test_mockable int main(void) { /* * Pre-initialization (pre-verified boot) stage. Initialization at * this level should do as little as possible, because verified boot * may need to jump to another image, which will repeat this * initialization. In particular, modules should NOT enable * interrupts. */ #ifdef CONFIG_BOARD_PRE_INIT board_config_pre_init(); #endif #ifdef CONFIG_MPU mpu_pre_init(); #endif /* Configure the pin multiplexers and GPIOs */ jtag_pre_init(); gpio_pre_init(); #ifdef CONFIG_BOARD_POST_GPIO_INIT board_config_post_gpio_init(); #endif /* * Initialize interrupts, but don't enable any of them. Note that * task scheduling is not enabled until task_start() below. */ task_pre_init(); /* * Initialize the system module. This enables the hibernate clock * source we need to calibrate the internal oscillator. */ system_pre_init(); system_common_pre_init(); #ifdef CONFIG_FLASH /* * Initialize flash and apply write protect if necessary. Requires * the reset flags calculated by system initialization. */ flash_pre_init(); #endif /* Set the CPU clocks / PLLs. System is now running at full speed. */ clock_init(); /* * Initialize timer. Everything after this can be benchmarked. * get_time() and udelay() may now be used. usleep() requires task * scheduling, so cannot be used yet. Note that interrupts declared * via DECLARE_IRQ() call timer routines when profiling is enabled, so * timer init() must be before uart_init(). */ timer_init(); /* Main initialization stage. Modules may enable interrupts here. */ cpu_init(); #ifdef CONFIG_DMA /* Initialize DMA. Must be before UART. */ dma_init(); #endif /* Initialize UART. Console output functions may now be used. */ uart_init(); if (system_jumped_to_this_image()) { CPRINTS("UART initialized after sysjump"); } else { CPUTS("\n\n--- UART initialized after reboot ---\n"); CPUTS("[Reset cause: "); system_print_reset_flags(); CPUTS("]\n"); } CPRINTF("[Image: %s, %s]\n", system_get_image_copy_string(), system_get_build_info()); #ifdef CONFIG_WATCHDOG /* * Intialize watchdog timer. All lengthy operations between now and * task_start() must periodically call watchdog_reload() to avoid * triggering a watchdog reboot. (This pretty much applies only to * verified boot, because all *other* lengthy operations should be done * by tasks.) */ watchdog_init(); #endif /* * Verified boot needs to read the initial keyboard state and EEPROM * contents. EEPROM must be up first, so keyboard_scan can toggle * debugging settings via keys held at boot. */ #ifdef CONFIG_EEPROM eeprom_init(); #endif #ifdef CONFIG_EOPTION eoption_init(); #endif #ifdef HAS_TASK_KEYSCAN keyboard_scan_init(); #endif /* Initialize the hook library. This calls HOOK_INIT hooks. */ hook_init(); /* * Print the init time. Not completely accurate because it can't take * into account the time before timer_init(), but it'll at least catch * the majority of the time. */ CPRINTS("Inits done"); /* Launch task scheduling (never returns) */ return task_start(); }
test_mockable __keep int main(void) { #ifdef CONFIG_REPLACE_LOADER_WITH_BSS_SLOW /* * Now that we have started execution, we no longer need the loader. * Instead, variables placed in the .bss.slow section will use this * space. Therefore, clear out this region now. */ memset((void *)(CONFIG_PROGRAM_MEMORY_BASE + CONFIG_LOADER_MEM_OFF), 0, CONFIG_LOADER_SIZE); #endif /* defined(CONFIG_REPLACE_LOADER_WITH_BSS_SLOW) */ /* * Pre-initialization (pre-verified boot) stage. Initialization at * this level should do as little as possible, because verified boot * may need to jump to another image, which will repeat this * initialization. In particular, modules should NOT enable * interrupts. */ #ifdef CONFIG_BOARD_PRE_INIT board_config_pre_init(); #endif #ifdef CONFIG_MPU mpu_pre_init(); #endif /* Configure the pin multiplexers and GPIOs */ jtag_pre_init(); gpio_pre_init(); #ifdef CONFIG_BOARD_POST_GPIO_INIT board_config_post_gpio_init(); #endif /* * Initialize interrupts, but don't enable any of them. Note that * task scheduling is not enabled until task_start() below. */ task_pre_init(); /* * Initialize the system module. This enables the hibernate clock * source we need to calibrate the internal oscillator. */ system_pre_init(); system_common_pre_init(); #ifdef CONFIG_FLASH /* * Initialize flash and apply write protect if necessary. Requires * the reset flags calculated by system initialization. */ flash_pre_init(); #endif #if defined(CONFIG_CASE_CLOSED_DEBUG) /* * If the device is locked we assert PD_NO_DEBUG, preventing the EC * from interfering with the AP's access to the SPI flash. * The PD_NO_DEBUG signal is latched in hardware, so changing this * GPIO later has no effect. */ gpio_set_level(GPIO_PD_DISABLE_DEBUG, system_is_locked()); #endif /* Set the CPU clocks / PLLs. System is now running at full speed. */ clock_init(); /* * Initialize timer. Everything after this can be benchmarked. * get_time() and udelay() may now be used. usleep() requires task * scheduling, so cannot be used yet. Note that interrupts declared * via DECLARE_IRQ() call timer routines when profiling is enabled, so * timer init() must be before uart_init(). */ timer_init(); /* Main initialization stage. Modules may enable interrupts here. */ cpu_init(); #ifdef CONFIG_DMA /* Initialize DMA. Must be before UART. */ dma_init(); #endif /* Initialize UART. Console output functions may now be used. */ uart_init(); if (system_jumped_to_this_image()) { CPRINTS("UART initialized after sysjump"); } else { CPUTS("\n\n--- UART initialized after reboot ---\n"); CPUTS("[Reset cause: "); system_print_reset_flags(); CPUTS("]\n"); } CPRINTF("[Image: %s, %s]\n", system_get_image_copy_string(), system_get_build_info()); #ifdef CONFIG_BRINGUP ccprintf("\n\nWARNING: BRINGUP BUILD\n\n\n"); #endif #ifdef CONFIG_WATCHDOG /* * Intialize watchdog timer. All lengthy operations between now and * task_start() must periodically call watchdog_reload() to avoid * triggering a watchdog reboot. (This pretty much applies only to * verified boot, because all *other* lengthy operations should be done * by tasks.) */ watchdog_init(); #endif /* * Verified boot needs to read the initial keyboard state and EEPROM * contents. EEPROM must be up first, so keyboard_scan can toggle * debugging settings via keys held at boot. */ #ifdef CONFIG_EEPROM eeprom_init(); #endif #ifdef HAS_TASK_KEYSCAN keyboard_scan_init(); #endif #ifdef CONFIG_RWSIG /* * Check the RW firmware signature * and eventually jump to it if it is good. */ check_rw_signature(); #endif /* * Print the init time. Not completely accurate because it can't take * into account the time before timer_init(), but it'll at least catch * the majority of the time. */ CPRINTS("Inits done"); /* Launch task scheduling (never returns) */ return task_start(); }