void svm_learn_struct(SAMPLE sample, STRUCT_LEARN_PARM *sparm, LEARN_PARM *lparm, KERNEL_PARM *kparm, STRUCTMODEL *sm) { int i,j; int numIt=0; long newconstraints=0, activenum=0; int opti_round, *opti; long old_numConst=0; double epsilon; long tolerance; double lossval,factor; double margin=0; double slack, *slacks, slacksum; long sizePsi; double *alpha=NULL; CONSTSET cset; SVECTOR *diff=NULL; SVECTOR *fy, *fybar, *f; SVECTOR *slackvec; WORD slackv[2]; MODEL *svmModel=NULL; KERNEL_CACHE *kcache=NULL; LABEL ybar; DOC *doc; long n=sample.n; EXAMPLE *ex=sample.examples; double rt_total=0.0, rt_opt=0.0; long rt1,rt2; init_struct_model(sample,sm,sparm); sizePsi=sm->sizePsi+1; /* sm must contain size of psi on return */ /* initialize example selection heuristic */ opti=(int*)my_malloc(n*sizeof(int)); for(i=0;i<n;i++) { opti[i]=0; } opti_round=0; if(sparm->slack_norm == 1) { lparm->svm_c=sparm->C; /* set upper bound C */ lparm->sharedslack=1; } else if(sparm->slack_norm == 2) { lparm->svm_c=999999999999999.0; /* upper bound C must never be reached */ lparm->sharedslack=0; if(kparm->kernel_type != LINEAR) { printf("ERROR: Kernels are not implemented for L2 slack norm!"); fflush(stdout); exit(0); } } else { printf("ERROR: Slack norm must be L1 or L2!"); fflush(stdout); exit(0); } epsilon=1.0; /* start with low precision and increase later */ tolerance=n/100; /* increase precision, whenever less than that number of constraints is not fulfilled */ lparm->biased_hyperplane=0; /* set threshold to zero */ cset=init_struct_constraints(sample, sm, sparm); if(cset.m > 0) { alpha=realloc(alpha,sizeof(double)*cset.m); for(i=0; i<cset.m; i++) alpha[i]=0; } /* set initial model and slack variables*/ svmModel=(MODEL *)my_malloc(sizeof(MODEL)); svm_learn_optimization(cset.lhs,cset.rhs,cset.m,sizePsi+n, lparm,kparm,NULL,svmModel,alpha); add_weight_vector_to_linear_model(svmModel); sm->svm_model=svmModel; sm->w=svmModel->lin_weights; /* short cut to weight vector */ printf("Starting Iterations\n"); /*****************/ /*** main loop ***/ /*****************/ do { /* iteratively increase precision */ epsilon=MAX(epsilon*0.09999999999,sparm->epsilon); if(epsilon == sparm->epsilon) /* for final precision, find all SV */ tolerance=0; lparm->epsilon_crit=epsilon/2; /* svm precision must be higher than eps */ if(struct_verbosity>=1) printf("Setting current working precision to %g.\n",epsilon); do { /* iteration until (approx) all SV are found for current precision and tolerance */ old_numConst=cset.m; opti_round++; activenum=n; do { /* go through examples that keep producing new constraints */ if(struct_verbosity>=1) { printf("--Iteration %i (%ld active): ",++numIt,activenum); fflush(stdout); } for(i=0; i<n; i++) { /*** example loop ***/ rt1=get_runtime(); if(opti[i] != opti_round) {/* if the example is not shrunk away, then see if it is necessary to add a new constraint */ if(sparm->loss_type == SLACK_RESCALING) ybar=find_most_violated_constraint_slackrescaling(ex[i].x, ex[i].y,sm, sparm); else ybar=find_most_violated_constraint_marginrescaling(ex[i].x, ex[i].y,sm, sparm); if(empty_label(ybar)) { if(opti[i] != opti_round) { activenum--; opti[i]=opti_round; } if(struct_verbosity>=2) printf("no-incorrect-found(%i) ",i); continue; } /**** get psi(y)-psi(ybar) ****/ fy=psi(ex[i].x,ex[i].y,sm,sparm); fybar=psi(ex[i].x,ybar,sm,sparm); /**** scale feature vector and margin by loss ****/ lossval=loss(ex[i].y,ybar,sparm); if(sparm->slack_norm == 2) lossval=sqrt(lossval); if(sparm->loss_type == SLACK_RESCALING) factor=lossval; else /* do not rescale vector for */ factor=1.0; /* margin rescaling loss type */ for(f=fy;f;f=f->next) f->factor*=factor; for(f=fybar;f;f=f->next) f->factor*=-factor; margin=lossval; /**** create constraint for current ybar ****/ append_svector_list(fy,fybar);/* append the two vector lists */ doc=create_example(cset.m,0,i+1,1,fy); /**** compute slack for this example ****/ slack=0; for(j=0;j<cset.m;j++) if(cset.lhs[j]->slackid == i+1) { if(sparm->slack_norm == 2) /* works only for linear kernel */ slack=MAX(slack,cset.rhs[j] -(classify_example(svmModel,cset.lhs[j]) -sm->w[sizePsi+i]/(sqrt(2*sparm->C)))); else slack=MAX(slack, cset.rhs[j]-classify_example(svmModel,cset.lhs[j])); } /**** if `error' add constraint and recompute ****/ if((classify_example(svmModel,doc)+slack)<(margin-epsilon)) { if(struct_verbosity>=2) {printf("(%i) ",i); fflush(stdout);} if(struct_verbosity==1) {printf("."); fflush(stdout);} /**** resize constraint matrix and add new constraint ****/ cset.m++; cset.lhs=realloc(cset.lhs,sizeof(DOC *)*cset.m); if(kparm->kernel_type == LINEAR) { diff=add_list_ss(fy); /* store difference vector directly */ if(sparm->slack_norm == 1) cset.lhs[cset.m-1]=create_example(cset.m-1,0,i+1,1, copy_svector(diff)); else if(sparm->slack_norm == 2) { /**** add squared slack variable to feature vector ****/ slackv[0].wnum=sizePsi+i; slackv[0].weight=1/(sqrt(2*sparm->C)); slackv[1].wnum=0; /*terminator*/ slackvec=create_svector(slackv,"",1.0); cset.lhs[cset.m-1]=create_example(cset.m-1,0,i+1,1, add_ss(diff,slackvec)); free_svector(slackvec); } free_svector(diff); } else { /* kernel is used */ if(sparm->slack_norm == 1) cset.lhs[cset.m-1]=create_example(cset.m-1,0,i+1,1, copy_svector(fy)); else if(sparm->slack_norm == 2) exit(1); } cset.rhs=realloc(cset.rhs,sizeof(double)*cset.m); cset.rhs[cset.m-1]=margin; alpha=realloc(alpha,sizeof(double)*cset.m); alpha[cset.m-1]=0; newconstraints++; } else { printf("+"); fflush(stdout); if(opti[i] != opti_round) { activenum--; opti[i]=opti_round; } } free_example(doc,0); free_svector(fy); /* this also free's fybar */ free_label(ybar); } /**** get new QP solution ****/ if((newconstraints >= sparm->newconstretrain) || ((newconstraints > 0) && (i == n-1))) { if(struct_verbosity>=1) { printf("*");fflush(stdout); } rt2=get_runtime(); free_model(svmModel,0); svmModel=(MODEL *)my_malloc(sizeof(MODEL)); /* Always get a new kernel cache. It is not possible to use the same cache for two different training runs */ if(kparm->kernel_type != LINEAR) kcache=kernel_cache_init(cset.m,lparm->kernel_cache_size); /* Run the QP solver on cset. */ svm_learn_optimization(cset.lhs,cset.rhs,cset.m,sizePsi+n, lparm,kparm,kcache,svmModel,alpha); if(kcache) kernel_cache_cleanup(kcache); /* Always add weight vector, in case part of the kernel is linear. If not, ignore the weight vector since its content is bogus. */ add_weight_vector_to_linear_model(svmModel); sm->svm_model=svmModel; sm->w=svmModel->lin_weights; /* short cut to weight vector */ rt_opt+=MAX(get_runtime()-rt2,0); newconstraints=0; } rt_total+=MAX(get_runtime()-rt1,0); } /* end of example loop */ if(struct_verbosity>=1) printf("(NumConst=%d, SV=%ld, Eps=%.4f)\n",cset.m,svmModel->sv_num-1, svmModel->maxdiff); } while(activenum > 0); /* repeat until all examples produced no constraint at least once */ } while((cset.m - old_numConst) > tolerance) ; } while(epsilon > sparm->epsilon); if(struct_verbosity>=1) { /**** compute sum of slacks ****/ slacks=(double *)my_malloc(sizeof(double)*(n+1)); for(i=0; i<=n; i++) { slacks[i]=0; } if(sparm->slack_norm == 1) { for(j=0;j<cset.m;j++) slacks[cset.lhs[j]->slackid]=MAX(slacks[cset.lhs[j]->slackid], cset.rhs[j]-classify_example(svmModel,cset.lhs[j])); } else if(sparm->slack_norm == 2) { for(j=0;j<cset.m;j++) slacks[cset.lhs[j]->slackid]=MAX(slacks[cset.lhs[j]->slackid], cset.rhs[j] -(classify_example(svmModel,cset.lhs[j]) -sm->w[sizePsi+cset.lhs[j]->slackid-1]/(sqrt(2*sparm->C)))); } slacksum=0; for(i=0; i<=n; i++) slacksum+=slacks[i]; free(slacks); printf("Final epsilon on KKT-Conditions: %.5f\n", MAX(svmModel->maxdiff,epsilon)); printf("Total number of constraints added: %i\n",(int)cset.m); if(sparm->slack_norm == 1) { printf("Number of SV: %ld \n",svmModel->sv_num-1); printf("Number of non-zero slack variables: %ld (out of %ld)\n", svmModel->at_upper_bound,n); printf("Norm of weight vector: |w|=%.5f\n", model_length_s(svmModel,kparm)); } else if(sparm->slack_norm == 2){ printf("Number of SV: %ld (including %ld at upper bound)\n", svmModel->sv_num-1,svmModel->at_upper_bound); printf("Norm of weight vector (including L2-loss): |w|=%.5f\n", model_length_s(svmModel,kparm)); } printf("Sum of slack variables: sum(xi_i)=%.5f\n",slacksum); printf("Norm of longest difference vector: ||Psi(x,y)-Psi(x,ybar)||=%.5f\n", length_of_longest_document_vector(cset.lhs,cset.m,kparm)); printf("Runtime in cpu-seconds: %.2f (%.2f%% for SVM optimization)\n", rt_total/100.0, 100.0*rt_opt/rt_total); } if(struct_verbosity>=4) printW(sm->w,sizePsi,n,lparm->svm_c); if(svmModel) { sm->svm_model=copy_model(svmModel); sm->w=sm->svm_model->lin_weights; /* short cut to weight vector */ } print_struct_learning_stats(sample,sm,cset,alpha,sparm); if(svmModel) free_model(svmModel,0); free(alpha); free(opti); free(cset.rhs); for(i=0;i<cset.m;i++) free_example(cset.lhs[i],1); free(cset.lhs); }
