, CAP_NET_ADMIN) &&
		    !ns_capable(net->user_ns, CAP_NET_RAW)) {
			retv = -EPERM;
			break;
		}
		if (optlen < sizeof(int))
			goto e_inval;
		/* we don't have a separate transparent bit for IPV6 we use the one in the IPv4 socket */
		inet_sk(sk)->transparent = valbool;
		retv = 0;
		break;

	case IPV6_RECVORIGDSTADDR:
		if (optlen < sizeof(int))
			goto e_inval;
		np->rxopt.bits.rxorigdstaddr = valbool;
		retv = 0;
		break;

	case IPV6_HOPOPTS:
	case IPV6_RTHDRDSTOPTS:
	case IPV6_RTHDR:
	case IPV6_DSTOPTS:
	{
		struct ipv6_txoptions *opt;

		/* remove any sticky options header with a zero option
		 * length, per RFC3542.
		 */
		if (optlen == 0)
			optval = NULL;
		else if (optval == NULL)
			goto e_inval;
		else if (optlen < sizeof(struct ipv6_opt_hdr) ||
			 optlen & 0x7 || optlen > 8 * 255)
			goto e_inval;

		/* hop-by-hop / destination options are privileged option */
		retv = -EPERM;
		if (optname != IPV6_RTHDR && !ns_capable(net->user_ns, CAP_NET_RAW))
			break;

		opt = ipv6_renew_options(sk, np->opt, optname,
					 (struct ipv6_opt_hdr __user *)optval,
					 optlen);
		if (IS_ERR(opt)) {
			retv = PTR_ERR(opt);
			break;
		}

		/* routing header option needs extra check */
		retv = -EINVAL;
		if (optname == IPV6_RTHDR && opt && opt->srcrt) {
			struct ipv6_rt_hdr *rthdr = opt->srcrt;
			switch (rthdr->type) {
#if IS_ENABLED(CONFIG_IPV6_MIP6)
			case IPV6_SRCRT_TYPE_2:
				if (rthdr->hdrlen != 2 ||
				    rthdr->segments_left != 1)
					goto sticky_done;

				break;
#endif
			default:
				goto sticky_done;
			}
		}

		retv = 0;
		opt = ipv6_update_options(sk, opt);
sticky_done:
		if (opt)
			sock_kfree_s(sk, opt, opt->tot_len);
		break;
	}

	case IPV6_PKTINFO:
	{
		struct in6_pktinfo pkt;

		if (optlen == 0)
			goto e_inval;
		else if (optlen < sizeof(struct in6_pktinfo) || optval == NULL)
			goto e_inval;

		if (copy_from_user(&pkt, optval, sizeof(struct in6_pktinfo))) {
				retv = -EFAULT;
				break;
		}
		if (sk->sk_bound_dev_if && pkt.ipi6_ifindex != sk->sk_bound_dev_if)
			goto e_inval;

		np->sticky_pktinfo.ipi6_ifindex = pkt.ipi6_ifindex;
		np->sticky_pktinfo.ipi6_addr = pkt.ipi6_addr;
		retv = 0;
		break;
	}

	case IPV6_2292PKTOPTIONS:
	{
		struct ipv6_txoptions *opt = NULL;
		struct msghdr msg;
		struct flowi6 fl6;
		int junk;

		memset(&fl6, 0, sizeof(fl6));
		fl6.flowi6_oif = sk->sk_bound_dev_if;
		fl6.flowi6_mark = sk->sk_mark;

		if (optlen == 0)
			goto update;

		/* 1K is probably excessive
		 * 1K is surely not enough, 2K per standard header is 16K.
		 */
		retv = -EINVAL;
		if (optlen > 64*1024)
			break;

		opt = sock_kmalloc(sk, sizeof(*opt) + optlen, GFP_KERNEL);
		retv = -ENOBUFS;
		if (opt == NULL)
			break;

		memset(opt, 0, sizeof(*opt));
		opt->tot_len = sizeof(*opt) + optlen;
		retv = -EFAULT;
		if (copy_from_user(opt+1, optval, optlen))
			goto done;

		msg.msg_controllen = optlen;
		msg.msg_control = (void*)(opt+1);

		retv = ip6_datagram_send_ctl(net, sk, &msg, &fl6, opt, &junk,
					     &junk, &junk);
		if (retv)
			goto done;
update:
		retv = 0;
		opt = ipv6_update_options(sk, opt);
done:
		if (opt)
			sock_kfree_s(sk, opt, opt->tot_len);
		break;
	}
	case IPV6_UNICAST_HOPS:
		if (optlen < sizeof(int))
			goto e_inval;
		if (val > 255 || val < -1)
			goto e_inval;
		np->hop_limit = val;
		retv = 0;
		break;

	case IPV6_MULTICAST_HOPS:
		if (sk->sk_type == SOCK_STREAM)
			break;
		if (optlen < sizeof(int))
			goto e_inval;
		if (val > 255 || val < -1)
			goto e_inval;
		np->mcast_hops = (val == -1 ? IPV6_DEFAULT_MCASTHOPS : val);
		retv = 0;
		break;

	case IPV6_MULTICAST_LOOP:
		if (optlen < sizeof(int))
			goto e_inval;
		if (val != valbool)
			goto e_inval;
		np->mc_loop = valbool;
		retv = 0;
		break;

	case IPV6_UNICAST_IF:
	{
		struct net_device *dev = NULL;
		int ifindex;

		if (optlen != sizeof(int))
			goto e_inval;

		ifindex = (__force int)ntohl((__force __be32)val);
		if (ifindex == 0) {
			np->ucast_oif = 0;
			retv = 0;
			break;
		}

		dev = dev_get_by_index(net, ifindex);
		retv = -EADDRNOTAVAIL;
		if (!dev)
			break;
		dev_put(dev);

		retv = -EINVAL;
		if (sk->sk_bound_dev_if)
			break;

		np->ucast_oif = ifindex;
		retv = 0;
		break;
	}

	case IPV6_MULTICAST_IF:
		if (sk->sk_type == SOCK_STREAM)
			break;
		if (optlen < sizeof(int))
			goto e_inval;

		if (val) {
			struct net_device *dev;

			if (sk->sk_bound_dev_if && sk->sk_bound_dev_if != val)
				goto e_inval;

			dev = dev_get_by_index(net, val);
			if (!dev) {
				retv = -ENODEV;
				break;
			}
			dev_put(dev);
		}
		np->mcast_oif = val;
		retv = 0;
		break;
	case IPV6_ADD_MEMBERSHIP:
	case IPV6_DROP_MEMBERSHIP:
	{
		struct ipv6_mreq mreq;

		if (optlen < sizeof(struct ipv6_mreq))
			goto e_inval;

		retv = -EPROTO;
		if (inet_sk(sk)->is_icsk)
			break;

		retv = -EFAULT;
		if (copy_from_user(&mreq, optval, sizeof(struct ipv6_mreq)))
			break;

		if (optname == IPV6_ADD_MEMBERSHIP)
			retv = ipv6_sock_mc_join(sk, mreq.ipv6mr_ifindex, &mreq.ipv6mr_multiaddr);
		else
			retv = ipv6_sock_mc_drop(sk, mreq.ipv6mr_ifindex, &mreq.ipv6mr_multiaddr);
		break;
	}
	case IPV6_JOIN_ANYCAST:
	case IPV6_LEAVE_ANYCAST:
	{
		struct ipv6_mreq mreq;

		if (optlen < sizeof(struct ipv6_mreq))
			goto e_inval;

		retv = -EFAULT;
		if (copy_from_user(&mreq, optval, sizeof(struct ipv6_mreq)))
			break;

		if (optname == IPV6_JOIN_ANYCAST)
			retv = ipv6_sock_ac_join(sk, mreq.ipv6mr_ifindex, &mreq.ipv6mr_acaddr);
		else
			retv = ipv6_sock_ac_drop(sk, mreq.ipv6mr_ifindex, &mreq.ipv6mr_acaddr);
		break;
	}
	case MCAST_JOIN_GROUP:
	case MCAST_LEAVE_GROUP:
	{
		struct group_req greq;
		struct sockaddr_in6 *psin6;