void svm_learn_struct(SAMPLE sample, STRUCT_LEARN_PARM *sparm, LEARN_PARM *lparm, KERNEL_PARM *kparm, STRUCTMODEL *sm, int alg_type) { int i,j; int numIt=0; long argmax_count=0; long newconstraints=0, totconstraints=0, activenum=0; int opti_round, *opti, fullround, use_shrinking; long old_totconstraints=0; double epsilon,svmCnorm; long tolerance,new_precision=1,dont_stop=0; double lossval,factor,dist; double margin=0; double slack, *slacks, slacksum, ceps; double dualitygap,modellength,alphasum; long sizePsi; double *alpha=NULL; long *alphahist=NULL,optcount=0,lastoptcount=0; CONSTSET cset; SVECTOR *diff=NULL; SVECTOR *fy, *fybar, *f, **fycache=NULL; SVECTOR *slackvec; WORD slackv[2]; MODEL *svmModel=NULL; KERNEL_CACHE *kcache=NULL; LABEL ybar; DOC *doc; long n=sample.n; EXAMPLE *ex=sample.examples; double rt_total=0, rt_opt=0, rt_init=0, rt_psi=0, rt_viol=0; double rt1,rt2; rt1=get_runtime(); init_struct_model(sample,sm,sparm,lparm,kparm); sizePsi=sm->sizePsi+1; /* sm must contain size of psi on return */ /* initialize shrinking-style example selection heuristic */ if(alg_type == NSLACK_SHRINK_ALG) use_shrinking=1; else use_shrinking=0; opti=(int*)my_malloc(n*sizeof(int)); for(i=0;i<n;i++) { opti[i]=0; } opti_round=0; /* normalize regularization parameter C by the number of training examples */ svmCnorm=sparm->C/n; if(sparm->slack_norm == 1) { lparm->svm_c=svmCnorm; /* set upper bound C */ lparm->sharedslack=1; } else if(sparm->slack_norm == 2) { lparm->svm_c=999999999999999.0; /* upper bound C must never be reached */ lparm->sharedslack=0; if(kparm->kernel_type != LINEAR_KERNEL) { printf("ERROR: Kernels are not implemented for L2 slack norm!"); fflush(stdout); exit(0); } } else { printf("ERROR: Slack norm must be L1 or L2!"); fflush(stdout); exit(0); } epsilon=100.0; /* start with low precision and increase later */ tolerance=MIN(n/3,MAX(n/100,5));/* increase precision, whenever less than that number of constraints is not fulfilled */ lparm->biased_hyperplane=0; /* set threshold to zero */ cset=init_struct_constraints(sample, sm, sparm); if(cset.m > 0) { alpha=(double *)realloc(alpha,sizeof(double)*cset.m); alphahist=(long *)realloc(alphahist,sizeof(long)*cset.m); for(i=0; i<cset.m; i++) { alpha[i]=0; alphahist[i]=-1; /* -1 makes sure these constraints are never removed */ } } /* set initial model and slack variables*/ svmModel=(MODEL *)my_malloc(sizeof(MODEL)); lparm->epsilon_crit=epsilon; if(kparm->kernel_type != LINEAR_KERNEL) kcache=kernel_cache_init(MAX(cset.m,1),lparm->kernel_cache_size); svm_learn_optimization(cset.lhs,cset.rhs,cset.m,sizePsi+n, lparm,kparm,kcache,svmModel,alpha); if(kcache) kernel_cache_cleanup(kcache); add_weight_vector_to_linear_model(svmModel); sm->svm_model=svmModel; sm->w=svmModel->lin_weights; /* short cut to weight vector */ /* create a cache of the feature vectors for the correct labels */ if(USE_FYCACHE) { fycache=(SVECTOR **)my_malloc(n*sizeof(SVECTOR *)); for(i=0;i<n;i++) { fy=psi(ex[i].x,ex[i].y,sm,sparm); if(kparm->kernel_type == LINEAR_KERNEL) { diff=add_list_ss(fy); /* store difference vector directly */ free_svector(fy); fy=diff; } fycache[i]=fy; } } rt_init+=MAX(get_runtime()-rt1,0); rt_total+=MAX(get_runtime()-rt1,0); /*****************/ /*** main loop ***/ /*****************/ do { /* iteratively increase precision */ epsilon=MAX(epsilon*0.49999999999,sparm->epsilon); new_precision=1; if(epsilon == sparm->epsilon) /* for final precision, find all SV */ tolerance=0; lparm->epsilon_crit=epsilon/2; /* svm precision must be higher than eps */ if(struct_verbosity>=1) printf("Setting current working precision to %g.\n",epsilon); do { /* iteration until (approx) all SV are found for current precision and tolerance */ opti_round++; activenum=n; dont_stop=0; old_totconstraints=totconstraints; do { /* with shrinking turned on, go through examples that keep producing new constraints */ if(struct_verbosity>=1) { printf("Iter %i (%ld active): ",++numIt,activenum); fflush(stdout); } ceps=0; fullround=(activenum == n); for(i=0; i<n; i++) { /*** example loop ***/ rt1=get_runtime(); if((!use_shrinking) || (opti[i] != opti_round)) { /* if the example is not shrunk away, then see if it is necessary to add a new constraint */ rt2=get_runtime(); argmax_count++; if(sparm->loss_type == SLACK_RESCALING) ybar=find_most_violated_constraint_slackrescaling(ex[i].x, ex[i].y,sm, sparm); else ybar=find_most_violated_constraint_marginrescaling(ex[i].x, ex[i].y,sm, sparm); rt_viol+=MAX(get_runtime()-rt2,0); if(empty_label(ybar)) { if(opti[i] != opti_round) { activenum--; opti[i]=opti_round; } if(struct_verbosity>=2) printf("no-incorrect-found(%i) ",i); continue; } /**** get psi(y)-psi(ybar) ****/ rt2=get_runtime(); if(fycache) fy=copy_svector(fycache[i]); else fy=psi(ex[i].x,ex[i].y,sm,sparm); fybar=psi(ex[i].x,ybar,sm,sparm); rt_psi+=MAX(get_runtime()-rt2,0); /**** scale feature vector and margin by loss ****/ lossval=loss(ex[i].y,ybar,sparm); if(sparm->slack_norm == 2) lossval=sqrt(lossval); if(sparm->loss_type == SLACK_RESCALING) factor=lossval; else /* do not rescale vector for */ factor=1.0; /* margin rescaling loss type */ for(f=fy;f;f=f->next) f->factor*=factor; for(f=fybar;f;f=f->next) f->factor*=-factor; margin=lossval; /**** create constraint for current ybar ****/ append_svector_list(fy,fybar);/* append the two vector lists */ doc=create_example(cset.m,0,i+1,1,fy); /**** compute slack for this example ****/ slack=0; for(j=0;j<cset.m;j++) if(cset.lhs[j]->slackid == i+1) { if(sparm->slack_norm == 2) /* works only for linear kernel */ slack=MAX(slack,cset.rhs[j] -(classify_example(svmModel,cset.lhs[j]) -sm->w[sizePsi+i]/(sqrt(2*svmCnorm)))); else slack=MAX(slack, cset.rhs[j]-classify_example(svmModel,cset.lhs[j])); } /**** if `error' add constraint and recompute ****/ dist=classify_example(svmModel,doc); ceps=MAX(ceps,margin-dist-slack); if(slack > (margin-dist+0.0001)) { printf("\nWARNING: Slack of most violated constraint is smaller than slack of working\n"); printf(" set! There is probably a bug in 'find_most_violated_constraint_*'.\n"); printf("Ex %d: slack=%f, newslack=%f\n",i,slack,margin-dist); /* exit(1); */ } if((dist+slack)<(margin-epsilon)) { if(struct_verbosity>=2) {printf("(%i,eps=%.2f) ",i,margin-dist-slack); fflush(stdout);} if(struct_verbosity==1) {printf("."); fflush(stdout);} /**** resize constraint matrix and add new constraint ****/ cset.m++; cset.lhs=(DOC **)realloc(cset.lhs,sizeof(DOC *)*cset.m); if(kparm->kernel_type == LINEAR_KERNEL) { diff=add_list_ss(fy); /* store difference vector directly */ if(sparm->slack_norm == 1) cset.lhs[cset.m-1]=create_example(cset.m-1,0,i+1,1, copy_svector(diff)); else if(sparm->slack_norm == 2) { /**** add squared slack variable to feature vector ****/ slackv[0].wnum=sizePsi+i; slackv[0].weight=1/(sqrt(2*svmCnorm)); slackv[1].wnum=0; /*terminator*/ slackvec=create_svector(slackv,NULL,1.0); cset.lhs[cset.m-1]=create_example(cset.m-1,0,i+1,1, add_ss(diff,slackvec)); free_svector(slackvec); } free_svector(diff); } else { /* kernel is used */ if(sparm->slack_norm == 1) cset.lhs[cset.m-1]=create_example(cset.m-1,0,i+1,1, copy_svector(fy)); else if(sparm->slack_norm == 2) exit(1); } cset.rhs=(double *)realloc(cset.rhs,sizeof(double)*cset.m); cset.rhs[cset.m-1]=margin; alpha=(double *)realloc(alpha,sizeof(double)*cset.m); alpha[cset.m-1]=0; alphahist=(long *)realloc(alphahist,sizeof(long)*cset.m); alphahist[cset.m-1]=optcount; newconstraints++; totconstraints++; } else { printf("+"); fflush(stdout); if(opti[i] != opti_round) { activenum--; opti[i]=opti_round; } } free_example(doc,0); free_svector(fy); /* this also free's fybar */ free_label(ybar); } /**** get new QP solution ****/ if((newconstraints >= sparm->newconstretrain) || ((newconstraints > 0) && (i == n-1)) || (new_precision && (i == n-1))) { if(struct_verbosity>=1) { printf("*");fflush(stdout); } rt2=get_runtime(); free_model(svmModel,0); svmModel=(MODEL *)my_malloc(sizeof(MODEL)); /* Always get a new kernel cache. It is not possible to use the same cache for two different training runs */ if(kparm->kernel_type != LINEAR_KERNEL) kcache=kernel_cache_init(MAX(cset.m,1),lparm->kernel_cache_size); /* Run the QP solver on cset. */ svm_learn_optimization(cset.lhs,cset.rhs,cset.m,sizePsi+n, lparm,kparm,kcache,svmModel,alpha); if(kcache) kernel_cache_cleanup(kcache); /* Always add weight vector, in case part of the kernel is linear. If not, ignore the weight vector since its content is bogus. */ add_weight_vector_to_linear_model(svmModel); sm->svm_model=svmModel; sm->w=svmModel->lin_weights; /* short cut to weight vector */ optcount++; /* keep track of when each constraint was last active. constraints marked with -1 are not updated */ for(j=0;j<cset.m;j++) if((alphahist[j]>-1) && (alpha[j] != 0)) alphahist[j]=optcount; rt_opt+=MAX(get_runtime()-rt2,0); if(new_precision && (epsilon <= sparm->epsilon)) dont_stop=1; /* make sure we take one final pass */ new_precision=0; newconstraints=0; } rt_total+=MAX(get_runtime()-rt1,0); } /* end of example loop */ rt1=get_runtime(); if(struct_verbosity>=1) printf("(NumConst=%d, SV=%ld, CEps=%.4f, QPEps=%.4f)\n",cset.m, svmModel->sv_num-1,ceps,svmModel->maxdiff); /* Check if some of the linear constraints have not been active in a while. Those constraints are then removed to avoid bloating the working set beyond necessity. */ if(struct_verbosity>=2) printf("Reducing working set...");fflush(stdout); remove_inactive_constraints(&cset,alpha,optcount,alphahist, MAX(50,optcount-lastoptcount)); lastoptcount=optcount; if(struct_verbosity>=2) printf("done. (NumConst=%d)\n",cset.m); rt_total+=MAX(get_runtime()-rt1,0); } while(use_shrinking && (activenum > 0)); /* when using shrinking, repeat until all examples produced no constraint at least once */ } while(((totconstraints - old_totconstraints) > tolerance) || dont_stop); } while((epsilon > sparm->epsilon) || finalize_iteration(ceps,0,sample,sm,cset,alpha,sparm)); if(struct_verbosity>=1) { /**** compute sum of slacks ****/ /**** WARNING: If positivity constraints are used, then the maximum slack id is larger than what is allocated below ****/ slacks=(double *)my_malloc(sizeof(double)*(n+1)); for(i=0; i<=n; i++) { slacks[i]=0; } if(sparm->slack_norm == 1) { for(j=0;j<cset.m;j++) slacks[cset.lhs[j]->slackid]=MAX(slacks[cset.lhs[j]->slackid], cset.rhs[j]-classify_example(svmModel,cset.lhs[j])); } else if(sparm->slack_norm == 2) { for(j=0;j<cset.m;j++) slacks[cset.lhs[j]->slackid]=MAX(slacks[cset.lhs[j]->slackid], cset.rhs[j] -(classify_example(svmModel,cset.lhs[j]) -sm->w[sizePsi+cset.lhs[j]->slackid-1]/(sqrt(2*svmCnorm)))); } slacksum=0; for(i=1; i<=n; i++) slacksum+=slacks[i]; free(slacks); alphasum=0; for(i=0; i<cset.m; i++) alphasum+=alpha[i]*cset.rhs[i]; modellength=model_length_s(svmModel); dualitygap=(0.5*modellength*modellength+svmCnorm*(slacksum+n*ceps)) -(alphasum-0.5*modellength*modellength); printf("Final epsilon on KKT-Conditions: %.5f\n", MAX(svmModel->maxdiff,epsilon)); printf("Upper bound on duality gap: %.5f\n", dualitygap); printf("Dual objective value: dval=%.5f\n", alphasum-0.5*modellength*modellength); printf("Total number of constraints in final working set: %i (of %i)\n",(int)cset.m,(int)totconstraints); printf("Number of iterations: %d\n",numIt); printf("Number of calls to 'find_most_violated_constraint': %ld\n",argmax_count); if(sparm->slack_norm == 1) { printf("Number of SV: %ld \n",svmModel->sv_num-1); printf("Number of non-zero slack variables: %ld (out of %ld)\n", svmModel->at_upper_bound,n); printf("Norm of weight vector: |w|=%.5f\n",modellength); } else if(sparm->slack_norm == 2){ printf("Number of SV: %ld (including %ld at upper bound)\n", svmModel->sv_num-1,svmModel->at_upper_bound); printf("Norm of weight vector (including L2-loss): |w|=%.5f\n", modellength); } printf("Norm. sum of slack variables (on working set): sum(xi_i)/n=%.5f\n",slacksum/n); printf("Norm of longest difference vector: ||Psi(x,y)-Psi(x,ybar)||=%.5f\n", length_of_longest_document_vector(cset.lhs,cset.m,kparm)); printf("Runtime in cpu-seconds: %.2f (%.2f%% for QP, %.2f%% for Argmax, %.2f%% for Psi, %.2f%% for init)\n", rt_total/100.0, (100.0*rt_opt)/rt_total, (100.0*rt_viol)/rt_total, (100.0*rt_psi)/rt_total, (100.0*rt_init)/rt_total); } if(struct_verbosity>=4) printW(sm->w,sizePsi,n,lparm->svm_c); if(svmModel) { sm->svm_model=copy_model(svmModel); sm->w=sm->svm_model->lin_weights; /* short cut to weight vector */ } print_struct_learning_stats(sample,sm,cset,alpha,sparm); if(fycache) { for(i=0;i<n;i++) free_svector(fycache[i]); free(fycache); } if(svmModel) free_model(svmModel,0); free(alpha); free(alphahist); free(opti); free(cset.rhs); for(i=0;i<cset.m;i++) free_example(cset.lhs[i],1); free(cset.lhs); }
void svm_learn_struct_joint(SAMPLE sample, STRUCT_LEARN_PARM *sparm, LEARN_PARM *lparm, KERNEL_PARM *kparm, STRUCTMODEL *sm, int alg_type) { int i,j; int numIt=0; long argmax_count=0; long totconstraints=0; long kernel_type_org; double epsilon,epsilon_cached; double lhsXw,rhs_i; double rhs=0; double slack,ceps; double dualitygap,modellength,alphasum; long sizePsi; double *alpha=NULL; long *alphahist=NULL,optcount=0; CONSTSET cset; SVECTOR *diff=NULL; double *lhs_n=NULL; SVECTOR *fy, *fydelta, **fycache, *lhs; MODEL *svmModel=NULL; DOC *doc; long n=sample.n; EXAMPLE *ex=sample.examples; double rt_total=0,rt_opt=0,rt_init=0,rt_psi=0,rt_viol=0,rt_kernel=0; double rt_cacheupdate=0,rt_cacheconst=0,rt_cacheadd=0,rt_cachesum=0; double rt1=0,rt2=0; long progress; /* SVECTOR ***fydelta_cache=NULL; double **loss_cache=NULL; int cache_size=0; */ CCACHE *ccache=NULL; int cached_constraint; double viol,viol_est,epsilon_est=0; long uptr=0; long *randmapping=NULL; long batch_size=n; rt1=get_runtime(); if(sparm->batch_size<100) batch_size=sparm->batch_size*n/100.0; init_struct_model(sample,sm,sparm,lparm,kparm); sizePsi=sm->sizePsi+1; /* sm must contain size of psi on return */ if(sparm->slack_norm == 1) { lparm->svm_c=sparm->C; /* set upper bound C */ lparm->sharedslack=1; } else if(sparm->slack_norm == 2) { printf("ERROR: The joint algorithm does not apply to L2 slack norm!"); fflush(stdout); exit(0); } else { printf("ERROR: Slack norm must be L1 or L2!"); fflush(stdout); exit(0); } lparm->biased_hyperplane=0; /* set threshold to zero */ epsilon=100.0; /* start with low precision and increase later */ epsilon_cached=epsilon; /* epsilon to use for iterations using constraints constructed from the constraint cache */ cset=init_struct_constraints(sample, sm, sparm); if(cset.m > 0) { alpha=(double *)realloc(alpha,sizeof(double)*cset.m); alphahist=(long *)realloc(alphahist,sizeof(long)*cset.m); for(i=0; i<cset.m; i++) { alpha[i]=0; alphahist[i]=-1; /* -1 makes sure these constraints are never removed */ } } kparm->gram_matrix=NULL; if((alg_type == ONESLACK_DUAL_ALG) || (alg_type == ONESLACK_DUAL_CACHE_ALG)) kparm->gram_matrix=init_kernel_matrix(&cset,kparm); /* set initial model and slack variables */ svmModel=(MODEL *)my_malloc(sizeof(MODEL)); lparm->epsilon_crit=epsilon; svm_learn_optimization(cset.lhs,cset.rhs,cset.m,sizePsi, lparm,kparm,NULL,svmModel,alpha); add_weight_vector_to_linear_model(svmModel); sm->svm_model=svmModel; sm->w=svmModel->lin_weights; /* short cut to weight vector */ /* create a cache of the feature vectors for the correct labels */ fycache=(SVECTOR **)my_malloc(n*sizeof(SVECTOR *)); for(i=0;i<n;i++) { if(USE_FYCACHE) { fy=psi(ex[i].x,ex[i].y,sm,sparm); if(kparm->kernel_type == LINEAR_KERNEL) { /* store difference vector directly */ diff=add_list_sort_ss_r(fy,COMPACT_ROUNDING_THRESH); free_svector(fy); fy=diff; } } else fy=NULL; fycache[i]=fy; } /* initialize the constraint cache */ if(alg_type == ONESLACK_DUAL_CACHE_ALG) { ccache=create_constraint_cache(sample,sparm,sm); /* NOTE: */ for(i=0;i<n;i++) if(loss(ex[i].y,ex[i].y,sparm) != 0) { printf("ERROR: Loss function returns non-zero value loss(y_%d,y_%d)\n",i,i); printf(" W4 algorithm assumes that loss(y_i,y_i)=0 for all i.