		if (optlen < sizeof(struct group_req))
			goto e_inval;

		retv = -EFAULT;
		if (copy_from_user(&greq, optval, sizeof(struct group_req)))
			break;
		if (greq.gr_group.ss_family != AF_INET6) {
			retv = -EADDRNOTAVAIL;
			break;
		}
		psin6 = (struct sockaddr_in6 *)&greq.gr_group;
		if (optname == MCAST_JOIN_GROUP)
			retv = ipv6_sock_mc_join(sk, greq.gr_interface,
				&psin6->sin6_addr);
		else
			retv = ipv6_sock_mc_drop(sk, greq.gr_interface,
				&psin6->sin6_addr);
		break;
	}
	case MCAST_JOIN_SOURCE_GROUP:
	case MCAST_LEAVE_SOURCE_GROUP:
	case MCAST_BLOCK_SOURCE:
	case MCAST_UNBLOCK_SOURCE:
	{
		struct group_source_req greqs;
		int omode, add;

		if (optlen < sizeof(struct group_source_req))
			goto e_inval;
		if (copy_from_user(&greqs, optval, sizeof(greqs))) {
			retv = -EFAULT;
			break;
		}
		if (greqs.gsr_group.ss_family != AF_INET6 ||
		    greqs.gsr_source.ss_family != AF_INET6) {
			retv = -EADDRNOTAVAIL;
			break;
		}
		if (optname == MCAST_BLOCK_SOURCE) {
			omode = MCAST_EXCLUDE;
			add = 1;
		} else if (optname == MCAST_UNBLOCK_SOURCE) {
			omode = MCAST_EXCLUDE;
			add = 0;
		} else if (optname == MCAST_JOIN_SOURCE_GROUP) {
			struct sockaddr_in6 *psin6;

			psin6 = (struct sockaddr_in6 *)&greqs.gsr_group;
			retv = ipv6_sock_mc_join(sk, greqs.gsr_interface,
				&psin6->sin6_addr);
			/* prior join w/ different source is ok */
			if (retv && retv != -EADDRINUSE)
				break;
			omode = MCAST_INCLUDE;
			add = 1;
		} else /* MCAST_LEAVE_SOURCE_GROUP */ {
			omode = MCAST_INCLUDE;
			add = 0;
		}
		retv = ip6_mc_source(add, omode, sk, &greqs);
		break;
	}
	case MCAST_MSFILTER:
	{
		struct group_filter *gsf;

		if (optlen < GROUP_FILTER_SIZE(0))
			goto e_inval;
		if (optlen > sysctl_optmem_max) {
			retv = -ENOBUFS;
			break;
		}
		gsf = kmalloc(optlen,GFP_KERNEL);
		if (!gsf) {
			retv = -ENOBUFS;
			break;
		}
		retv = -EFAULT;
		if (copy_from_user(gsf, optval, optlen)) {
			kfree(gsf);
			break;
		}
		/* numsrc >= (4G-140)/128 overflow in 32 bits */
		if (gsf->gf_numsrc >= 0x1ffffffU ||
		    gsf->gf_numsrc > sysctl_mld_max_msf) {
			kfree(gsf);
			retv = -ENOBUFS;
			break;
		}
		if (GROUP_FILTER_SIZE(gsf->gf_numsrc) > optlen) {
			kfree(gsf);
			retv = -EINVAL;
			break;
		}
		retv = ip6_mc_msfilter(sk, gsf);
		kfree(gsf);

		break;
	}
	case IPV6_ROUTER_ALERT:
		if (optlen < sizeof(int))
			goto e_inval;
		retv = ip6_ra_control(sk, val);
		break;
	case IPV6_MTU_DISCOVER:
		if (optlen < sizeof(int))
			goto e_inval;
		if (val < IP_PMTUDISC_DONT || val > IP_PMTUDISC_PROBE)
			goto e_inval;
		np->pmtudisc = val;
		retv = 0;
		break;
	case IPV6_MTU:
		if (optlen < sizeof(int))
			goto e_inval;
		if (val && val < IPV6_MIN_MTU)
			goto e_inval;
		np->frag_size = val;
		retv = 0;
		break;
	case IPV6_RECVERR:
		if (optlen < sizeof(int))
			goto e_inval;
		np->recverr = valbool;
		if (!val)
			skb_queue_purge(&sk->sk_error_queue);
		retv = 0;
		break;
	case IPV6_FLOWINFO_SEND:
		if (optlen < sizeof(int))
			goto e_inval;
		np->sndflow = valbool;
		retv = 0;
		break;
	case IPV6_FLOWLABEL_MGR:
		retv = ipv6_flowlabel_opt(sk, optval, optlen);
		break;
	case IPV6_IPSEC_POLICY:
	case IPV6_XFRM_POLICY:
		retv = -EPERM;
		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
			break;
		retv = xfrm_user_policy(sk, optname, optval, optlen);
		break;

	case IPV6_ADDR_PREFERENCES:
	    {
		unsigned int pref = 0;
		unsigned int prefmask = ~0;

		if (optlen < sizeof(int))
			goto e_inval;

		retv = -EINVAL;

		/* check PUBLIC/TMP/PUBTMP_DEFAULT conflicts */
		switch (val & (IPV6_PREFER_SRC_PUBLIC|
			       IPV6_PREFER_SRC_TMP|
			       IPV6_PREFER_SRC_PUBTMP_DEFAULT)) {
		case IPV6_PREFER_SRC_PUBLIC:
			pref |= IPV6_PREFER_SRC_PUBLIC;
			break;
		case IPV6_PREFER_SRC_TMP:
			pref |= IPV6_PREFER_SRC_TMP;
			break;
		case IPV6_PREFER_SRC_PUBTMP_DEFAULT:
			break;
		case 0:
			goto pref_skip_pubtmp;
		default:
			goto e_inval;
		}

		prefmask &= ~(IPV6_PREFER_SRC_PUBLIC|
			      IPV6_PREFER_SRC_TMP);
pref_skip_pubtmp:

		/* check HOME/COA conflicts */
		switch (val & (IPV6_PREFER_SRC_HOME|IPV6_PREFER_SRC_COA)) {
		case IPV6_PREFER_SRC_HOME:
			break;
		case IPV6_PREFER_SRC_COA:
			pref |= IPV6_PREFER_SRC_COA;
		case 0:
			goto pref_skip_coa;
		default:
			goto e_inval;
		}

		prefmask &= ~IPV6_PREFER_SRC_COA;
pref_skip_coa:

		/* check CGA/NONCGA conflicts */
		switch (val & (IPV6_PREFER_SRC_CGA|IPV6_PREFER_SRC_NONCGA)) {
		case IPV6_PREFER_SRC_CGA:
		case IPV6_PREFER_SRC_NONCGA:
		case 0:
			break;
		default:
			goto e_inval;
		}

		np->srcprefs = (np->srcprefs & prefmask) | pref;
		retv = 0;

		break;
	    }
	case IPV6_MINHOPCOUNT:
		if (optlen < sizeof(int))
			goto e_inval;
		if (val < 0 || val > 255)
			goto e_inval;
		np->min_hopcount = val;
		retv = 0;
		break;
	case IPV6_DONTFRAG:
		np->dontfrag = valbool;
		retv = 0;
		break;
	}

	release_sock(sk);

	return retv;

e_inval:
	release_sock(sk);
	return -EINVAL;
}
static void __net_exit wext_pernet_exit(struct net *net)
{
	skb_queue_purge(&net->wext_nlevents);
}
Exemple #25
0
static int bluecard_open(struct bluecard_info *info)
{
	unsigned int iobase = info->p_dev->resource[0]->start;
	struct hci_dev *hdev;
	unsigned char id;

	spin_lock_init(&(info->lock));

	init_timer(&(info->timer));
	info->timer.function = &bluecard_activity_led_timeout;
	info->timer.data = (u_long)info;

	skb_queue_head_init(&(info->txq));

	info->rx_state = RECV_WAIT_PACKET_TYPE;
	info->rx_count = 0;
	info->rx_skb = NULL;