\n"); exit(1); } } if(kparm->kernel_type == LINEAR_KERNEL) lhs_n=create_nvector(sm->sizePsi); /* randomize order or training examples */ if(batch_size<n) randmapping=random_order(n); rt_init+=MAX(get_runtime()-rt1,0); rt_total+=rt_init; /*****************/ /*** main loop ***/ /*****************/ do { /* iteratively find and add constraints to working set */ if(struct_verbosity>=1) { printf("Iter %i: ",++numIt); fflush(stdout); } rt1=get_runtime(); /**** compute current slack ****/ alphasum=0; for(j=0;(j<cset.m);j++) alphasum+=alpha[j]; for(j=0,slack=-1;(j<cset.m) && (slack==-1);j++) if(alpha[j] > alphasum/cset.m) slack=MAX(0,cset.rhs[j]-classify_example(svmModel,cset.lhs[j])); slack=MAX(0,slack); rt_total+=MAX(get_runtime()-rt1,0); /**** find a violated joint constraint ****/ lhs=NULL; rhs=0; if(alg_type == ONESLACK_DUAL_CACHE_ALG) { rt1=get_runtime(); /* Compute violation of constraints in cache for current w */ if(struct_verbosity>=2) rt2=get_runtime(); update_constraint_cache_for_model(ccache, svmModel); if(struct_verbosity>=2) rt_cacheupdate+=MAX(get_runtime()-rt2,0); /* Is there is a sufficiently violated constraint in cache? */ viol=compute_violation_of_constraint_in_cache(ccache,epsilon_est/2); if(viol-slack > MAX(epsilon_est/10,sparm->epsilon)) { /* There is a sufficiently violated constraint in cache, so use this constraint in this iteration. */ if(struct_verbosity>=2) rt2=get_runtime(); viol=find_most_violated_joint_constraint_in_cache(ccache, epsilon_est/2,lhs_n,&lhs,&rhs); if(struct_verbosity>=2) rt_cacheconst+=MAX(get_runtime()-rt2,0); cached_constraint=1; } else { /* There is no sufficiently violated constraint in cache, so update cache by computing most violated constraint explicitly for batch_size examples. */ viol_est=0; progress=0; viol=compute_violation_of_constraint_in_cache(ccache,0); for(j=0;(j<batch_size) || ((j<n)&&(viol-slack<sparm->epsilon));j++) { if(struct_verbosity>=1) print_percent_progress(&progress,n,10,"."); uptr=uptr % n; if(randmapping) i=randmapping[uptr]; else i=uptr; /* find most violating fydelta=fy-fybar and rhs for example i */ find_most_violated_constraint(&fydelta,&rhs_i,&ex[i], fycache[i],n,sm,sparm, &rt_viol,&rt_psi,&argmax_count); /* add current fy-fybar and loss to cache */ if(struct_verbosity>=2) rt2=get_runtime(); viol+=add_constraint_to_constraint_cache(ccache,sm->svm_model, i,fydelta,rhs_i,0.0001*sparm->epsilon/n, sparm->ccache_size,&rt_cachesum); if(struct_verbosity>=2) rt_cacheadd+=MAX(get_runtime()-rt2,0); viol_est+=ccache->constlist[i]->viol; uptr++; } cached_constraint=(j<n); if(struct_verbosity>=2) rt2=get_runtime(); if(cached_constraint) viol=find_most_violated_joint_constraint_in_cache(ccache, epsilon_est/2,lhs_n,&lhs,&rhs); else viol=find_most_violated_joint_constraint_in_cache(ccache,0,lhs_n, &lhs,&rhs); if(struct_verbosity>=2) rt_cacheconst+=MAX(get_runtime()-rt2,0); viol_est*=((double)n/j); epsilon_est=(1-(double)j/n)*epsilon_est+(double)j/n*(viol_est-slack); if((struct_verbosity >= 1) && (j!=n)) printf("(upd=%5.1f%%,eps^=%.4f,eps*=%.4f)", 100.0*j/n,viol_est-slack,epsilon_est); } lhsXw=rhs-viol; rt_total+=MAX(get_runtime()-rt1,0); } else { /* do not use constraint from cache */ rt1=get_runtime(); cached_constraint=0; if(kparm->kernel_type == LINEAR_KERNEL) clear_nvector(lhs_n,sm->sizePsi); progress=0; rt_total+=MAX(get_runtime()-rt1,0); for(i=0; i<n; i++) { rt1=get_runtime(); if(struct_verbosity>=1) print_percent_progress(&progress,n,10,"."); /* compute most violating fydelta=fy-fybar and rhs for example i */ find_most_violated_constraint(&fydelta,&rhs_i,&ex[i],fycache[i],n, sm,sparm,&rt_viol,&rt_psi,&argmax_count); /* add current fy-fybar to lhs of constraint */ if(kparm->kernel_type == LINEAR_KERNEL) { add_list_n_ns(lhs_n,fydelta,1.0); /* add fy-fybar to sum */ free_svector(fydelta); } else { append_svector_list(fydelta,lhs); /* add fy-fybar to vector list */ lhs=fydelta; } rhs+=rhs_i; /* add loss to rhs */ rt_total+=MAX(get_runtime()-rt1,0); } /* end of example loop */ rt1=get_runtime(); /* create sparse vector from dense sum */ if(kparm->kernel_type == LINEAR_KERNEL) lhs=create_svector_n_r(lhs_n,sm->sizePsi,NULL,1.0, COMPACT_ROUNDING_THRESH); doc=create_example(cset.m,0,1,1,lhs); lhsXw=classify_example(svmModel,doc); free_example(doc,0); viol=rhs-lhsXw; rt_total+=MAX(get_runtime()-rt1,0); } /* end of finding most violated joint constraint */ rt1=get_runtime(); /**** if `error', then add constraint and recompute QP ****/ if(slack > (rhs-lhsXw+0.000001)) { printf("\nWARNING: Slack of most violated constraint is smaller than slack of working\n"); printf(" set! There is probably a bug in 'find_most_violated_constraint_*'.\n"); printf("slack=%f, newslack=%f\n",slack,rhs-lhsXw); /* exit(1); */ } ceps=MAX(0,rhs-lhsXw-slack); if((ceps > sparm->epsilon) || cached_constraint) { /**** resize constraint matrix and add new constraint ****/ cset.lhs=(DOC **)realloc(cset.lhs,sizeof(DOC *)*(cset.m+1)); cset.lhs[cset.m]=create_example(cset.m,0,1,1,lhs); cset.rhs=(double *)realloc(cset.rhs,sizeof(double)*(cset.m+1)); cset.rhs[cset.m]=rhs; alpha=(double *)realloc(alpha,sizeof(double)*(cset.m+1)); alpha[cset.m]=0; alphahist=(long *)realloc(alphahist,sizeof(long)*(cset.m+1)); alphahist[cset.m]=optcount; cset.m++; totconstraints++; if((alg_type == ONESLACK_DUAL_ALG) || (alg_type == ONESLACK_DUAL_CACHE_ALG)) { if(struct_verbosity>=2) rt2=get_runtime(); kparm->gram_matrix=update_kernel_matrix(kparm->gram_matrix,cset.m-1, &cset,kparm); if(struct_verbosity>=2) rt_kernel+=MAX(get_runtime()-rt2,0); } /**** get new QP solution ****/ if(struct_verbosity>=1) { printf("*");fflush(stdout); } if(struct_verbosity>=2) rt2=get_runtime(); /* set svm precision so that higher than eps of most violated constr */ if(cached_constraint) { epsilon_cached=MIN(epsilon_cached,ceps); lparm->epsilon_crit=epsilon_cached/2; } else { epsilon=MIN(epsilon,ceps); /* best eps so far */ lparm->epsilon_crit=epsilon/2; epsilon_cached=epsilon; } free_model(svmModel,0); svmModel=(MODEL *)my_malloc(sizeof(MODEL)); /* Run the QP solver on cset. */ kernel_type_org=kparm->kernel_type; if((alg_type == ONESLACK_DUAL_ALG) || (alg_type == ONESLACK_DUAL_CACHE_ALG)) kparm->kernel_type=GRAM; /* use kernel stored in kparm */ svm_learn_optimization(cset.lhs,cset.rhs,cset.m,sizePsi, lparm,kparm,NULL,svmModel,alpha); kparm->kernel_type=kernel_type_org; svmModel->kernel_parm.kernel_type=kernel_type_org; /* Always add weight vector, in case part of the kernel is linear. If not, ignore the weight vector since its content is bogus. */ add_weight_vector_to_linear_model(svmModel); sm->svm_model=svmModel; sm->w=svmModel->lin_weights; /* short cut to weight vector */ optcount++; /* keep track of when each constraint was last active. constraints marked with -1 are not updated */ for(j=0;j<cset.m;j++) if((alphahist[j]>-1) && (alpha[j] != 0)) alphahist[j]=optcount; if(struct_verbosity>=2) rt_opt+=MAX(get_runtime()-rt2,0); /* Check if some of the linear constraints have not been active in a while. Those constraints are then removed to avoid bloating the working set beyond necessity. */ if(struct_verbosity>=3) printf("Reducing working set...");fflush(stdout); remove_inactive_constraints(&cset,alpha,optcount,alphahist,50); if(struct_verbosity>=3) printf("done. "); } else { free_svector(lhs); } if(struct_verbosity>=1) printf("(NumConst=%d, SV=%ld, CEps=%.4f, QPEps=%.4f)\n",cset.m, svmModel->sv_num-1,ceps,svmModel->maxdiff); rt_total+=MAX(get_runtime()-rt1,0); } while(finalize_iteration(ceps,cached_constraint,sample,sm,cset,alpha,sparm)|| cached_constraint || (ceps > sparm->epsilon) ); // originally