	/* Initialize HCI device */
	hdev = hci_alloc_dev();
	if (!hdev) {
		BT_ERR("Can't allocate HCI device");
		return -ENOMEM;
	}

	info->hdev = hdev;

	hdev->bus = HCI_PCCARD;
	hci_set_drvdata(hdev, info);
	SET_HCIDEV_DEV(hdev, &info->p_dev->dev);

	hdev->open  = bluecard_hci_open;
	hdev->close = bluecard_hci_close;
	hdev->flush = bluecard_hci_flush;
	hdev->send  = bluecard_hci_send_frame;

	id = inb(iobase + 0x30);

	if ((id & 0x0f) == 0x02)
		set_bit(CARD_HAS_PCCARD_ID, &(info->hw_state));

	if (id & 0x10)
		set_bit(CARD_HAS_POWER_LED, &(info->hw_state));

	if (id & 0x20)
		set_bit(CARD_HAS_ACTIVITY_LED, &(info->hw_state));

	/* Reset card */
	info->ctrl_reg = REG_CONTROL_BT_RESET | REG_CONTROL_CARD_RESET;
	outb(info->ctrl_reg, iobase + REG_CONTROL);

	/* Turn FPGA off */
	outb(0x80, iobase + 0x30);

	/* Wait some time */
	msleep(10);

	/* Turn FPGA on */
	outb(0x00, iobase + 0x30);

	/* Activate card */
	info->ctrl_reg = REG_CONTROL_BT_ON | REG_CONTROL_BT_RES_PU;
	outb(info->ctrl_reg, iobase + REG_CONTROL);

	/* Enable interrupt */
	outb(0xff, iobase + REG_INTERRUPT);
	info->ctrl_reg |= REG_CONTROL_INTERRUPT;
	outb(info->ctrl_reg, iobase + REG_CONTROL);

	if ((id & 0x0f) == 0x03) {
		/* Disable RTS */
		info->ctrl_reg |= REG_CONTROL_RTS;
		outb(info->ctrl_reg, iobase + REG_CONTROL);

		/* Set baud rate */
		info->ctrl_reg |= 0x03;
		outb(info->ctrl_reg, iobase + REG_CONTROL);

		/* Enable RTS */
		info->ctrl_reg &= ~REG_CONTROL_RTS;
		outb(info->ctrl_reg, iobase + REG_CONTROL);

		set_bit(XMIT_BUF_ONE_READY, &(info->tx_state));
		set_bit(XMIT_BUF_TWO_READY, &(info->tx_state));
		set_bit(XMIT_SENDING_READY, &(info->tx_state));
	}

	/* Start the RX buffers */
	outb(REG_COMMAND_RX_BUF_ONE, iobase + REG_COMMAND);
	outb(REG_COMMAND_RX_BUF_TWO, iobase + REG_COMMAND);

	/* Signal that the hardware is ready */
	set_bit(CARD_READY, &(info->hw_state));

	/* Drop TX queue */
	skb_queue_purge(&(info->txq));

	/* Control the point at which RTS is enabled */
	outb((0x0f << RTS_LEVEL_SHIFT_BITS) | 1, iobase + REG_RX_CONTROL);

	/* Timeout before it is safe to send the first HCI packet */
	msleep(1250);

	/* Register HCI device */
	if (hci_register_dev(hdev) < 0) {
		BT_ERR("Can't register HCI device");
		info->hdev = NULL;
		hci_free_dev(hdev);
		return -ENODEV;
	}

	return 0;
}
static void drain_free(struct atm_dev *dev,int pool)
{
	skb_queue_purge(&ZATM_DEV(dev)->pool[pool]);
}
Exemple #27
0
/* Destroy socket. All references are gone. */
static void pn_destruct(struct sock *sk)
{
	skb_queue_purge(&sk->sk_receive_queue);
}
Exemple #28
0
/*
 *	Delete an aarp queue
 *
 *	Must run under aarp_lock.
 */
static void __aarp_expire(struct aarp_entry *a)
{
	skb_queue_purge(&a->packet_queue);
	kfree(a);
}
Exemple #29
0
/*
 *	This routine purges all the queues of frames.
 */
void lapb_clear_queues(struct lapb_cb *lapb)
{
    skb_queue_purge(&lapb->write_queue);
    skb_queue_purge(&lapb->ack_queue);
}
/*
 * @brief Flush all packets in exception instance to files for debugging
 * @param
 *     None
 * @return
 *     This function returns KAL_SUCCESS always.
 */
KAL_INT32 eemcs_expt_flush()
{
    KAL_UINT32 pkts = 0;
    KAL_UINT32 i = 0;
//    struct sk_buff *skb = NULL;

	/* Flush all port skb from expt skb list  */
	for (i = 0; i < CCCI_PORT_NUM; i++) {
		pkts = atomic_read(&g_except_inst.port[i].pkt_cnt);

		/* No data in port */
		if (pkts == 0)
			continue;

		DBGLOG(EXPT, DBG, "free %d skb in port%d expt list", pkts, i);
		skb_queue_purge(&g_except_inst.port[i].skb_list);
		atomic_set(&g_except_inst.port[i].pkt_cnt, 0);
	}

	/* Flush all rx skb from expt skb list  */
	for (i = 0; i < SDIO_RX_Q_NUM; i++) {
		pkts = atomic_read(&g_except_inst.rxq[i].pkt_cnt);

		/* No data in port */
		if (pkts == 0)
			continue;

		DBGLOG(EXPT, DBG, "free %d skb in rxq%d expt list", pkts, i);
		skb_queue_purge(&g_except_inst.rxq[i].skb_list);
		atomic_set(&g_except_inst.rxq[i].pkt_cnt, 0);
	}

	/* Flush all tx skb from expt skb list  */
	for (i = 0; i < SDIO_TX_Q_NUM; i++) {
		pkts = atomic_read(&g_except_inst.txq[i].pkt_cnt);

		/* No data in port */
		if (pkts == 0)
			continue;

		DBGLOG(EXPT, DBG, "free %d skb in txq%d expt list", pkts, i);
		skb_queue_purge(&g_except_inst.txq[i].skb_list);
		atomic_set(&g_except_inst.txq[i].pkt_cnt, 0);
	}

#if 0    
    char log_file[NAME_MAX] = {0};
    struct file *fp = NULL;
    KAL_UINT32 pkts = 0;
    KAL_UINT32 i = 0, j = 0;
    struct sk_buff *skb = NULL;

    DEBUG_LOG_FUNCTION_ENTRY;
    /* Flush all DL packets to a file */
    for (i = 0; i < SDIO_RX_Q_NUM; i++) {
        pkts = atomic_read(&g_except_inst.rxq[i].pkt_cnt);
        DBGLOG(EXPT, DBG, "[EXPT] %d packets in DL SWQ %d", pkts, i);
        /* No data in Rx Q */
        if (pkts == 0)
            continue;