like below ... finalize_iteration was not called because of short-circuit evaluation // } while(cached_constraint || (ceps > sparm->epsilon) || // finalize_iteration(ceps,cached_constraint,sample,sm,cset,alpha,sparm) // ); if(struct_verbosity>=1) { printf("Final epsilon on KKT-Conditions: %.5f\n", MAX(svmModel->maxdiff,ceps)); slack=0; for(j=0;j<cset.m;j++) slack=MAX(slack, cset.rhs[j]-classify_example(svmModel,cset.lhs[j])); alphasum=0; for(i=0; i<cset.m; i++) alphasum+=alpha[i]*cset.rhs[i]; if(kparm->kernel_type == LINEAR_KERNEL) modellength=model_length_n(svmModel); else modellength=model_length_s(svmModel); dualitygap=(0.5*modellength*modellength+sparm->C*viol) -(alphasum-0.5*modellength*modellength); printf("Upper bound on duality gap: %.5f\n", dualitygap); printf("Dual objective value: dval=%.5f\n", alphasum-0.5*modellength*modellength); printf("Primal objective value: pval=%.5f\n", 0.5*modellength*modellength+sparm->C*viol); printf("Total number of constraints in final working set: %i (of %i)\n",(int)cset.m,(int)totconstraints); printf("Number of iterations: %d\n",numIt); printf("Number of calls to 'find_most_violated_constraint': %ld\n",argmax_count); printf("Number of SV: %ld \n",svmModel->sv_num-1); printf("Norm of weight vector: |w|=%.5f\n",modellength); printf("Value of slack variable (on working set): xi=%.5f\n",slack); printf("Value of slack variable (global): xi=%.5f\n",viol); printf("Norm of longest difference vector: ||Psi(x,y)-Psi(x,ybar)||=%.5f\n", length_of_longest_document_vector(cset.lhs,cset.m,kparm)); if(struct_verbosity>=2) printf("Runtime in cpu-seconds: %.2f (%.2f%% for QP, %.2f%% for kernel, %.2f%% for Argmax, %.2f%% for Psi, %.2f%% for init, %.2f%% for cache update, %.2f%% for cache const, %.2f%% for cache add (incl. %.2f%% for sum))\n", rt_total/100.0, (100.0*rt_opt)/rt_total, (100.0*rt_kernel)/rt_total, (100.0*rt_viol)/rt_total, (100.0*rt_psi)/rt_total, (100.0*rt_init)/rt_total,(100.0*rt_cacheupdate)/rt_total, (100.0*rt_cacheconst)/rt_total,(100.0*rt_cacheadd)/rt_total, (100.0*rt_cachesum)/rt_total); else if(struct_verbosity==1) printf("Runtime in cpu-seconds: %.2f\n",rt_total/100.0); } if(ccache) { long cnum=0; CCACHEELEM *celem; for(i=0;i<n;i++) for(celem=ccache->constlist[i];celem;celem=celem->next) cnum++; printf("Final number of constraints in cache: %ld\n",cnum); } if(struct_verbosity>=4) printW(sm->w,sizePsi,n,lparm->svm_c); if(svmModel) { sm->svm_model=copy_model(svmModel); sm->w=sm->svm_model->lin_weights; /* short cut to weight vector */ free_model(svmModel,0); } print_struct_learning_stats(sample,sm,cset,alpha,sparm); if(lhs_n) free_nvector(lhs_n); if(ccache) free_constraint_cache(ccache); for(i=0;i<n;i++) if(fycache[i]) free_svector(fycache[i]); free(fycache); free(alpha); free(alphahist); free(cset.rhs); for(i=0;i<cset.m;i++) free_example(cset.lhs[i],1); free(cset.lhs); if(kparm->gram_matrix) free_matrix(kparm->gram_matrix); }
int _svm_learn (int argc, char* argv[]) { char docfile[200]; /* file with training examples */ char modelfile[200]; /* file for resulting classifier */ char restartfile[200]; /* file with initial alphas */ DOC **docs; /* training examples */ long totwords,totdoc,i; double *target; double *alpha_in=NULL; KERNEL_CACHE *kernel_cache; LEARN_PARM learn_parm; KERNEL_PARM kernel_parm; MODEL *model=(MODEL *)my_malloc(sizeof(MODEL)); HIDEO_ENV *hideo_env=create_env(); model->td_pred=NULL; model->n_td_pred=0; _read_input_parameters(argc,argv,docfile,modelfile,restartfile,&verbosity, &learn_parm,&kernel_parm); read_documents(docfile,&docs,&target,&totwords,&totdoc); if(restartfile[0]) alpha_in=read_alphas(restartfile,totdoc); if(kernel_parm.kernel_type == LINEAR) { /* don't need the cache */ kernel_cache=NULL; } else { /* Always get a new kernel cache. It is not possible to use the same cache for two different training runs */ kernel_cache=kernel_cache_init(totdoc,learn_parm.kernel_cache_size); } if(learn_parm.type == CLASSIFICATION) { svm_learn_classification(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,kernel_cache,model,alpha_in,hideo_env); } else if(learn_parm.type == REGRESSION) { svm_learn_regression(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,&kernel_cache,model,hideo_env); } else if(learn_parm.type == RANKING) { svm_learn_ranking(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,&kernel_cache,model,hideo_env); } else if(learn_parm.type == OPTIMIZATION) { svm_learn_optimization(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,kernel_cache,model,alpha_in,hideo_env); } if(kernel_cache) { /* Free the memory used for the cache. */ kernel_cache_cleanup(kernel_cache); } /* Warning: The model contains references to the original data 'docs'. If you want to free the original data, and only keep the model, you have to make a deep copy of 'model'. */ /* deep_copy_of_model=copy_model(model); */ write_model(modelfile,model); free(alpha_in); free_model(model,0); for(i=0;i<totdoc;i++) free_example(docs[i],1); free(docs); free(target); free_env(hideo_env); return(0); }
int SVMLightRunner::librarySVMLearnMain( int argc, char **argv, bool use_gmumr, SVMConfiguration &config ) { LOG( config.log, LogLevel::DEBUG_LEVEL, __debug_prefix__ + ".librarySVMLearnMain() Started." ); DOC **docs; /* training examples */ long totwords,totdoc,i; double *target; double *alpha_in=NULL; KERNEL_CACHE *kernel_cache; LEARN_PARM learn_parm; KERNEL_PARM kernel_parm; MODEL *model=(MODEL *)my_malloc(sizeof(MODEL)); // GMUM.R changes { librarySVMLearnReadInputParameters( argc, argv, docfile, modelfile, restartfile, &verbosity, &learn_parm, &kernel_parm, use_gmumr, config ); kernel_parm.kernel_type = static_cast<long int>(config.kernel_type); libraryReadDocuments( docfile, &docs, &target, &totwords, &totdoc, use_gmumr, config ); // GMUM.R changes } if(restartfile[0]) alpha_in=read_alphas(restartfile,totdoc); if(kernel_parm.kernel_type == LINEAR) { /* don't need the cache */ kernel_cache=NULL; } else { /* Always get a new kernel cache. It is not possible to use the * same cache for two different training runs */ kernel_cache=kernel_cache_init(totdoc,learn_parm.kernel_cache_size); } //gmum.r init_global_params_QP(); if(learn_parm.type == CLASSIFICATION) { svm_learn_classification(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,kernel_cache,model,alpha_in); } else if(learn_parm.type == REGRESSION) { svm_learn_regression(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,&kernel_cache,model); } else if(learn_parm.type == RANKING) { svm_learn_ranking(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,&kernel_cache,model); } else if(learn_parm.type == OPTIMIZATION) { svm_learn_optimization(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,kernel_cache,model,alpha_in); } //gmum.r config.iter = learn_parm.iterations; if(kernel_cache) { /* Free the memory used for the cache. */ kernel_cache_cleanup(kernel_cache); } /* Warning: The model contains references to the original data 'docs'. If you want to free the original data, and only keep the model, you have to make a deep copy of 'model'. */ /* deep_copy_of_model=copy_model(model); */ // GMUM.R changes { if (!use_gmumr) { write_model(modelfile,model); } else { SVMLightModelToSVMConfiguration(model, config); } // GMUM.R changes } free(alpha_in); free_model(model,0); for(i=0;i<totdoc;i++) free_example(docs[i],1); free(docs); free(target); LOG( config.log, LogLevel::DEBUG_LEVEL, __debug_prefix__ + ".librarySVMLearnMain() Done." ); return(0); }