        sprintf(log_file, "%s/eemcs_expt_rx-%02d_%d.bak", EEMCS_EXCEPTION_LOG_PATH, g_except_inst.rxq[i].id, pkts);
        fp = file_open(log_file, O_RDWR | O_CREAT | O_TRUNC, 0777);
        if (fp == NULL) {
            DBGLOG(EXPT, ERR, "[EXPT] Failed to open file %s", log_file);
            continue;
        }
        // Write packets number
        file_write(fp, (char*)&pkts, sizeof(KAL_UINT32));
        /* Write each skb in list */
        for (j = 0; j < pkts; j++) {
            skb = skb_dequeue(&g_except_inst.rxq[i].skb_list);
            if (skb == NULL) {
                DBGLOG(EXPT, WAR, "[EXPT] Failed to read skb from RX list %d", i);
            } else {
                hif_dl_pkt_handle_complete(i);
                // Write skb data length
                file_write(fp, (char*)&skb->len, sizeof(unsigned int));
                // Write skb data
                file_write(fp, skb->data, skb->len);
                atomic_dec(&g_except_inst.rxq[i].pkt_cnt);
            }
        }
        file_close(fp);
        DBGLOG(EXPT, TRA, "[EXPT] All unhandled DL packets in Q are saved to %s", log_file);
    }
    /* Flush all UL packets to a file */
    for (i = 0; i < SDIO_TX_Q_NUM; i++) {
        pkts = atomic_read(&g_except_inst.txq[i].pkt_cnt);
        DBGLOG(EXPT, DBG, "[EXPT] %d packets in UL SWQ %d", pkts, i);
        /* No data in Tx Q */
        if (pkts == 0)
            continue;

        sprintf(log_file, "%s/eemcs_expt_tx-%02d_%d.bak", EEMCS_EXCEPTION_LOG_PATH, g_except_inst.txq[i].id, pkts);
        fp = file_open(log_file, O_RDWR | O_CREAT | O_TRUNC, 0777);
        if (fp == NULL) {
            DBGLOG(EXPT, ERR, "[EXPT] Failed to open file %s", log_file);
            continue;
        }
        // Write packets number
        file_write(fp, (char*)&pkts, sizeof(KAL_UINT32));
        /* Write each skb in list */
        for (j = 0; j < pkts; j++) {
            skb = skb_dequeue(&g_except_inst.txq[i].skb_list);
            if (skb == NULL) {
                DBGLOG(EXPT, WAR, "[EXPT] Failed to read skb from TX list %d", i);
            } else {
                // Write skb data length
                file_write(fp, (char*)&skb->len, sizeof(unsigned int));
                // Write skb data
                file_write(fp, skb->data, skb->len);
                atomic_dec(&g_except_inst.txq[i].pkt_cnt);
            }
        }
        file_close(fp);
        DBGLOG(EXPT, TRA, "[EXPT] All unhandled UL packets in Q are saved to %s", log_file);
    }
    /* Flush all port packets to a file */
    for (i = 0; i < CCCI_CDEV_NUM; i++) {
        pkts = atomic_read(&g_except_inst.port[i].pkt_cnt);
        DBGLOG(EXPT, DBG, "[EXPT] %d packets in port %d", pkts, i);
        /* No data in port */
        if (pkts == 0)
            continue;

        sprintf(log_file, "%s/eemcs_expt_port-%02d_%d.bak", EEMCS_EXCEPTION_LOG_PATH, i, pkts);
        fp = file_open(log_file, O_RDWR | O_CREAT, 0777);
        if (fp == NULL) {
            DBGLOG(EXPT, ERR, "[EXPT] Failed to open file %s", log_file);
            continue;
        }
        // Write packets number
        file_write(fp, (char*)&pkts, sizeof(KAL_UINT32));
        /* Write each skb in list */
        for (j = 0; j < pkts; j++) {
            skb = skb_dequeue(&g_except_inst.port[i].skb_list);
            if (skb == NULL) {
                DBGLOG(EXPT, WAR, "[EXPT] Failed to read skb from port list %d", i);
            } else {
                // Write skb data length
                file_write(fp, (char*)&skb->len, sizeof(unsigned int));
                // Write skb data
                file_write(fp, skb->data, skb->len);
                atomic_dec(&g_except_inst.port[i].pkt_cnt);
            }
        }
        file_close(fp);
        DBGLOG(EXPT, TRA, "[EXPT] All unhandled UL packets in port are saved to %s", log_file);
    }
    DBGLOG(EXPT, TRA, "[EXPT] eemcs_expt_flush() Finished !!");

    DEBUG_LOG_FUNCTION_LEAVE;
#else
    DEBUG_LOG_FUNCTION_ENTRY;
    DEBUG_LOG_FUNCTION_LEAVE;
#endif
    return KAL_SUCCESS;
}