double cutting_plane_algorithm(double *w, long m, int MAX_ITER, double C, double epsilon, SVECTOR **fycache, EXAMPLE *ex, STRUCTMODEL *sm, STRUCT_LEARN_PARM *sparm) { long i, j; double xi; double *alpha; double **G; /* Gram matrix */ DOC **dXc; /* constraint matrix */ double *delta; /* rhs of constraints */ SVECTOR *new_constraint; double dual_obj, alphasum; int iter, size_active; double value; int r; int *idle; /* for cleaning up */ double margin; double primal_obj; double *proximal_rhs; double *gammaG0 = NULL; double min_rho = 0.001; double max_rho; double serious_counter = 0; double rho = 1.0; /* temporarily set it to 1 first */ double expected_descent, primal_obj_b = -1, reg_master_obj; int null_step = 1; double *w_b; double kappa = 0.1; double temp_var; double proximal_term, primal_lower_bound; double v_k; double obj_difference; double *cut_error; // cut_error[i] = alpha_{k,i} at current center x_k double sigma_k; double m2 = 0.2; double m3 = 0.9; double gTd; double last_sigma_k = 0; double initial_primal_obj; int suff_decrease_cond = 0; double decrease_proportion = 0.2; // start from 0.2 first double z_k_norm; double last_z_k_norm = 0; /* set parameters for hideo solver */ LEARN_PARM lparm; KERNEL_PARM kparm; MODEL *svmModel = NULL; lparm.biased_hyperplane = 0; lparm.epsilon_crit = MIN(epsilon, 0.001); lparm.svm_c = C; lparm.sharedslack = 1; kparm.kernel_type = LINEAR; lparm.remove_inconsistent = 0; lparm.skip_final_opt_check = 0; lparm.svm_maxqpsize = 10; lparm.svm_newvarsinqp = 0; lparm.svm_iter_to_shrink = -9999; lparm.maxiter = 100000; lparm.kernel_cache_size = 40; lparm.eps = epsilon; lparm.transduction_posratio = -1.0; lparm.svm_costratio = 1.0; lparm.svm_costratio_unlab = 1.0; lparm.svm_unlabbound = 1E-5; lparm.epsilon_a = 1E-10; /* changed from 1e-15 */ lparm.compute_loo = 0; lparm.rho = 1.0; lparm.xa_depth = 0; strcpy(lparm.alphafile, ""); kparm.poly_degree = 3; kparm.rbf_gamma = 1.0; kparm.coef_lin = 1; kparm.coef_const = 1; strcpy(kparm.custom, "empty"); w_b = create_nvector(sm->sizePsi); clear_nvector(w_b, sm->sizePsi); /* warm start */ for (i = 1; i < sm->sizePsi + 1; i++) { w_b[i] = w[i]; } iter = 0; size_active = 0; xi = 0.0; alpha = NULL; G = NULL; dXc = NULL; delta = NULL; idle = NULL; proximal_rhs = NULL; cut_error = NULL; new_constraint = find_cutting_plane(ex, fycache, &margin, m, sm, sparm); value = margin - sprod_ns(w, new_constraint); primal_obj_b = 0.5 * sprod_nn(w_b, w_b, sm->sizePsi) + C * value; primal_obj = 0.5 * sprod_nn(w, w, sm->sizePsi) + C * value; primal_lower_bound = 0; expected_descent = -primal_obj_b; initial_primal_obj = primal_obj_b; //max_rho = C; max_rho = 100 * C; // tree-edge loss not within 0-1 printf("Running CCCP inner loop solver: "); fflush(stdout); while ((!suff_decrease_cond) && (expected_descent < -epsilon) && (iter < MAX_ITER)) { iter += 1; size_active += 1; #if (DEBUG_LEVEL > 0) printf("ITER %d\n", iter); #endif printf("."); fflush(stdout); /* add constraint */ dXc = (DOC **) realloc(dXc, sizeof(DOC *) * size_active); assert(dXc != NULL); dXc[size_active - 1] = (DOC *) malloc(sizeof(DOC)); dXc[size_active - 1]->fvec = new_constraint; dXc[size_active - 1]->slackid = 1; // only one common slackid (one-slack) dXc[size_active - 1]->costfactor = 1.0; delta = (double *) realloc(delta, sizeof(double) * size_active); assert(delta != NULL); delta[size_active - 1] = margin; alpha = (double *) realloc(alpha, sizeof(double) * size_active); assert(alpha != NULL); alpha[size_active - 1] = 0.0; idle = (int *) realloc(idle, sizeof(int) * size_active); assert(idle != NULL); idle[size_active - 1] = 0; /* proximal point */ proximal_rhs = (double *) realloc(proximal_rhs, sizeof(double) * size_active); assert(proximal_rhs != NULL); cut_error = (double *) realloc(cut_error, sizeof(double) * size_active); assert(cut_error != NULL); // note g_i = - new_constraint cut_error[size_active - 1] = C * (sprod_ns(w_b, new_constraint) - sprod_ns(w, new_constraint)); cut_error[size_active - 1] += (primal_obj_b - 0.5 * sprod_nn(w_b, w_b, sm->sizePsi)); cut_error[size_active - 1] -= (primal_obj - 0.5 * sprod_nn(w, w, sm->sizePsi)); gammaG0 = (double *) realloc(gammaG0, sizeof(double) * size_active); assert(gammaG0 != NULL); /* update Gram matrix */ G = (double **) realloc(G, sizeof(double *) * size_active); assert(G != NULL); G[size_active - 1] = NULL; for (j = 0; j < size_active; j++) { G[j] = (double *) realloc(G[j], sizeof(double) * size_active); assert(G[j] != NULL); } for (j = 0; j < size_active - 1; j++) { G[size_active - 1][j] = sprod_ss(dXc[size_active - 1]->fvec, dXc[j]->fvec); G[j][size_active - 1] = G[size_active - 1][j]; } G[size_active - 1][size_active - 1] = sprod_ss(dXc[size_active - 1]->fvec, dXc[size_active - 1]->fvec); /* update gammaG0 */ if (null_step == 1) { gammaG0[size_active - 1] = sprod_ns(w_b, dXc[size_active - 1]->fvec); } else { for (i = 0; i < size_active; i++) { gammaG0[i] = sprod_ns(w_b, dXc[i]->fvec); } } /* update proximal_rhs */ for (i = 0; i < size_active; i++) { proximal_rhs[i] = (1 + rho) * delta[i] - rho * gammaG0[i]; } /* solve QP to update alpha */ //dual_obj = 0; //r = mosek_qp_optimize(G, proximal_rhs, alpha, (long) size_active, C, &dual_obj,rho); if (size_active > 1) { if (svmModel != NULL) free_model(svmModel, 0); svmModel = (MODEL *) my_malloc(sizeof(MODEL)); svm_learn_optimization(dXc, proximal_rhs, size_active, sm->sizePsi, &lparm, &kparm, NULL, svmModel, alpha); } else { assert(size_active == 1); alpha[0] = C; } /* DEBUG */ //printf("r: %d\n", r); fflush(stdout); /* END DEBUG */ clear_nvector(w, sm->sizePsi); for (j = 0; j < size_active; j++) { if (alpha[j] > C * ALPHA_THRESHOLD) { add_vector_ns(w, dXc[j]->fvec, alpha[j] / (1 + rho)); } } /* compute dual obj */ dual_obj = +0.5 * (1 + rho) * sprod_nn(w, w, sm->sizePsi); for (j = 0; j < size_active; j++) { dual_obj -= proximal_rhs[j] / (1 + rho) * alpha[j]; } z_k_norm = sqrt(sprod_nn(w, w, sm->sizePsi)); add_vector_nn(w, w_b, sm->sizePsi, rho / (1 + rho)); /* detect if step size too small */ sigma_k = 0; alphasum = 0; for (j = 0; j < size_active; j++) { sigma_k += alpha[j] * cut_error[j]; alphasum += alpha[j]; } sigma_k /= C; gTd = -C * (sprod_ns(w, new_constraint) - sprod_ns(w_b, new_constraint)); #if (DEBUG_LEVEL > 0) for (j=0;j<size_active;j++) { printf("alpha[%d]: %.8g, cut_error[%d]: %.8g\n", j, alpha[j], j, cut_error[j]); } printf("sigma_k: %.8g\n", sigma_k); printf("alphasum: %.8g\n", alphasum); printf("g^T d: %.8g\n", gTd); fflush(stdout); #endif /* update cleanup information */ for (j = 0; j < size_active; j++) { if (alpha[j] < ALPHA_THRESHOLD * C) { idle[j]++; } else { idle[j] = 0; } } new_constraint = find_cutting_plane(ex, fycache, &margin, m, sm, sparm); value = margin - sprod_ns(w, new_constraint); /* print primal objective */ primal_obj = 0.5 * sprod_nn(w, w, sm->sizePsi) + C * value; #if (DEBUG_LEVEL > 0) printf("ITER PRIMAL_OBJ %.4f\n", primal_obj); fflush(stdout); #endif temp_var = sprod_nn(w_b, w_b, sm->sizePsi); proximal_term = 0.0; for (i = 1; i < sm->sizePsi + 1; i++) { proximal_term += (w[i] - w_b[i]) * (w[i] - w_b[i]); } reg_master_obj = -dual_obj + 0.5 * rho * temp_var / (1 + rho); expected_descent = reg_master_obj - primal_obj_b; v_k = (reg_master_obj - proximal_term * rho / 2) - primal_obj_b; primal_lower_bound = MAX(primal_lower_bound, reg_master_obj - 0.5 * rho * (1 + rho) * proximal_term); #if (DEBUG_LEVEL > 0) printf("ITER REG_MASTER_OBJ: %.4f\n", reg_master_obj); printf("ITER EXPECTED_DESCENT: %.4f\n", expected_descent); printf("ITER PRIMLA_OBJ_B: %.4f\n", primal_obj_b); printf("ITER RHO: %.4f\n", rho); printf("ITER ||w-w_b||^2: %.4f\n", proximal_term); printf("ITER PRIMAL_LOWER_BOUND: %.4f\n", primal_lower_bound); printf("ITER V_K: %.4f\n", v_k); #endif obj_difference = primal_obj - primal_obj_b; if (primal_obj < primal_obj_b + kappa * expected_descent) { /* extra condition to be met */ if ((gTd > m2 * v_k) || (rho < min_rho + 1E-8)) { #if (DEBUG_LEVEL > 0) printf("SERIOUS STEP\n"); #endif /* update cut_error */ for (i = 0; i < size_active; i++) { cut_error[i] -= (primal_obj_b - 0.5 * sprod_nn(w_b, w_b, sm->sizePsi)); cut_error[i] -= C * sprod_ns(w_b, dXc[i]->fvec); cut_error[i] += (primal_obj - 0.5 * sprod_nn(w, w, sm->sizePsi)); cut_error[i] += C * sprod_ns(w, dXc[i]->fvec); } primal_obj_b = primal_obj; for (i = 1; i < sm->sizePsi + 1; i++) { w_b[i] = w[i]; } null_step = 0; serious_counter++; } else { /* increase step size */ #if (DEBUG_LEVEL > 0) printf("NULL STEP: SS(ii) FAILS.\n"); #endif serious_counter--; rho = MAX(rho / 10, min_rho); } } else { /* no sufficient decrease */ serious_counter--; if ((cut_error[size_active - 1] > m3 * last_sigma_k) && (fabs(obj_difference) > last_z_k_norm + last_sigma_k)) { #if (DEBUG_LEVEL > 0) printf("NULL STEP: NS(ii) FAILS.\n"); #endif rho = MIN(10 * rho, max_rho); } #if (DEBUG_LEVEL > 0) else printf("NULL STEP\n"); #endif } /* update last_sigma_k */ last_sigma_k = sigma_k; last_z_k_norm = z_k_norm; /* break away from while loop if more than certain proportioal decrease in primal objective */ if (primal_obj_b / initial_primal_obj < 1 - decrease_proportion) { suff_decrease_cond = 1; } /* clean up */ if (iter % CLEANUP_CHECK == 0) { //size_active = resize_cleanup(size_active, idle, alpha, delta, gammaG0, proximal_rhs, G, dXc, cut_error); size_active = resize_cleanup(size_active, &idle, &alpha, &delta, &gammaG0, &proximal_rhs, &G, &dXc, &cut_error); } } // end cutting plane while loop printf(" Inner loop optimization finished.\n"); fflush(stdout); /* free memory */ for (j = 0; j < size_active; j++) { free(G[j]); free_example(dXc[j], 0); } free(G); free(dXc); free(alpha); free(delta); free_svector(new_constraint); free(idle); free(gammaG0); free(proximal_rhs); free(cut_error); /* copy and free */ for (i = 1; i < sm->sizePsi + 1; i++) { w[i] = w_b[i]; } free(w_b); return (primal_obj_b); }
/* call as model = mexsvmlearn(data,labels,options) */ void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { char **argv; int argc; DOC **docs; /* training examples */ long totwords,totdoc,i; double *target; double *alpha_in=NULL; KERNEL_CACHE *kernel_cache; LEARN_PARM learn_parm; KERNEL_PARM kernel_parm; MODEL model; /* check for valid calling format */ if ((nrhs != 3) || (nlhs != 1)) mexErrMsgTxt(ERR001); if (mxGetM(prhs[0]) != mxGetM(prhs[1])) mexErrMsgTxt(ERR002); if (mxGetN(prhs[1]) != 1) mexErrMsgTxt(ERR003); /* reset static variables -- as a .DLL, static things are sticky */ global_init( ); /* convert the parameters (given in prhs[2]) into an argv/argc combination */ argv = make_argv((mxArray *)prhs[2],&argc); /* send the options */ /* this was originally supposed to be argc, argv, re-written for MATLAB ... its cheesy - but it workss :: convert the options array into an argc, argv pair and let svm_lite handle it from there. */ read_input_parameters(argc,argv,docfile,modelfile,restartfile,&verbosity, &learn_parm,&kernel_parm); extract_user_opts((mxArray *)prhs[2], &kernel_parm); totdoc = mxGetM(prhs[0]); totwords = mxGetN(prhs[0]); /* prhs[0] = samples (mxn) array prhs[1] = labels (mx1) array */ mexToDOC((mxArray *)prhs[0], (mxArray *)prhs[1], &docs, &target, NULL, NULL); /* TODO modify to accept this array if(restartfile[0]) alpha_in=read_alphas(restartfile,totdoc); */ if(kernel_parm.kernel_type == LINEAR) { /* don't need the cache */ kernel_cache=NULL; } else { /* Always get a new kernel cache. It is not possible to use the same cache for two different training runs */ kernel_cache=kernel_cache_init(totdoc,learn_parm.kernel_cache_size); } if(learn_parm.type == CLASSIFICATION) { svm_learn_classification(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,kernel_cache,&model,alpha_in); } else if(learn_parm.type == REGRESSION) { svm_learn_regression(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,&kernel_cache,&model); } else if(learn_parm.type == RANKING) { svm_learn_ranking(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,&kernel_cache,&model); } else if(learn_parm.type == OPTIMIZATION) { svm_learn_optimization(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,kernel_cache,&model,alpha_in); } else { mexErrMsgTxt(ERR004); } if(kernel_cache) { /* Free the memory used for the cache. */ kernel_cache_cleanup(kernel_cache); } /* ********************************** * After the training/learning portion has finished, * copy the model back to the output arrays for MATLAB * ********************************** */ store_model(&model, plhs); free_kernel(); global_destroy( ); }
void svm_learn_struct_joint(SAMPLE sample, STRUCT_LEARN_PARM *sparm, LEARN_PARM *lparm, KERNEL_PARM *kparm, STRUCTMODEL *sm, int alg_type) { int i,j; int numIt=0; long argmax_count=0; long totconstraints=0; long kernel_type_org; double epsilon,epsilon_cached; double lossval,factor,dist; double margin=0; double slack, slacksum, ceps; double dualitygap,modellength,alphasum; long sizePsi; double *alpha=NULL; long *alphahist=NULL,optcount=0; CONSTSET cset; SVECTOR *diff=NULL; double *diff_n=NULL; SVECTOR *fy, *fybar, *f, **fycache, *lhs; MODEL *svmModel=NULL; LABEL ybar; DOC *doc; long n=sample.n; EXAMPLE *ex=sample.examples; double rt_total=0,rt_opt=0,rt_init=0,rt_psi=0,rt_viol=0,rt_kernel=0; double rt1,rt2; double progress,progress_old; /* SVECTOR ***fydelta_cache=NULL; double **loss_cache=NULL; int cache_size=0; */ CCACHE *ccache=NULL; int cached_constraint; rt1=get_runtime(); init_struct_model(sample,sm,sparm,lparm,kparm); sizePsi=sm->sizePsi+1; /* sm must contain size of psi on return */ if(sparm->slack_norm == 1) { lparm->svm_c=sparm->C; /* set upper bound C */ lparm->sharedslack=1; } else if(sparm->slack_norm == 2) { printf("ERROR: The joint algorithm does not apply to L2 slack norm!"); fflush(stdout); exit(0); } else { printf("ERROR: Slack norm must be L1 or L2!"); fflush(stdout); exit(0); } lparm->biased_hyperplane=0; /* set threshold to zero */ epsilon=100.0; /* start with low precision and increase later */ epsilon_cached=epsilon; /* epsilon to use for iterations using constraints constructed from the constraint cache */ cset=init_struct_constraints(sample, sm, sparm); if(cset.m > 0) { alpha=(double *)realloc(alpha,sizeof(double)*cset.m); alphahist=(long *)realloc(alphahist,sizeof(long)*cset.m); for(i=0; i<cset.m; i++) { alpha[i]=0; alphahist[i]=-1; /* -1 makes sure these constraints are never removed */ } } kparm->gram_matrix=NULL; if((alg_type == DUAL_ALG) || (alg_type == DUAL_CACHE_ALG)) kparm->gram_matrix=init_kernel_matrix(&cset,kparm); /* set initial model and slack variables */ svmModel=(MODEL *)my_malloc(sizeof(MODEL)); lparm->epsilon_crit=epsilon; svm_learn_optimization(cset.lhs,cset.rhs,cset.m,sizePsi+n, lparm,kparm,NULL,svmModel,alpha); add_weight_vector_to_linear_model(svmModel); sm->svm_model=svmModel; sm->w=svmModel->lin_weights; /* short cut to weight vector */ /* create a cache of the feature vectors for the correct labels */ fycache=(SVECTOR **)malloc(n*sizeof(SVECTOR *)); for(i=0;i<n;i++) { fy=psi(ex[i].x,ex[i].y,sm,sparm); if(kparm->kernel_type == LINEAR) { diff=add_list_ss(fy); /* store difference vector directly */ free_svector(fy); fy=diff; } fycache[i]=fy; } /* initialize the constraint cache */ if(alg_type == DUAL_CACHE_ALG) { ccache=create_constraint_cache(sample,sparm); } rt_init+=MAX(get_runtime()-rt1,0); rt_total+=MAX(get_runtime()-rt1,0); /*****************/ /*** main loop ***/ /*****************/ do { /* iteratively find and add constraints to working set */ if(struct_verbosity>=1) { printf("Iter %i: ",++numIt); fflush(stdout); } rt1=get_runtime(); /**** compute current slack ****/ slack=0; for(j=0;j<cset.m;j++) slack=MAX(slack,cset.rhs[j]-classify_example(svmModel,cset.lhs[j])); /**** find a violated joint constraint ****/ lhs=NULL; dist=0; if(alg_type == DUAL_CACHE_ALG) { /* see if it is possible to construct violated constraint from cache */ update_constraint_cache_for_model(ccache, svmModel); dist=find_most_violated_joint_constraint_in_cache(ccache,&lhs,&margin); } rt_total+=MAX(get_runtime()-rt1,0); /* Is there a sufficiently violated constraint in cache? */ if(dist-slack > MAX(epsilon/10,sparm->epsilon)) { /* use constraint from cache */ rt1=get_runtime(); cached_constraint=1; if(kparm->kernel_type == LINEAR) { diff=add_list_ns(lhs); /* Linear case: compute weighted sum */ free_svector_shallow(lhs); } else { /* Non-linear case: make sure we have deep copy for cset */ diff=copy_svector(lhs); free_svector_shallow(lhs); } rt_total+=MAX(get_runtime()-rt1,0); } else { /* do not use constraint from cache */ rt1=get_runtime(); cached_constraint=0; if(lhs) free_svector_shallow(lhs); lhs=NULL; if(kparm->kernel_type == LINEAR) { diff_n=create_nvector(sm->sizePsi); clear_nvector(diff_n,sm->sizePsi); } margin=0; progress=0; progress_old=progress; rt_total+=MAX(get_runtime()-rt1,0); /**** find most violated joint constraint ***/ for(i=0; i<n; i++) { rt1=get_runtime(); progress+=10.0/n; if((struct_verbosity==1) && (((int)progress_old) != ((int)progress))) {printf(".");fflush(stdout); progress_old=progress;} if(struct_verbosity>=2) {printf("."); fflush(stdout);} rt2=get_runtime(); argmax_count++; if(sparm->loss_type == SLACK_RESCALING) ybar=find_most_violated_constraint_slackrescaling(ex[i].x, ex[i].y,sm, sparm); else ybar=find_most_violated_constraint_marginrescaling(ex[i].x, ex[i].y,sm, sparm); rt_viol+=MAX(get_runtime()-rt2,0); if(empty_label(ybar)) { printf("ERROR: empty label was returned for example (%i)\n",i); /* exit(1); */ continue; } /**** get psi(x,y) and psi(x,ybar) ****/ rt2=get_runtime(); fy=copy_svector(fycache[i]); /*<= fy=psi(ex[i].x,ex[i].y,sm,sparm);*/ fybar=psi(ex[i].x,ybar,sm,sparm); rt_psi+=MAX(get_runtime()-rt2,0); lossval=loss(ex[i].y,ybar,sparm); free_label(ybar); /**** scale feature vector and margin by loss ****/ if(sparm->loss_type == SLACK_RESCALING) factor=lossval/n; else /* do not rescale vector for */ factor=1.0/n; /* margin rescaling loss type */ for(f=fy;f;f=f->next) f->factor*=factor; for(f=fybar;f;f=f->next) f->factor*=-factor; append_svector_list(fybar,fy); /* compute fy-fybar */ /**** add current fy-fybar and loss to cache ****/ if(alg_type == DUAL_CACHE_ALG) { if(kparm->kernel_type == LINEAR) add_constraint_to_constraint_cache(ccache,svmModel,i, add_list_ss(fybar), lossval/n,sparm->ccache_size); else add_constraint_to_constraint_cache(ccache,svmModel,i, copy_svector(fybar), lossval/n,sparm->ccache_size); } /**** add current fy-fybar to constraint and margin ****/ if(kparm->kernel_type == LINEAR) { add_list_n_ns(diff_n,fybar,1.0); /* add fy-fybar to sum */ free_svector(fybar); } else { append_svector_list(fybar,lhs); /* add fy-fybar to vector list */ lhs=fybar; } margin+=lossval/n; /* add loss to rhs */ rt_total+=MAX(get_runtime()-rt1,0); } /* end of example loop */ rt1=get_runtime(); /* create sparse vector from dense sum */ if(kparm->kernel_type == LINEAR) { diff=create_svector_n(diff_n,sm->sizePsi,"",1.0); free_nvector(diff_n); } else { diff=lhs; } rt_total+=MAX(get_runtime()-rt1,0); } /* end of finding most violated joint constraint */ rt1=get_runtime(); /**** if `error', then add constraint and recompute QP ****/ doc=create_example(cset.m,0,1,1,diff); dist=classify_example(svmModel,doc); ceps=MAX(0,margin-dist-slack); if(slack > (margin-dist+0.000001)) { printf("\nWARNING: Slack of most violated constraint is smaller than slack of working\n"); printf(" set! There is probably a bug in 'find_most_violated_constraint_*'.\n"); printf("slack=%f, newslack=%f\n",slack,margin-dist); /* exit(1); */ } if(ceps > sparm->epsilon) { /**** resize constraint matrix and add new constraint ****/ cset.lhs=(DOC **)realloc(cset.lhs,sizeof(DOC *)*(cset.m+1)); if(sparm->slack_norm == 1) cset.lhs[cset.m]=create_example(cset.m,0,1,1,diff); else if(sparm->slack_norm == 2) exit(1); cset.rhs=(double *)realloc(cset.rhs,sizeof(double)*(cset.m+1)); cset.rhs[cset.m]=margin; alpha=(double *)realloc(alpha,sizeof(double)*(cset.m+1)); alpha[cset.m]=0; alphahist=(long *)realloc(alphahist,sizeof(long)*(cset.m+1)); alphahist[cset.m]=optcount; cset.m++; totconstraints++; if((alg_type == DUAL_ALG) || (alg_type == DUAL_CACHE_ALG)) { if(struct_verbosity>=1) { printf(":");fflush(stdout); } rt2=get_runtime(); kparm->gram_matrix=update_kernel_matrix(kparm->gram_matrix,cset.m-1, &cset,kparm); rt_kernel+=MAX(get_runtime()-rt2,0); } /**** get new QP solution ****/ if(struct_verbosity>=1) { printf("*");fflush(stdout); } rt2=get_runtime(); /* set svm precision so that higher than eps of most violated constr */ if(cached_constraint) { epsilon_cached=MIN(epsilon_cached,MAX(ceps,sparm->epsilon)); lparm->epsilon_crit=epsilon_cached/2; } else { epsilon=MIN(epsilon,MAX(ceps,sparm->epsilon)); /* best eps so far */ lparm->epsilon_crit=epsilon/2; epsilon_cached=epsilon; } free_model(svmModel,0); svmModel=(MODEL *)my_malloc(sizeof(MODEL)); /* Run the QP solver on cset. */ kernel_type_org=kparm->kernel_type; if((alg_type == DUAL_ALG) || (alg_type == DUAL_CACHE_ALG)) kparm->kernel_type=GRAM; /* use kernel stored in kparm */ svm_learn_optimization(cset.lhs,cset.rhs,cset.m,sizePsi+n, lparm,kparm,NULL,svmModel,alpha); kparm->kernel_type=kernel_type_org; svmModel->kernel_parm.kernel_type=kernel_type_org; /* Always add weight vector, in case part of the kernel is linear. If not, ignore the weight vector since its content is bogus. */ add_weight_vector_to_linear_model(svmModel); sm->svm_model=svmModel; sm->w=svmModel->lin_weights; /* short cut to weight vector */ optcount++; /* keep track of when each constraint was last active. constraints marked with -1 are not updated */ for(j=0;j<cset.m;j++) if((alphahist[j]>-1) && (alpha[j] != 0)) alphahist[j]=optcount; rt_opt+=MAX(get_runtime()-rt2,0); /* Check if some of the linear constraints have not been active in a while. Those constraints are then removed to avoid bloating the working set beyond necessity. */ if(struct_verbosity>=2) printf("Reducing working set...");fflush(stdout); remove_inactive_constraints(&cset,alpha,optcount,alphahist,50); if(struct_verbosity>=2) printf("done. (NumConst=%d) ",cset.m); } else { free_svector(diff); } if(struct_verbosity>=1) printf("(NumConst=%d, SV=%ld, CEps=%.4f, QPEps=%.4f)\n",cset.m, svmModel->sv_num-1,ceps,svmModel->maxdiff); free_example(doc,0); rt_total+=MAX(get_runtime()-rt1,0); } while((ceps > sparm->epsilon) || finalize_iteration(ceps,cached_constraint,sample,sm,cset,alpha,sparm) ); if(struct_verbosity>=1) { /**** compute sum of slacks ****/ /**** WARNING: If positivity constraints are used, then the maximum slack id is larger than what is allocated below ****/ slacksum=0; if(sparm->slack_norm == 1) { for(j=0;j<cset.m;j++) slacksum=MAX(slacksum, cset.rhs[j]-classify_example(svmModel,cset.lhs[j])); } else if(sparm->slack_norm == 2) { exit(1); } alphasum=0; for(i=0; i<cset.m; i++) alphasum+=alpha[i]*cset.rhs[i]; modellength=model_length_s(svmModel,kparm); dualitygap=(0.5*modellength*modellength+sparm->C*(slacksum+ceps)) -(alphasum-0.5*modellength*modellength); printf("Final epsilon on KKT-Conditions: %.5f\n", MAX(svmModel->maxdiff,ceps)); printf("Upper bound on duality gap: %.5f\n", dualitygap); printf("Dual objective value: dval=%.5f\n", alphasum-0.5*modellength*modellength); printf("Total number of constraints in final working set: %i (of %i)\n",(int)cset.m,(int)totconstraints); printf("Number of iterations: %d\n",numIt); printf("Number of calls to 'find_most_violated_constraint': %ld\n",argmax_count); if(sparm->slack_norm == 1) { printf("Number of SV: %ld \n",svmModel->sv_num-1); printf("Norm of weight vector: |w|=%.5f\n", model_length_s(svmModel,kparm)); } else if(sparm->slack_norm == 2){ printf("Number of SV: %ld (including %ld at upper bound)\n", svmModel->sv_num-1,svmModel->at_upper_bound); printf("Norm of weight vector (including L2-loss): |w|=%.5f\n", model_length_s(svmModel,kparm)); } printf("Value of slack variable (on working set): xi=%.5f\n",slacksum); printf("Norm of longest difference vector: ||Psi(x,y)-Psi(x,ybar)||=%.5f\n", length_of_longest_document_vector(cset.lhs,cset.m,kparm)); printf("Runtime in cpu-seconds: %.2f (%.2f%% for QP, %.2f%% for kernel, %.2f%% for Argmax, %.2f%% for Psi, %.2f%% for init)\n", rt_total/100.0, (100.0*rt_opt)/rt_total, (100.0*rt_kernel)/rt_total, (100.0*rt_viol)/rt_total, (100.0*rt_psi)/rt_total, (100.0*rt_init)/rt_total); } if(ccache) { long cnum=0; CCACHEELEM *celem; for(i=0;i<n;i++) for(celem=ccache->constlist[i];celem;celem=celem->next) cnum++; printf("Final number of constraints in cache: %ld\n",cnum); } if(struct_verbosity>=4) printW(sm->w,sizePsi,n,lparm->svm_c); if(svmModel) { sm->svm_model=copy_model(svmModel); sm->w=sm->svm_model->lin_weights; /* short cut to weight vector */ } print_struct_learning_stats(sample,sm,cset,alpha,sparm); if(ccache) free_constraint_cache(ccache); for(i=0;i<n;i++) free_svector(fycache[i]); free(fycache); if(svmModel) free_model(svmModel,0); free(alpha); free(alphahist); free(cset.rhs); for(i=0;i<cset.m;i++) free_example(cset.lhs[i],1); free(cset.lhs); if(kparm->gram_matrix) free_matrix(kparm->gram_matrix); }